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Abstract: The normalized elimination of the small component (NESC) method is a Dirac-exact relativistic method that 

leads to reliable first order response properties such as contact densities, Mössbauer shifts, electric field gradients, 

quadrupole coupling constants, or hyperfine structure constants for heavy atoms. In this review, the calculation of these 

hyperfine parameters with a NESC analytical derivatives formalism is discussed and demonstrated for mercury containing 

molecules. There is a distinct need for accurate calculated hyperfine parameters because the possibilities of experiment are 

limited in a case such as mercury. This need can be fulfilled if, beside scalar relativistic effects, the influence of spin-orbit 

coupling, electron correlation and the finite dimension of the nucleus are accounted for. 
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1. HYPERFINE FIELDS IN ATOMS AND MOLECULES 

The measurement of electron-nuclear hyperfine 
interactions in molecules and solids yields valuable 
information on the local electronic structure and bonding, 
which is obtained on an atomic scale [1, 2]. Experimental 
spectroscopic techniques such as Mössbauer spectroscopy 
[3], nuclear forward scattering (NFS) [4], perturbed angular 
correlation of � -rays (PAC) [5], nuclear quadrupole 
resonance (NQR) [1, 6] or electron spin resonance (ESR) [7, 
8] are capable of providing information on the oxidation and 
spin state of the resonating atom. In addition, information on 
its local chemical environment is gained, which makes these 
spectroscopic methods valuable tools to probe chemical 
bonding. 

The combination of electronic structure theory and the 
measured spectroscopic data leads to the desirable hyperfine 
parameters, which are specified within given molecular 
models [2, 9, 10]. Following this approach, reasonable 
models of the local environment of the resonating atom can 
be established. The knowledge of the local hyperfine fields 
enables one to refine parameters of the electron-nuclear 
hyperfine interactions such as the nuclear electric quadrupole 
moment Q , the fractional nuclear charge radius �R / R , or 
the nuclear magnetic dipole moment ì, where the results of 
quantum chemical calculations for the resonating systems 
play an important role [9-11]. The accurate calculation of 
these nuclear properties strongly depends on an accurate 
account of relativity and electron correlation, which requires 
the use of the most advanced quantum chemical methods. In 
this connection, the application of the Dirac-exact 
computational methods, which provide an accurate account 
of relativistic effects and are applicable to large molecular 
systems, is most awarding as they offer an opportunity of 
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studying realistic molecular models. At the all-electron level 
of description, these methods provide a first principles 
account of the effects of relativity for the inner core electrons 
without resorting to the use of an a posteriori restoration of 
the core electron wavefunctions sometimes proposed in the 
context of relativistic effective core potential techniques (see 
Ref. 12 and references cited therein). 

When describing hyperfine fields in atoms, molecules, 
and solids, one conventionally uses perturbation theory to 
obtain the parameters of these fields in form of expectation 
values of the corresponding quantum mechanical operators 
[13-16]. Alternatively, the hyperfine parameters can be 
expressed as derivatives of the electronic energy with respect 
to suitable perturbing fields [9, 17]. The derivatives based 
formalism is well suited for use in the context of Dirac-exact 
computational methods, as in this way the drawbacks of 
separately transforming the electronic states and the 
interaction operators from the Dirac 4-component 
representation to the Foldy-Wouthuysen 2-component 
representation are avoided [18]. However, the crucial 
requirement in this case is the availability of analytic energy 
derivatives for the respective computational method. This 
requirement is fulfilled for the NESC method [19, 20]. In 
this review, the salient features of the derivatives formalism 
for the hyperfine parameters will be briefly reviewed and the 
application of this formalism in the context of the NESC 
method will be outlined. 

2. CONTACT DENSITY AND MÖSSBAUER ISOMER 
SHIFT 

The contact electron density is a property that is required 
in Mössbauer [3] and nuclear forward scattering 
spectroscopy [4] to interpret the shift of the absorption line 
of the � -transition in a nucleus where its embedment in a 
specific local chemical environment relative to that a sample 
source nucleus plays an important role. The physical origin 
of this shift, known as the isomer shift, lays in the variation 
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of the nuclear electric charge radius during the � -transition 
because this variation leads to a slight alteration of the 
electron-nuclear interaction [14, 15]. It is a sensitive probe 
for the local electronic structure and bonding features of the 
target compound [2]. The isomer shift �  is expressed in 
terms of the Doppler velocity (in mm/s) needed to achieve a 
resonant absorption of the � -quantum (having the energy 
E� ) between the source (s) and absorber (a) nucleus 
according to eq. (1):  

� =
c

E�

�E�

a
� �E�

s( )        (1) 

where �E�

a(s )
 is the shift of the energy of the � -quantum 

caused by the electron-nuclear interaction in the absorber 
(source) system. The quantity �E�

a(s )
 is usually expressed 

with the help of the contact electron density at the absorber 

(source) nucleus:  
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4�

5

cZKRK
2
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RK
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where ZK  gives the proton number and �RK / RK  is the 

nuclear fractional charge radius that reflects the variation of 
the root-mean-square (RMS) nuclear electric charge radius 

RK  during the � -transition. As the quantity �RK / RK  can 

not be accurately determined by experiment, the use of 
calculated contact electron densities �  in connection with 

the experimentally measured isomer shifts remains the most 

reliable method of its determination [2, 16]. The knowledge 
of the fractional charge radius or the calibration constant 

�(K )  is a prerequisite for a reliable interpretation of the 

Mössbauer and NFS spectra of chemical compounds. 

At a fully relativistic level of description, the isomer shift 

and the contact electron density can be expressed with the 

help of the derivatives of the total electronic energy with 
respect to the nuclear electric charge radius [9, 17]. When a 

finite size nucleus model is employed in the quantum 

chemical calculations, the isomer shift is given by eq. (3):  

� (K ) =
c

E�

�Ea (R)

�R R=RK
�
�Es (R)

�R R=RK

�

	�



��
�RK        (3) 

where Ea(s ) (R)  is the electronic energy of the absorbing 
(source) system and RK  is the experimentally measured 

RMS nuclear charge radius [17]. From eq. (3), it follows that 

the contact density can be also expressed via the derivatives 
of the total electronic energy with respect to the RMS 

nuclear charge radius as given in eq. (4):  

� =
5

4�ZKRK

�E(R)

�R R=RK
       (4) 

 It is the major advantage of derivatives based formalism 
of the isomer shift and the contact density that the effects of 

relativity and electron correlation can be routinely included 

into the calculation in a convenient way thus guaranteeing 
the accuracy of the quantum chemical results [9, 17, 21]. As 

the detailed expressions for the energy derivatives involved 

in eq. (4) and the formulae in the following Sections are 
rather lengthy, they are not reproduced here and reader is 

referred to the original publications [19, 21-23]. 

3. ELECTRIC FIELD GRADIENT AND 
QUADRUPOLE COUPLING CONSTANT 

A non-spherically symmetric nucleus (i.e. a nucleus with 
spin Ik > 1/2) possesses a quadrupole moment QK

, which 
leads to a splitting of the nuclear energy levels when the 
nucleus K is embedded into an electronic environment 
without cubic symmetry [2, 11, 24]. The nuclear quadrupole 
splitting can be accessed by a number of experimental 
techniques including Mössbauer, NFS, PAC, NQR, and 
microwave spectroscopy. The interaction of the nuclear 
quadrupole moment with the electric field of the electrons 
(nuclear quadrupole interaction, NQI) can be described by 
the Hamiltonian [2, 24]:  

Ĥ NQI =
i, j
�Qij

KVij
K

       (5) 

where the summation runs over the Cartesian (i,j = x,y,z) 
components of the nuclear quadrupole moment (NQM) 
tensor Qij

K
 and the electric field gradient Vij

K
 at the site of 

the nucleus K. The electric field gradient operatorVij
K

 is 
defined as a second derivative of the potential V(r) due to the 
electrons and other nuclei as given in eq. (6):  
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The expectation value of the EFG operator over the 
electronic ground state wavefunction is used to characterize 
the magnitude of the NQI. The nuclear quadrupole coupling 
constant (NQCC):  

�Q =
eQ�Vcc �

h
(MHz)        (7) 

characterizes the magnitude of quadrupole splitting in 
Mössbauer and NQR spectra. [16, 27] The nuclear 
quadrupole splitting is also characterized by the asymmetry 
parameter � = (�Vaa � � �Vbb �) / �Vcc �  where the EFG 
expectation values are presented in a principal axes system 
and ordered to satisfy | �Vaa � |�| �Vbb � |�| �Vcc � | . 

Using the energy derivatives formalism, the expectation 
value of the EFG operator (6) is obtained as a derivative of 
the total electronic energy with respect to the components of 
the NQM tensor Qij

K
 given by eq. (8) [22]:  

�Vij
K
� =

�E(Qij
K )

�Qij
K Qij

K
�0

       (8) 

 When applying eq. (8), the NQI Hamiltonian should be 
included into the calculation of the total electronic 
energy E(Qij

K ) . With the use of eq. (8) the effects of relativity 
and electron correlation can be conveniently taken into 
account. Although the derivatives in eq. (8) can be calculated 
by numeric differentiation [25], the most accurate and 
numerically stable results are obtained with the use of 
analytic energy derivatives provided that they are available 
for the selected method of calculation. This condition is 
fulfilled by the NESC method that facilitates to study the 
effects of relativity and electron correlation. If the NESC 
method is carried out with a finite size nuclear model, one 
can study the influence of a finite nuclear charge distribution 
on the calculated EFG via eq. (8) [22, 26]. 
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4. MAGNETIC DIPOLE INTERACTION AND 
HYPERFINE STRUCTURE 

A nucleus with a non-zero spin Ik has a dipole magnetic 

moment ìk = gK�NIK , which interacts with local magnetic 

field B as described by the spin Hamiltonian given by 

eq. (9): 

ĤB = �gK�NIK �B   (9) 

This leads to a splitting of the nuclear energy levels 

(Zeeman splitting) [7,8]. In eq. (9), gK  is the Landé factor of 

the nucleus K, �N is the nuclear magneton, and the magnetic 
field B comprises the external field Bext  and the local field 

generated by electrons in the molecule or solid. The Zeeman 

splitting of the nuclear energy levels is a sensitive measure 
of the local electronic structure that can be accessed by a 

variety of experimental techniques such as ESR, Mössbauer, 

paramagnetic NMR, or optical spectroscopy. 

The strength of the nuclear magnetic dipole interaction is 

characterized by the hyperfine structure (HFS) tensor, which 

can be split into the isotropic and anisotropic parts. When the 
spin Hamiltonian (9) is included into the calculation of the 

electronic energy, the HFS tensor AK can be obtained as a 

derivative of the electronic energy with respect to the nuclear 
magnetic moment [27] as in eq. (10):  

AK =
�E(Bext ,�K )

��K
Bext�0,�K�0

= AK
iso

+ AK
aniso

 (10) 

where the dominant part of AK
iso

 originates from the Fermi-

contact (FC) magnetic interaction (with non-vanishing 

isotropic contributions from the spin-orbit (SO) coupling) 
and the anisotropic part comprises the spin-dipolar (SD) and 

anisotropic SO contributions [25]. Within the widely 

employed scalar-relativistic approximation that is neglecting 
the SO contributions, only FC and SD parts of the HFS 

tensor remain in eq. (10). 

In most cases, the FC part of the HFS constant AK
iso

 is 
dominating the absolute magnitude of the HFS tensor. It is 

this part that experiences the greatest influence of relativity 

as it depends on the electron spin-density in the immediate 
vicinity and inside the nucleus. Traditionally, the isotropic 

HFS constant is calculated using the value of the electron 

spin-density at the position of the nucleus [10] which may 
lead to divergent results when the effect of relativity is 

included in connection with a point like nuclear model. 

Utilizing the analytic derivatives formalism in connection 
with a Dirac-exact computational scheme such as NESC, one 

can avoid these difficulties and incorporate the effects of 

relativity and electron correlation into the calculated 
isotropic HFS constant in a seamless way [23]. Since a finite 

size nuclear model can be employed in these calculations, 

the effects of the finite nuclear electric charge distribution 
and the effects of the finite distribution of the nuclear 

magnetic moment can be taken into account. Generally 

speaking, the nuclear magnetic moment distribution is 
different from its electric charge distribution, however the 

parameters of the former are not known for most elements. 

In this regard, the accurate quantum chemical calculations of 
magnetic hyperfine interactions can provide valuable 

information needed for refining models of the nuclear 

magnetic moment distribution. 

5. HYPERFINE PARAMETERS OF MERCURY 
COMPOUNDS 

The hyperfine parameters of mercury have been studied 

by a variety of techniques primarily in connection with its 

biological activity and its role as environmental pollutant 

[28]. Especially, PAC spectroscopy has been employed to 

study the NQI parameters of mercury compounds [25, 29-33] 

whereas its hyperfine parameters are accessible via ESR 

measurements [34-37]. So far, Mössbauer spectroscopy has 

only sporadically been used to study mercury. In the 

literature, only the Mössbauer spectra of crystalline Hg2F2 

and HgF2 have been reported [41]. Although a statistically 

significant parametrization of its fractional nuclear charge 

radius does not seem to be possible with the available data, it 

is worth studying its contact density and other hyperfine 

parameters as they experience a strong dependence on 

relativity. Apart from this, knowledge of the hyperfine 

parameters provides a detailed insight into the electronic 

structure of mercury compounds and helps to discriminate 

between structural motifs and the oxidation states of the 

mercury atom. 

5.1. Mercury Contact Density and Quadrupole Splitting 

The contact densities of a series of mercury molecules, 

which represent the most commonly occurring mercury 

oxidation states (including the experimentally detected +4 

oxidation state [39]) and structural motifs, have been 

investigated by Filatov and co-workers [21] using the 

recently developed scalar-relativistic NESC analytic 

derivatives formalism [19, 21] employed to calculate contact 

density and isomer shift in the context of formalism outlined 

in Section 2 [17]. The results of their calculations are listed 

in Table 1 where the NESC contact densities on mercury 

nucleus and NESC contact density differences are compared 

with the corresponding densities obtained with a standard 

non-relativistic method. The non-relativistic density 

differences are scaled by the ratio �rel (Hg) / �non�rel (Hg)  to 

approximately take into account the effect of relativity in a 

traditional manner [2, 16]. 

The data in Table 1 clearly demonstrate that relativity 

plays the dominant role not only for the total contact 

densities (the relativistic densities are enhanced by a factor 

of ca. 6), but also for the density differences. The trends in 

the density variation within the compounds in Table 1 are 

not followed by the non-relativistic calculations, even 

qualitatively, thus demonstrating that a simple scaling of the 

non-relativistic densities is not sufficient to take relativistic 

effects on the density into account. It can be seen from a 

comparison of the results of the NESC/HF calculations with 

the results of the electron correlated NESC/CCSD method 

that electron correlation plays an important role for the 

contact densities and density differences (see Table 1). The 

effect of electron correlation is non-uniform across the 

compounds studied and leads to a noticeable, up to ca. 20 % 

decrease in the contact density (HgF). 
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The values of the contact density differences in Table 1 
vary in a broad range of values stretching from about 40 
e/bohr

3
 in dimethyl mercury to 293 e/bohr

3
 in the mercury 

dication. With the increasing electronegativity of the 
ligands, the mercury nucleus is deshielded as evidenced by 
the trends in molecules HgX2 with X = F, Cl, and CH3. 
There is also a noticeable dependence of the contact density 
differences on the coordination number of the mercury 
atom, e. g. in HgCl2 (linear) and HgCl 4

2�
 (tetrahedral). 

These observations confirm that the contact densities �  
and Mössbauer isomer shifts �  are sensitive descriptors of 
the electronic environment and coordination sphere of Hg 
nucleus [21]. 

The importance of including the effects of electron 

correlation and relativity into the calculation of EFG values 

has been demonstrated previously by means of full four-
component relativistic calculations, where it was shown that 

relativity is noticeable even for elements as light as 
27

Al and 
69

Ga [22]. Recently, Arcisauskaite et al. [25] have 
investigated the NQI and EFG in a series of HgX2 (X = Cl, 

Br, I, CH3) compounds where it was found that relativity and 

electron correlation make non-additive and opposite sign 
contributions to the final EFG value, thus underlining the 

importance of an accurate treatment of these effects in 

practical calculations. Their conclusions have been fully 
confirmed in a study of NQI and EFG values in a series of 

mercury compounds reported in Table 2, which was carried 

out by Filatov and co-workers [14] using the recently 
developed NESC analytic derivatives formalism. 

Generally, the relativistic effects on the EFG are treated 
accurately within the NESC analytic derivatives formalism 
which is illustrated by comparing the NESC EFGs against 
the reference values taken from the full relativistic 4-

component calculations in Ref. 3. At the computational level 
that includes electron correlation into account, the 
NESC/MP2 EFGs in Table 2 are in excellent agreement with 
the values obtained by Arcisauskaite et al. [25] using the 4-
component coupled cluster (CCSD-T) formalism. This is 
especially gratifying in view of the fact that NESC/MP2 can 
be used to study large molecular species whereas the fully 
relativistic correlated methods are restricted in their 
applicability to molecules with a few atoms only. The 
accuracy of the NESC/MP2 calculations can be further 
demonstrated by comparing the calculated NQCC of 2414 
MHz in Hg(CH3)2 (

199
Hg NQM of 0.675 ± 0.012 barn was 

used) with the experimentally measured value of 2400 MHz 
[25]. This demonstrates that NESC/MP2 is capable of 
providing accurate EFG values for compounds of realistic 
size. 

The data in Tables 1 and 2 demonstrate that the contact 
density shift and the EFG enable one to reliably 
discriminate not only between different oxidation states of 
the mercury atom, but also between different types of 
ligands. The EFG reveals sufficiently high sensitivity to the 
local chemical environment and, even in the cases where 
the contact density shifts are nearly the same, helps to 
discriminate between different types of coordination 
spheres, e. g. linear vs. square in HgF2 and HgF4 and in 
HgI2 and Hg(SH)4. For the same oxidation state and the 
same local geometry the EFG value may vary by almost a 
factor of two in dependence on the electronegativity of the 
ligands, as seen in a series of HgX2 (X = F, Cl, Br, I, CH3) 
compounds with the Hg atom in the +2 formal oxidation 
state and linear arrangement of ligands. However, there is 
no simple correlation between the total electron charge on 
the central atom and the EFG value. For the same local 
geometry (e.g. linear molecules of Hg(II)), a weakly 

Table 1. Effective contact densities (e/bohr3) of the Hg atom calculated using Dirac-exact and non-relativistic computational 

methods. The absolute contact density is given for Hg( 1S0 ) whereas contact density differences �Hg � �mol  are listed for ions 

and molecules [21]. 

Atom /Molecule NESC/CCSD NESC/MP2 NESC/HF non-rel MP2 non-rel HF 

Hg 2105035.382 2105047.821 2104944.971 360636.823 360632.831 

Hg+ 121.136 127.943 112.876 69.951a 60.797 

Hg2+ 293.217 305.695 278.394 179.244 158.352 

HgF 76.872 81.294 98.086 71.842 72.394 

HgF2 104.387 108.368 121.352 83.115 84.7931 

HgF4 96.264 109.453 96.586 69.485 46.800 

Hg(SH) 4  81.143 84.369 88.214 55.855 49.654 

Hg(SH) 4
2�   144.369 146.332 161.635 97.438 96.375 

HgCl2 91.592 94.572 108.118 71.630 72.207 

HgCl 4
2�  174.841 180.683 190.637 117.167 112.863 

Hg(CH3)2 42.184 43.610 49.001 26.240 25.705 

Hg(H2O) 6
2+  237.066 245.550 240.820 148.196 138.266 

a The non-relativistic density differences are scaled by the ratio �rel (Hg) / �non�rel (Hg)  of total contact densities for mercury atom. 



288    Current Inorganic Chemistry, 2013, Vol. 3, No. 3 Filatov et al. 

pronounced dependence of the EFG on the deformation 
population of the valence p- and d-orbitals (i. e., the sum of 
the number of electrons in 6p-orbitals and the number of 
holes in 5d-orbitals) of Hg was observed by Filatov and co-
workers. Indeed, the deformation density contains a 
significant quadrupole component which is important for 
the nuclear quadrupole interaction. Furthermore, due to a 
combined effect of depletion of the electron density from 
the 6s- and 5d-orbitals of Hg and population of the 6p-
orbitals, screening of the Hg nucleus by electrons alters as 
seen in the variation of the contact density in the HgX2 
series in Table 1. Qualitatively similar conclusions have 
been also drawn by Arcisauskaite et al.[41] on the basis of 
4-component density functional calculations. 

5.2. Magnetic Hyperfine Interaction 

The calculation of HFS parameters is a challenging task 

that often requires the use of high level ab initio calculations 

to reliably estimate the spin-density in the vicinity of the 

nucleus [42]. As there is a demand for accurate theoretical 

estimates of these parameters in large molecules and models 

of defects in crystalline solids, the performance of density 

functional theory (DFT) has been evaluated by Sinnecker 

and co-workers [43], who showed that DFT systematically 

underestimates the isotropic HFS constant AK
iso

 and that the 

inclusion of relativity noticeably improves the agreement 

with experiment even for element as light as iron. 

The necessity to include the effects of relativity and 
electron correlation becomes even more pronounced for a 
heavier element such as mercury. Table 3 lists the isotropic 
HFS constants AHg

iso
 for a series of open-shell mercury 

molecules calculated by Filatov and co-workers [23] using 
the NESC analytic derivatives formalism in connection with 
the MP2 and CCSD level of electron correlation. As shown 
by Filatov and co-workers, relativity accounts for up to 50 % 
or more (HgF and HgCN) of the overall AHg

iso
 value thus 

underlying its importance. However, even with the exact 
treatment of relativistic effects, the 4-component DFT 
calculations can not reach the same level of accuracy as 
shown by the NESC/CCSD results in Table 3. Inclusion of 
electron correlation leads to a contraction of the atomic inner 
shell electrons toward the nucleus, thus increasing the AHg

iso
 

value. This increase is counterbalanced by the increasing 
bond ionicity, which depletes the unpaired electron density 
from the valence 6s-orbital of Hg, thus reducing the AHg

iso
 

value. A delicate balance in the description of the effects of 
relativity and correlation can only be achieved with the use 
of highly correlated methods and may require to go beyond 
the CCSD level for obtaining accurate theoretical estimates 
of the HFS parameters. 

CONCLUSION 

With the availability of Dirac-exact relativistic methods 
such as NESC [46], which can be routinely applied to 
relatively large molecules, the properties of molecules 
containing relativistic atoms can be investigated in a 
systematic way. Essential for these studies is an energy 
derivatives formalism as it has been developed for the NESC 
method [19, 20]. In this way, first order and second order 
response properties are accessible at the NESC level [19, 20, 
21-23] where especially the calculation of hyperfine 
parameters is challenging. This article has shown that 
properties such as the contact densities, Mössbauer shifts, 
electric field gradients, quadrupole coupling constants, or 
hyperfine structure constants of heavy atoms strongly depend 
on scalar relativistic effects and electron correlation. Finite 
size of the nucleus, though not extensively reviewed here, 
does also play an important role for obtaining accurate 
hyperfine parameters [22, 26] and is crucial for the contact 
densities and isomer shifts [21]. It is also shown that 
experiment has its limits with the techniques presently 
available. For example, the Mössbauer spectroscopy of 
mercury compounds is still at its infancy. In this situation, 

Table 2. NESC electric field gradients �Vcc �  (a.u.) on the Hg nucleus calculated at the HF and MP2 levels in comparison with the 

reference 4-component Dirac-Coulomb data from Ref. 25.  

Molecule NESC/HF NESC/MP2 4c-DC-CCSD-Ta 4c-DC-HFb 

HgF -8.68 -5.78   

HgF2 -12.85 -9.18   

HgF4 +4.40 +3.74   

HgCl2 -12.40 -9.32 -9.51 -12.95 

HgBr2 -11.31 -8.54 -8.63 -11.82 

HgI2 -11.17 -8.64 -8.61 -11.68 

Hg(CH3)2 -19.30 -15.22 -15.71 -19.83 

Hg(SH)4  +8.00 +4.99   

Hg(SH) 4
2�   +0.84 +0.82   

Hg(cys)2  -13.23 -9.38   

a 4-component Dirac-Coulomb CCSD-T results from Ref. 3; b 4-component Dirac-Coulomb Hartree-Fock results from Ref. [25]. 
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reliably calculated hyperfine parameters are highly desirable 
for a two-pronged approach based on both experiment and 
relativistic quantum chemistry. 

Future work has to focus on a response property 
formalism that also takes spin-orbit coupling (SOC) effects 
into account. For the NESC method, the first step has been 
made with the development of an efficient two-component 
NESC formalism [15], which makes the routine calculation 
of SOC-corrected energies possible and which can be 
extended to SOC-corrected properties by introducing 
analytical energy derivatives. 
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