Volume 3

M-P

Editor-in-Chief

Paul von Ragué Schleyer

University of Georgia, Athens, USA,

Professor Emeritus

Universitst Er‘/angen—NU/‘nberg, Erlangen, Germany

ENCYCLOPEDIA OF
COMPUTATIONAL CHEMISTRY

g P

JOHN WILEY & SONS
Chichester - New York - Weinheim - Brisbane - Singapore - Toronto



1706 MOLLER-PLESSET PERTURBATION THEORY

17. R. M. Jackson and M. J. E. Stemberg, Protein Eng., 1994, 7,
371-383.

18. M. F. Sanner, A.J. Olson, and J.-C. Spehner, Biopolymers,
1996, 38, 305-320.

19. J. Pitarch, V. Moliner, J. L. Pascual-Ahuir, E. Silla, and
L. Tunon, J. Phys. Chem., 1996, 100, 9955-9959. 4

20. A. Nicholls, K. Sharp, and B. Honig, PROTEINS: Struct. Funct.
Genet., 1991, 11, 281-296.

21. R. B. Hermann, J. Comput. Chem., 1997, 18, 115-125.

Mgller—Plesset
Perturbation Theory

Dieter Cremer
Goteborg University, Sweden

1 Introduction 1706
2 Methodology 1708
3 Applications 1723
4 Conclusions 1733
5 Related Articles 1734
6 References 1734
Abbreviations

BWPT = Brillouin-Wigner perturbation theory; EN =
Epstein-Nesbet; FCI = full CI; MBPT = many-body per-
turbation theory; MRS PT = multireference state perturba-
tion theory; PT = perturbation theory; RSPT = Rayleigh-
Schrodinger perturbation theory; SRS PT = single-reference
state perturbation theory.

1 INTRODUCTION

Most electronic structure investigations start with a Har-
tree-Fock (HF) calculation (see Density Functional The-
ory (DFT), Hartree-Fock (HF), and the Self-consistent
Field), which provides a reasonable description of energy,
wavefunction, electron density distribution and other proper-
ties of atoms and molecules. However, because of its well-
known simplification of the description of electron inter-
actions (each electron moves in the average field of all
other electrons), HF suffers from an exaggeration of elec-
tron repulsion. One has té) apply a suitable correlation cor-
rected method that describes electron interactions in a better
way to obtain more reliable atomic and molecular proper-
ties. During the 1960s and early 1970s, electron correla-
tion was mostly introduced by configuration interaction (CI)
theory (see Configuration Interaction); however, since the
mid-1970s the most often used correlation corrected ab ini-
tio method is many-body perturbation theory (MBPT) with
the Mgller-Plesset perturbation operator (often denoted as MP
theory).!

1.1 Historical Background

Mgller and Plesset! were the first to develop a perturba-
tion theory (PT), in which the HF wavefunction and energy
are taken as zero-order solutions to the exact wavefunction
and energy. The difference between the exact Hamiltonian
and the HF Hamiltonian is considered as a small perturba-
tion, which corrects the average-field approximation of HF
theory in such a way that the correlated movement of the
electrons is explicitly considered. In 1934, Mgller and Plesset
published their work in a short paper of Just five pages, which
for more than 40 years had little impact on quantum chemis-
try, but later became very popular among quantum chemists,
and today is considered as one of the milestone papers dealing
with the electron correlation problem. In the 1930s and also
in the following decades, the focus of quantum chemists was
primarily on HF theory and its possible improvement in the
form of CI theory. When electronic structure calculations first
became available for a larger audience due to the advent of
computers in the mid-1950s, development work concentrated
on various HF and CI solutions and their implementation in
the form of computer programs. Little attention was paid to the
possibilities of PT. The situation was different among nuclear
physicists since the interaction potential between nucleons is
strongly repulsive and, therefore, HF theory, which allows two
particles to occupy the same region in space, was not applica-
ble within nuclear theory. Therefore, nuclear physicists used
the model of noninteracting particles and included interac-
tions by PT using either the Brillouin-Wigner (BW) or the
Rayleigh-Schrodinger (RS) variant. It soon became obvious
that the second-order BW energy contrary to the second-order
RS energy is not proportional to the number N of particles. In
an important paper, Brueckner? investigated the application of
RSPT to fermions and found that the third-order energy E®
and higher order perturbation energies E(”) contain terms that
are proportional to N2, N3, etc., but that these terms are can-
celed by other terms in the energy formula so that all remaining
terms are ‘linked cluster’ terms proportional to N. Brueckner
could not give a general proof of what is known today as the
‘linked cluster theorem’ for any order p- This was given two
years later by Goldstone® using a diagrammatic representation
of PT, which was stimulated by developments in field theory
connected with the names of Feynman, Dyson, and Wick in
the late 1940s and early 1950s. The work of Brueckner, Gold-
stone, and others presented the start of MBPT in its present
form as the PT that considers just the linked cluster contri-
butions to the energy and, therefore is ‘extensive’ (i.e., scales
with N) at all orders of PT. Within a couple of years Fesh-
bach formulated an effective Hamiltonian that could be used to
get (in principal) exact energies even though applied to model
wavefunctions, Bloch and later des Cloizeaux made the first
steps toward quasidegenerate MBPT, and a generalization of
MBPT to open-shell systems was started.?

In 1963, Kelly> demonstrated the applicability of the
Brueckner-Goldstone MBPT in electronic structure calcula-
tions on atoms. In the 1960s and early 1970s, only a few MBPT
investigations on atoms and the H, molecule were published.
This changed in the 1970s when Bartlett and, independently,
Pople developed MBPT methods from second- to fourth-order
for general use in electronic structure calculations within a rel-
atively short period of about five years.~12 Bartlett and his
co-workers made the lead in these developments following the
diagrammatic approach to MBPT in the tradition of Goldstone,
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Hugenholtz, Brandow and others. Although diagram language
provided an elegant approach to developing appropriate formu-
las for calculating the perturbation energy, it was unfamiliar to
many chemists and, therefore, there was a certain relief among
those willing to apply perturbation theory to chemical prob-
lems when Pople’s parallel developments of low-order MBPT
discarded diagram language and followed what is known today
as the algebraic approach to PT. Since Pople directly con-
nected his work to the outline provided by Mgller and Plesset
on second-order PT, he coined the terms MP2, MP3, MP4,
etc. for second-, third-, fourth-, etc. order MBPT with the MP
perturbation operator. Bartlett preferred the notation MBPT(2),
. MBPT(3), MBPT(4), etc. for the same methods, indicating that
his developments closely followed the linked cluster theorem
of MBPT. Of course, both notations can be used interchange-
ably; in this summary Pople’s MP notation is used.

Subsequently both the Pople and the Bartlett group inde-
pendently pushed the routine use of PT methods in electronic
structure calculations by inventing analytical energy derivative
techniques in connection with PT, introducing direct methods
for the investigation of large molecules and, finally, develop-
ing fifth-order PT (MBPT(S) or MP5) in the mid (Bartlett and
co-workers!3!4) to late 1980s (Pople and co-workers).!S The
competition between both groups led to rapid progress and
application of MP (MBPT) methods. It helped considerably
that, in particular, Pople made it a strategy to make newly
developed programs available to a broad public of interested
users. Because of this the MP methods are closely connected
with the name of Pople although it is fair to say that both
Pople and Bartlett made equally large contributions to the field.
Only few contributions came from other groups. As examples,
the work by Gauss and Cremer on MP3 and MP4 analyti-
cal derivatives!'®!” or the development of a sixth-order MP
(MP6) method for routine calculations by He and Cremer'®
are mentioned here.

1.2 Reasons for the Popularity of MP Methods

Today, MP methods are the most popular correlation cor-
rected ab initio methods in quantum chemistry for calculating
dynamic electron correlation effects. MP2 theory has become
the routine method for obtaining a fast, reasonably accurate
a=count of electronic structure. In this regard it has replaced
HF methods when medium-sized and even larger molecules are
investigated. Today, MP2 calculations on molecules as large as
fullerenes are not an exception. The popularity of MP methods
results from several reasoris:

(a) MP theory leads to a hierarchy of well-defined meth-
ods, which provide increasing accuracy with increasing
order p. MP2 theory leads to a major improvement of HF
results since it already covers the most important corre-
lation effects. MP4 theory provides reazonably accurate
results while MP6 approaches full CI (FCI) results rather
closely.

(b) Correlation effects are included stepwise in a systematic
manner that facilitates their analysis and the understand-
ing of the correlation problem. Therefore, it is not diffi-
cult to understand error trends and to predict the results
of higher order MP calculations.

(c) Most important is the fact that, contrary to CI methods,
all MP methods are size-extensive,'®2 je.. calculated

MP energies scale linearly with the number of electrons
as was first shown by Brueckner? and Goldstone 3

(d) Up to fourth-order, MP energies can be calculated at
relatively small computational cost since calculations
involve just single, noniterative evaluation steps. MP2
requires just O(M>) operations where M is the number
of basis functions used in the calculation. MP3 and partial
MP4 scale with O(M®) and full MP4 with oM. Using
modemn supercomputers calculations with 150-200 basis
functions are feasible with an O(M7) method such as
MP4.

Another factor has influenced the popularity of MP methods
considerably. That is the availability of easy to handle com-
puter programs that can carry out MP calculations for almost
any property with almost any reference wavefunction. Pople
and his group pioneered the development, design, and distribu-
tion of such ab initio programs. In particular, Pople invented
a monolithic program package, which performs all steps of
an ab initio calculation in an uninterrupted sequence so that
the user has to provide just a very simple input file contain-
ing information on atoms and geometry of the molecule and
some simple commands in the form of keywords that decide
on the method and the type of calculation to be used.?! It
played also an important role that Pople’s program was (and
still is) available to any interested user after a rather short
delay between development of the new method and applying
it. By this a major problem of ab initio theory was solved,
namely the problem of reproducing and testing the results of
a new method that in most other cases was only accessible to
a small group of experts.

There are also some disadvantages of MP theory which
have to be mentioned. (a) MP methods are not variational,
i.e., MP energies can become more negative than FCI energies
obtained with the same set of basis functions for the same
molecular geometry. (b) At a given order p of MP PT, there
does not exist a well-defined wavefunction, which makes it
impossible to uniquely calculate a molecular property in form
of an expectation value. (c) One observes often an oscillatory
or erratic rather than monotonic convergence behavior of
calculated MP energies with increasing order p.2%%

The first two problems are of just minor consequence.
For example, it is more important to use a size-extensive
rather than a variational method for calculating electron cor-
relation effects. Also, one can calculate molecular propzrties
in the form of response properties (see Molecular Magnetic
Properties) using analytical energy derivatives without ever
referring to a wavefunction.”® However, the third problem is
more serious: it was early observed that the MP energy can
strongly oscillate for small values of p before it converges
to the FCI energy value, which is identical with the infinite-
order MP energy. In some cases, MP energies even diverge,
i.e., there is no infinite-order MP correlation energy equal to
the FCI correlation energy. Oscillations are also fourd for
other properties such as the internal coordinates of molec-
ular geometries, dipole moments, vibrational frequencies or
infrared intensities.?? Clearly, these oscillations make the use
of MP methods less attractive, which is one of the major
reasons why coupled cluster (CC) methods (see Coupled-
cluster Theory) have replaced MP methods more and more
in the 1990s when high-accuracy ab initio calculations are
required.
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There is reason to believe that higher order correlation
effects will make it possible to successfully apply single deter-
minant theory even in the case of typical multireference prob-
lems. Apart from this, the analysis of higher order correlation
effects provides a basis for the understanding of the con-
vergence behavior of the MP series. Once the convergence
behavior of the MP series is well understood, the prediction
of reliable FCI energies from MP energies for low p becomes
possible. 4

2 METHODOLOGY

2.1 The Necessity of Correlation Corrections
2.1.1 The Correlated Movement of the Electrons

Since electrons are negatively charged particles, they repel
each other according to the Coulomb law. Within an atom
or molecule their movement is correlated, i.e., each electron
moves in a way that avoids the instantaneous positions of the
other electrons. Ab initio methods can be classified accord-
ing to the way they treat the correlated movement of the
electrons. In HF theory an electron is considered to move
through the space of an atom or molecule under the influ-
ence of the positive charges of the nuclei and the negative
charge cloud created by the time-averaged positions of all
other electrons (effect 1). This description will be improved if
Coulomb repulsion between individual electrons according to
their instantaneous positions is explicitly considered. Hence,
there should be a low probability of finding an electron in
the vicinity of another electron. Their movements should be
‘correlated’ in such a way that any close approach to another
electron is avoided as much as possible thus keeping Coulomb
repulsion low (Coulomb correlation, effect 2). Apart from this,
electrons are fermions, which implies that their wavefunction
is antisymmetric and that they obey the Pauli exclusion prin-
ciple. There is a zero probability that two electrons with the
same spin are found at the same position, which is denoted by
the term ‘exchange correlation’ (effect 3).

The three effects are illustrated for the H, molecule in
Figures 1-4 where the probability distribution of one electron
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Figure 1  Probability distribution of the single electron in H,*. The

positions of the two protons are indicated by crosses. Reproduced with
permission from R. C. Dunbar, J. Chem. Educ., 1989, 66, 463-466.
Copyright (1989) American Chemical Society

POSITION (})

Figure 2 Probability distribution for one of the electrons in the H,
ground state, as obtained from the HF wavefunction. Reproduced with
permission from R. C. Dunbar, J. Chem. Educ., 1989, 66, 463-466.
Copyright (1989) American Chemical Society

dependent upon the position of the other is shown in form of a
dot representation.? Figure 1 gives as an appropriate reference
a one-electron distribution for an H, molecule with completely
independent electrons: There are no electron-electron interac-
tions at all in this case and the one electron considered moves
free in the field of the two H nuclei, i.e., the distribution
shown in Figure 1 is identical with that of the H,* molecule.
If the electron interactions are described within HF theory,
the probability distribution for one electron shown in Figure 2
will result. The distribution is somewhat more diffuse than in
Figure 1, but basically there is not much difference between
the distributions shown in Figures 1 and 2. If the interactions
between the two electrons of H, are correctly described by
using the exact wavefunction for the calculation of the prob-
ability distribution; it is no longer sufficient to use just one
picture as in the HF case. For each position of electron 2,
a different distribution results for electron 1. From Figure 3,
which gives the probability distribution of electron 1 for three
different positions of electron 2 (indicated by white circles),
it can be seen that Coulomb repulsion has a strong effect on
the distribution of the other electron, which tries to avoid the
location of electron 2. In Figure 4, the same three positions of
electron 2 are shown for the situation of the triplet state of H,,
which has an electron with o-spin in the bonding o, MO of H,
and an electron with a-spin in the antibonding o, MO. Because
of exchange correlation, the probability of finding electron 1
at the position of electron 2 is zero and the antiSymmetriza-
tion of the wavefunction leads to a nodal surface that always
passes through the position of electron 2.

This example shows that the largest correlation effect is
due to exchange or Fermi correlation (effect 3): the two
electrons strongly avoid each other (Fermi hole). A substantial
effect is also due to Coulomb correlation (effect 2), while
qualitatively there seems to be little difference between a
description assuming an electron moving through the averaged
Coulomb field of all other electrons (effect 1) and a description
assuming noninteracting electrons. HF theory covers effects 1
and 3; effect 3 (Fermi correlation) is clearly the more important
one. Strictly seen, HF is a correlation corrected method since
it describes exchange correlation correctly. However, it is
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Figure 3 Probability distribution of electron 1 in the ground state
of H, for three different positions of electron 2 (white circles), as
obtained from the exact wavefunction. Reproduced with permission
from R. C. Dunbar, J. Chem. Educ., 1989, 66, 463-466. Copyright
(1989) American Chemical Society

common practice to confine the term correlation to Coulomb
correlation and to consider just those methods which include
effect 2 (Coulomb correlation) to some extent as correlation
corrected methods.

2.1.2 Shortcomings of the HF Approach

Because of the simplified treatment of Coulomb repulsion
between electrons, it is possible that within an HF description

POSITION (A)

Figure 4 Probability distribution of electron 1 in the triplet state
of H, for three different positions of electron 2 (white circles), as
obtained from the exact wavefunction. Reproduced with permission
from R. C. Dunbar, J. Chem. Educ., 1989, 66, 463-466. Copyright
(1989) American Chemical Society

electrons cluster too strongly around the nuclei. This leads to
an increase of stabilizing electron-nucleus attraction and to a
shielding of the nucleus. Nucleus-nucleus repulsion is under-
estimated and bond lengths calculated at the HF level are too
short, this effect becoming larger with increasing size of the
basis set. As soon as Coulomb correlation is explicitly consid-
ered, a clustering of electrons in the vicinity of the nucleus is
no longer possible, the nucleus is deshielded, nucleus—-nucleus
repulsion increases and the bond length is enlarged toward its
correct value (for opposite effects, see Section 3.4). Clustering
of electrons around the nucleus is particularly strong in the case
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of electronegative atoms, which means that HF exaggerates
bond polarities (the electropositive atom in a bond becomes
too positively charged, the electronegative atom too negatively
charged). This leads to an overestimation of dipole moments
and also influences calculated bond angles in such a way that
both the underestimation of bond lengths and the exaggeration
of bond polarities causes bond angles to widen. Another conse-
quence of an artificial shortening of bond lengths is the overes-
timation of stretching force constants and harmonic stretching
frequencies. In a similar way, one can explain trends in ver-
tical ionization potentials, electron affinities, polarizabilities,
infrared intensities and other molecular properties calculated at
the HF level.” Consideration of Coulomb correlation effects,
€.g., by MP theory, leads to significant improvements of calcu-
lated molecular properties where remaining errors depend on
the basis set used, higher order correlation effects not covered
by a given MP method, the necessity of relativistic corrections
or the inclusion of environmental effects.

The correlation effects described so far are summarized
under the term dynamic electron correlation, since they depend
on the correlated movement of the electrons in atomic or
molecular space. They have to be distinguished from so-called
nondynamic or static electron correlation (near-degeneracy
correlation) effects, which have to do with the question of
whether the HF wavefunction provides a suitable description
for the electron system in question. This is certainly the case
for most stable closed-shell systems in their equilibrium geo-
metry. However, it is no longer true if such a closed-shell
system dissociates in a homolytic fashion: The correct descrip-
tion of such a chemical process requires at least two rather than
one Slater determinant (configuration state Junction) since dur-
ing dissociation two (or more) electronic states become nearly
degenerate. In general, any atomic or molecular system either
in equilibrium or in a dynamical process that possesses nearly
degenerate states is poorly described by an HF wavefunction
(based on a single determinant). Examples are homolytically
dissociating molecules, biradicals, molecules with low lying
excited states, etc. Appropriate corrections will be obtained
if a two-configuration or multiconfiguration method such as
TCSCF, GVB or MCSCF is used to determine an appropri-
ate starting wavefunction for the atomic or molecular problem
in question. The energy difference between HF and the mul-
ticonfiguration method defines the static correlation energy.
Clearly, once static correlation is appropriately described, an
additional correction has to be made to account for the dynamic
correlation of the electrons.

Dynamic correlation is the correlated movement of two or
more electrons at a relatively short distance around the cusp
region. Static correlation normally leads to a relatively large
separation of two electrons in a pair as, e.g., in the bond break-
ing situation (one electron staying at the first atom, the other at
the second atom) or in the near-degeneracy situation of ground
and excited states experienced for molecules such as ozone
(one electron staying in a contracted ground state molecular
orbital localized in the vicinity of the nuclear framework, the
other occupying an excited state orbital extending far beyond
the nuclear framework).

2.1.3 Definition of the Correlation Energy

The correlation energy Ecor for a given state with regard
to a specified Hamiltonian is the difference between the exact

eigenvalue of the Hamiltonian and its expectation value in the
HF approximation. In this definition, which was first given
by Lowdin,? both static and dynamic correlation energy are

effects so that the difference between the exact energy and the
reference energy (calculated at HF, TCSCF, MCSCEF, etc.) is
Just the dynamic correlation energy. Again, it is hardly possible
to keep static and dynamic correlation effects separated as soon
as high-order correlation effects are included in the calculation

The definition of the correlation energy given above does
not consider the basis set used. Numerical HF calculations, if
possible, provide the HF limit and if the Schrédinger energy is
derived with the help of experimental data, a total correlation
energy can be determined.2’ However, in most cases the HF
energy is just known for a finite basis set. If an FCI calculation
with the basis set in question is possible, one can calculate the
exact correlation energy for this particular basis. Otherwise,
one has to use an approximate method X for the basis set ¥
and obtains the X/Y-based correlation energy where also the
geometry of a molecule has to be considered.

Since correlation keeps Coulomb repulsion, which corre-
sponds to a positive, destabilizing eénergy contribution, small,
the correlation energy is always negative (stabilizing). Com-
pared to the rotal energy of an atom or molecule, the cor-
relation energy is typically less than 0.5%, e.g., 0.38 hartree
in the case of the Ne atom, which is just 0.3% of its total
energy (—129.06 hartree). Nevertheless, this corresponds to
238 kcal mol™! and is larger than most bond and reaction
energies. Since the correlation energy depends on the elec-
tronic structure, correlation effects on relative energies cancel
only in exceptional cases. If chemical accuracy (1 kcal mol~!)

is required, correlation energies have to be calculated in a con-
sistent manner.

2.1.4  Pair Correlation Effects

Electronic structure calculations confirm what is anticipated
from the Pauli exclusion principle, spin considerations and
Symmetry constraints, namely that electrons prefer to pair and
to occupy certain regions of molecular space: (a) the inner-
shell regions of atoms, (b) the bond regions, (c) certain non-
bonding regions. Hence, dynamic correlation effects should
be particularly strong within an electron pair but less between
different electron pairs separated in space. The main contri-
bution to the correlation energy Ecor should be electron pair
correlation where intrapair correlation should be larger than
interpair correlation. Accordingly, the correlation energy can
be approximated by equation 1:

Ecorr:%zzgpq (1)
P q

where ¢,, is the correlation energy of the electrons p and ¢
coupled in the pair pgq.

There are three important types of pair correlation effects
that should always be considered, namely left-right correla-
tion, angular (up-down) correlation, and in-out correlation.



MOJLLER-PLESSET PERTURBATION THEORY 1711

They are explained below for the case of the Li; molecule,
which has the electron configuration (105)?, (10y)%, (20¢)* =
conc(ZUg)z.

Left-right correlation. One of the two bonding 20, elec-
trons prefers to stay close to the left, one close to the right
Li nucleus. In the wavefunction, this type of correlation is
included by mixing in the (20,)? configuration, which requires
a double (D) excitation from the 20, to the 20, orbital
(Figure 5). Linear combinations of the 20, and 20, orbitals
lead to new orbitals 20, + ¢i;20, and 205 — ¢ 20y, which have
a larger amplitude either on the left or the right Li nucleus as is
_schematically indicated in Figure 5. Adding left-right correla-
tion to the HF description of dissociating Li;, a charge transfer
relative to the HF description as indicated in equation (2)

Lit..-Li- — Li*---Li* 2)
is caused and dissociation of Li; is qualitatively correctly
described. Therefore, the D excitations leading to a description
of left-right correlation are also called dissociative excitations.

Angular (up-down) correlation. The two bonding 20, elec-
trons of Li, prefer to stay at opposite sides of the bond axis
to avoid each other. In the wavefunction, this type of cor-
relation is included by mixing in the (1m,)? configuration,
which requires a D excitation from the 20, to the 1, orbital
(Figure 5). Linear combinations of the 20, and L, orbitals
lead to new orbitals 20y + c,17, and 20 — ¢, 17y, which have
a larger amplitude either above or below the bond axis (see
Figure 5). For the separated atoms, this type of excitation cor-
responds to a transfer of a 2s electron to a 2p orbital. In this
way, the spherical charge distribution of a Li atom is polar-
ized in the direction of the p orbital. A polarized state of the Li
atom is a prerequisite to describing dispersion forces between
Li atoms correctly and, therefore, one speaks of dispersive
excitations in this case.

In-out correlation. If the two bonding 20, electrons of Li,
both happen to be near to one Li nucleus, then one will stay
close to the nucleus while the other electron will move into
the nonbonding region farther away from the nucleus. In the

left - right angular in - out

Ground state comelation correlation correlation
3, — — e<le _— —— ++
%, — — H — + =+ el
26,—— @O D —1— —t— ——t e
2o.—f— + (o = g =5

(1op)? (16, (1op)? (16,)? (1p? (10, (o) (10,)

ab
o, — D OO

19

6‘6 e

elle OHO @@ 16-O

Figure 5 Left-right, angular, and in-out pair correlation in the case
of Li, as described by appropriate D excitations. MO diagrams for
ground (left side) and doubly excited states are given. Orbitals and
the bond electron pair (from left to right: uncorrelated in the bond
region, left-right correlated, angular correlated, in-out correlated) are
schematically shown

wavefunction, this type of correlation is included by mixing in
the (3org)2 configuration, which requires a D excitation from
the 20y to the 30, orbital (Figure 5). Linear combinations of
the 20, and 30, orbitals lead to new orbitals 20, + cio30,
and 20y — o304, which have a larger amplitude either in the
bonding or the nonbonding region as is schematically shown
in Figure 5. For obvious reasons, this type of excitation is also
called a dispersive excitation.

By including the most important left-right, angular, and
in-out pair correlation effects the Li, bond dissociation energy
(D, = 1.05 eV) is reproduced with a small error of 6% while
at the HF level (D, = 0.17 eV) the error is larger than 80%.28
Mostly it is sufficient to consider just the correlation effects
of valence electron pairs. Inner-shell correlation effects can
be ignored (frozen core description). However, for larger
atoms the core is polarized and inner-shell correlation becomes
important.

2.1.5 Higher Order Correlation Effects

In the language of ab initio, theory, D excited configura-
tions are described by the symbol ®¢, where i and j denote
spin orbitals ¥; and ¥; occupied in the HF ground state wave-
function @, while a and b denote virtual orbitals v, and v,
which become occupied in the D excited configuration. It is
common custom to use indices i, j, k, ... to label occupied
spin orbitals and indices a, b, c, ... to label unoccupied (vir-
tual) spin orbitals. In cases where both types of spin orbitals are
considered indices p, q, r, . .. are used. In particular, left-right,
angular, and in-out pair correlation effects are included by
adding to the ground state wavefunction of Li, the D exci-
tations <1>22222‘;:, <I>l2’;:;;':, ¢3;:%: (a bar indicates a B spin
orbital), which possess additional nodal planes that help to
keep electrons apart.

However, when this is done the HF orbitals are no longer
the best orbitals for the new physical situation, with (partially)
correlated electron pairs. Accordingly, the occupied orbitals
should be reoptimized, which corresponds to a new mix-
ing with the virtual (unoccupied) orbitals. This is done in a
MCSCF method, but not in methods such as MP that describe
just dynamic electron correlation. Instead, single (S) excita-
tions ®¢ are mixed (via D excitations) into the wavefunction;
these describe orbital relaxation effects, i.e., the orbitals are
partially readjusted to accommodate correlated electron pairs.
S excitations cannot compensate for an orbital reoptimization
within a MCSCEF calculation, however they represent an useful
orbital relaxation correction, which compared to pair correla-
tion effects is considerably smaller.

By mixing in higher and higher excited configurations
such as triple (T) de'f,f quadruple (Q) @f]'?,f,", pentuple (P)

fj”,f,‘: or hextuple (H) excitations %%/ higher and higher

ijklmn
correlation effects are covered. For jexample, T excitations
describe three-electron correlation effects (from the correlated
movement of three electrons dependent upon each other) as
well as a combination of pair correlation effects and orbital
relaxation. Similarly, Q excitations can cover genuine four-
electron correlation effects and combinations of lower order
correlation effects. It is clear that with increasing number of
electrons connected all-electron correlations become less and
less probable. However, there is a relatively large probability
that, e.g., a Q excitation describes a pair correlation taking
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place in one part of a molecule and another pair correlation
taking place at the same time, but independently of the first
in another part of the molecule. One speaks in this case of
disconnected correlation effects, of which the disconnected
pair-pair correlations are the most important ones.

Connected P and H correlation effects should be of minor
importance, while disconnected H correlation effects resulting
from three independently correlating pairs can be rather impor-
tant, e.g., for a conjugated molecule such as benzene with
its three delocalized m-electron pairs. One can view higher
order excitations such as a Q excitation as a D excitation on
top of another D excitation. Since D excited configurations
are also important in setting up a reasonable reference wave-
function for a near-degeneracy problem it is clear that one
can no longer distinguish which part of the higher order (dis-
connected) excitations describes nondynamic and which part
dynamic correlation effects. Or in other words, the more higher
order excitations are mixed into the HF reference wavefunc-
tion, the larger is the chance of getting away with a single-
reference (determinant) description such as HF even in the
case of a typical multireference (near-degeneracy) system. Of
course, an exact solution in the latter case is only provided
by a FCI description, which considers all possible excitations
up to n-tuple for an n-electron system. An FCI calculation
with a limited basis set covers all (dynamic and nondynamic)
correlation effects that can be described with the basis set
chosen.

2.1.6 Correlation Corrected Methods

Figure 6 provides an overview of the most frequently used
correlation corrected ab initio methods in quantum chemistry
and, by this, indicates the position of MP methods among these
methods.

As indicated, MC methods extend the application of HF
theory to problems with strong nondynamic electron correla-
tion. Therefore, the MC methods represent a separate class
of correlation corrected methods, actually closer to HF than
dynamic electron correlation methods.

There are three classes of methods that describe dynamic
correlation effects, namely PT methods, of which MP methods
are the most prominent ones, CI methods, and CC methods.
MP methods are computationally the simplest ones while CC
methods are the most complicated, most expensive, but also the

exchange HF
correlation |
static MCSCF
(non dynamic)
correlation TCSCF
GVB
CASSCF
dynami(.: CID MP2 CCD
correlation CISD MP3 CCSD
CISDT Mo CCSDT
CISDTQ MP6 CCSDTQ

Figure 6 Overview of correlation corrected ab initio methods used
in quantum chemistry

most accurate ones. The three types of methods, even though
conceptually different, have many connections and, therefore,
it is useful when discussing MP methods to compare the
corresponding CI and CC methods. A detailed discussion of
the latter will be presented by P. Csarsky (see Configuration
Interaction) and J. Gauss (see Coupled-cluster Theory).

2.2 The Formalism of Perturbation Theory

A solution of the many-electron nonrelativistic electronic
Schrédinger equation in its time-independent form

AV = Ey 3)

(H: Hamiltonian or energy operator; W: exact wavefunc-
tion; E: exact energy; the ground state is considered, i..,
V; =Yy = V) is not possible for an n-electron system with
n > 1 and, therefore, one has to work with approximate solu-
tions of equation (3). Suppose that an approximate form of
equation (3), namely

ﬁod)(o) = EO %O 4)

has been solved. If both E® and &© are not very different
from the true energy E and the true wavefunction W, energies
and wavefunctions can be considered as being related by
a perturbation where equation (4) describes the unperturbed
problem and equation (3) the perturbed problem. Accordingly,
the true Hamiltonian A is split into unperturbed Hamiltonian
Hg and perturbation operator V:4

A )

ﬂ:f]o-{*—ko 5)

By switching on the perturbation with the help of a dimen-
sionless parameter A, the unperturbed solution is smoothly
transferred into the perturbed solution corresponding to the
Schrédinger equation (3).

E® L E
O —»W} A—1

By expanding E and W in the form of a Taylor series in A, one
obtains

E=E® £ EM £ NED 4 ... 4 appe) 4 .. ©)
\l/:4>(O)+Ad>("+k2¢(2)+-~~+lp¢(”’+--- 7)
where E(® and ®®) are the pth order correction to the
reference energy E© and the reference wavefunction &©
of the unperturbed problem. Inserting the Hamiltonian (5)

and equations (6) and (7) into the Schrédinger equation, one
obtains

([:10 +k‘7)(¢(0) +20M 4 -y

= (EQ+AED 4. )@O® 4 r0M 4 ..y (8)

Since all terms in expansion (8) are linearly independent, the
equation must be satisfied for each order p.

(E® — Hp)o©® =0 ©
(E(O) = 1:10)¢(|) = (f/ . E“))q;(o) (10)

order O :

order 1 :
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order2: (EQ — Hg)o® = (V — EM)o") — ED 0@ (n

P
order p:  (E® — Ho)oP = (V — EMar=h -5~ R or—d

k=2

(12)
All wavefunctions are determined only up to an arbitrary
constant, which is frequently chosen to set the integral (13)

/\v‘wrz (V¥ =1 (13)

equal to one to provide a convenient probability interpretation.
In PT, it is more convenient to choose the intermediate
normalization

(@) =1 (14)
which is equivalent to
(@10 =1 and (®Q®P) =0 forall p>0 (I5)

In this way, simple energy expressions are obtained from
equations (9)-(12)

order 0: E© = (0@ |H,|0©) (16)
order 1 : EM = (0@ |V|0©@) (17)
order 2 : E<2’=(¢(°’|V|d>“’) (18)
order p : E(p)=(®(0)|‘7|d>(p—”) (19)

where the energy for p =0 is known from the unperturbed
problem and calculation of the first-order, second-order, etc.
energy correction seems to require knowledge of the first-
order, second-order, etc. correction to the wavefunction of the
unperturbed problem.

order 1: &M = (E® —Hy)~'(V — EM)o©® (20)
order 2: @@ = (E® — Hy)™!
x [(f/ s, E(I))d)(l) - E(z)¢(0)] @1
order p: @V = (EQ — Ho)™'[(V — EM)otP—
P
= ZE(k)q)(p—k)] 22)
k=2

Detailed analysis of the perturbation formulas reveals that the
pth order correction to the wavefunction, ®(P) | is actually
sufficient to calculate all energy corrections up to E@P+D,
which is the content of the Wigner theorem.

¢(0) R E(O), EM
o E(2)‘ E®)
¢(2l R E“), E(S)

o ., E© gD Wigner Theorem (23)

o) ——» (2p)‘ E@p+1)
/7

The Hamiltonian H¢ is a Hermitian operator with a complete
set of eigenfunctions d>§°)(1 =0,1,2,...) comresponding to
ground state wavefunction be,o) of the unperturbed problem
and the excited state wavefunctions ®{, ), ®© etc. The
latter can be used to determine the correction terms q>(()P ) for

CD(()O) to obtain the exact ground state wavefunction ¥y of the

perturbed problem. Working out the corresponding formulas,
one obtains

ED = (@@(10) = (01710) = Voo 5
VosV
i i L3
° Z EO —E; (25)
>0
VsV V
EQ = _ YOs¥s¥i0 -
: gg(Eo—Es)(Eo—E,) (26)
@) _ VosVauVuVio
B =Y D) s
5>0 >0 u>0 (Eo s)(Eo )(Eo — E,)
VosVsoVo V.
S ML LT oA
s>0 >0 (Eo — E5)(Eq — Ey)
&' =3 _V0 so —
s>0 Eo . E-\’ :
VoV
o) = I S N (V)
0 §§ (Eo —Es)(Eo —E)) °
Voo Vo
"2 BB 29
g(; (Eo — E.\')2 4 29)
where Vg = (0©|V]0©)
o Vo =Va —8:Voo (30)

and EQ =Eyand E? = E,.

2.3 Mogller-Plesset Perturbation Theory
2.3.1 The MP Perturbation Operator

In 1934, Mgller and Plesset published a ‘note on an approx-
imate treatment for many electron systems’, in which they
suggested using the HF wavefunction and HF energy as the
zeroth-order approximation to exact wavefunction and energy.

Accordingly, the HF Hamiltonian HYF was regarded as the
appropriate Ho operator for the unperturbed problem:

fy= B = Y F(p) — 3 33 Wy~ Kip)
P £t
___th.(p)_GHF a3l1)
14

The Fock operator for electron p

F(p)=h(p)+(p) = h(p)+ > _Ji(p) —Ki(p))  (32)

is an effective one-electron operator, which depends on the
one-electron operator il(p) that covers kinetic energy and
nucleus-electron attraction, and the HF potential v(p) con-
structed from Coulomb operators Ji( p) and exchange opera-
tors Ki(p) both being expressed in terms of spin orbitals ¥;.
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The Fock operators are Hermitian operators that are associated
with the set of one-electron eigenvalue problems:

E(p)i(p) = eivi(p) (33)

Equation (33) represents the kernel of HF theory specifically
and MO theory in general since they define the spin orbitals v/;
and their orbital energies ¢; as eigenfunctions and eigenvalues
of the Fock operators. Since the sum of orbital energies covers
the electron interaction energy GHF twice, the HF Hamiltonian
contains besides the sum of Fock operators also the correction
term —GHF.

Since the exact Hamiltonian is given by

s ~ 1 1
”=Z”"”+EZZ§ (34)
r r q
the perturbaticn operator takes the form

VAT = Y L Supectt os)
r 9 P

Tpq
where the expectation value of V' is
<“‘/1) - (["{ - f"{HF) = chacl . ZGHF Y GHF = chacl . GHF (36)

This is most likely a small quantity so that the basic assumption
of PT, namely that the perturbation operator is associated with
a relatively small electron interaction correction, is fulfilled.
However, there is the problem that G°** cannot be calculated,
unless one reverts again to the average-field approximation
of HF theory. In this case, the expectation value of the
perturbation operator becomes zero, which is not useful at
all. To get out of this dilemma, the shift term GHF is used to
define the new operators Ho and V

Ao =AY + G =" F(p) @7
(¢

1% V’—G“F=%zzi—2i,(p) (38)
p q 'Pa 14

The expectation value of V adopts a finite value when calcu-
lated on the basis of the average-field assumption.

The HF wavefunction is an eigenfunction of Hy and the
sum of orbital energies E°® =3 ,¢; is the corresponding
eigenvalue.

o) = olfif = vy, EP = EZ® (39)

Aoy = ESPdq (40)

The substitution functions ®; generated by exciting electrons
from occupied spin orbitals y;, ¥/}, etc. to virtual spin orbitals
YV, V. etc. are also eigenfunctions of H and, accordingly,
are orthogonal to each other.

2.3.2  Calculation of MP Energies: Integral Transformation

The evaluation of MP correlation energies requires the
calculation of matrix elements of the type Vg, Vi, etc.
and denominators such as Eg — E; (see equations 25-29).
Calculation of the denominators is facilitated by the fact that

for a substitution function &, such as d>;'J'.’

the following
relations hold:

Ro®} = E7 @ @n

E?;l‘,zZek+€a+5b=Eo_€i—€j+6n+€b 42)
ki j

Eo—Es=Eo—Eff=€i+ej—ea—e,, 43)

and similar formulas for higher excitation functions o,

Since the MP perturbation operator involves a two-electron
operator, the standard Slater rules for orthonormal spin orbitals
can be applied when calculating Vo, Vg, etc. All matrix
elements can be expressed in terms of double-bar integrals
(ijllab), which are antisymmetrized two-electron integrals of
the general type (pq||rs):

|
(palirs) = [ [ GOV ()
— (DY, @ldndr, “4)

From an HF calculation two-electron integrals (uv|Ao) over
basis functions x, are available, which means that for MP
calculations some or all two-electron integrals have to be
transformed into the basis of spin orbitals ;. The cost factor
for transformation (45)

IR = 33 S (uvlho)cicycancar (5)
u v A o

(coefficients c,; are the LCAO coefficients obtained in the HF
calculation) seems to be rather large since the cost of the one-
step transformation (45) is proportional to O(M?), where M
denotes the number of basis functions used in the HF calcula-
tion. This can be seen by realizing that about M* two-electron
integrals over basis functions y, have to be calculated at the
HF level (this is the reason why the cost of an HF calcula-
tion is proportional to O(M*)), which are transformed into M*
two-electron integrals over spin orbitals. However, Nesbet
and later Bender™ realized that the M® transformation of equa-
tion (45) can be dissected into a sequence of four M transfor-
mations by calculating intermediate arrays (uv|Al), (uvlkl),

and (u jlkI) which represent partially transformed two-electron
integrals:

(wvlAl) = " (uvlro)ey (46)

(vlkl) = " (uvll)cy (47)
X

(jlkly =3 "(uvlki)c,, (48)

(kL) = (ujlkl e, 49)

1

In this way, the integral transformation can be carried
out at a cost level which is not much higher than that of
an HF calculation. On the other hand, it is clear that any
correlation corrected ab initio calculation involves at least
O(M?®) computational steps because of equations (46)-(49).

The use of intermediate arrays to reduce the computational
cost of an MP calculation becomes rather important when
higher order MP energy corrections have to be calculated. It
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is kind of an art in itself that once suitable energy formulas
of the type shown in equations (25)-(29) are found, these
are converted into double bar integrals in such a way that
computational cost are kept minimal. For fourth-order and
higher order MP energies, this requires increasing use of
intermediate arrays.'8

2.3.3 First-order MP Energy and MP Theorem

The first-order correction to the energy Eg’b is given by
Eyp = <<l>o|§ § — —Zv(p)lfbo
=Voo=—3 %j(ijuij) (50)

i.e., it reduces the orbital energy EJ™ by the electron interac-
tion energy GHF. Hence, the first-order MP energy is identical
to the HF energy:

E(HF) = E(MP1) = E§® + Egp = > & —

1
3 Z(ijum, (51)
ij

which means that the HF energy is correct up to first-order.
Correlation corrections do not come in before second-order.
Mgller and Plesset were the first to show this.! They also
showed that the HF electron density and other one-electron
properties such as the dipole moment are correct through the
first-order of PT. This is today known as the Mgller-Plesset
theorem.

2.3.4 Second-order MP Energy

The second-order correction to the energy was given by
equation (25)

VosVso
EP =" 22 25
0 Z Ey=E. 5

where a priori the substitution functions could be S exci-
tation functions ®f and D excitation functions <I>j?j’?. How-
ever, because of the Brillouin theorem all matrix elements
(P (0)|V|<I>“) are identical to zero. Only D =xcitations interact
directly with the ground state wavefunction and, therefore, the
s-index in equation (25) is equal to D. If equation (25) is con-
verted into double bar integrals utilizing equation (43) in the
case of the denominator, one obtains

|
Egp =722 (ijllab)a} (52)

ij ab

ab

where a;} are the D amplitudes that are given by

ul)

aj; = = (& +&; — &y — Ep) (abl[l/ (53)

Mgller and Plesset were the first to derive the formula for the
second-order correlation energy.! Calculation of the MP2 cor-
relation energy requires just O(M?>) operations and, therefore,
MP?2 calculations represent one of the cheapest ways of get-
ting correlation corrections. As shown before, D excitations
describe pair correlation effects and, therefore, the MP2 cor-
rection covers the largest part of the correlation energy defined

by a given basis set. It has to be stressed that the D excita-
tions couple via v only with the HF ground state wavefunction
(matrix elements Vo), however not among themselves and,
therefore, they ‘do not see each other’. As a consequence, the
whole atomic or molecular space is used to separate the elec-
trons within a pair irrespective of the fact that the electrons
of another pair may occupy the same space. This leads to
an overestimation of pair correlation effects, which has to be
considered when analyzing MP2 correlation energies.

2.3.5 First-order MP Wavefunction

Since determination of the MP2 correlation energy requires
the calculation of the D amplitudes aj-‘]’-’ (equation 53), the first-
order correction to the wavefunction is readily available within
a MP2 calculation:

o= 23 Y aters (54)

ij ab

The correction CDB” is fully determined by all D excitations.
Its magnitude is measured by

1
(®hiplPigp) =T7 = £ 33 (i)’ (55)

ij ab

2.3.6 Third-order MP Energy

In the case of the third-order correction, again only D exci-
tations are included, which means that the third-order energy
covers just pair correlation effects. However due to the fact
that matrix elements V, are included in the correction for-
mula (equation 26), where ®; and ®, represent excitations D
and D', the third-order correction includes a coupling between
different D excitations, which leads to a correction of pair
correlation effects overestimated at the second-order level.

The two-electron integral formula of the third-order energy
correction is given by

Ef = Z > (ijllabybe (56)

ij ab

where the second-order D excitation amplitudes depend in a

somewhat complicated way on the first-order D amplitudes of
equation (53):

|
b = (ei+€j— €a— €p)" [5 (Z(abuef)af{ +3 (mn ij>a;’.’:>
L

elf mn

-3 Z(—“ P(i/ jla/b)(mb|| je)a i',,’.} (57

me

The permutation symbol P(i/jla/b) denotes the product
P(i/j)P(a/b), and P(i/j) (or P(a/b)) gives the sum of the
identity and the permutation of i(«) and j(b). The calculation
of the bj-‘}'-’ amplitudes requires O(M®) steps and, accordingly,
the determination of the MP3 correlation energy is an oM?®)
operation.
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24 Size-extensivity of MP Methods and the Linked
Diagram Theorem

PT in its present form was first developed for the inves-
tigation of continuous media such as nuclear matter, solids,
electron gas, etc. where the properties of interest are extensive
(see Section 1.1). When doubling the size of the system inves-
tigated and keeping the particle density constant, the energy
of the system should double. This property is called size-
extensivity. For an atom or molecular system, the particle
density does not remain constant when its size is increased.
Nevertheless, a physically reasonable description by PT (or
any other method) must lead to a linear dependence of the
energy on the number N of electrons. Energy terms that have a
nonlinear dependence on N are unphysical and prevent a com-
parison of atomic or molecular energies in connection with the
investigation of molecular stability and reactivity.

Brueckner was the first to show for the lower orders of PT
that all terms having a nonlinear dependence on N mutually
cancel each other. Both EY, Eé”. and E((,z) have only terms
linear in N, which is the reason why HF and MP2 are size-
extensive. This can be shown by adding stepwise electron
pairs to a closed-shell system with N electrons. For example,
the zeroth-order energy increases in this case according to
equation (58):

EQ'(No+2+2+2+---)= > 26 +2¢; + 265 + 261 + - (58)

where the extra electrons occupy MOs ¢ j» Pk, etc. The more
electron pairs are added, the more the orbital energies of the
newly occupied MOs approach the value & = 0. For very large
N the difference between the ¢ values of newly occupied MOs
becomes so small that by a first approximation the orbital
energy can be considered as a constant ¢ and the zeroth-order
energy becomes

EQ(N) =Ne (59)

ie., E(()O) scales with the number of electrons N. Similar
considerations apply to first- and second-order energy, thus
confirming that HF and MP2 are size-extensive.

The situation is somewhat different for the third-order
energy given in equation (26), which can be rewritten in the
following way:

VO Vv VIO VO:stVJO
E(}) . s ¥ st +
0 =22, (Eo — Es)(Eo — E,) 2, (Eo — E,)?

s# >0 s=1>0
Vo,V
“E'Y o hy e
>0 (Eo — Ey)
EQ =P+ - T (60b)

In the third term, Fg” corresponds to the second-order energy
reduced by an extra denominator. Hence, both E(()” and [‘gj)
scale with N and their product with N2. Using the relationship

Vg = Vg — 84 Vo in connection with the second term one can
rewrite F(23) according to

VosVssVio VosVo
r‘-":E:‘——+v § A 6la
: Eo-Ey L E-Ey O™

>0 >0

Vo ViV
. Os Y ss ¥V 50 +E§,”l‘_‘;“

(Eo — E,)? 0IL)

>0

where the first term scales with N and the second again with
N2. Clearly, part of the second term cancels the third term
of the third-order energy so that the latter Jjust scales with N
rather than N + N2. Similar considerations apply to fourth and
higher orders of MP PT.

It is useful to examine what would happen if the third-order
energy were given by equation (62)

23/
EY = l‘(,” o E(‘,”Fg” 62)

which no longer would be size-extensive. If equation (62) were
used to calculate the energy of the dissociation reaction AB —>
A + B, where AB would represent a 10-electron molecule and
fragments A and B, 6- and 4-electron systems respectively,
then one would obtain a third-order correction for the reaction
energy according to (62):

AE® = ES) _ EQ _ gD
= [€)3(10) — )5 (100)] — [e¥ (6) — e’ (36)]
— [y (4) - &) (16)] ©63)

where the partial third-order correction energies e depending
on N or N? are always negative since they represent correlation
corrections. Because of the N2 dependence, the correction term
¢ raises the absolute energy of AB more than those of the
fragments A and B. In this way, the fragments become too
stable relative to AB and, accordingly, the dissociation energy
(AE > 0) becomes too small, which is a typical error when
using methods that are not size-extensive. The error can be
quantified by calculating a supermolecule (A - - - B), in which
the fragments are 10 or more A apart so that their interaction
is negligible. The corresponding reaction energy is given by

AE® = [¢[5(10) — e5(100)] — [ _,(10) — & 5(100)]  (64)

Le., the size-extensivity error cancels, although the method
used to calculate AE is still not size-extensive. The difference
in the energies obtained from equations (63) and (64) gives
the size-extensivity error, which can be up to 5 kcal mol~!
and larger, depending on the number of electrons involved.

While size-extensivity is a property that can only be proven
for very large numbers of electrons of a given atom or
molecule, as shown in equation (59), it is much easier to
demonstrate its consequences for dissociation or related che-
mical reactions. In this connection the term size-consistency
was coined by Pople.' Very often size-consistency and size-
extensivity are used interchangeably, however this is not cor-
rect because the property of size-consistency is a special case
of the more general property of size-extensivity as has nicely
been shown by Bartlett.2

While Brueckner? proved size-extensivity just for the first-
orders of RSPT, Goldstone® could show in 1957 that all
unphysical terms contained in the energy formulas of RSPT
cancel through all orders of the perturbation series, i.e., MP
PT is size-extensive at all orders. It is possible to express the
energy terms of PT in terms of diagrams.? Similarly, one can
describe operators by diagrams since an operator can always
be expressed within a given basis with the help of matrix
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elements that in turn are represented by diagrams. Expression
and analysis of the PT formulas in terms of diagrams are the
subjects of diagrammatic PT. One can show that the energy
terms possessing a linear dependence on N are represented by
linked diagrams (all parts of the diagram are connected, the
diagram is closed and possesses no open, external lines), while
the unphysical energy terms with a nonlinear N-dependence
are represented by unlinked diagrams (there are separated,
disconnected closed parts of the diagram). This observation
is summarized in the ‘linked diagram theorem’ (also called
‘linked cluster theorem’), which says that the energy correction
at order p, E'?), is fully determined by all linked diagrams
since all unlinked diagrams representing unphysical terms
cancel 3

It is useful to start with the linked diagram theorem and
to use only linked diagrams in the perturbation expansion.
Clearly, in this way the time-consuming handling of unphys-
ical terms, which will cancel anyway for a size-extensive PT
method, can be avoided. This is the strategy of MBPT, which
can be considered as that PT which is size-extensive for any
number of electrons since it is based on the linked diagram
theorem. MP theory is an MBPT with the MP perturbation
operator and, therefore, it is reasonable to speak of MBPT(2),
MBPT(3), etc., instead of MP2, MP3, etc.

2.5 Position of MP Theory in the Framework of General
Perturbation Theory

The central idea of PT is to transform the Schrodinger equa-
tion for the exact Hamiltonian defined in Hilbert space into an
eigenvalue equation for an effective Hamiltonian H o defined
in a model space (reference space). Although the operator Hg
has its eigenfunction in the model space, its eigenvalue is the
exact energy. The advantage of this transformation is that the
problem of determining the exact energy can be solved in
the smaller model space. This is done by expanding H in
the perturbation operator V. Different effective Hamiltonians
have been suggested and investigated and, accotdingly, dif-
ferent perturbation series have been obtained. They differ in
every finite order, but are equivalent in the limit of infinite
order.

effective Hamiltonian Hegr

(Feshbach, Bloch, des Cloizeaux)

Choice of (E-QHQ)"! BWPT RSPT

Dimension of 1 /‘\v

model space SRS SRS MRS
d d= d= d>1

Choice of V

s

MP EN EN

Computational iterative 1-step

work

Size-extensivity not in all orders in all orders

Figure 7 Overview of some of the perturbation theories used in
quantum chemistry (see text)

Figure 7 gives an overview of some of the PTs that are
used to study the electron correlation problem. Much work has
been done with the Feshbach-Lowdin effective Hamiltonian,
from which BWPT (sometimes also called Lennard-Jones-
Brillouin-Wigner PT) and RSPT are derived. In the simplest
case, the model space is spanned by one suitable reference
function, which is sufficient by most closed shell systems in
their equilibrium geometry. In this case, one speaks of single-
reference state (SRS) PT. For problems with a low lying
excited state, which is almost degenerate (quasidegenerate)
with the ground state, such an approach is not sufficient and
one has to span the model space by two (or more) reference
wavefunctions. This leads to multireference state (MRS) PT.
Contrary to BWPT, both SRS and MRS PT are possible in
case of RSPT. Furthermore, RSPT has the advantage of being
size-extensive, i.e., the most elegant formulation of RSPT is
given by MBPT. Depending on the choice of the perturbation
operator one can distinguish between MP, Epstein-Nesbet
(EN), and other theories. It has to be noted that the MP
perturbation operator can also be applied within the framework
of BWPT, or for both SRS and MRS RSPT and, therefore,
one should indicate in the general case which approach is
taken in connection with MP perturbation operator. The MP
theory described here is RS-SRS-MP-PT theory as indicated
in Figure 7.

To get a somewhat better understanding of the role of
RS-SRS-MP-PT in general and its higher orders in particular,
some basic terms of general PT are briefly described.431-33

2.5.1 Model and Orthogonal Space

The partitioning of the Hilbert space (target space) in model
space (reference space, P-space) and orthogonal space (outer
space, Q-space) is illustrated in Figure 8. :

Projection operators P and Q which project out of the exact
wavefunction W the component parallel to the model function
(D(()O) and the correlation function x, respectively, are given by

P = 00)(®f| (65)
0=> 1000 (66)
s#0
A
Q-space
s ¢ T s
A 4
X ¥ t
PiQ
g .~

-

d)

Model space

Figure 8 Simple illustration of model space and orthogonal space
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with P + Q =1. The operator 2, which generates out of the

model function d>(()°) the exact wavefunction W, is called the
wave operator.

v = Qo (67)

. o - o . - 0
When using intermediate normalization, i.e., (\l/ldD(() )) =,
wave operator 2 and projection operator P are ‘antiparallel’

as indicated in Figure 8. In this case, the following relation-
ship holds:

V=P +0)W=>PV+0V=00+y (68)

i.e., the exact wavefunction is expressed in terms of model and
correlation function.

2.5.2 Choice of the Effective Hamiltonian

In SRS-PT, the Feshbach-Loéwdin Hamiltonian A ff, which
is obtained by partitioning the exact Hamiltonian with the help
of the projection operators P and Q, is best known.

(PAP + PHO(E — QA Q) ' QAP OP) = A |0l
= E|o{") (69)

Hence, the exact energy is obtained by operating with Hg on
the model function <I>((,0), which is known, e.g., from an HF
calculation. S

Depending on how the inverse (E — QHQ)™! is expanded
according to

A-B)y'=) A'BAY (70)
k=0

different types of PT result.

2.5.3 Brillouin-Wigner Perturbation Theory (BWPT)
This theory results from the choice A = E — H oand B =V:

A-B=E—-H=E—Hy+V) 1)
Eigenvalue equation and energy take the following form:

[Pﬁoﬁ +PVP +PVO [(E — Hg)

o0
x 3 (V(E - Ho)™ )*} QVP| o)

k
. EIdJ((,O)) (72)
E=EO 4 (@07 + 7 Q. V410 (73a)

E-H,
=E® 4 (O|V + VRV + VRVRV +---|0) (73b)
—EO gD L O 4L EP) 4 (73c)
= E® 4 (0|W|0) (73d)
with

E® = (0|V(RV)P~"|0), (74)

[0) = |¢>(()°)) and the resolvent R being defined as

R_ QA - Is) (sl
The operator W is the reaction operator, which has the same

effect when operating on the reference function as V has on
W, ie., it is an effective interaction operator:

Vv = wiod) (76)

Although BWPT looks conceptually simple, it has the dis-
advantage that the effective Hamiltonian depends in this case
on the exact energy, which means that correlation corrections
can only be calculated iteratively to get a self-consistent solu-
tion. A direct consequence of this is that only SRS PT is
possible for BWPT. Another disadvantage is that not all orders
of BWPT are size-extensive.

2.5.4 Rayleigh-Schrédinger Perturbation Theory (RSPT)

If one transforms the Brillouin-Wigner operators A and B
by a shift term E — E@ = AE = E

corrs 1.€.,
A-B=(E® -Hy)—(V-AE)y=E—§, an

then one will obtain RSPT, which has the advantage of using a

(reduced) resolvent Gy that depends on the known eigenvalue
E© rather than the exact energy E:

L. R Is) (sl
Go = EO _ 1, = ; EO _E, (78)

The following resolvent formulas result for the corrections to
reference function and reference energy:

[®1) = GoV|0) (19)
[®@) = GoV[@®M) — EDGo|aM) (80)
[P = GoV|0®@) — EDGy 0@y — EDGolaM) (81)

E® = (0V[®D) = (0|VGoV(0) = (V6o V) (82)

E® = (0|V[0@) = (0[V GV GoV10) — EV (017 GoGoV10)
= (0|VGoVGoV|0) : (83)

The two terms for E® are the principal (leading) and renor-
malization term, respectively, where the renormalization term
corresponds to EOT of equation (60). It represents an
unphysical term depending on N? that is canceled by part
of the leading term. This is expressed by the V notation of
equation (83).

The number r of renormalization terms increases with
order p:

Q2p—2)! order p 1 2 3 4 5 6
Fiin =1y total terms 1 | 2 S 14 42 (84)
pi(p—1)! rterms 0 0 | 4 13 41

For E®), there are already four renormalization terms beside
the principal term:

E® = (0|V|d®) (85)
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= (0|VGoVGoVGoV10) — (01VGoVGo(V)GoV|0)
— (0IVGo(V)GoVGoV10) — (01VGo(V)Go(V)GoV (0)
— 01V Go(VGoV)GoV10)

Again, the four renormalization terms represent unphysical
contributions depending on N2 and N3, which are canceled
by parts of the leading term. Using the V notation, a simple
formula results for E®), which is normally found in textbooks:

E® = (0|VGoVGoVGoV[0) — (0|7 Go(VGoV)GoV10) (86a)

= (0IVGoVGoVGoV(0) — EP(0|VGoGoV10) (86b)
Since (VGoV) is the E® energy, the second term is propor-
tional to N2 and is often called ‘MP4 renormalization term’.
It represents disconnected Q excitations that are canceled by
an equivalent term in the Q part of the leading term.

The energy correction E?) can be written in a simpli-
fied form

E® = (0|V(GoV)"~D|0) + renormalization terms,  (87)

which in the language of MBPT becomes

AAA

E® = (0|V(Go V)P~V 10)L (88)

where L indicates limitation to linked diagrams. Another
expression of E) in terms of the wave operator at order p — 1
is also rather useful:

E®P — (OIQQ(P-UIO) (89)

where the wave operator <2 at order p is given by

p—1
QP = G, vQe-b _ ZE(k)ﬁ(p—k) (90)
k=1

2.6 Higher Orders of MP Perturbation Theory

MP theory is practical up to fourth order. Higher orders
become more and more problematic because of the complex-
ity of the energy formulas and the time requirements for doing
actual calculations. In recent years, the MPS and MP6 correla-
tion energies have been worked out and computer programs are
available to do MP5'*15 and MP6 calculations.!8 It is useful
to consider the question of what correlation effects are covered
at these and even higher orders.

2.6.1 Excitations Included at Order p of MP Theory

Utilizing equations (79)-(86) and the form of the resolvent
Gy (equation 78), one can write down the leading term in
a simplified form, which considers just the numerator and
abbreviates substitution functions |<I>§°)) by |S) = |®{), ID) =
|D¢2), |T) = |95, 1Q) = |DF), etc.

ijk

[®1y : GoV  (D|V]0)|D)
S S
Q Q

S
D| S
ldD(])) : GOVGOVGOV ('g V ?
Pl 1Q
H
S
S D
x ,? V|D) (D|V|0) 5 Q1)
Q P
H
E@ : (0|V|D) (D|V]0)
E® : (0|V|D) (D|V|D) (D|V|0)
S S
E® - (0|7|D) (D|V $> '% 71Dy (DI710)
Q Q
S S S S
(5)_ ~ L D D S D D > L
E® . (0|V|D) (DIV T> =4 | VID) (DIV10)
Q Q| IQ Q
S S
S s| |Dp D
(6). Lo oy D D = T T
E® : (0|V|D) (DIV T> = Q Q
Q Q P P
H H
S S
~ D Dl ~ =
x V|1 1 | VID)(DIVI0) 92)
Q Q

This notation reveals that at even orders new excitations and
at the next higher odd order couplings between the new
excitations are included. Hence, at MP2 D excitations are
included while MP3 covers D, D couplings. At MP4, the new
excitations are S, T, Q, which are coupled at MP5. At MP6, P
and H, at MP8 septuple and octuple excitations, etc. are added.

2.6.2 Partitioning of MP Energies

It is common custom to partition correlation energies E7)
according to those excitations that appear in the central matrix
element(s) of equation (92). Hence the MP4 energy is given by

E® = EP + EY + EY’ + EQ 93)

MPS5 covers 14 energy terms of the type E%, which because
of Effg = Eg,l can be contracted to nine unique terms. They

describe the coupling between S, D, T, and Q excitations.

E® = EQ +2Eq) + Epp + 2EQ)

+2EQ) + EQ) + 2ES) + 2ES) + EGY (94)

At MP6, there is a total of 55 terms of the type E'Sy, of which
36 are unique (see Figure 9).

Table 1 reveals that the number of terms increases expo-
nentially with order p. It also gives the calculational cost and
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MPS5 (14/9)
SS SD ST DS DD DT DQ TS TD TT TQ QD QT QQ Pt pq hq
MP4 SDTQPH Space for MP6 (55 / 36)
S SSS SSD SST SDS SDD SDT SDQ STS STD STT STQ
D DSS DSD DST DDS DDD DDT DDQ DTS DTD DTT DTQ DQD DQT DQQ
T [ TSS TSD TST TDS TDD TDT TDQ TTS TID TTIT TTQ TQD TQT TQQ QPT QPQ QHQ
Q QDS QDD QDT QDQ QTS QTD QTT QTQ QQD QQT QQQ TPT TPQ
Figure 9 MP6 terms can be derived from MP4 and MP5 terms considering Slater rules
Table 1 Comparison of MP Methods
Cost Cost
Number Number (without Most (intermediate Most
of total of unique intermediate expensive arrays expensive
MP terms terms arrays) term included) terms
MP2 1 1 M M3 (ijllab)
MP3 1 1 MS M® b-amplitudes
MP4 4 4 M8 Q M’ T
MP5 14 9 M!0 QQ M8 TT
MP6 55 36 M!2 QHQ M’ TQT, QQQ,
and TQQ
MP7 221 141 M QHHQ M0 TQQT, etc.
MPS8 915 583 M!6 QHOHQ M TQS,QT, etc.

the terms causing the highest cost factor. At MPS and higher
levels of MP PT, the development of an efficient computer
program is directly connected with the derivation of suitable
intermediate arrays. By defining the right intermediate arrays,
the mathematical algorithms for MPS5, MP6, etc. can be exe-
cuted on a computer in a minimum of time. This is indicated
in Table 1 for MPS and MP6, which are reduced from o(M19)
to O(M8) and O(M'2) to O(M?) procedures by using series
of intermediate arrays. One can say that the development of
higher order MP correlation methods focuses (a) on how to
get rid of unwanted unlinked diagram contributions and (b) on
how to set up the right intermediate arrays in the two-electron
integral equations.

2.6.3 Strategies for Deriving Higher Orders of MP Theory

There are two different ways of developing MP methods,
namely the algebraic approach and the diagrammatic approach.
The first is based on an algebraic derivation of matrix ele-
ments from general PT formulas. It works well for low-order
PT781L12 byt becomes problematic for higher orders since the
number of renormalization terms increases rapidly with order
p- The linked diagram theorem?® shows that it is superfluous to
evaluate the renormalization terms since these are all canceled

by appropriate parts of the principal term. Only the linked
diagram contributions of the principal term determine the MP
correlation energy at order p.

Because of the linked diagram theorem it is of advantage to
derive the MP energy formulas by diagrammatic techniques,
which immediately identify those terms that really contribute
to the correlation energy. Accordingly, diagrammatic deriva-
tions of MP3, MP4, and MP5 energy have been worked
out, which clearly demonstrate superiority over the algebraic
approach %10:13,14 However, the diagrammatic approach has
also its disadvantages. This becomes obvious when consid-
ering the increase in linked diagrams contributing to the cor-
relation energy. If one uses Brandow diagrams, there are 1, 3,
39, 840, and 28300 antisymmetrized diagrams for p = 2, 3,
4,5, and 6, respectively. This means that it is hardly possible
to explicitly derive the sixth-order correlation energy in terms
of linked diagrams.

Therefore, a third approach for developing higher order PT
formulas was proposed,'®2* which is based on a combination
of algebraic and diagrammatic techniques and comprises the
following steps.

I. The principal term is derived from the general PT for-
mula. 2. Since it is clear that all renormalization terms will
be canceled by parts of the principal term, derivation of the
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MP energy formula concentrates just on the principal term.
This is dissected into various parts according to the excitations
involved at the corresponding order of PT. The various parts
are written in a cluster operator form. 3. Each part of the prin-
cipal term characterized by S, D, T, Q, P, H, etc. excitations
can be described as representing connected or disconnected
energy diagrams according to the nature of the cluster opera-
tors appearing in the energy formula. 4. All connected (closed)
energy terms correspond to linked diagram contributions and
enter the formula for the correlation energy, while the discon-
nected energy terms represent unlinked diagram contributions
that can be discarded. 5. The final cluster operator form of the
linked diagram contributions is transformed into two-electron
integral formulas. This is facilitated by the fact that all those
terms that originally involved disconnected cluster parts can
be simplified by using intermediate arrays.>*

This approach, which avoids both the derivation of super-
fluous energy contributions typical of the algebraic derivation
and a tedious analysis of all linked diagram terms, was suc-
cessfully applied to deriving the MP6 energy formula, 182434

Nevertheless, the derivation of 141 unique MP7 terms is
too complicated to be done by hand and, therefore, any future
developments of higher orders than MP6 will require some
form of automated method development strategy based on
computer algebra languages.

Of course, there is also the possibility of generating
higher orders of MP theory during the iterations of a FCI
calculation.3*3¢ For smaller atoms and molecules, for which
FCI calculations are still possible, this has been done by var-
ious authors evaluating MP correlation energies up to order
p=43% and even p= 6536 A similar approach is based
on CC theory. Independent work by Adamowicz and co-
workers®” and Bartlett and co-workers®® has led to a derivation
of CCSDTQ, which was used to calculate the MP6 correla-
tion energy.> For this purpose, a simplified CCSDTQ method
corrected through sixth order with a noniterative inclusion of
some connected Q contributions was used.

2.7 Convergence of the MP Series

A major problem of MP theory is that convergence of the
MP series is not guaranteed. It is well known that the MP series
exhibits different convergence behavior for different electronic
systems:

1. The MP series can decrease monotonicly approaching the
FCI correlation energy for p — oo.

2. There are initial oscillations in the MP series before it
converges to the FCI value.

3. The MP series diverges and does not lead to the FCI
correlation energy for p — oo.

Clearly, initial oscillations or divergence of the MP series
make it rather problematic to use MP correlation energies in
electronic structure investigations. For example, relative ener-
gies such as differences between electronic states of an atom
or molecule, reaction energies, etc. will become erroneous in
the case of erratic convergence behavior.

2.7.1 Convergence Behavior and Electronic Structure

Cremer and He?* carried out an MP investigation of 29
electronic systems, for which FCI correlation energies are

available. They found two types of initial convergence behav-
ior when calculating MP correlation energies up to ES{,:

1. For one class of electronic systems (class A), monotonic
convergence of the MP series is observed.

2. For the second class (class B), convergence is erratic, in
particular initial oscillations occur.

These two situations are illustrated in Figure 10, where
calculated MP correlation energies are scaled with exact (FCI)
correlation energies and averaged over all class A or class B
systems calculated.

For class A systems, the correlation energy increases mono-
tonicly from 73% (MP2) to 87% (MP3), 91% (MP4), 93%
(MP5) and finally 95% (MP6) obviously approaching the FCI
limit rather slowly but asymptotically. For class B systems, the
MP2 energy already covers 95% of the FCI correlation energy,
which could mean that pair correlation is much more impor-
tant for class B systems than for class A systems or that MP2
exaggerates pair correlation by a considerable amount. Most
likely both factors are responsible for the large MP2 correlation
energy in the case of class B systems. At MP3 the correlation
energy is 0.1% smaller (for class A, 14% larger) than the MP2
correlation energy, which suggests that the MP3 contribution
covers not only stabilizing (negative) but-also large destabi-
lizing (positive) pair correlation contributions thus correcting
partially the exaggeration of pair correlation effects at MP2.
MP4 correlation effects lead to another 5% increase of the
total correlation energy, which is larger than the correspond-
ing increase calculated for class A systems (4%, Figure 10).
Again, one can speculate that S, T, and Q correlation correc-
tions added at MP4 are more important for class'B systems
than for class A systems. Alternatively, these effects (as well
as the pair correlation effects) may be overestimated at MP4.
The latter effect seems to be corrected by a relatively large pos-
itive MP5 correlation contribution, decreasing the correlation
energy by almost 2% at the MP5 level. MP6 correlation contri-
butions increase the absolute value of the correlation energy to
100.6% thus slightly overshooting the FCI correlation energy.
This suggests that at MP6 certain correlation effects are still
exaggerated, which is confirmed by the fact that for class B

110
; A 100.6
B 99.9 L
1001 94.7

94.6
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Figure 10 Coverage of the FCI correlation energy at a given order
p. separated for classes A and B. Reproduced with permission from
D. Cremer and Z. He, J. Phys. Chem., 1996, 100, 6173-6188. Copy-
right (1996) American Chemical Society
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MP6 correlation energies are on average 6% larger than for
class A (4.7% at MPS, Figure 10).%

For class A systems the MP series possesses normal con-
vergence behavior. Each higher level of MP theory represents
a better approximation to the correct correlation energy, with
the MP6 energy presenting the best approximation feasible at
the moment when using standard MP procedures. For class B
systems, the MP series initially oscillates, which leads to an
exaggeration of calculated correlation energies at even orders.

Cremer and He?* showed that the convergence behavior of
the MP series depends on magnitude and sign of the T contri-
butions: 1. A relatively small importance of T contributions is
typical of class A systems and seems to guarantee monotonic
convergence of the MP series provided higher terms result-
ing from P, H, etc. excitations are also small and do not play
a significant role. 2. A relatively large importance of T con-
tributions, combined with an alternation of the sign of the T
contribution EP)(T) with order p is typical of class B systems
and seems to lead to initial oscillations in the MP series.

Analysing S, D, T, Q, P, and H contributions to the low-
order MP correlation energies, Cremer and He came to the
conclusion that differences in their contributions reflect the fact
that the electronic systems of class A and B basically differ
with regard to their electron distribution. Class A covers those
molecules for which bond electron and lone pairs are well
separated and distributed over the whole space of the molecule.
For example, in BH, ' £+, core electron pair, bonding electron
pair and lone pair are localized in different parts of the
molecule. The same is true in the case of alkanes, boranes, Li
or Be compounds, etc. Because the electron pairs of class A
systems are well separated, the importance of three-electron
correlations and couplings between the correlation modes of
the various electron pairs is moderate and the molecular
correlation energy is dominated by pair correlation effects.

For class B systems, a clustering of electron pairs in certain
regions of an atom or molecule is observed. For example, for
electronegative atoms such as F or Ne, seven or eight electrons
share the available space in the valence sphere, which is rather
limited due to the orbital contracting and charge attracting
force of the nucleus. The same is true for electron systems
with two or more electron pairs in a confined region of space,
as for example for molecules with multiple bonds or molecules
with atoms that undergo hypervalent bonding.

If electrons cluster in certain regions of atomic or molecular
space, three-electron correlations become important since they
provide a simple mechanism to proiect the region of an elec-
tron pair against occupation by other electrons. Accordingly,
T correlaiion effects can become as large as or even larger
than pair correlation effects. Even the connected Q effects at
MP6 cannot be neglected since they become important for the
correlated movement of many electrons in a confined space
encountered for class B systems. Clearly, dynamic electron
correlation is more important for class B than class A sys-
tems. If the correlation problem has to be handled just by pair
correlations at MP2, their effects are exaggerated, in particular
since the electrons of a pair are separated without consider-
ing that there are other pairs in the same region of space.
This leads to relatively large positive corrections at MP3 since
coupling effects are quite important for class B systems. At
MPS5, positive T contributions correct an exaggeration of cer-
tain correlation effects at MP4 and since the T effects dominate
the fifth-order energy for class B systems, the latter becomes

positive. An exaggeration and correction of certain correlation
effects will probably also occur at higher orders of MP PT
and, therefore, the MP series oscillates for class B systems.

With an increasing number of electrons, there will be more
systems with a clustering of electron pairs in certain regions of
atomic or molecular space. Hence, class B systems probably
represent the normal case and oscillatory behavior of the MP
perturbation series is most likely the rule rather than the
exception. Class A systems and monotonic convergence of the
MP series, on the other hand, probably represent the exception,
which so far has not become clear since the convergence
behavior of the MP series can only be investigated for rather
small systems.

2.7.2  Improvement of the Convergence Behavior of the MP
Series

Different techniques are available to improve the conver-
gence behavior of the MP series and to predict FCI corre-
lation energies by appropriate extrapolation techniques. Best
known in this connection is the use of Padé approximants,*
Feenberg scaling®! or the application of simple extrapolation
formulas. 2434

Calculations of the MP series are always terminated at some
finite order p neglecting residuals of order p + 1. According to
Padé,*® the MP series can be considered as one of the ( p+1)
approximants that are given by the ratio of a polynomial of
order k to a polynomial of order ¢, where k + ¢ — p. The
coefficients of these polynomials are determined in such a way
that each approximant differs from the energy only by residuals
of order p + 1. Formulas for approximants [k, £] have been
worked out and can be found in the literature. They have been
applied with varying success.!8

Another possibility of improving the convergence of the
MP series is based on Feenberg scaling of the Hamiltonian
operator according to equation (95)18:41:42

= 2
: H+(V— 1 i
1—p° 1—p°

=[?10+V

(95a)

(95b)

where 71 is a scalar parameter. The scaling of Hg leads to a
transformation of the MP series where each term is obtained
now as a polynomial in n:41:42

p—1
72 = -
EP =3 Cinr "0 - ek (p>2) (%)
k=1

Feenberg*! suggested that the value of n is obtained by
minimizing the third-order correlation energy Zi:z Ef,k’ =
AED = EP + ED, which leads to

)
nV=1- (Z)EMP &)} (57)
EMP s EMP

Substituting 7 in equation (96) by n®, the Feenberg energy
series E{" is obtained. This is called first-order Feenberg
scaling since it is based on an improvement of the first-
order wavefunction. Cremer and co-workers'®24 have derived
formulas for second-order (minimization of the fifth-order MP
energy), third-order and even higher order Feenberg scaling. %
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They have shown that with second-order Feenberg scaling and
the use of MP6 correlation energies accurate prcdlcnons of FCI
correlation energies are possible even in those cases in which
the MP series oscillates at lower orders.

Some success has also been achieved by using extrapolation
formulas such as the one suggested by Pople and co-workers*

E(’) E(“
(4)
] — =Me

@
EMP

AE(extrap, MP4) = (98)

which is correct up to fourth order and is based on the
assumption that E p bears the same relationship to EMP as

E“) does to E Even and odd order terms of the MP series
are supposed to form a geometrically progressive energy series,
where the ratio of successive even order terms is similar to
the ratio of successive odd order terms. This, of course, is not
justified since the MP series possesses both oscillatory and
monotonic convergence behavior.

Therefore, extensions of formula (98) for both class A and
class B systems have been suggested by Cremer and He: %

4 )
E
(A) - (k) MP
AE" (extrap, MP6) = E Epp + @ 99)
Exp

E(G)

AE® (extrap, MP6) = E) + Ep + (Exgp + Expy )eEg: (100)
Actually, both 1/(1 — x) and e* lead to similar series. How-
ever, in the exponential series higher powers k of x are scaled
down by prefactors 1/k!. In this way, higher excitation effects
are reduced in equation (100). Use of these extrapolation for-
mulas leads to FCI estimates only slightly inferior to those

obtained by Feenberg scaling.

2.7.3 Divergent Behavior of the MP Series

The basic assumption of SRS MP theory based on an
HF reference wavefunction (used in more than 90% of all
investigations) is that the wavefunction is dominated by just
one single configuration. This assumption, of course, will no
longer be valid if systems with rather low lying excited states
are considered such as the Be atom for which the first excited
1S state resulting from the 1s22p? configuration is not far
above the 'S, 1s22s? ground state energy. In this case, the
energy spectrum of model space and outer space (Q-space)
are no longer well separated (they may even overlap). When
varying the perturbation parameter A (which in the general
case is a complex number) from O to 1, a state from Q-space
can intrude the model space and cross with the state of the
model space. For states of the same symmetry this leads to
an avoided crossing situation. It has been shown*’ that if the
avoided crossing occurs for A < 1, the MP series becomes
divergent. Various procedures have been suggested to deal with
the intruder state problem, 32345 of which the simplest is an
enlargement of the model space by including the intruder state.

Recent FCI investigations by Christiansen and co- -workers*
have provided evidence that the MP series can diverge even
in the case of single reference dominated systems when using
extended basis sets. The authors investigated the Ne atom and
found for A = —0.82 an avoided crossing (‘back door intruder

state’) between the HF dominated state and a state dominated
by P and higher excitations. Hence, a degeneracy for Al <1
is encountered and divergent behavior of the MP series results.
However, the MP series becomes convergent when a smaller
basis set is used. This observation is rather alarming for two
reasons. First, there seems to be no guarantee that a single-
reference dominated electron system with high lying excited
states is also a system for which the MP series converges.
Since the intruder state is relatively high lying, the usual
remedy for an intruder state problem, namely including the
intruder state in the model space, will not work. Secondly,
the use of an extended basis set is actually the prerequisite
for the accurate calculation of molecular properties using MP
theory and, therefore, the use of extended basis sets cannot be
avoided.

On the other hand, one has to realize that divergent behavior
of the MP series was observed in the Ne example at MP15,
i.e., at an order where 80% of all excitations are of the P
or even higher type. Hence, divergence in this case does not
indicate that all the lower orders of MP theory are physically
not reasonable and cannot be used for describing chemical
reactions and calculating molecular properties. Even estimates
of the FCI energy based on lower order MP energies should be
reasonable despite the fact that infinite-order MP theory will
not reproduce the FCI result in a case of divergence.

3 APPLICATIONS

3.1 Available MP Methods

The routine application of MP methods as well as any
other correlation corrected ab initio method depends on two
prerequisites:

1. The method in question has to be developed for any useful
reference wavefunction.

2. Analytical energy derivatives have to be available.

MP methods have been developed for both spin-restricted
HF (RHF), spin-unrestricted HF (UHF), and restricted open-
shell HF (ROHF) wavefunctions*’*® to investigate both
closed- and open-shell systems (see Table 2). For the
calculation of electron systems with multireference character
such as biradicals various multireference state (MRS) MP
methods have been developed (Table 2).50=52 All these
methods describe atoms, molecules, and reaction systems
in the gas phase. However, many chemical reactions take
place in solution phases. For this purpose, MP methods are
available that start from a solvent corrected wavefunction
where mostly polarizable continuum models are used®* (see
Self-consistent Reaction Field Methods).

Quantum mechanically, a one-electron property is defined
as the expectation value of the corresponding operator expres-
sed with the help of wavefunction W or because this is mostly
not available with the approximate wavefunction ®. In the
case of MP theory, this leads to problems because an MP
method at given order p does not possess a well-defined
wavefunction. According to the Wigner theorem (see equa-
tion 23), the function ®P) is associated with both E??) and
E@r+D) However, this does not represent a real disadvantage
of MP theory since one-electron properties can be expressed
as response properties once analytical energy derivatives are
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Table 2 Available MP Methods (Numbers Refer to References)

MP2 MP3 MP4 MP5 MP6
I RHF/UHF 6,7 6,8 9-12 13-15 18,39
MP2: direct (61-63) and parallel implementations (66)
a) PUMP 49 49 49
b) analytical Ist deriv. 55 16 16,17
c) analytical 2nd deriv. 56 57 57
d) GIAO 58 59 59,60
2 ROHF 47,48 47 47
MP2: direct versions and analytical derivatives available
3 GVB 50 51 51
4 Multireference 52

5 Solvent methods

various versions are available for MP2, MP3, MP4, see e.g., 53

available.Z Most important are the first derivatives with regard
to the position coordinates of the nuclei of a molecule. They
determine the forces exerted on the nuclei in a nonequilib-
rium situation. Since all forces have to vanish at the stationary
points of the potential energy surface (the energy gradient van-
ishes for minima and saddle points), routine calculation of the
forces is a prerequisite for calculating equilibrium geometries
and transition state geometries (see Geometry Optimization:
I and Gradient Theory). Calculation of the forces requires
the evaluation of the response density matrix, which covers
orbital relaxation effects caused by the perturbation A. With
the help of the MP response density matrix evaluated at order
P, any one-electron property such as electron density distri-
bution, dipole moment, higher multipole moments, etc. can be
calculated.

Second derivatives of the energy are needed to calculate
second-order properties such as harmonic force constants, elec-
tric polarizabilities, infrared intensities or nuclear magnetic
resonance (NMR) shieldings. Second derivatives of the energy
with regard to nuclear displacement coordinates are required
to calculate vibrational frequencies and force constants in the
harmonic approximation. Harmonic infrared intersities can be
determined as derivatives of the dipole moment components
with regard to nuclear displacement coordinates or, consid-
ering that the dipole moment components themselves can be
viewed as derivatives of the energy with regard to the electric
field components, the infrared intensities are evaluated as sec-
ond derivatives of the energy with regard to the components
of the electric field and nuclear displacement coordinates. Sec-
ond derivatives with regard to the electric field are associated
with the electric polarizability tensor. Second derivatives with
regard to the nuclear magnetic moment and the magnetic field
determine NMR shieldings and, by this, NMR chemical shifts.
For the calculation of NMR shieldings and chemical shifts
with finite basis sets, results must be made independent of
the choice of origin of the coordinate system (‘gauge origin’
problem), which can be achieved by using basis functions with
individual local gauge origin (GIAOs: ‘gauge including atomic
orbitals’).

As is indicated in Table 3, almost all molecular properties
that can be evaluated at the HF level can also be determined
at the MP2 level since analytical first and second energy
derivatives are available.>> This applies to RHF, UHF, and
ROHF wavefunctions, however not to GVB or other mul-
tireference wavefunctions. Analytical first derivatives have

Table 3 Molecular Properties that can be Calculated with MP
Methods

MP2  MP3 MP4 Mps MP6
Energy y y y y y
Geometry y, a y,a y,a y, n y. n
Electron density y y y
Dipole moment y y y

and higher moments

Frequencies y,a y,a y, a y, n Y, n
Polarizabilities y y y
Infrared intensities y y y
NMR chemical shifts y y y

y: yes; a: analytically; n: numerically

also been worked out for MP3 and MP416!7 while so far
no attempts have been made to extend derivative techniques
to MP5 or MP6. In the latter cases, geometry optimizations
are made possible by using numerical techniques to calculate
forces and the energy gradient. Analytical second derivatives
for MP2 have been used for some time 56 Recently, Gauss
and Stanton®” have worked out second derivatives for MP3
and MP4, however, these methods are not generally avail-
able so far and, therefore, MP3 and MP4 frequencies are
still calculated with numerical techniques. Gauss has devel-
oped GIAO-MP2 38 GIAO-MP3, and GIAO-MP45%9 5o that
NMR shieldings and chemical shifts can be calculated, which
in view of the importance of NMR chemical shifts in che-
mistry has considerably extended the range of applicability of
MP methods to chemical problems (see NMR Chemical Shift
Computation: Ab Initio and NMR Chemical Shift Computa-
tion: Structural Applications).

There are also some technical considerations which deter-
mine the usefulness of a correlation corrected method. One of
these is the availability of direct methods that largely avoid
the storage of two-electron integrals and, therefore, extend the
applicability of a correlation corrected method to large mole-
cules. Direct methods have been worked out for MP261-63 3pd
GIAO-MP2%* that make calculations with 1000 basis functions
and more possible. With the advent of parallel computers,
there is also work to set up MP methods in the most effi-
cient way for this new hardware and to increase the range
of applicability for MP methods. Promising work is with the
‘resolution of the identity’ MP2 (RI-MP2) method,* which
requires a fitting basis to replace the computationally expensive
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four-center two-electron repulsion integrals by combinations
of two- and three-center integrals. In a test calculation with
461 basis functions and a fitting basis of 1227 primitive func-
tions the computing time of a normal MP2 calculation could
be reduced by 95% from 30000 to 1500 seconds with the help
of a parallel implementation of RI-MP2 56

3.2 Basis Sets for MP Calculations

The selection of an appropriate basis set for a given method,
a given property, and a given molecule is an art by itself. Nev-
ertheless, there are some basic rules that should be considered
when carrying out correlation corrected calculations in general
and MP calculations in particular.

1. A relatively large basis set has to be used for a reasonable
description of correlation effects. Minimal basis sets or
split valence basis sets are not suitable for carrying out
MP or other correlation corrected ab initio calculations.
One needs at least a DZ + P(VDZ + P) or TZ + 2P basis
set to get reasonable energies, geometries and first-order
properties. For second-order properties, TZ + 2P or QZ +
3P basis sets are needed. (DZ + P = double-zeta plus
polarization; VDZ = valence DZ; TZ = triple-zeta; QZ =
quadruple-zeta.)

2. Correlation consistent basis sets (see Basis Sets: Corre-
lation Consistent Sets), which have been optimized at a
correlation corrected level such as CISD, should be used
rather than basis sets optimized at the HF level.

3. Any time one has to reduce a basis set selected along
the lines of points 1 and 2 because of computational
considerations, one should have a sufficient amount of
reference data available, which provide a detailed insight
into errors caused by the basis set reduction.

4. Different properties of a molecule depend on the molecular
charge distribution in different ways. There are properties
that depend more on the charge distribution close to
the nucleus (e.g., electric field gradients), and others
that depend more on diffuse charge distribution relatively
far away from the nuclear framework (e.g., dispersion
forces, infrared intensities). Property optimized basis sets
exploit these relationships by just describing the more
important parts of the density distribution correctly and
reducing in this way the size of the basis set. This leads
to efficient basis sets, which of course are no longer
generally applicable and, in addition, have to be checked
considering point 3.

Apart from these general considerations, the applicability of
each basis set has to be seen against the background of results
obtained for a related well-understood problem with the same
correlation method and the same basis set. Accordingly, it is
often better to use a well-documented basis set, which in terms
of number and type of basis functions included may not be the
best for the problem in question, rather than a more extended
basis set, which has to be tested first since it has hardly been
used before in the literature.

33 Which MP Method Covers What Correlation
Effects?

As mentioned before, MP2 includes all D excitations and,
accordingly, describes the most important pair correlation

effects. There is no coupling between the D excitations at
second order and, therefore, each pair correlation correction
is determined as if no other electron pairs are present in the
molecule. This leads to an overestimation of pair correlation
effects. At the MP3 level of theory, couplings between D
excitations are included and an exaggeration of pair correlation
effects at MP2 is partially corrected.

In Figure 11, the various correlation contributions at MP4
and MP5 are given in the form of bar diagrams (‘MP
spectra’)?* separated for class A (systems with well-sepa-
rated electron pairs) and class B electronic systems (systems
with electron clustering) where each contribution is given as
a fraction of the total MP4 or MP5 correlation contribution
and averaged over all electronic systems of a given class. At
MP4, the S, D, and T correlation contributions are always
negative while the Q correlation effects are always positive.
Pair correlation is dominant for class A systems. Orbital relax-
ation (S excitations) and three-electron correlation effects (T
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Figure 11 MP4 and MP5 spectra for class A and class B molecules.
Reproduced with permission from D. Cremer and Z. He, J. Phys.
Chem., 1996, 100, 6173-6188. Copyright (1996) American Chemical
Society
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excitations) are clearly smaller. The (connected) T excitations
are generally smaller than pair correlation effects. However,
since each electron pair can correlate with any of the other
electrons in a three-electron situation, the number of three-
electron combinations is much larger than the number of core,
bond, and lone pairs. Because of their large number, T effects
lead to sizeable contributions to the correlation energy. The
T effects can even become rather large if electron pairs are
packed closely together in a particular area of a molecule as
in the case of class B systems. For the latter, three-electron
correlation becomes as important as pair correlation and even
orbital relaxation becomes larger. Q effects at MP4 correspond
to disconnected Q, i.e., they do not describe the correlation of
four electrons (which would be rather small) but the simulta-
neous correlation of two electron pairs. For both class A and
class B systems, Q contributions are positive since they cover
a considerable part of the pair-pair couplings that correct for
an exaggeration of pair correlation effects.

For class A systems, MP4(SDQ), which is cheaper than full
MP4 (MP4 scales with O(M’), MP4(SDQ) with O(M®9)), is
sufficient for a reasonable description while class B systems
definitely require full MP4 calculations. This becomes even
more obvious when one considers that T effects are larger in
this case than the sum of S, D, and Q contributions since there
is some cancellation among the latter terms.

T and Q correlation effects can be exaggerated at MP4
for the same reason pair correlation effects are exaggerated
at MP2. MP5 introduces the coupling between S, D, T, and

Q excitations in form of SS, SD, ST, DD, DT, DQ, TT, TQ,
and QQ correlation effects and, therefore, MPS gives a bet-
ter account of (connected) T and (disconnected) Q effects.
The MPS spectrum in the case of class A systems reveals
that there is a dominance of the DD pair correlation effects
corrected somewhat by positive DQ and QQ contributions
while the T terms are all relatively small. The QQ term still
represents a disconnected term, i.e., it involves four-electron
pairs rather than two correlating four-electron ensembles. For
class B systems, positive TQ, ST, and DT terms lead to an
overall positive MP5 contribution. One can directly under-
stand that the TQ term is positive because it describes the
coupling between three-electron effects with pair-pair correla-
tion. Three-electron correlation effectively helps to correct pair
correlation and to keep different pairs apart where this effect
is tested against the pair-pair couplings described by the Q
excitations. The TQ contribution will become positive if pair
correlation effects are overestimated at lower orders. Hence,
at MP5 the correlation energy of class B systems is predomi-
nantly corrected with regard to an exaggeration of correlation
effects that occurs at a lower MP leve] 2434

At MP6, the correlation effects, which are newly intro-
duced, are disconnected P and disconnected H excitations in
the form of couplings between pair and three-electron correla-
tion effects (P) and couplings between three correlating elec-
tron pairs (H). In addition, there are (connected) four-electron
correlation effects. For a long time, these were considered
as being rather unimportant, however MP6 calculations for
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class B systems reveal that four-electron correlation effects
become important in the case of electron clustering. 4 Apart
from this, MP6 correlation effects are similar to MP5 cor-
relation effects. For class A systems, pair effects dominate
while for class B systems three- and four-electron corre-
lation effects are of similar importance to pair correlation
effects as is revealed by the corresponding MP6 spectra
(Figure 12).

At MP7, the coupling between connected Q effects, dis-
¢onnected P and H effects is included. At MP8, MP10, con-
nected P, H, etc. are included and at the corresponding odd
orders (MP9, MP11, etc.) a coupling between these effects.
One can compare MP PT with a car that is fueled at even
orders with new correlation effects but slowed down at odd
orders by a coupling between these effects. This basic nature
of MP theory has been brought into connection with the erratic
convergence of the MP series and oscillations in the val-
ues of calculated molecular properties dependent upon the
order p.B#34

3.4 MP Equilibrium Geometries

Since the mid-1970s, a vast amount of MP data on molec-
ular properties has been collected. Several detailed summaries
have been given in the literature?>¢76% and, therefore, just
some general aspects of MP properties are discussed here.

It is a general observation that bond lengths calculated at
the HF level decrease with increasing size of the basis set.
The same observation can be made at the MP2 level, except
that all MP2 bond lengths are shifted to larger values (see
Table 4). This is a result of the inclusion of left-right pair
correlation effects at MP2. In the D excited configurations,
orbitals are occupied that possess a nodal surface in the
bonding region and, by this, reduce the bond density thus
leading to a lengthening of the bond. Angular and in-out
correlation effects contribute to this effect since they both lead
to a transfer of negative charge from the regions closer to the
nuclei (core and o region) to outer regions. In this way the
nuclei are deshielded and nuclear repulsion is increased, again
causing a lengthening of the bond distance. These effects help
to correct the well-known underestimation of bond lengths at
the HF level provided the basis set is sufficiently large. HF
calculations with small basis sets often lead to rather long
bond distances and, then, MP2 increases differences between
theory and experiment as is shown for the case of the H2O

Table 4 HF and MP Geometries of Water

HF MP2

R(OH) HOH R(OH) HOH

Basis A) (deg) A) (deg)
STO-3G 0.990 100.0 1.014 97.2
3-21G 0.967 107.7 0.989 105.2
4-31G 0.951 111.2 0.976 109.1
6-31G(d) 0.947 105.5 0.969 104.1
DZ+P 0.944 106.6 0.963 104.4
6-31G(d,p) 0.943 105.9 0.961 104.1
6-311++G(d.p) 0.941 106.2 0.959 103.5
TZ+2P 0.941 106.1 0.958 104.2
Experimental 0.958 104.5

molecule in Table 4. However, as noted previously, MP or any
other correlation corrected calculations with minimal or split
valence basis sets are a waste of computer time since the use
of an extended basis set is the first prerequisite of correlation
studies. The dependence on the size of the basis set can be used
to select that basis which due to a fortuitous cancelation of
basis set truncation and correlation errors exactly reproduces
the experimental bond length; of course it has always to be
checked whether an experimental equilibrium (r,) value is
known at all.

There are also cases where pair correlation effects reduce
rather than lengthen an interaction distance. This happens,
e.g., in the case of nonclassical bonding, with the bonding
in donor-acceptor complexes, H bonding or situations where
electropositive elements participate in bonding. In all these
cases, two electrons are excited into orbitals with bonding
rather than antibonding character, which leads to an accu-
mulation of negative charge in the bond region and, as a
consequence, to shorter interaction distances. It also plays
a role in the relatively strong charge transfer from a more
electropositive to a more electronegative atom being reduced
at the MP2 level, thus leading to a stronger shielding of
the electropositive atom and a shorter bond length. Very
strong effects are obtained in the case of donor-acceptor
complexes. For example, the HF/6-31G(d) value for the BC
distance in H3BCO is 1.630 A (compared to an experimen-
tal value of 1.540 A), which is corrected at the MP2/6-
31G(d) level to 1.55 A due to the mixing in of bonding BC
orbitals.¢’

One might expect that with increasing order of MP the
lengthening of calculated bond distances continues, and that
the FCI value is reproduced due to an asymptotic approach
to both correlation and basis set limit, i.e., the superposition
of bond lengthening due to the addition of higher and higher
correlation effects and bond shortening due to extending the
basis set more and more should lead to the correct r. value.
However, in practice this happens only in the minority of
cases. Mostly, one observes oscillations in calculated geomet-
rical parameters, which is demonstrated for carbonyl oxide,
CH,00 (1).%°

In Table 5, MP bond lengths and bond angles of the heavy
atom framework of CH,OO are given together with the dipole
moment where the latter provides an insight into the calcu-
lated charge distribution. HF and MP2 give two contradicting
descriptions of the geometry of CH,00. The HF geometry
corresponds to an aldehyde oxide that is best described by
resonance formulas 1a and 1b (Scheme 1).

Table 5 MP Geometry and Dipole Moment p (debye) of Carbonyl
Oxide

R(00) R(CO) LCOO m
Method/Basis A) (A) (deg) (D)
HF/6-31G(d,p) 1.482 1.201 114.5 5.46
MP2/6-31G(d,p) 1.293 1.297 120.4 3.34
MP2/DZ+P 1.285 1.300 120.8 3.36
MP2/TZ+2P 1.297 1.282 119.8 3.70
MP3/6-31G(d,p) 1.338 1.252 118.7 444
MP4(SDQ)/6-31G(d,p) 1.329 1.274 1192 4.04
MP4(SDTQ)/6-31G(d,p) 1.306 1.314 119.8 3.25
CCSD(T)/TZ+2P 1.355 1.276 117.0 397
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H, O° H (ol H (]
\ / \ / \ /
IC—O e ,C=O+ ,C—O
H H H
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Scheme 1

The CO double bond of formaldehyde is largely maintained
(R(C=0) = 1.20 A) and the OO bond resembles a slightly
elongated peroxide single bond (r(O-0) = 1.45 A). The MP2
geometry, on the other hand, corresponds better to the birad-
ical structure 1c with two single m-electrons being formally
localized at C and the terminal O atom while a m-electron
pair is positioned at the central O atom. In this way, both the
CO and the OO bond formally get about 50% m-bond char-
acter. Since typical values for CO and OO single and double
bonds are: R(CO) = 1.43, 1.20 A, R(O0) = 1.45, 1.21 A, one
can expect bond lengths of about 1.3 A for both CO and OO
in the case of 1c. Exactly, this prediction is confirmed by the
calculated MP2 geometry of 1 (see Table 5).%°

Since the MP2 description of 1 was the best description
available for some time, there was a tendency to attribute
biradical rather than zwitterionic character to 1. However,
both the HF and the MP2 description are incorrect because
HF overestimates the importance of polar and ionic structures
while MP2 does the same with regard to biradical structures
due to an exaggeration of left-right correlation. This is nicely
reflected by the calculated dipole moment, which is rather large
at the HF level (5.5 debye, Table 5) and relatively small at
MP2 (3.3 debye, Table 1). MP3 slightly shifts the geometry
in the direction of the HF values, thus indicating that pair
correlation effects are exaggerated at MP2. But this trend
is again reversed at the MP4 level where in particular the
T contributions have a rather strong effect (Table 5). They
lead to a considerable lengthening of the CO bond, which
becomes longer than the OO bond. Comparison with CCSD(T)
results,®? which should be close to true values, reveals that
MP4 exaggerates T effects and that the molecule possesses
more zwitterionic character than suggested by MP4. Hence, in
such a case none of the commonly used MP methods provides
a satisfactory geometry even though results are qualitatively
much better than HF results.

Trends in calculated MP bond angles couple with trends
in calculated bond lengths as is shown for the HOH and the
COO angle in Tables 4 and 5. Normally, larger bond lengths
imply smaller bond angles, which can also be explained by
the electrostatic model of charge distribution used to analyze
trends in calculated bond lengths. For example, for H,O or any
other AH,, molecule, accumulation of charge in the nuclear
region of A is accompanied by a short bond length. It also
leads to relatively large positive charges at the H atoms.
As a consequence, Coulomb repulsion between the H atoms
becomes large, thus forcing the HAH angle to widen. This
trend is interrupted when polarization functions are added to
the basis. They allow for smaller bond angles and also lead
to a better distribution of negative charge in the nonbonding
region. Hence, the addition of polarization functions leads to
both shorter bond lengths and smaller bond angles at the MP
level. In general, changes in bond angles and even more in
dihedral angles, dependent upon the order of MP PT and

the basis set applied, are much smaller than trends in bond
lengths. For equilibrium geometries of molecules with normal
single bonding a MP2 description is already rather reliable.
Molecules with multiple, nonclassical or hypervalent bonding
should be better described at the MP4 level since the T effects
are important for a reasonable description of electron clustering
as in the bonding region.

3.5 MP Energies

In chemistry, only relative energies are of relevance and,
therefore, one might expect that correlation effects largely
cancel out in energy differences needed to describe chemical
reactions or individual molecules. Under certain circumstances
this is the case while in other cases MP correlation corrections
add a large correction to HF energy differences. One can
distinguish between the following situations:

1. The energies of chemical species are compared that dif-
fer in the number of paired electrons. This happens in
dissociation reactions, ionization or electron attachment
processes, excitation processes, etc. In general, when rad-
icals or biradicals are compared with closed-shell systems
correlation effects are important. The larger the difference
in the number of paired electrons the larger the correlation
effect will be (e.g., N =N — N(*S) + N(*S), three elec-
tron pairs are uncoupled). Of course, in all these cases,
both dynamic and nondynamic correlation effects have to
be considered while low-order MP methods can only cover
dynamic correlation effects.

2. If the number of electron pairs for two chemical species
(e.g., reactant and product) is equal, it will matter whether
the space (MO) occupied by each electron pair is dif-
ferent in the two systems, e.g., expanded in one case,
contracted in the other, delocalized or localized, more
or less spherical, more or less crowded due to the vicin-
ity of other electron pairs, etc. Significant differences in
the distribution of electron pairs occur if one compares
a TS of a pericyclic reaction with reactants or products
(reaction barrier), a molecule with classical bonding with
an isomer possessing nonclassical (delocalized) bonding
(molecular stability), a donor-acceptor complex with its
separated parts (complex binding energy), isoelectronic
species such as carbocations and boranes, etc. In all these
cases, dynamic electron correlation should play an impor-
tant role.

3. With increasing number of electrons, differences in pair
correlation energies and pair-pair couplings add up to a
significant effect even though individual differences may
be rather small. In these cases, it is no longer easy to
predict whether correlation corrections should be similar
or different for the species considered. Therefore, the rule
of thumb is that molecules made up by electron rich atoms
of the second or even higher periods should be calculated
including at least pair correlation effects.

4. There is a small class of processes for which correlation
effects on relative energies should cancel so that an HF
description may be sufficient. These are conformational
processes and electron pair conserving reactions such as
isodesmic reactions or homodesmotic reactions involving
just first row atoms provided effects described under
point 2 are not significant.
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Table 6 Comparison of MP Energy Differences (kcal mol™') Relative to the Correspond-

ing FCI Value

MP2 MP3 MP4 MP5 MP6 FCI

BH 1.5re — re 4.7 29 1.4 0.5 0.1 324
20r. —re 15.2 10.1 5.2 22 0.5 62.9

FH 1.5re — re 1.8 40 0.6 1.2 —0.1 56.8
\ 2.0r —re 10.4 13.7 34 48 —03 106.6
CH, 'A,-3B, 6.7 3.2 1.9 1.4 1.0 12.0

Clearly, correlation effects are large for the energy changes
in a homolytic dissociation process (homolytic bond cleav-
age), in which one or more electron pairs are split. In Table 6,
the energy increase is considered when the equilibrium bond
length r. of BH and FH, respectively, is extended to 1.5,
and 2.0r..'8 In each case, the FCI value is used as a reference
and just the error in calculated MP energies is given. Clearly,
low-order MP theory (MP2, MP3) is unable to describe this
situation and errors become the larger the more the bond is
stretched. In the case of BH, MP energies smoothly converge
to the FCI value with increasing order p, while they oscillate
in the case of FH. Reliable values (compared to the FCI result)
are only provided by MP6 where for FH a slight overshooting
of the FCI value can be observed. Results can be improved
by using spin-projected UMP (PUMP, Table 2; see Spin Con-
tamination). The singlet-triplet splitting of methylene is also
sensitive to correlation effects since the singlet state possesses
one electron pair more than the triplet state. Calculated MP
splittings decrease only slowly from MP2 (error: 56%) to the
FCI value (Table 6).13

It is well known that HF dissociation energies D, strongly
underestimate true values. For A-H bonds of AH, molecules,
errors are already as large as 50 kcal mol~! (Table 7).8 MP2
reduces these errors to <10 kcal mol~!. Additional, though
rather small improvements of calculated D, values are obtained
at the MP3 and MP4 level so that residual errors are still in
the 1C kcal mol™! region (Table 7). This observation led Pople
and co-workers’® to add empirical corrections to calculated MP
energy differences in all those cases in which the number of
electron pairs is changed. They developed the idea that high-
level MP correlation corrections and the effects of polarization
or diffuse functions can be treated separately and combined
with MP energy differences in an additive manner. This idea
is the basis of the G methods (see G2 Theory), which lead
to dissociation energies, ionization potentials, and electron
affinities of chemical accuracy (errors: <1 kcal mol™1).

Table 7 Comparison of MP Dissociation Energies D, (kcal mol 1)
with Experimental Values

Large reorganizations of electron pairs occur in the TS
(relative to the electronic structure of reactants or products)
of many chemical reactions. Therefore, the calculation of
reliable reaction barriers often depends on a proper assessment
of electron correlation effects. As an example, calculated
MP reaction barriers for three pericyclic reactions, namely
for the 1,5 sigmatropic H shift in (Z)-1,3-pentadiene, the
electrocyclic ring opening of cyclobutene to butadiene, and the
Diels-Alder reaction between butadiene and ethene, are given
in Table 8.7! For the three reactions, HF exaggerates the barrier
by 10-20 kcal mol~!. Pair correlation as described at the MP2
level leads to a major improvement of reaction barriers and in
the case of the Diels-Alder reaction the experimental barrier is
now underestimated by 7 kcal mol~!. MP3 increases barriers
in the direction of the HF values, thus accidentally approaching
the experimental value in the case of the Diels-Alder reaction.
At the MP4(SDQ) level, changes are relatively small compared
to MP3 barriers. The best agreement between theory and
experiment is obtained when T effects are included at the MP4
level. MP4(SDTQ) barriers differ from experimental values by
<3 kcal mol~! where it has to be considered that uncertainties
in experimental values are as large as 2 kcal mol~!.71

The observations made for pericyclic reactions are valid
for many other reactions as well. Reliable TS energies can
only be obtained at the MP4 level if T effects are included.
However, a reasonable guess is already obtained at the MP2
level due to a fortuitous cancellation of errors. Important in this
connection is that the TS geometry is calculated at the MP2
rather than the HF level. In most cases, it is rather difficult
or even impossible to make predictions for higher order MP
results since as shown by the data of Table 8 calculated barrier
values oscillate strongly at low order.

MP correlation corrections are particularly important when
determining binding energies of van der Waals molecules™"
(see Intermolecular Interactions by Perturbation Theory).
These are held together by electrostatic, induced, dispersion

Table 8 MP Reaction Barriers (kcal mol~!') for some Pericyclic

HF MP2 MP3 MP4 exp Reactions (6-31G(d) Basis)
H, > H+H 85 101 105 106 109 Geo- 1,5 Cyclobutene Diels-
CH—-C+H 2] 55 73 75 76 84 Energy metry H shift opening Alder
45 62 68 66 66 67 = ==
CH, > CH+H B, 10 109 108 107 106 267 469 450
1A 70 89 90 91 08 MP2 MP2 36.5 36.8 17.6
: MP3 MP2 447 40.2 26.9°
CH; —» CH, +H 88 110 112 112 117
MP4(SDQ) MP2 46.1 39.8 29.0*
CHy — CH3 +H 87 109 110 110 113
OH— O+H 6F 96 96 95 gy MPASDTQ ME2 4Ll 36.6 2o
OH, — OH+H 86 119 115 116 126 Experimental 38.8+22 345+0.5 25142
FH - F+H 93 131 127 128 141

*HF geometry
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and exchange repulsion forces where the first three are stabi-
lizing and the last destabilizing. In the case of van der Waals
interactions between molecules with permanent multipole
moments HF often overestimates binding energies because of
its tendency to exaggerate bond polarities and atomic partial
charges, thus yielding too large dipole moments. However, in
the case of van der Waals complexes, which are stabilized
Just by induced and dispersion forces, HF mostly fails to pre-

- dict a stable van der Waals complex at all while MP theory
provides the simplest way to get to a reasonable description
of the complex. Dispersion forces result from the interactions
of temporary (rather than permanent) multipole moments of
the two complex partners, which HF cannot describe because
of its average electron interaction potential. MP2 includes
the most important temporary dipole-dipole interactions (see
Section 2.1.4) and, therefore, provides a reasonable account
of complex binding energies and geometries of van der Waals
complexes between nonpolar compounds.

MP correlation effects can be observed for reaction ener-
gies, in particular if different electronic structure situations are
related to each other by the reaction. Examples are hydrogena-
tion energies or in general reactions that relate multiple bonds
to single bonds. MP2, MP3, and MP4 corrections normally
are 2-5 kcal mol~!, but can be as large as 10 kcal mol~!
if electronegative atoms are involved. An exception is the
reaction O = O + 2H,0 — 2HO — OH, where the MP2 cor-
rection is about 20 kcal mol~! (HF reaction energy AE = 70;
MP2: 52; MP3: 50; MP4: 49; exp. 47 kcal mol~!).5 How-
ever, this is actually an example, for which the number of
electron pairs changes by converting a triplet into a singlet
molecule. Energy changes of the order of 2-10 kcal mol~!
are also observed when comparing the relative stability of
carbocations of classical structure with those containing non-
classical structure or when calculating the stabilization energy
of aromatic molecules (with delocalized n-systems) using as a
reference a molecule with localized m-bonds. All these cases
represent typical examples of changes in pair distributions and
the pair-pair coupling effects as descrived under point 2.

In summary, ofie can say that MP2 calculations should
be performed in almost all cases that require a reasonable
account of relative energies. From case to case, one has to
decide whether also MP4(SDQ) or MP4(SDTQ) calculations
have to be carried out to get more reliable energy values. A
serious disadvantage of MP corrected energy differences is that
they oscillate with order p in many cases so that a reliable
prediction of high-accuracy values is difficult.

3.6 MP Response Densities and Other One-electron
Properties

Changes in the electron density distribution p(r) nicely
reflect trends in calculated one-electron properties due to the
stepwise addition of different correlation effects within the MP
series.2%2 The total electron density distribution p(r) at a point
rp is the response of the molecule to an external perturbation
that corresponds to the Dirac delta operator §(r, — r).

dE(X)

T g = (‘l’|5(’p —n¥) = P(fp)-

(101)

When p(r) is expanded in terms of basis functions used to
calculate energy and wavefunction one obtains

dE(A) .
B o =P =D DExu(n)xun, (102)
uv

where D"ff, is an element of the response density matrix DS,

which, in the case of an MP calculation, can be decom-
posed into

DS — DHF + Do (103)
indicating that D contains an HF and a correlation part.

Accordingly, p(r,) is expressed as a sum of the HF density
and a correlation correction

p(r)rcs.MP — p(’_)HF+p(r)con’.MP (104)
One-electron properties calculated as energy derivatives are
closely related to the response density. Provided that the basis
set chosen is independent of the perturbation the corresponding
one-electron property is given as the product of the response
density matrix D™ with the corresponding property integrals.

dE())

e da szgDﬁ(Xulélxu). (105)

Typical MP correlation effects are reflected by the response
density distribution as discussed for the case of the CS
molecule.” In CS, one of the electron lone pairs of S can
be shared between the two atoms thus establishing a semipo-
lar bond beside the two normal bonds. This leads to charge
transfer from S to C and relatively large partial charges at C
and S contrary to what one might expect in view of the simi-
lar electronegativities of the two elements: C°~ = S** This is
confirmed by the dipole moment, which was measured to be
1.98 debye.

HF theory predicts relatively small partial charges for C
and S suggesting that there is no or only weak semipolar
bonding. The calculated dipole moment of CS is just 1.77
debye (HF/MC-311G(2d)).2 Obviously, HF underestimates
the extent of semipolar bonding. Correlation corrections should
lead to a charge transfer from S to C.

In Figure 13(a), the density distribution p(rycomMP2 —
p(rysMP2 _ p(r)sHE of CS calculated with a VTZ + 2P
basis set is given in the form of a contour line diagram. Solid
(dashed) contour lines are in regions of positive (negative)
correlation corrections to the response density. Left-right,
angular, and in-out correlations included at the MP2 level lead
to a transfer of n-electronic charge from S to C and a complex
pattern of smaller changes involving both o, core, and valence
densities (Figure 13a). Charges at C and S are considerably
increased as is reflected by a MP2 dipole moment of 2.31
debye that is 15% larger than the experimental dipole moment
(Table 9). Left-right correlation has the strongest effect on
the charge distribution, but the effects of angular and in-out
correlation are also substantial.

The same features of p(r) are found at the MP3,
MP4(SDQ), MP4(SDTQ), and even higher correlation cor-
rected levels. Qualitatively, there are no differences in the
corresponding response densities which means that MP2
already includes the most important correlation corrections.
However, the difference density presMP3 _ jresMP2 ghoun in
Figure 13(b) reveals that MP3 correlation corrections reduce
MP?2 effects, i.e., the MP2 response density is slightly changed
back into the direction of the HF electron density distribution.



MOLLER-PLESSET PERTURBATION THEORY 1731

(e)

emr—— e

~

(d)

(b) p(r)rcs.MPJ - p(r)rcs.MP'Z‘ (C) p(’.)rcs,MP4(SDQ) = p(r)rcs.MPB‘

of CS calculated with a VTZ + 2P basis. Solid (dashed) contour

- p(r)rcs.HF

MP4(SDQ)
. p(r)r:s :
lines are in regions of positive (negative) difference densities. Reproduced with permission from J. Gauss and D. Cremer, Adv. Quantum Chem.,

Figure 13 Difference electron density distributions (a) p(r)rcvaPZ
1992, 23, 205-299. Copyright (1992) Academic Press

(d) p(r)reSAMP‘i(SDQ) . p(r)res.MPZ, and (C) p(r)rcs.MP4(SDTQ)
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Table 9 MP Bond Length, Charge, and Dipole Moment of CS
(VTZ+2P Basis)

R(CS) Charge at S Dipole moment
Method A) (electron) (debye)
HF 1.513 0.188 1.77
MP2 1.541 0.273 2.31
MP3 1.527 0.253 2.11
MP4(DQ) 1.529 0.249 2.11
MP4(SDQ) 1.542 0.239 2.06
MP4(SDTQ) 1.565 0.240 2.11
QCISD(T) 1.551 0.239 2.03

Changes comprise a m-electron transfer from C to S, transfer
of o-electrons from outer valence to inner valence space at C
and vice versa at S, a transfer of o-electronic charge from S
to C and depopulation (population) of the lone-pair region at
S (C). These changes lead to a decrease of the CS bond polar-
ity and decreased atomic charges relative to MP2 (Table 9).
Pair correlation effects included at MP2 are reduced by the
coupling of pair correlations covered at MP3.

In Figure 13(c), the difference response density distribution
presMPASDQ) _ fresMP3 of CS is given. Its general features are
similar to those of the MP2 response density, i.e., MP4(SDQ)
correlation corrections are in the same direction as MP2 cor-
relation corrections. As a consequence, correlation corrections
to charges, dipole moment, and other molecular properties are
larger than those calculated at the MP3 level of theory. Apart
from this, there are significant differences in the charge dis-
tribution at the MP4(SDQ) level. Both bonding and lone-pair
regions are depopulated relative to the MP3 charge distribu-
tion. Charge concentrates in the C 2pm and S 2pm and 3prw
region in such a way that electron repulsion is minimized (see
Figure 13c).

The difference response density o
(Figure 13d) gives the changes relative to the MP2 density
distribution and reveals that at MP4(SDQ) the charge transfer
to the C 2pn orbitals is smaller than at MP2. Hence, the pat-
tern of changes is similar to that obtained at the MP3 level
where corrections due to S, D, and Q excitations at MP4 are
between those obtained at MP2 and MP3. Figure 13(e) gives
the changes in the response density distribution that are due to
T excitations at MP4. They are in the same direction as those
obtained from S, D, and Q excitations, i.e., they increase the
charge transfer from the S to the C atom. A detailed analy-
sis of calculated charges and dipole moments shows that the
changes due to T effects are larger than those due to S, D, and
Q excitations at the MP4 level thus proving the importance of
T excitations for multiple bonded systems. Even higher order
correlation corrections obtained with CC theory indicate that T
effects at MP4 are somewhat exaggerated, which is corrected
by TT coupling at the MP5 and higher levels.?

The changes in the response density distribution of CS are
parallel to calculated changes in other one-electron properties
of CS. Most properties oscillate dependent upon the order
of PT applied where HF and MP2 results often represent
the upper and lower bounds of computed values. Oscillations
in calculated one-electron properties are observed in many
cases (charges, dipole moments, quadrupole moments, electric
field gradients, nuclear quadrupole moments, etc.)?® and are
largely independent of the basis set used. In general, one can
draw the following conclusions:

res, MP4(SDQ) __ prcs,MPZ

1. The largest part of the correlation corrections to response
properties is recovered at the MP2 level, but higher order
effects are still considerable and cannot be neglected if
accurate one-electron properties are needed.

2. Correlation corrections due to D excitations are exagger-
ated at the MP2 level. They are reduced at the MP3 and
higher levels of PT where couplings between D excitations
are considered.

3. Single excitations lead only to relatively small changes in
calculated response properties.

4. The influence of T excitations at MP4 is relatively large,
at least for molecules with multiple bonds. However, com-
parison with CC suggests that T effects are exaggerated
at the MP4 level.

5. In many cases, oscillations of response property values are
only slowly dampened out.

3.7 MP Second-Order Properties

In Figure 14, harmonic frequencies w of H,O calculated
at different levels of MP theory with different basis sets are
compared with experimental ones. Clearly, the theoretical w
values reflect a strong dependence on the computed equilib-
rium geometries. A short (long) bond length implies a large
(small) value for the corresponding stretching frequency. A
large (small) bond angle, which can be considered to be the
result of a short (large) bond length, implies a small (large)
value of the corresponding bending frequency.?

The harmonic frequency is proportional to the curvature
of the potential surface at the equilibrium geometry in the
direction of the corresponding internal coordinate. Therefore,
on first sight it may be surprising that calculated frequencies
depend directly on the theoretical values of the geometrical
parameters. However, the potential surface in the direction
of a bond distance AB (AH) becomes steeper if the AB
(AH) distance is shortened and, hence, the corresponding bond
strengthened. Accordingly, the stretching frequencies increase
with a shortening of the bond. Widening of an angle ABC
(HAH), on the other hand, decreases electrostatic repulsion
between A and C (or the H atoms) so that the angle becomes
softer and the bending frequency decreases. Figure 14 also
reveals that MP4(SDQ)/TZ+-2P is not sufficient to get accurate
harmonic frequencies since calculated values are still too large.
Higher order correlation effects have to be included to improve
the accuracy of calculated values.

In Figure 15, theoretical and experimental infrared intensi-
ties of the three vibrational modes of H,O are compared. Since
there are not so many accurately determined infrared intensi-
ties available from experiment the comparison of calculated
and measured infrared intensities is limited in the literature to
just a few examples. The water example shows that agreement
of MP data with experimental values is even poorer than in the
case of the harmonic frequencies. HF intensities are too large
by up to 50 km mol~! and more. Stepwise inclusion of MP
correlation effects leads to a continuous decrease of intensities.
Similar trends are also observed for other molecules. However,
dependence on method and basis set may change more strongly
than observed for geometrical parameters and vibrational fre-
quencies. In particular, the inclusion of diffuse basis functions
is important in calculating reasonable MP intensities.

Infrared intensities are derived from dipole moment deriva-
tives with regard to Cartesian coordinates. Assuming that
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Figure 14 Dependence of calculated harmonic frequencies of water
on method and basis set. (a) Symmetric OH stretching frequency,
(b) HOH bending frequency. Reproduced with permission from
J. Gauss and D. Cremer, Adv. Quantum Chem., 1992, 23, 205-299.
Copyright (1992) Academic Press

dipole moment derivatives change similarly to dipole moments
with method and basis set, HF and MP intensities can be dis-
cussed. At the HF level, the OH bond polarity and, thereby,
the molecular dipole moment are exaggerated, obviously caus-
ing also enlarged infrared intensities (Figure 15). Correlation
effects reduce bond polarities and molecular dipole moment.
The same is reflected by the computed infrared intensities. In
the case of H, O, the best values are obtained at the MP4(SDQ)
level of theory with a VTZ+P basis set that includes diffuse
functions.

Another important second-order property, which is con-
siderably improved by MP correlation effects is the NMR
chemical shift (see NMR Chemical Shift Computation: Ab
Initio and NMR Chemical Shift Computation: Structural
Applications). Calculations by Gauss®® have shown that for
BC shifts accurate values are already obtained at the GIAO-
MP?2 level. Further improvements are obtained by GIAO-MP3
and GIAO-MP4(SDQ) calculations. In the case of molecules
with multiple bonds such as Ny, the inclusion of T effects

120
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_E 70 1
= 6-311++G(d,
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Figure 15 Dependence of calculated infrared intensities of water

on method and basis set. Reproduced with permission from J. Gauss

and D. Cremer, Adv. Quantum Chem., 1992, 23, 205-299. Copyright
(1992) Academic Press

becomes important. Again, calculated values oscillate depen-
dent upon the order of MP theory applied, however the GIAO-
MP4(SDTQ) value agrees very well with experiment.®®

4 CONCLUSIONS

Because MP2 is the correlation corrected ab initio method
with (a) the best efficiency factor (determined by the ratio of
accuracy and computational cost), (b) the largest applicability
repertoire (see Table 2). and (c) the largest amount of reference
data, it is and will also be in the future the standard ab initio
method for getting a first insight into a chemical problem. It
has replaced in this respect HF theory to a large extent although
this statement depends somewhat on the size of the molecules
considered. There is no indication that CCD or CCSD will
replace MP2, which has certainly to do with the higher cost of
these methods (NierO(M®)) and the fact that CCD or CCSD
are not much better than MP2 in many cases. On the other
hand, one has to realize that in the way the use of density
functional theory (DFT) is systematized and standardized there
will be more work done with DFT than with MP2. However,
it is a fact that DFT results are much more difficult to interpret
and, therefore, we shall see in the near future work in which
MP2 calculations may be done just for the sake of checking
and analyzing DFT results.

In the past, there were few applications of MP3 and MP5
to chemical problems. These methods do not introduce new
excitations and, therefore, most people have considered them
as not attractive for practical use. Probably, they will only
be applied in future studies if one wants to investigate the
convergence behavior of the MP series. It remains to be

-asked whether MP4 will function also in the future as a

method providing higher perhaps even sufficient accuracy for
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a given chemical problem. Clearly, this role has been taken
over by CCSD(T) theory and despite the fact that CCSD(T)
calculations are somewhat more expensive there will probably
be less and less work with MP4 since CCSD(T) provides much
more reliable data. On the other hand, MP4(SDQ) is a cheap
method (O(M9)) to complement MP2 results in those cases in
which T effects do not play an important role and, therefore,
MP4 calculations may still be done in the future for reasons
of comparison.

Probably, there will be little development work for getting
to MP7 or even higher MP methods since on the one hand
these methods are too expensive for routine calculations, on
the other hand they are too difficult to be developed by
traditional techniques. There will be more work to investigate
the convergence of the MP series and in this connection MP6
will probably play an important role.

Contrary to SRS MP, further development work will have
to be done in the area of MRS MP where the GVB-MP
methods can only be considered as a first entry into this
field. The repertoire associated with these methods is rather
small for various reasons but at least in the case of GVB-
MP2 one should see in the near future analytical derivatives,
direct methods, etc. As soon as routinely applicable MRS MP
programs become available, the use of MRS MP methods will
considerably increase.
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Monte Carlo

A method to propagate the positions of atoms or groups
of atoms in a molecule or collection of molecules through
conformational space using a Boltzmann sampling of phase
Space. See Monte Carlo Quantum Methods for Electronic

Structure; Monte Carlo Simulations for Complex Fluids; and
Monte Carlo Simulations for Polymers.
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DMC = diffusion Monte Carlo; GFMC = Green’s func-
tion Monte Carlo; QMC = quantum Monte Carlo; VMC =
variational Monte Carlo.

1 INTRODUCTION

As the name may imply, Monte Carlo methods employ ran-
dom numbers to solve problems. The range of problems that
may be treated by Monte Carlo is substantial; these include
simulation of physical (and other) processes, integration of
multi-dimensional integrals, solution of integral and linear
operator equations, and applications in statistical mechanics.!”
The treatment of problems arising in the field of quantum
mechanics using Monte Carlo is generally referred to as quan-
tum Monte Carlo (QMC). In QMC, the Monte Carlo applica-
tions most often encountered are integration, simulation, and
solution of an integral equation. Another approach, path inte-
gral Monte Carlo, is especially useful for the study of quantum
mechanical systems at finite temperature; for a review, see
Ref. 3. The focus of this contribution will be the application
of QMC in ab initio quantum chemistry.

Since the 1960s, expansion and perturbative approaches,
such as Hartree-Fock (HF), configuration interaction, many-
body perturbation theory, and coupled cluster have dominated
the field of ab initio quantum chemistry.# The range of systems
that may be treated by these methods, and the accuracy, has
grown tremendously over the last 30 years owing to increases
in computational speed and algorithm efficiency. However, the
accuracy of these methods is determined by the one-particle
(basis set) and the many-particle (determinants or configuration



