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Summary. A procedure is developed that leads from CI to size-extensive CI (ECI) 
by stepwise cancellation of disconnected terms in the CI equations. The ECI 
methods thus obtained are identical with the corresponding coupled duster (CC) 
methods with the exception of CISD and CISDT, which convert to size-extensive 
quadratic CI (QCISD) and ECISDT. The latter method has similar properties as 
CCSDT, but does not offer any significant time-savings4~s compared to CCSDT. 
Therefore, the idea of extending CI methods to size-extensive CI methods does not 
lead to a hierarchy of independent CC methods. However, the procedure of 
obtaining ECI methods lays the basis for deriving QCI methods that are truly 
size-extensive. This is accomplished by (a) deleting the first linear term of the p-fold 
CI excitation equations (p ~> 3) since this term always represents a disconnected 
term and (b) including just the connected part of appropriate quadratic correction 
terms in all but the energy equation. In this way, size-extensive QCISDT and 
QCISDTQ are obtained and their properties are discussed in comparison with 
QCISD(T) and CCSDT. 

Key words: Coupled cluster methods - Size-extensive CI - Quadratic CI 
- QCISDT - QCISDTQ 

1 Introduction 

Coupled cluster (CC) theory [1-3] has attracted much attention in recent years 
since it provides one of the most powerful ways to include electron correlation in an 
ab initio calculation. Since CC methods are size-extensive and since they cover 
infinite order effects, they lead to better results than either configuration interaction 
(CI) or many-body perturbation theory (MBPT) methods. CC results are the more 
accurate the more excitations are included, for example double excitations (D) in 
CCD [4], single (S) and D excitations in CCSD [5], S, D, and triple (T) excitations 
in CCSDT [6], S, D, T, and quadruple (Q) excitations in CCSDTQ [7], etc. While 

* This paper is dedicated to Prof. Werner Kutzelnigg on the occasion of his sixtieth birthday 
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CCD and CCSD are O(M 6) methods (M: number of basis functions) and, there- 
fore, are used for routine calculations on small and medium-sized molecules, 
CCSDT and CCSDTQ are O(M s) and O(M 1°) methods that can be applied only 
for small molecules. 

Because of the success of the CC methods there have been many attempts to 
simplify them in such a way that their accuracy is maintained while at the same 
time their computational costs are reduced. For example, Pople, Head-Gordon, 
and Raghavachari (PHR) [8] have suggested a new CC method that they derived 
from CISD by adding quadratic terms to the CI projection equations. In this way, 
the method becomes size-extensive at the cost of loosing the variational character 
of CI. PHR coined the method quadratic CI with S and D excitations (QCISD) and 
discussed its relationship to CCSD. They pointed out that QCISD is a simplified 
CCSD method that does not contain cubic and quartic terms and, therefore, is 
easier to carry out. Also, PHR compared QCISD energies with the corresponding 
CISD and CCSD values and found that the former are closer to full CI energies 
than the latter. QCISD energies can be substantially improved by adding T excita- 
tions in a perturbative way to QCISD, thus leading to QCISD(T) [8]. QCISD(T) 
energies compare even better with full CI energies as QCISD energies do. 

With QCISD, PHR introduced a new series of methods which they considered 
to be intermediate between CI and CC methods. For the case that all excitations up 
to n-fold are included, the corresponding QCI method is obtained from the CI 
method by adding just quadratic terms to the n and (n - 1) excitation equations. In 
this way, PHR expected to get a hierarchy of size-extensive QCI methods that 
provide computational advantages both with regard to CI and CC [8]. 

The QCI approach has met considerable criticism from various authors. For 
example, Paldus, Cizek, and Jeziorski [9] pointed out that QCISDT as suggested 
by PHR is no longer size-extensive even though the QCI methods were developed 
to restore size-extensiveness in CI. Scuseria and Schaefer [10] compared the time 
requirements of QCISD and CCSD and found that QCISD has essentially the 
same computational requirements as the more complete CCSD method [11]. In 
a recent investigation, we compared CC and QCI methods in terms of 5th, 6th, and 
infinite order MBPT [12-14]. Our analysis clearly showed that QCI methods are 
inferior to CC methods and that the energy comparisons carried out by PHR are 
somewhat misleading. In addition, it has to be noted that the simplicity of the QCI 
equations vanishes if one starts from a general reference wavefunction which is not 
based on canonical Hartree-Fock orbitals. It is also worth noting that, unlike CC, 
QCI does not possess a well-defined wavefunction. 

Nevertheless, the QCI methods QCISD and QCISD(T) are widely used in 
ab initio investigations and, probably, it is just a matter of time when QCI will be 
extended to a full inclusion of T effects. Therefore, one has to ask whether 
a size-extensive QCISDT method with just quadratic corrections added to the 
linear CISDT terms is possible at all and how such a method will differ from the 
non-size-extensive QCISDT method originally proposed by PHR [8]. We will 
answer this question in the present paper and by doing so we will look into the 
more general question whether there exists a hierarchy of size-extensive QCI 
methods that is in line with the original idea of PHR, namely a simple improvement 
of CI by just including quadratic correction terms. 

Our investigation will proceed in the following way. In Sect. 2, we will develop 
a systematic procedure that restores size-extensiveness in the CI approach. We will 
apply this procedure to CID, CISD, CISDT, and CISDTQ and compare the 
resulting size-extensive CI (ECI) [14] with existing QCI and CC methods (Sect. 3). 
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In Sects. 4 and 5, we will focus on the question whether there is a hierarchy of 
size-extensive QCI methods. In particular, we will concentrate on size-extensive 
QCISDT and QCISDTQ and derive the projection equations for these methods. 

2 Systematic development of size-extensive CI methods 

The procedure applied by PHR [8] to derive QCISD from CISD can be gener- 
alized in the following way: 

The physically not meaningful terms in the projection equations of truncated 
CI show up in a diagrammatic description in form of unlinked diagrams. The 
unlinked diagrams result from disconnected terms in the CI equations of a given 
truncation level. In order to obtain a size-extensive CI energy we have to eliminate 
all disconnected terms from the CI projection equations. This implies that we have: 

a) to analyze the disconnected terms, then b) to find the simplest way of 
cancelling disconnected terms by adding new terms and, finally, c) to check whether 
the addition of appropriated terms to the CI equations does not lead to new 
disconnected terms. 

If new disconnected terms appear, one has to add further terms until all 
disconnected terms disappear. In the most general case one has to loop through the 
sequence a), b), and c) several times before a size-extensive procedure is obtained. 
This is illustrated in Fig. 1 which contains a flow-chart diagram for a systematic 
development of ECI projection equations from the corresponding equations of 
a CI method of given truncation level. 

Analysis of S and D | 
projection equations I 

Addition of new terms for 
the purpose of cancellation ~ . ~  

of disconnected terms / 

Yes 

No Analysis of 
disconnected terms 

t there any higher 
projection equation? ~ Yes 

Derivation of the final 
size-extensive ECI equations 

Fig. 1. Flow-chart diagram for the 
conversion of CI methods to size- 
extensive ECI methods 
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According to this procedure, an E C I  method can be considered as a CI  method, 
to which a minimum number o f  terms have been added to restore size-extensiveness, or 
better as an approximated CC method that differs f rom the corresponding CI  method 
by a minimal number o f  terms. If the CI space is restricted to S and D excitations, 
the new terms to be added are quadratic as has been shown by PHR [8]. However, 
if higher excitations are included, e.g. T excitations at the CISDT level, size- 
extensiveness will require the inclusion of both quadratic and cubic terms as will be 
shown in the following. Accordingly, one would have to speak of cubic CI, 
quadratic CI, etc. However, we will refrain from introducing a new terminology 
and, instead, stick to the term ECI [15]. 

We will apply in the following the procedure outlined in Fig. 1 to CID, CISD, 
CISDT, and CISDTQ in order to get the corresponding ECI procedures. Although 
this has been done for CID and CISD before, we will include these methods in our 
analysis in order to establish our procedure and to introduce the necessary 
nomenclature. 

2.1 From CID to ECID 

The CID wavefunction is given by: 

I ¢ c ~ )  = (1 + f=) l '~o)  (1) 
where I qio ) is a reference function (for simplicity, we take here and in the following 
the Hartree-Fock (HF) wavefunction as a reference function) and T2 a double 
excitation cluster operator: 

1 T2 = ~ E  a b  " +  ^ ^ +  ^ cij b~ bibb bj (2a) 
i j  a b  

or, in general: 
1 o ,  . . . .  L = (n!)~ E c,j~.., oo (2b) 

We refrain from using different symbols for CI and CC cluster operators (e.g., 
C and T). Instead, we distinguish between CI and CC cluster operators by denoting 
CI amplitudes by ab . . . .  Cqk... and CC (QCI, ECI) amplitudes by ,b . . . .  a~jk.... Subscripts 
i, j,  k , . . . ,  (a, b, c , . . . )  denote occupied (virtual) spin orbitals while subscripts 
p, q, r . . . .  are used for general spin orbitals. The operators b ÷ and b are creation 
and annihilation operators. With Eq. (2a) the CID projection equations can be 
written as: 

(~o I/-7 221 a~o) = EColg (3) 

= ci~ t~ ..... (4) 

in which H denotes the normal-order Hamiltonian: 

# = ~ - e ( H e )  = # o  + ;" 
=E{g,+.g=}(rlPls>+¼E{g:gff,,g.}(rstltu) (5) 

r$  r s t u  

E .... corresponds to the CID correlation and I Oi) b)  a doubly excited wavefunction, clo 
energy: 

EcID = EClO _ E(HF) .  (6) 
c o r r  
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With I~o ) as the HF reference function, operators Ho and 17 are expressed by the 
following diagrams [16]: 

,~o= l-----x + l---.-x (7) 

'~-- 1 ..... i "  1 ..... t"  t ..... 1" ~....v .,. , ,d  " , , d  
" " t  ' v-----t ' / r : , ' ,  -,- v_....v 

and the cluster operator T2 by: 

~= V V  

where 

} } { . ~ :  ( b l F l a ) =  " ..... X , ( j a l l i b )  . . . . . . .  , cu ~ /  ~9t 

+ 

(8) 

(9) 

We get for Eqs. (3) and (4) the diagrammatic representations (10) and (11): 

-co. V V  (lO) 

, .45"-,-  ,~ . . . .x  .,. v....v -,- ~ + ' ~ + V N  

= v 0 0  
which can be verified with the matrix elements (12) and (13): 

(11) 

V V / 
+ ~ L _ ~  "'''X (12) 
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+ V-..V+V....V+V-.V 
Equation (11) reveals that _ab ,~,C~D q j  r~,o~, represents a disconnected term that leads to 

unlinked diagrams. Hence, the CID method is not size-extensive. The simplest 
matrix element that contains the same unlinked diagram is ab -1 ^2 <~u IH2T21~o> as is 
shown by (14). 

<~7~1~ 7~/21 q~o > = 
\/A7\ '~ vv_v/= \/00 V 

+ o W  v+ o W  v 
" "  

Hence, by inserting (~i~b1/~½13221 ~o ) on the left side of Eq. (4), the unlinked 
_ab TTECID diagram due to the disconnected term c u ~ .... is cancelled. In this way, size- 

extensive ECID is obtained: 

< ~o 1/t T21 q~o > = E~C, ~D (15) 

< 4~'f [/t(1 + 7~2 + ½~22)1~o> = auab,,~ClD~o,, (16) 

where a~'~ is used to distinguish ECI or CC amplitudes from CI amplitudes. 
Inspection of Eqs. (1 5) and (1 6) reveals that ECID is identical with QCID, which in 
turn is identical with CCD as has been noted before I-8]. Therefore, size-extensive- 
ness corrections lead right away from CID to CCD 1,-17]. 

2.2 From CISD to E C I S D  

The CISD projection equations are given by Eqs. (17)-(19): 

< ~o I H 22 I~o > = E2,~ ~ 

(~Tbl~q(1 + 271 + 7~2)1~o > _--_ Cu, b~cmot~co,, 

(17) 

(18) 

(19) 
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The disconnected terms, which lead to unlinked diagrams, are: 

a ~ CISD 0 " " ' 0  Ci ]2~corr -~ 

ab--CISD 0 " " " 0  .... = V V  

53 

(20) 

(21) 

- -  ^ ^ 

By adding < #~IH T~ T21 #o > o: 

0-0 = k /  (22) 

and a b  - -  1 ^ 2 ( # i j  I HT. T2l#o ) (compare with Eq. (14)) on the left side of Eqs. (18) and (19), 
respectively, unlinked diagrams resulting from c~ECo Is° and _ab,,CXSD CO ~ .... are cancelled 
and the ECISD projection equations are obtained. 

( ~o 1 lq I'21 ~o ) = ~co~l~EClS° (23) 
(~al/-I(T1 "q- ~/~2 + T1 7~2)1 @o) = a,~-Ec'sojz~o~ (24) 

( ~7~1/-7(1 + T~ + T: + ½7~22)1~o ) = uU-~b'~tC~SD~¢o-- (25) 

ECI is identical with QCISD, but contrary to QCID, QCISD is not identical with 
the corresponding CC method, CCSD. Thus, QCISD is the first independent 
method in the QCI series 1-8]. We will investigate in the following whether there are 
any further QCI methods. 

2.3 From CISDT to E C I S D T  

The CISDT projection equations are given by Eqs. (26)-(29) 

(~o I~ ~21~o ) = E~o',~ ~ 
<a~1/-7(~ + ~ + 7~3)1~o> = ~E~o'~ ~ 

<~r~l/~(L + 7~ + ~)1~o)  = c~ef2 °~. 

(26) 
(27) 
(28) 
(29) 

From Eqs. (27) and (28) the S and D equations of ECISDT are obtained in the same 
way as the corresponding ECISD equations: 

( ~o I H 7~2 [~o ) = E~Cff Dr (30) 

( ~ I & L  + T2 + 7~3 + L ~2)1~o) = ,,,-°rEc's°~co,, (31) 
1 ^2 ab~ECISDT (oafl/ t(1 + T~ + T2 + Ta + ~T2)lOo) (32) aij l~ corr 
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Equations (31) and (32) can be rewritten in the connected form, thus leading to 
Eqs. (33) and (34): 

<~a[/t(7~ + 7~2 + 7~3 + T~ Tz)lOo>~ = 0  (33) 
i 7~2,[ Oo >~ = O, (34) + + + + :., 

where the subscript "c" indicates a restriction to connected terms. 
Contrary to the S and D projection equations, the T Eq. (29) contains two 

disconnected terms, which lead to the following disconnected diagrams: 

a b c  - -  ^ (OUk] HT'Ioo>= V X ~ / . . . . y  (35a) 

i j k  l ~ c o r r  = \ ~ ' i j k  I 

: V \ / V  (35b) 

_ a b c  ~ C I S D  By applying 7~2 7~3 the disconnected term cuk ~o,,  is cancelled: 

<@u~, IH(T~ + f'2 + 7'3 + > 
a b c  "r, E C I S D  T 

= a u k  l ~ c o r r  

where the disconnected part of 7~2 7~3 is given by: 
a b c  - -  ^ ^ a b c  ^ - -  ^ a b c  ^ - -  ^ < dAtjk t(H T2 T3)o[ Oo > = < Oii~: I T3(H T2)cI #o > + < OU~ t T2(H T~)cI #o ) 

= < ~a~ I ~ 1 ~o > <'~0 I(g :72)Cl O0 > 

(36) 

(37a) 

S 

$ 

S 
a b c  ~ E C I  S D  T / .A~abc 

= a i j k r ,  orr + Z ", ~',jk T21OD (~1(/7T3)c[~o). 
$ 

(37c) 

In Eq. (37) we have used the fact that: 

<~,l(/77~mTk)ol~o> = <O,I 7~m(HT~)clOo> + <~,I~(HTm)cI~o> (38) 
and, in addition, we have inserted the identity operator ~ l O p >  < ~ l  (with p as 

• . " t { b c  ^ - -  ^ general substitution index) into the matrix elements (@uklTa(HT2)ci@o > and 
~ a b c  r ~ E C I S D T  /'~b~l 7~2 (H 7~3)c I ~o >. However, by cancelling auk r_,~o,~ we get a new discon- \ " - r i f l ~  

S a b e  ~ ( l )  nected term, namely (~lT2(HTa)cl~o> = ~ (OUk IT21 ~> (O~I(/12r3)c1~o) 
that requires the inclusion of further terms into Eq. ~(36). For this purpose, we use 
the single excitations Eq. (33) and multiply it with T2. Obviously, the addition of 

^ ^ 1 ^ 2  I ^ ~ ^ T2 TI,~T2, and ~T1 ~2 to T2T3 will lead to cancellation of disconnected S 
excitation terms, but not necessarily of other disconnected terms resulting 
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from D excitations. To check this we have to analyze Eq. (39): 
1 ^2 

/ r i~abC[- l~(~ ' l  "[- T2 "~- T3 31- T2T3 "~ T2T1 q-~T2 q- ½T1T22)140) \ "~ ijk 

, abc /ri~abc T2 T1 "~ \ ~ wEC~SDT (39a) 
= [ a U k  A- \ "~ i j k [  1"~0/./ . . . . . .  

which can be rewritten in the form of Eq. (39b): 
abc -- I~ECISDT~u"  ~ Z2T3 T2T1 -4- 1 ^ 2  <4 ' , j k l (H- - .~ ,o .  , , .~ + I"2 + 7~3 + + 7T2 + ½f~ 7~22)14o> 

= 0. (39b) 

For the analysis, we dissolve the disconnected part of Eq. (39a) with the help of 
Eq. (38): 

rfiabc 1 ^ 2  1 ^ ^ 2  ,,-,j~ I E~(~ + 7~ + ~ + 7~f~ + ~ + ~7"~ + :T~ r~)lo140> 
= < "ijka~'b'l [~(~, + 7~2~a + 7~2~ + 7T21 ^2 + ~T1T2)]o140>~ " ^2 

= < ~',jk~abC]Tl[l~(1 -4- T2 q-~ Z2)c] [ 40 > x  ^2 + /\ ~',jk'~"b~ i ~2 i-~(7~1 + I"2 

^ ^ / '~ab ' lT3(nT2)c[40> + <4~'1T1 T2(HT2)c[40> + ~ + r~r:)3~14o> + ,,~-,j~ 
D 

1 ^2 
d 

S 
+ Z ° ~ ^ <4~1~(7"~ 7 ~. + ~ + ~ ) 1 4 o > ~  < 4,jk I T2I 4~> + 

s 
+ ta" ,bC, jk + ( '~"~b" T1 T2 [ 4o >) < 4o IH Tz [ 4o > , j k ,  (40a) 
D 

Z abe ^ 1 ^ 2 = <4i j~ lT~14a><4a l~q( l+ l ' 2+:~ .T2)14o>c  
d 

abc abc ^ ^ "~'~ I~ECISDT 
4 i j  k [ T~  T214 o (40b) d- ~ai jk  -~- < / ~ c o r r  , 

where we have inserted Eq. (33) into Eq. (40a). Equation (40b) reveals that the 
remaining disconnected terms indeed involve D excitations and, therefore, it is 
reasonable to cancel them with the help of Eq. (34) (actually, Eq. (34) being 

^2 7~ 7~ into multiplied by T~). For this purpose, we introduce the terms ~Tx and 
abc -- 1 ^ 2  Eq.(39a). Since the disconnected part of ( 4 i j k ] H ( 2 T 1  + 1"~Ta)[4o> can be 

written as: 

"~ ijk 

X "t ' i jk 

D 

Z a b c ^  ( 4d [/'t (T  1 7"~a) [ 4o >c (41) = <4,y~lTll4a> + 
d 

with 
abc ^ ~ ^ <4ijk [T3(HT1 )c[ 4o > 

abc ^ = <4,j~ IT314o> <4o1(t7/~1)cl4o> = 0, (42) 

it is easy to see that after adding 1 ^z T1 and 7~17~3 the disconnected part of Eq. (40b) 
vanishes. Hence. the desired projection equations of a size-extensive ECISDT 
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method are given by: 
-- ^ ]~ECISDT <~olHT2l~o> = -,o,, 

ab -- 
t l i j  ]&core 

(30) 

(31) 

(32) 

"~ ijk 
/ , ~  ~ "b ~ \ ~ ~ c ~ s o r  (43) 

or, alternatively, by: 

( ~ ] H ( T ~  + T2 + I"3 + Tt T~)]~o)c = 0 (33) 

( q ~ f l a ( 1  + T, + T: + T3 "[- ½T2)[~)o>c = O, (34) 

( ~ , ~ [ H ( T 2 + 7 ~ z + 7 ~ 7 ~ z +  + + :  2+½ r~ f~2 ) [#o )c  0 (44) 

Clearly, E C I SD T is not identical with the QC I SD Tmethod suggested by P H R. Since 
ECISDT is also not identical with CCSDT, it is intermediate between QCISDT 
and CCSDT, but closer to the latter than the former method. E C I S D T  and CCSD T 
are both size-extensive while QC ISD T  is not. 

2,4 From CISDTQ to ECISDTQ 

The CISDTQ projection equations are given by Eqs. (45) to (49): 
- ^ /TCtSDT0 (45) ( •o lnT2l •o )  = =co,, 

= ~'aI~CISDTQ (46) 

~bc - ^ 7~,) ] #0 ~ c z s o r e  (48) 

~b~d - ^ 7~4)140 ~bca ~CXS.Te (49) ( #qu  tH(T2 + T3 + ) = ,.iju ,~o,, • 
pa 15,CISDTQ ~ab r;,~ CISDTQ The disconnected terms ~ ~co,, and qj  ~ o ~  in the S and D excitation 

Eqs. (46) and (47) can be cancelled in the same way as this was done for ECISD and 
ECISDT. Accordingly, the first three equations of ECISDTQ are given by: 

I ) --- E Z W  'TQ (50) 

(¢~l /4(fx  + 7~z + T3 + 7~t 7~2)1~o) = u,-"'~Ec'sora=co,, (51a) 

< ( ~ [ / ~ ( 1  21- T1 "~- T2 "~- T3 + ~ de. ½T22)1~0> = --ijrlabl~ECISDTQ--cotr (52a) 

where Eqs, (51a) and (52a) can be rewritten as: 

(~1/7(T1 + T2 + 7~3 + T~ T~)i~o)c = 0 (51b) 
I ~2 

To find the appropriate ECISDTQ triple excitation equation, we follow the same 
procedure as applied for CISDT. First, we introduce T2 T3 into Eq. (48) to cancel 
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a a b c  K' C I S D T Q  the disconnected term '~k ~o,,  and, then, the terms 2~ 22, ~ ^2 T2, and ½ 21 2 2 to ^ ^ 
cancel the disconnected term resulting from the addition of T2 T3. In this way, we 
obtain Eq. (53). 

abe --  ^ 2223 T122-'[- 122  +½2 1 2 2 ) [ 4 " o >  <#ijklH(T1 + T2 + T3 + T,  + + ~ 2 
/ abe abe ^ ^ , 3 ~ I ~ E C I S D T Q  

= [aijk + < ~ i j k  I "1"1 7214'o , ,  -eo,~ • (53) 
The disconnected part of Eq. (53) can be rewritten as: 

a b c . - - ^  i ,2T 3 21 .~/~21 ^ 2 1 ^ ^ 2  <~ijkl[H(T1 + + + ~ T 2  + y. T1T2)]oIdPo> 
abe "~abel 2~ bq(1 + 22 + ½2@)1cl4"o > + <~,j~ T~(HT~)~I4"o> = \ " ~ i j k  

+ \~'~jk/a~abe~J 2~ T2 (Iq 22 )c [~o > (54a) 
D 

~ -  ~ \/A~abclfl~ijk I Iq0d>(4idlH(1 + 22 + ½222)1~0>C 
d 

z abe abc ^ ^ tt~ \ ' ~ L - , E C I S D T Q  + ~a~jk + < q~.ik I T1 T2 (54b) 

which reveals that the disconnected part ( ¢ ~ ]  2~ l-H(1 + #2 + ½22)]c I Oo> can 
be cancelled with the help of the D excitation Eq. (52b) provided the terms ½ 22, 
T~ Ta and T~ T4 are added to Eq. (54). Accordingly, the T excitation equation of 
ECISDTQ takes the form of Eq. (55a). 

abe --  ^ <4",jkln(Zx + 22 + 2a + 24 +½2  2 + 2122 "q- 2123 + 2124 

-[- ~T2 + + ~TiT2)[~o > 
/ abc abc ^ = ta,~ + <~,~ 17"1 2~1¢o >)E~C~ svr° (55a) 

or  

"~ i j k  I 

..~]T21 "2 _1_ 2223 -J- ½~/%122)t4"o>c = 0 (55b) 
~ a b e d  I~ C I S D T Q  To cancel the disconnected term '~OkZ "~eo,, in Eq. (49), T2 7~4 is added thus 

leading to Eq. (56). 
< abcd - ^ T2 L)[q~o > = ,abed~nC,SOre (56) 4",:k, IH(T2 + 23 + L + -,jk, ,-~eo,, 

^ ^ / r~abcd T2(H T*)cl¢o > is brought in With the term T2 T, a new disconnected term \ ~'ijkt 
as is revealed by Eq. (57). 

= <4"ogt [Z,(HZ2)c[4"o> + <4"qkt [Z2(HZ4)c]4"o> 
D 

~ a b c d  K ; ' E C I S D T Q  / ,h~ abcd I ~"  
- -  - -  t~ i jk l  J- 'eorr  -'~ E \ ~ ' i j k l  I ~t 2 14"d>< 4"dl(HT,,)cl4"o>. 

d 
(57) 

In the next step, Eq. (56) is extended to Eq. (58) by adding 22 T~, ^ 7T2, ~ ^2 22 23, and 1 ^3 ~; T2 according to the D excitation Eq. (52b). 
<"riabcdla(22 + T3 + L -4- T2~  -4- 2221 -4- 122 

, abcd ,,it,. \ ~ , E C I S D T Q  (58) = ~Z2 ~'O/Y~'corr [aUk! + (4"011 ^2 
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The disconnected part on the left-hand side can be written as shown in Eq. (59): 

(~ijkZ [[H(T2 + + IT2 + + ~.T2)]D[~O) 
_ _  abcd ^ - -  - (~,jk, Ir2[H(1 + T1 + T2 + T3 + T4 + ½22) ] c ]¢0 )  

+ \/a~ab~d*Ukl TI(HT2)ctOo) + (¢~julT3(HTz)cl¢o)abcd ^ -- ^ 

abcd " -- abcd I ^ 2  -- ^ 
"~- ( ~ i jkl  ] I"* ( n  T 2 ) c  [ ~ 0  ) + ( c~ i jkl  I ~ T 2  ( n  T 2 ) c  I ~ 0  ) (59a) 
D 

I ^ 2  - - - - E  (r~abcd1221~lY)d)(C])dllf-I(l~'ijkl I + T1 + T2 "[- T3 + T" + ~ T 2 ) l t ~ o ) c  
d 

T 

t 
S 

$ 

abcd ^ + (¢~jk, IT41¢o)(¢o1(1122)1~o) 
/ ,.~abcd I 1 ,~2  + \ ,e~j~, I~ " 2  [ #0  ) ( #0  I( ~ 22 )l #0  ) (59b) 

T 

t 
S 

+ E (~abca123[Os)~'*~U. (~,1(/]22)C1~0) 
$ 

z abcd / , t f .~abcdl l  ^ 2  ri~ \ ~ I ~  'E CISD T  (59c) 
+ ~ai jk l  + \ ~ ' i j k l  12T2 ~ ' O / ] ~ c o r r  , 

where Eqs. (50) and (52b) have been used in Eq. (59c). According to Eq. (59c), there 
are two new disconnected terms in Eq. (58), namely: 

T 
/ r l i a b c d 1 2 1 (  I ~  2 2  )C [ CI) o ~) = ~ /ri~,abcdl"~' ",'~ *gu i ~ 1 [ ~ r )  ( ~ t  1(/t22)c I¢o ) (60) \ W ijkl  I 

t 
and 

S 
( ri~ abcd I ~'ou , Ta(H T2)c[¢o ) = ~, / a~abcd123] ¢s)  ( ~l(H22)c[ Oo ~',jkt (61) 

s 

The disconnected terms (60) and (61) can be cancelled according to Eqs. (51b) and 
(55b) by adding to Eq. (58) 21 23, 21 2,, 21 22 23, 1:r1̂ 2 22,1:rl^223,1:rlr,,~r122,^2 ^ 1 ^2 
1 ^ ^2 I ^2. T1 T2, and ~ T 3 . 

2122 1^2 222  2#,  
1^3 212, 212#  1"2^ 2123+ + + rlr2+ rlr3 
, ^2 ^ 1 ~2q;2 1 ^2 + :T1T, + ~ - 1 - :  + ½212~ + :T~)l~o> 
. abcd /A~abcd l  1 q~2 2123 1 ^2 ^ N , ) ~ E C I S D T Q  ---- ( a i j k l  + \~ l~ i j k l  I - ~ 1 2  "~ "~- ~ T 1 T 2 l ~ o / , ~ c o r r  • (62) 

~abcd I~ECISDT Q abcd -- ^ With Eq. (62) the disconnected terms t~ijkl ,~ . . . .  ( ¢im I HT2 [¢o ), 
abcd ^ -- ^ / ri~abcd (Oij~t ITI(HT2)c}~o), and \~qjkZ 123(H22)c1~o), are cancelled, but again 

abcd ^ -- 1 ^ 2 new disconnected terms have entered the equation: ( ~ i m  I T , (H TT1)c I ¢o ) ,  
abcd ^ - -  1 ^ 2 abcd ^ -- 1 ^ 2 abcd . . . .  (~ijkt [T3(H~T1)clO0), (~ijkt IT2(HTT1)cI~o), (Oijkl IT2(HT1T2)cI~o), 
abcd . . . .  abcd ^ - 1  ^ 2  ^ ( ~ijk, I T2(HT1T3)c[ ~o), ( ~,jk, [ T2(H~T1T2)cl r~o). 
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These terms can only be cancelled if energy, S, and D Eqs. (50), (5 la), and (52a) 
are extended by appropriate terms: a) The term ½ 7 ~2 has to be added to the energy 
Eq. (50) so that ( ,~abeda T4(~q½ ~2)cl 4o ) is cancelled in Eq. (62). "~ ijkl I 
b) The term ½7 ~2 has also to be added to the S Eq. (51a) so that 

S 
rh abcd I 

s 

is cancelled. 
c) The terms ½ 7 ~2, 7~1T2, and L 7~3, ½ 7~2T2 have to be included into the D Eq. (52a) 

• . obcd ^ -1 ^2 °bed . . . .  ~2(a~1~3)c to eliminate ( ~ i jk l  I T2 ( H~ T 1  ) e l  4 0  ) ,  ( ~ i jkl  ] T2  ( H T1  T 2  ) c  [ 4 0 ) ,  \ / "~rli abcdijkl 

I~o>, (~bff lT2(I t½T2T2)c[~o).  With a), b) and c) one gets Eqs. (63), (64), and 
(65). 

EEc5 lsDTQ = (~01/'t(f2 "[- ½7~)1~o> (63) 
. . . .  1 ^ 2  <~alH(Zl + 7~2 + T3 + TiT2 + =T1 + bT~)l~o> 

~a vECXSOrQ (64a) = U i l~corr 

-- aa(~olH(7~2 + ½T2)l~o) (64b) 
1^2 1^2 L~2  L~3  (~sb[H(1 + L + 7~2 + 7~3 + L + :V2 + 7T1 + + 

1 ^ 2  ^ 1 ^ 3  1 ^4- + ~T1T2 + ~T1  + ~.,T1)l$o) 
aab. ab 1 ^ 2  d i  NhK 'ECISDTQ , + ( ¢ u  [~TI[ (65a) : ~'0 / } ~corr  

ab 1 ^2 ~o1H(7~2 ½T~)l~o>) (65b) = (a,~ b + <#u I~rZll~o >)(< + 

These equations are identical with the corresponding CCSDTQ equations. The 
same holds for the T and Q ECISDTQ equations so that we come to the surprising 
conclusion that ECISD TQ in the same way as ECID is identical with the correspond- 
ing CC method (compare with Eqs. (66)-(70)): 

EC~ csorQ = < (/'o I H (T2 + ½ if'z)[ (/'o > (66) 
. . . .  1 ^ 2 ~a c, CCSDTQ (67) (~aln(T1 + T2 + T3 + T1T2 + 7T1 + ~,. f a ) l ~ o )  = - , ~  .... 

1-2 1^2 Lf2 L~3 <~a;I/7(~ + L + f2 + ~3 + L + : r 2  + : r ~  + + 
1 ^ 2  ^ ^ 1 ^4 + ~TI T2 + ~T~ + r. T1)l~o> 

(aab  ab 1 ^ 2  rh N't I2CCSDTQ 
= 7. Z 1 "~ 'O/ ]~corr  , u + ( ~ q [  (68) 

1^2 ~ 2  L ~ 3 +  + ~ r 2 +  \/'~"bel/-l(7~l+ir2+7~3+7~4+TTl+'U~, + 7~1T4 1^2 T2T3 

+ ~T~ + :TIT2 + ½i':~i'3 + : ~ T 1 T 4  + ½T, T~ + + 
1 ^ 4  1 ^ 3  ^ 1 ^ 3  ^ 1 ~/%2,~2 1 5 + ~ r ,  + ~ r l r 2  + ~ r l r 3  + ~ 1 ~ 2  + ~ r l  + ~1~)1~o) 

, abe abe ^ 1 ^3  ,~ , , x p c c s o r e  (69) 
a b c d - - ^  ^ 1 ^ 2  ~ 2 ~ 3  ~ 2 ~ 4  <~Uk, IH(T2 + 7~3 + 7~4 + ½T 2 + TIT2 "~- TIT3 "4- T I L  + ~T2 + + 

1 ^ 2  1 ^ 3  1 ^ 2  ^ 1 ^ 2  ^ 1 ^ 2  ^ T I T 2 T 3  1 ^ 3  + ~T3 + ~.TI +~T1T2 +~TIT3-F  T. TIT# + ½ TIT~ + + ~ T 2  
1 ^4- 1 ^ 3  ^ _]_ ~ . ~ 1 3 ~ 3  1 ^ 2  ^ 2  ^ 1 ^ 4  ^ + ~..T1 + 37TIT2 + + ~ T ~  + TIT2  . ~T1T2 + ~.T~)l~)o> 

, abed il labcdll"^r'2 T I T 3  "1- 1 T 2 T  2 "Ji- 1 , '~4 rl~ \ ' I g C C S D T Q  (70) : [a i j k l  + ( " M i j k l  1 ~ 1 2  "[- ~ 1 4 - ~ 1 1  "~ fO/ )L ' corr  
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We conclude that there does not exist any intermediate method that can be derived 
by including size-extensiveness corrections into the CISDTQ equations. Clearly, 
size-extensiveness requires a) that corrections are included in all projection equa- 
tions rather than just into the Q and the T equations and b) that higher than just 
quadratic correction terms have to be included. 

3 Properties of size-extensive CI (ECI) methods 

PHR derived the QCISD method by just including quadratic terms in the two 
highest CI equations, namely T~ T2 into the S excitation equation and ½ T22 into the 
D excitation equation I-8]. Extension of this idea to CISDT did not lead to 
a size-extensive method as was pointed out by Paldus and co-workers I-9]. Inspec- 
tion of the ECISDT Eqs. (30), (31), (32), and (43) indicates that one has to include 
corrections in all but the energy equation. Thus, size-extensiveness requires that the 
7"1 T2 term is included into the S excitation equation while PHR suggested to leave 
this equation uncorrected. As for the T equation of CISDT, one has to include 
5 quadratic terms and one cubic term to achieve size-extensiveness. 

For CISDTQ, all equations have to be extended by quadratic terms (1 for the 
energy, 2 for the S, 4 for the D, 6 for the T, 8 for the Q equation), but in addition 
cubic (1 for the S, 2 for the D, 4 for the T and 7 for the Q equation), quartic (1 for the 
D, 4 for the T, 4 for the Q equation) and higher corrections have to be included so 
that in the end the CCSDTQ equations result. 

One might ask whether it is possible to drop any of the correction terms for 
reasons of simplification and still get a size-extensive ECI method. If this would be 
possible, then the derivation of the ECI methods given in Sect. 2 would be 
erroneous. To check this possibility, we have analyzed in Table 1 the T projection 
Eq. (43) of ECISDT for the case that one of the correction terms is dropped. For 
each of the six possible simplifications, we get a new method that is no longer 
size-extensive. Therefore, we conclude that the ECI methods presented in Sect. 2 
are the simplest size-extensive methods that can be directly derived from the CI 
methods [17]. 

Table 1. Analysis of the ECISDT triple projection equation for a selective deletion of cluster operators 

Term to be deleted in Disconnected terms of Eq. (43) 
Eq. (43) 
1 ^ 2  ~T1 
^ ^ 

T~T2 

1 ^ 2  
7, T 2  

f~f3 
1 ~ ~ 2  ~T~Tz 

a b c  

<¢IJ'~1 r~ [rio + r, + ~ + ½~,~)]d¢o> # o 
a b c ^  - -  ^ 

abe ^ - -  <~,s~ I t  1 In(1 + tl + t2 + ~3)3c1¢o> 
+ < ¢ f ~ l T 2 1 - f i ( : t ~  + T2 + t3)3c1¢o> . ~  ^ ~ ~ c , ~ r  -<,I,o~lT~ral~o>Eco,, #0 
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As was shown in Sect. 2.4, ECISDTQ is identical with CCSDTQ. It is easy to 
show that this also holds for any higher method (CCSDTQP, etc.). Obviously, the 
ECI methods do not form a hierarchy of independent methods or, in other words, 
the idea of deriving from CI size-extensive methods leads in all cases, apart from 
CISD and CISDT, directly to the corresponding CC methods. 

Although ECISDT is not a member of a series of independent methods, one 
might consider to test the feasibility and usefulness of such a method. In Table 2, 
ECISDT and CCSDT are compared with regard to their computational require- 
ments. Clearly, ECISDT is as costly as CCSDT, even though it contains less cluster 
operators in the projection equations. However, all but one of the O(M 8) depend- 
ent terms are included in the T equation, which hinders ECISDT to become an 
economically attractive alternative to CCSDT. At 5th order, ECISDT and CCSDT 
differ in just the ST and a part of the TQ energy contributions, which are missing in 
the former method (compare with Figs. 2 and 3). Accordingly, TST, TSD, TSS, and 
DTS contributions are not covered at 6th order, which may be problematic in 

Tabe 2. Analysis of computational requirements for ECISDT and CCSDT 

Eq. Terms Cost ECISDT CCSDT 

s ~ O(N ~) X X 
T2 O(M 5 ) X X 
1"3 O ( i  6) X X 
T, I'2 O( M5 ) X 
1 ^2  ~.T1 O(M 5) X 
~ T ̂a O(M 5) X 

D 1 O(M 5) X X 
i'~ O(M ~) x x 
~ O(M ~) X X 
T3 O(U 7 ) X X 
1 ^2 ~T2 O(M 6) X X 
1 "2 :T1 O(M 5) X 
f~f2 O(M6) X 
7~,Ta O(U 7) X 
1 ^3 ~.T1 O(M 5) X 
1 ~2 ^ 7 T1 Tz O(M 6) X 
~T1 O(M 5) X 

T /~2 O(M 7) X X 
T3 O(M s ) X X 
i" fi'~ O(M ~) X x 
7~1T3 O(M s) X X 
1 ~2 I~T2 O( M  7) X X 
~ O(M ~) x x 
1 ^ ^ 2  7, T 1 T 2  O(M  7) X X 
1 ^ 2 ^  7. T1T2 O(M 7) X 
1 ~2^  ~, T1Ta O(M 8) X 
1 ^ 3 ^  ~ T 1 T  2 O(M  7) X 
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those cases where the S excitations turn out to be important. Apart from this, 
ECISDT should lead to results that are comparable with CCSDT. Therefore, one 
can say that the cost-effectiveness ratio of ECISDT will be similar to that of 
CCSDT and, accordingly, that there will be no significant advantage in using 
ECISDT. 

4 Derivation of a size-extensive QCISDT method 

Once the ECI projection equations have been derived in their connected form, one 
can delete all terms but the connected linear and quadratic terms. In this way one 
gets from the ECISDT Eqs. (30), (33), (34), and (44) the projection equations of 
a size-extensive QCISDT method: 

E~c', s°~ = < 4o I ~ 1 ~ o  > 

<~1~(~1 + ~ + ~ + ~ 1 ~ o > ~  = o 

<~1/~(1 + ~1 + ~ + ?~ + ½~)l~o>c = o 

. b c -  ^ ~ 2 ~ ) 1 ~ o > ~  o. <~,~ lU(r~ + f~ + = 

(71) 

(72) 

(73) 

(74) 

The equations differ from the QCISDT equations of PHR in three ways: First of 
all, only the connected part of the quadratic correction terms is included. Secondly, 
quadratic correction terms (/~7~27~p)c are added to all CISDT equations but the 
energy equation, i.e. p = 1, 2, 3. Finally, the linear term <~aff~l~/~l I ~0 > has been 
deleted since it represents a disconnected term (see Sect. 5). 

To distinguish the size-extensive method represented by Eqs. (71)-(74) from the 
QCISDT method suggested by PHR [8], we use the abbreviation QCISDTc where 
the c indicates that the projection equations contain just connected terms and, 
therefore, size-extensiveness is guaranteed contrary to QCI methods of PHR. 

It is interesting to compare QCISDTc with both CCSDT and QCISD(T). For 
this purpose, we expand the QCISDTc correlation energy in terms of nth order 
many body perturbation theory where we use the same techniques as we have 
described recently [12-14-1. In this way, we get Eq. (75): 

EQCISDTc : )~2E(2 ) q_ 23E(3)  -t- 24E (4) 
c o r r  

2StEtS) 2Ets~ wts) - - (5)  ..(5) - - (5)  ~(5) + t ss + + 1-.oo + 21~OQ + r~sr + 2 L , r  + t~rr 

26rE6 2E(6) ± E(6) (6) ~(6) r,(6) --(6) + E ( ~ ( I ) )  + t. sss + SSD 7- SDS + 2EsDD + Zt:SDQ + ~DSD + LDDD 

r(6) ,,~(6) (6) E~D(I) + ~zQDQ + + ~DQD + ~'DDQ + EDQQ(I) + r(6) E~.~Q(I) 

r~(6) E (6) qx E(6) q~ r ; , ( 6 )  E (6) I'r'~ ~(6)  + E~s6)rs + r~sro + srQt y +  Qrst J + L o r o +  arQt-  J + t~ssr 

(6) 1~(6) E(6) (6) ,31~,(6) ,3 E,(6) r~(6) + 2 E s v r  + ~ s r r  + DST + 2EDor + z-L.DTT 71- ZdS~TDQ -3 I- 12'TDT 

r~(6) (6) E(~)HQ(I ) + Etr6p)a(i) + E~e)r(i) + r~rrr  + E o p e ( I )  + 

+ E~e)r(I)] + O0~7),  (75) 
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Fig. 2. Analysis of energy 
contributions at 5th-order 
many-body perturbation theory 
covered by QCISD(T), QCISDTc, 
ECISDT, and CCSDT correlation 
energies. Yes or y denote that  the 
particular term is fully contained in 
the correlation energy while (yes) or 
(y) indicate that the term is only 
partially covered 

where -~aBc~(')... denotes a particular energy contribution at nth order perturbation 
theory and ~(n) ~ A B C . . . ( I )  indicates that this energy contribution is covered only 
partially. In Figs. 2 and 3, Eq. (75) is used to compare QCISD(T), ECISDT, and 
CCSDT with QCISDTc at 5th and 6th order utilizing results which we have 
obtained recently 1-12, 13]. According to this comparison, QCISDTc should be 
significantly better than QCISD(T), which we have found to suffer from an 
exaggeration of T effects in molecular calculations 1-12, 18, 19]. The latter results 
from the fact that TT coupling effects are totally missing for QCISD(T) at 5th and 
6th order thus leading to the observed exaggeration of T effects. QCISDTc, 
however, covers 6 of the 11 possible TAT and TTA terms (partially or totally) and, 
hence, compares well with CCSDT that covers 9 of these terms 1-13]. Compared to 
CCSDT, QCISDTc lacks TS, TSA, TQ, and TQA energy contributions. This is 
also reflected by Eqs. (77) and (78), which give energy differences between the 
various methods up to 6th order. 

E Q C I S D T e  F Q C I S D ( T )  ~(5) / L-,(5) 1~,(5) ~ ~(6) FW(6) ~ ( 6 )  w(6) _ 
corr - -  ~ c o r r  = ~ ~,J~TT - - J - ~ T S )  -~- A L ~ S T T  -~- 2 1 ~ D T  T -~- I ~ T D  1. 

g?(6) (6) E~r(I) + .~rrr + E~Q(I)  + ETeQ(I) + 

+ E ~ T ( I )  -- E (6) E (6) r.(6) OrS -- rss -- • r s o ]  + 0(27) (77) 

ECCSDT FQCISDT¢ /~(5)EE(5) T.(5) ~ /~(6) r-E(6) ~(6)(ii r (6)  t l I  . . . .  - - c o , ,  = ~ rs + L r Q ,  + L DT"S + /~Sr(2, ) + LQTS,  ) 

r7(6) r:,(6) r ( 6 )  r7(6) it?(6) 17(6) 
"~- E~DTQ -~- E~TSS "~ P-JTTS "]- "P~TSD "JC X.,TQ O "4" L, TS  T 

E (6) l r~  (6) + rQ~t I j  + ETTQ(I )  + E~)pT(II)]  + 0(27) (78) 

QCISDTc, contrary to CCSDT, is not able to describe a 3-electron system 
correctly (see Eq. (78)). However, QCISDTc should be superior to QCISD(T) and, 
probably, should come close to the performance of CCSDT in those cases where 
TS and TQ contributions are not important. On the other hand, this improvement 
is obtained at the cost of going from an O ( M  7) method, namely QCISD(T), to 
a O(M s) method. 
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Fig. 3. Analysis of energy 
contributions at 6th-order 
many-body perturbation theory 
covered by QCISD(T), QCISDTc, 
ECISDT, and CCSDT correlation 
energies. Yes or y denote that the 
particular term is fully contained 
in the correlation energy while 
(yes) or (y) indicate that the term is 
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5 A Hierarchy of size-extensive QCI methods 

A size-extensive QCISDTQc method can be derived from ECISDTQ = CCSDTQ 
in the same way as described above for QCISDTc. Its projection equations are 
given by Eqs. (79)-(83): 

EaC,sora~ = ( ~01 ~7~21~0 ) cor r  

<¢,5~1/1(1 + ~1 + 2?2 + 2?3 + L + '  i 2 ,  2)[~0)C = 0 

- ^ 272273)1 o (qhjk [H(T2 + 2?3 + 2?, + >c = 0 

iju 1,1 ~ 3 + I", + >c = 0 

(79) 

(80) 
(81) 

(82) 

(83) 
Formally, the QCIc equations can be derived starting at the corresponding CI 
equations rather than the ECI or CC equations as done above. For this purpose, 
we write the projection equations of a truncated CI method that includes up to 
n-fold excitations as: 

C l  Eco. = (~o1/77~21~o> (84) 

<%1/~(i + 2?, + 2?2 + " + L) l~o>  c, = c p E  . . . .  (p = 1, 2 . . . . .  n) (85) 

or, alternatively, as: 

(~slH(1", + 2?2 + 2?3)[¢o ) = csEcorrCI (86) 

( ~ I H ( 1  + 2?, + 2?2 + 2?3 + 27,)1~o) CI = cdE .... (87) 

• , H {  2 ~ Oo =cpE~C~, (n>~p>>.3) (88) 
\ i = p - -  2 

where s, d, and p are S, D, and general excitation indices. 
As shown in Sect. 2, it suffices to add TIT2 and 1 ^2 T2 to the S and D projection 

Eqs. (86) and (87), respectively, to eliminate all disconnected terms from these 
equations. For any excitation index p higher than d, there appear just two 
disconnected terms, namely (~p]/ t2?p_2[~o}(= (ab]_[~)cp_2) and c, cpE~o,, in the 
corresponding_^ ^ projection equation.^ _^Intr°ducing - HTp_ 2 and parts of the term 
HT2Tp, namely (HT2Tp)c and Tp(HT2)c, on the left side of Eq. (88) leads to 
a cancellation of all disconnected terms and to the QCIc equations in their general 
form: 

EQCIc corr  

<~sl~q(2?, + 2?2 + 
<~1/~(1 + 2?, + 2?2 + 

Clearly, these equations leads to a 
extensive. 

( ~ o  [iq2?2 ] ~ o )  (89) 

Ta) + (H;V, T2)cJOo) = 0 (90) 

~3 + 2?,) + k(t?2?~)cl~o > = o (91) 

• o / = 0  (nl>p/>3) (92) (/7~227.)c 

hierarchy of QCI methods that are all size- 
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6 Conclusions 

The following conclusions can be drawn from the analysis presented in this paper. 

1. The simplest size-extensive methods that can be directly derived from the CI 
projection equations are the ECI methods presented in Sect. 2. ECID is identical 
with CCD while ECISD is identical with QCISD thus confirming size-extensive- 
ness for the latter method [8]. On the other hand, ECISDT differs considerably 
from the non-size-extensive QCISDT method reflecting the fact that size-extensive- 
ness in general cannot be achieved by just considering quadratic correction terms 
in the two highest projection equations. 

2. If Q and higher excitations are included into CI, then the corresponding 
size-extensive ECI methods become identical with the corresponding CC methods. 
Thus CCSDTQ, CCSDTQP (P for pentuple excitations), etc. are the simplest 
size-extensive methods that can be directly derived from the corresponding CI 
methods in the way described above. 

3. Clearly, the size-extensive ECI methods do not form a hierarchy of indepen- 
dent CC methods and, therefore, the concept of improving CI to size-extensive CI 
is not a generally useful concept. The same holds for the quadratic CI approach in 
the sense it was originally derived [8]. 

4. A hierarchy of size-extensive quadratic CI methods can easily be derived if 
one starts from the ECI or CC projection equations in their connected form and 
deletes all cluster operators but those required by the original QCI concept. 

5. The size-extensive QCISDTc and QCISDTQc methods thus obtained are 
easier to program than the corresponding CC methods. But their computational 
requirements are as high as those of CCSDT and CCSDTQ (O(M 8) and O (M lo)). 

6. QCISDTc will be superior to QCISD(T) since it contains contrary to the 
later methods TT coupling terms at 5th and 6th order that are needed to provide 
a balanced description of T effects. 

7. There exists a hierarchy of size-extensive QCIc methods that can be derived 
from the corresponding CI methods b~ ~rl2nally adding the connected part (HTzTp)c 
of the quadratic correction terms (HT2Tp). Contrary to the QCI methods sug- 
gested by PHR, the QCIc equations require quadratic correction terms for all 
but the  energy equation. In addition, they no longer contain linear terms 
( ~plH Tp_ 2)1 ~0 ) since these represent disconnected terms. 

Work is in progress to provide information on the usefulness of QCIc methods, 
in particular QCISDTc [20]. 
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