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1. INTRODUCTION

Vibrational spectroscopy is an often used tool to identify and characterize a
molecule with the help of its vibrational modes. Depending on its geometry,
conformation, and electronic structure, each molecule has typical vibrational
spectra which are measured with the help of infrared or Raman spectroscopy [1-
9]. For example, an infrared band at 1700 cm'! is typical for a carbonyl stretching
frequency or one at 700 to 800 cm'! for a CCl bond stretching frequency. In this
way, one can draw conclusions from the measured vibrational spectra with
regard to the structure of a compound. One can also calculate vibrational
frequencies and force constants in the harmonic approximation and these values
are often used for the analyses of measured vibrational spectra [10-12]. This is
done to identify and verify the structure of molecules generated in the
experiment, which will be of particular usefulness if limitations in the
experiment do not make any other experimental investigation possible. For
example, molecules trapped at low temperatures in a matrix are elegantly
investigated by reproducing the measured infrared spectrum by appropriate
calculations. In this way a number of labile species have been identified [13-17].

The amount of information contained in a measured vibrational spectrum is
exploited to some, but not full extent. For example, vibrational spectra are never
used to characterize all bonds of the molecule and to describe its electronic
structure and charge distribution in detail. Of course, aspects of such
investigations can be found off and on in the literature, however, both quantum
chemists and spectroscopists fail to use vibrational spectra on a routine basis as a
source of information on bond properties, bond-bond interactions, bond
delocalization or other electronic features. Therefore, it is correct to say that the
information contained in the vibrational spectra of a molecule is not fully
utilized. This has to do with the fact that the analysis of vibrational spectra is
always carried out in a way that is far from chemical thinking. The basic
instrument in this respect is the normal mode analysis (NMA), which describes
the displacements of the atomic nuclei during a molecular vibration in terms of
delocalized normal modes [1-6].
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A normal mode is composed of the movement of many or even all atoms of a
molecule, which is difficult to visualize. Because of this chemists try to simplify
the description of a normal mode by focusing on the motions of just few atoms
that seem to dominate the normal mode. This requires an appropriate measure
that determines which atomic motion is dominant. Attempts in this direction
have been made and it is common practice now to associate certain normal
modes of a molecule with chemically interesting fragment modes even though
this simplification is usually not justified. Hence the basic problem of vibrational
spectroscopy is the transformation of the delocalized normal modes, which are
difficult to visualize, to chemically more appealing localized modes that can be
associated with particular fragments of a molecule.

In this article, we present a new way of analyzing calculated vibrational spectra
in terms of internal vibrational modes associated with the internal coordinates
used to describe geometry and conformation of a molecule. The internal modes
will be determined by solving the Euler-Lagrange equations for molecular
fragments ¢n being characterized by internal coordinates gn. An internal mode
will be localized in a molecular fragment by describing the rest of the molecule as
a collection of massless points that just define molecular geometry. Alternatively,
one can consider the new fragment motions as motions that are obtained after
relaxing all parts of the vibrating molecule but the fragment under consideration.
Because of this property, the internal modes will be called adiabatic internal
modes. Once the adiabatic mode vectors are known, adiabatic force constants ka,
adiabatic frequencies w,, and adiabatic masses ma (corresponding to 1/Gnn of
Wilson's G matrix) will be defined. The adiabatic internal modes are
independent of the set of internal coordinates used to describe molecular
geometry, comply with the symmetry of the molecule, and lead to a clear
separation of mass and electronic effects in the vibrational modes of the
molecule.

The new modes are perfectly suited to analyze the vibrational spectra of a
molecule in terms of internal coordinate modes, to correlate the vibrational
spectra of different molecules, and to extract chemically useful information
directly from vibrational spectra. It will be shown that adiabatic stretching
frequencies and fofce constants correlate with the corresponding bond lengths
and that this can be used to extend Badger's rule from diatomic to polyatomic
molecules. The intensities of adiabatic stretching modes lead to effective atomic
charges and bond dipole moments. Generalized adiabatic modes will be defined
for reacting molecules located somewhere along the reaction path. They will be
used to analyze the direction and curvature of the reaction path and, by this, to
obtain a better insight into reaction mechanism and reaction dynamics.

2. THE CONCEPT OF LOCALIZED INTERNAL VIBRATIONAL MODES

Chemists have learned to understand geometry and conformation of a
molecule in terms of (localized) internal coordinates such as bond lengths, bond
angles, and torsional angles. Therefore, it would be chemically useful to discuss
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vibrational spectra in terms of bond stretching modes, angle bending modes or

" torsional modes, which are the localized counterparts of the delocalized normal

modes. Each localized mode should be associated with an internal coordinate that
describes a molecular fragment of interest. If the normal modes obtained in the
NMA of vibrational spectroscopy could be transformed into these internal
vibrational modes, then infrared and Raman spectroscopy could provide for each
bond a characteristic stretching mode frequency on and a stretching mode force
constant kn that could be used to describe the properties of the bonds of a
molecule and that would complement information obtained from direct bond
length measurements. Moreover, by determining the bending mode frequencies
and force constants of a molecule a direct insight into bond-bond interactions
would be provided by vibrational spectroscopy. One could systematically
investigate all two-atom, three-atom, four-atom, etc. units of a molecule and, in
this way, obtain a detailed description on bonding and electronic structure of a
molecule by just using data obtained from vibrational spectroscopy. In this way,
vibrational spectroscopy would become a major source of information on
molecules, which it is not at the present time.

Of course, one could say that this information can be gained directly from a
molecular geometry determination that provides all bond lengths, bond angles,
and torsional angles. However, there are several reasons why a description of
bonding and other electronic features of a molecule with the help of its
vibrational modes should be of advantage. Apart from the fact that it is often
easier to measure a vibrational spectrum than to carry out a geometry
determination by microwave, electron diffraction or X-ray methods, there is also
the reason that the information derived from the vibrational modes has a
different quality than that derived from measured bond lengths, bond angles, and
dihedral angles. The value of a bond length depends primarily on the
accumulation of electron density in the bonding region. It is not very sensitive
with regard to the environment of a bond, i.e. the nature of the atoms and groups
attached to the bond in question or the electronic characteristics of neighboring
bonds. A bond stretching motion, on the other hand, is clearly influenced by the
bond environment and, therefore, the internal stretching frequency should
reflect not only the amount of electron density accumulated in the bonding
region, but also the bulk and electronic nature of the atoms and groups attached
to the bond in question. Hence, the internal stretching frequencies and force
constants should be a better measure of the strength of the bonds of a molecule
than the measured bond lengths. )

The information on the various bonds in a molecule should be hidden
somewhere in infrared and Raman spectra and it is only a question how to
unravel it from experimentally obtained or calculated vibrational spectra. To
obtain this information, one has to specify exactly what kind of internal
vibrational mode is needed [18-23]:

An internal mode should be fully characterized by only one internal
coordinate qn. The internal coordinate qn should be the parameter that leads the
internal mode and, therefore, it can be called the leading parameter of the
internal mode [18]. The internal mode should be localized in the fragment ¢n of
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Figure 1. Analogy between delocalized/localized vibrational modes and delocalized /localized molecular orbitals.
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the molecule described by the internal coordinate. Of course, this does not
necessarily imply that all other atoms are at rest when a fragment is vibrating. On
the contrary, to keep all other internal coordinates at their equilibrium values
when a particular fragment ¢, vibrates, the rest of the molecule has to move with
the same frequency than the molecular fragment ¢n. However, this is not a
contradiction since the motion is still localized in the bond under consideration.

Normal modes are orthogonal to each other and one advantage of this
property is that the force constant matrix associated with the normal modes can
be given in a diagonal form. Internal modes will no longer be orthogonal, which
means that the force constant matrix has no longer a diagonal form. In a way, if
the vibrational modes of a molecule are expressed in a form which is closer to
chemical thinking, some of these mathematical properties are lost. However,
once internal vibrational modes are defined it should be possible to convert back
to normal modes and express the latter in terms of internal modes so that it
becomes clear to which extent it is justified to interpret normal modes as
fragment modes. :

An analogy to molecular orbital (MO) theory may help to clarify further what
is needed. Chemists prefer to discuss chemical problems in terms of localized
MOs rather than in terms of (canonical) delocalized MOs resulting from Hartree-
Fock (HF) based quantum chemical calculations. The localized MOs are obtained
from the delocalized ones by a transformation ("localization"), which in most
cases yields MOs directly related to the bonds of a molecule. The same should be
true with regard to localized modes associated with a particular internal
coordinate q. The question is only: How can we transform from delocalized
normal modes to localized internal modes? To answer this question we will first
summarize the basic theory of vibrational spectroscopy.

3. THE BASIC EQUATIONS OF VIBRATIONAL SPECTROSCOPY

The potential energy function V(x) of a molecule with K atoms describes the
increase in energy upon a displacement of the atomic nuclei from their
equilibrium positions by a Cartesian displacement vector x = (Xq, y1, 21, -.., XK, YK,
zx)*. Expanding the potential energy in a Taylor series and neglecting all higher
order terms one obtains for V(x) expression (1) [1-6]:

V(x) = %x*fx 1)

where f is the force constant (Hessian) matrix expressed in Cartesian coordinates
at the equilibrium geometry xo = 0 because x represents the displacements from

the equilibrium geometry. The kinetic energy 7(x) of a vibrating molecule is
given by Eq. (2)

T(x)= %x*Mx (2)
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where M is the mass matrix. With Egs. (1) and (2), the Lagrangian L of the
molecule becomes

L(x,%) = T(X) - V(x) 3)

and the dynamics of the nuclei of the molecule can be determined by solving the
Euler-Lagrange equations (4)

_‘I_M-B_E(’iﬁ:()‘ il GV (4)

The solutions of (4) take the form of (5) [1-6]:

Xi= l“Qu )

where Q is a normal coordinate, which oscillates with the frequency wy
according to (6)

0, ()= acos(w,t) + bsin(w,) (6)

Inserting (5) and (6) into (4) leads to the basic equation of vibrational
spectroscopy [1-6]:

fl,=w;Ml,, pu=1..,N, (7)

which is used to calculate the Nyjp = 3K-L normal mode frequencies of a K-
atomic molecule where L = 5 or 6 gives the number of zero eigenvalues in (7)
resulting from translations and rotations of the molecule.

In Eq. (7), the normal mode vectors are expressed in Cartesian coordinate space.
However, it is much more useful to express the motions of a molecule in
internal coordinate space using N internal coordinates collected in a column
vector q = (q1, - qN)*- Changes in bond lengths, bond angles, and dihedral angles
can be used as convenient internal coordinates. To specify the positions of all
nuclei in Cartesian space, an additional set of L external coordinates has to be
given. The external coordinates are arranged in a column vector e = (e1, .. eL)t
Transformation from internal to Cartesian coordinates is given by Eq.(8) [24]:

L
X = ic‘imqm + zco.iaeu (8)
m=1

a=1

where Cim is an element of the (3K,N)-rectangular matrix C with column vectors
m
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C=M"B'G” 9)

and matrix Cg has been defined by Neto [24]. Wilson's G-matrix [1] is given by
G =BM™'B’ (10)

and the elements of the B matrix are defined by

qn = XBnixi (11)
i=1
Bl (___aq"(x)) " (12)
ox, L
with xg denoting the equilibrium geometry of the molecule.
Note that
BC=BM'B'G"' =GG™' =1 (13)
and
BC, =0. (14)

Generally, internal and external coordinates couple in the kinetic energy term,
however they can be decoupled by inserting (8) into (3) and using (14), which
leads to

=t (15)

where Ly depends on external coordinates and, accordingly, is not relevant for
the vibrational problem. The quantity Lint determines the time dependence of
the internal coordinates and is given by

gl iRl
Lw(@:9)=54"C74-54'Fq (16)
where F is the N x N-dimensional force constant matrix expressed in internal
coordinate space :

B = citficll 17)

Solving the Euler-Lagrange equation (18)
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b =%n(2.4) (18a)
L =1..N

4o onia) T (185)

diits aq,,

(pm is the generalized momentum) leads to Wilson's GF formalism for
determining vibrational frequencies oy [1]:

Fd, = 0}G™d,. (19)

4, Fd,

= ; 20
fldiGla, )

Vector dy represents the normal mode p in internal coordinate space. It can be
transformed to Cartesian coordinate space according to Eq. (21):

1,=Cd, (21)

4. PREVIOUS ATTEMPTS OF DEFINING INTERNAL VIBRATIONAL MODES

The column vectors of C, ¢,, can be chosen to represent the internal
displacement vectors vy:
vV, =¢, (22)

n n

for a given internal coordinate gdn and n =1, ..., Nyip.

The "c-vectors” are implicitly used when expressing normal vibrational modes
in terms of internal coordinates or when applying the potential energy
distribution (PED) analysis to describe vibrational modes [25-27]. However, they
have never been used explicitly to define internal modes of a molecule in the
sense of Eq. (22). Since c-vectors are associated with internal coordinates qn, and
each of the latter describes a molecular fragment ¢p, they seem to be the natural
choice for internal modes. However, it has been shown that v, = ¢, is not a
satisfactory choice of an internal vibration [19].

One often assumes that certain normal modes and their associated normal
mode frequencies represent internal modes and internal mode frequencies (e.g., a
normal mode frequency of 1700 em-! of a ketone as the C=0O stretching mode
frequency) [1-9].If a normal mode vector 1y is largely localized in the molecular
fragment ¢,, then the normal mode frequency oy will be similar to the
characteristic fragment frequency w(¢n) = on. It is one of the major goals of
vibrational spectroscopy to determine fragment frequencies wp, which can be used
to identify functional groups in a molecule to be investigated by vibrational
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spectroscopy [1-9]. The existence of such frequencies simply results from the fact
that functional groups largely retain their properties within different molecular
environments. This, in turn, indicates that bonding and electron density
distribution of a functional group are largely unaffected by the rest of the
molecule and that group characteristic parameters such as internal mode
frequency and internal mode force constant are appropriate to describe bonding
and electron density distribution of a particular group.

However, using Eq. (21) it is easy to show that such an assumption is strictly
valid only for the case where

(dpl)n = Snu (23)

(Onp: Kronecker delta) since this leads to

Iy =cn (24)

where it is assumed that p = n. However, even if displacements along vectors cq
and ¢y, do not couple thus leading to a diagonal F matrix with Fym = 0 (see Eq. 17,
no electronic coupling), there is always mass coupling between the c-vectors
because the G matrix is non-diagonal, which according to Eg. (19) leads to dpny #
dnp and 1, # cn. Nevertheless, most vibrational spectroscopists will assume a
more diagonal character of the G matrix if there is a large mass difference
between the atoms participating in the molecular motions. In some way, the
assumptions made in Eqs. (23) and (24) provide the only basis for an
experimentalist to discuss measured frequencies in terms of internal mode
frequencies.

Hence, both the choice of c-vectors as internal mode vectors vn and the typical
assumption 1y, = ¢y are not suited to provide an analysis of vibrational spectra in
terms of internal modes [18,19]. Therefore, in the next section we will discuss a
different approach that is based on a physically reasonable definition of internal
modes.

5. DEFINITION OF ADIABATIC INTERNAL MODES

To obtain reasonable internal modes one has to consider that mass coupling
prevents the vibrational modes to be localized in a particular molecular
fragment. Hence, on has to eliminate mass coupling by an appropriate
redefinition of the Euler-Lagrange equations. This is done by simply assuming
that in Egs. (4) all masses but the ones which belong to the atoms of fragment o,
are zero [18]. With this assumption, the equations of motion (4) will lead to a
pure internal vibration of fragment ¢n. Such an internal vibration expressed in
Cartesian coordinate space is of little use for a chemist, who prefers to think in
terms of internal coordinates rather than Cartesian coordinates. However, since
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mj =0 (i e ¢m with m # n) implies that the associated generalized momentum p;
is also equal to zero, one can extend the assumption that all atoms not belonging
to ¢n’ are massless points just describing the molecular geometry and apply it to
internal parameters by assuming that all internal parameters qm (m # n) are
associated with the generalized momentum pp, = 0. With this assumption, the
Euler-Lagrange equations (18) take the form of (25) and (26) [18]:

_9C(q.9)

n'-“‘ggg“¢" (25a)
p. = iﬁ—(ili) =0 Vm,m#n (25b)

m aq]n

=2l (26a)
P £ a
pﬂ:é?i=0 mn (26b)

G
Egs. (26) can be solved by adding Eq. (27):
Pa=2 (27a)
1A%
T 9q, (27b)

Egs. (26b) and (27b) are used to express all internal coordinates q as functions of A

4 = 41(/1)
................ (28)

Eq. (28) determines the form of internal vibrations v, because it defines one-
dimensional subspaces within the full configuration space. The motion in an
one-dimensional subspace can be described by vector v,, which can be found by
linearization (e.g. via a Taylor expansion at point A=0) of Eq. (28). If needed, the
time dependence of A can be found using generalized momenta

P, =p.(23:9)=p,(1.4) (29)

in connection with Eqgs. (27a) and (28). In this way, one obtains an internal
vibration vy, = ap for parameter qn associated with fragment on.

A set of equations similar to (27) can be obtained by applying a completely
different approach [18]. One can displace parameter g, from its equilibrium value
(qn = 0), keep it frozen and equal to a constant qn". At the same time, all other
parameters qm can relax until the molecular energy attains its minimum. Hence,
parameter g, leads the corresponding motion as described by Eq. (30)
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X' =v,q, (30)
(leading parameter principle [18]). For obvious reasons, one can call the
vibrations generated by qn* as adiabatic vibrations defined by (31):
V(q) = min (31a)
gn=const =qn". (31b)

Eq. (31) can be easily solved using the method of Lagrange multipliers:

d
aq,

[V(@)-A(q,-q;)]=0 m=1...N ! (32)

which leads to Egs. (33)

v
i 33
aq, e
Tl e (33b)
dq,,

which are identical with Egs. (27b) and (26b). Hence, the approximation based on
"massless internal parameters qm" is equivalent to the adiabatic approximation.

In quantum chemical calculations, the vibrational problem is normally
described in the harmonic approximation. Assuming that the vibrational
problem has been solved, potential energy and each internal parameter qn can be
expressed as function of Nyjp normal mode coordinates Qy, [1-6]

wm=§ﬁ@q 34)

Nvih
1,(0)=).D,,0, 35)
u=1

where matrix D collects in its columns the normal mode vectors d,, expressed in
internal coordinate space (compare with Egs. 19 and 21). Inserting (34) into (31)
and using the method of Lagrange multipliers, one obtains
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2 [v(0)-4(a,(0)-4;)] =0 (36)
aQ“ n n
and
0 _ D
Q"= " A. (37)

{1
The superscript n denotes the solution for internal parameter q, where
9.(@)=gq, (38)

as described above. Using equations (35), (37), and (38), A can be found as function
of qn’

1

A=5—0, 39

e o
k

u=l "y
Inserting Eq. (39) into Eq. (37) leads to the normal coordinates as a function of qn’
o = 0,4, (40)

where Qpn0 is a constant defined as

D,
k
l(l)" = Nz,,: “D:v : (41)
=ik

According to Eq. (40), any change in parameter gn" leads to a movement of all
normal coordinates along the adiabatic vector ap, the components of which in
normal coordinate space are given by

(8,), = Q- (42)
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With Eq. (42) it is straightforward to transform adiabatic vectors into the space of
Cartesian displacements:

‘(a,,),. =Y bfa), i=L..3K (43)
where i, is a component of the normal mode 1, defined in Eq. (21).

6. DEFINITION OF ADIABATIC INTERNAL FORCE CONSTANT, MASS, AND
FREQUENCY

Once vector v that determines the movement of the molecule under the
influence of parameter qn' is known, one can define a force constant, that
corresponds to such a motion, by inserting (30) into the expression for the
potential energy of the molecule in the harmonic approximation:

S
V(a;) =2k (@)’ (49)
where the internal force constant kn is given by
k, =vfv, (45)

It has been shown [18] that defining an internal mass Mn associated with the
internal vibration v, by

M,=vViMv,. (46)
which implies an characteristic fragment frequency Qn:

k’l
Mﬂ

Q= (47)

is not a useful choice since all masses of the molecule contribute to the mass Mp,
which enters into the definition of Q,. In this way, the internal frequency Qn
becomes sensitive to the environment of molecular fragment ¢n. This can lead to
nonphysical shifts of internal frequencies as was documented in the literature
[19].
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Therefore, one has to proceed in a different way to find a typical mass m,, that
opposes any change in the internal parameter qn. In this connection, two
conditions should be fulfilled. First, the mass my should be extractable from the
functional form of the internal coordinate gn. Secondly, my should be directly
connected to the vibrational motion v, caused by a change in gn.

To fulfil these two conditions, one has to ask how the atoms of the molecule
have to move so that the kinetic energy adopts a minimum and the generalized

velocity ¢, becomes identical with ¢,, i.e. the system fulfils Egs. (48) and (49):

oL ) (48)
T(x)=5x M x = min

b, x=b;v,4q, (49)

where vector by corresponds to the nth column of the B matrix [1-6] and b} v, ¢
is the generalized velocity of internal coordinate q, when the system moves
according to Eq. (30). Using the Lagrange multiplier A and combining (48) and (49),
one obtains

& s N PN :

a—&(gx Mx - A(b;x —b}v, q,,))—() (50)
and

x=M"b, . (51)

By inserting Eq. (51) into Eq. (49), the Lagrange multiplier A is given by Eq. (52):

b! v 3
p L 52
b} M b, n (2

With Eq. (52), x of (51) can be determined as a function of ¢,. In turn, the kinetic
energy of (48) can be written according to (53)

el 55
T(¢:)= 5 m @ (53)
with the internal mass my associated with parameter qn being given by
2
(b5 v.)
= po DR S 54
Ty o

The denominator of Eq. (54) can be recognized as element Gup, of the G matrix.
Once the internal force constant k, (see Eq. 45) and the internal mass m,, (see
Eq. 54) have been derived, the internal frequency oy is given by Eq. (55):
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o
ol=YalVa (55)
(b‘v )2 1 i
n'n G

nn

Eq. (55) implies that if internal coordinate g, represents the change in the bond
distance of a diatomic molecular fragment AB caused by AB bond stretching, then
1/Gnn will be exactly equal to the reduced mass defined by mamp/(ma+mp).
Furthermore, Eq. (55) reveals that in the general case 1/Gn, can be taken as the
reduced mass associated with internal coordinate q,, no matter which functional
form g, takes.

The term (bjv,)’ in the denominator of Eq. (85) guarantees proper
normalization of vector v,. It suggests that the force constant k, should be
calculated according to Eq. (56) rather than Eq. (45):

kv v (56)

with v,' given by

, A (57)

vll a +
b’lvll
This means that in Eq. (30) v,,' rather than v, is used:
x'=v,gq, (58)
If Eq. (58) is multiplied from the left by by*, then one will obtain g, = (by*vy')qn*.
Because of Eq. (57) by*vy,' = 1, which ensures that gn and qn* are the same during
an internal vibration. This is of crucial importance for the calculation of internal
force constants. If v, = a,, v, will be properly normalized in the sense that by*a, =
1 (see Eq. 31b), The term (bp*v,)? in the denominator of (65) is important only

when g, is not equal to qn*. This is the case for c-vectors calculated with
redundant sets of parameters [19].

7. CHARACTERIZATION OF NORMAL MODES IN TERMS OF INTERNAL
VIBRATIONAL MODES

In the previous section, we have determined elementary modes of suitable
structural units or molecular fragments ¢, that are associated with internal
coordinates qn describing these fragments. These so-called internal modes [18,19]
play the same role in the understanding of the vibrating molecule as internal
coordinates play in the understanding of molecular geometry and conformation,
ie. internal modes add a dynamic part to the static description of molecules with
the help of internal coordinates.

The characterization of normal modes in terms of the localized internal modes
(CNM analysis) [20] complements the NMA of vibrational spectroscopy and
introduces a chemical aspect into vibrational spectroscopy, namely the
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description of the dynamic behavior of molecules in terms of the dynamical
properties of groups and molecular fragments. For the purpose of the CNM
analysis, one has to define an amplitude Apny, which specifies the contribution of
a particular internal mode v, to a given delocalized normal mode Iy [20].
Utilizing amplitudes Ay, one can decompose normal modes in terms of internal
modes and, in this way, exactly relate the normal modes of a molecule to its
structural units. This clearly facilitates the use of vibrational spectroscopy as a
structure determining tool and extends its possible uses within chemistry.

Clearly, the assets of a useful, in itself noncontradictory, and physically based
CNM analysis are the internal vibrational motions and their properties as well as
the amplitudes that relate internal modes to normal modes. As shown in the
previous section, the adiabatic internal modes a, are the appropriate candidates
for internal modes. Adiabatic modes are based on a dynamic principle, they are
calculated by solving the Euler-Lagrange equations, they are independent of the
composition of the set of internal coordinates to describe a molecule, and they are
unique in so far as they provide a strict separation of electronic and mass effects
[18,19]. Therefore, they fulfil the first requirement for a physically based CNM
analysis.

There are no explicit criteria that help to define a suitable amplitude A needed
to describe the contribution of internal modes to normal modes and, then, to
judge on the quality of this definition. However, there are properties that are
implicitly assumed to be associated with amplitudes A. These can be formulated
in the following way [20]: ,

1) Symmetry equivalent internal modes associated with symmetry equivalent
internal coordinates must have the same amplitudes in the case that the normal
mode being decomposed is symmetric. (Symmetry criterion)

2) The results of the CNM analysis should not change significantly if some
internal motions with low amplitudes are changed or deleted in the expansion of
the normal modes as it might happen when changing a redundant set of internal
parameters into another set. (Stability of results) This can be checked by
calculating amplitudes Any of the same internal motions associated with the
same internal coordinates qn for a sequence of different parameter sets PSA, PSB,
etc. The difference in amplitudes AAny = 1Anp(PSA) - Apu(PSB)| has to be
evaluated for those internal motions covered by all parameter sets and summed
over all normal modes 1, to obtain A4 as a bar spectrum for the internal
coordinates qn considered. The spectrum AA-qn provides a direct insight into the
usefulness of the internal mode vectors v, and amplitudes A, within the CNM
analysis. (Stability test of A with regard to variations in the parameter set used)

3) Since it is not possible to directly evaluate the quality of a given definition of
Anp one has to do this in an indirect way by comparing a normal mode frequency
with suitable reference frequencies associated with internal coordinates qn. Itis
physically reasonable to expect that if all normal modes I, are studied for fixed
internal modes v, (associated with fixed parameters q,), then the magnitude of
amplitudes Any should become the smaller the larger the difference Awny between
the normal mode frequency w, and the fixed reference frequency wy, is. Therefore,

X Not reasonable

(A(large),Aoo(large))

Awyy (cm'l)

Figure 2. Different possibilities that can occur when plotting amplitudes A, in dependence of the difference Awy,
between normal mode frequencies ®, and internal mode frequencies @,. The dashed line indicates the enveloping

Lorentzian (bell-shaped) curve that can be expected in the case of a physically well-defined amplitude.
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the distribution of all amplitudes An, in dependence of differences Awny = ®n - Wy
should be enveloped by a Lorentzian- (bell-)shaped curve as shown in Figure 2.
The scattering of Ay in dependence of differences Awny outside or inside this
enveloping curve provides a direct qualitative impression on the usefulness of
the chosen amplitude and its underlying dynamical origin. If there are no
amplitudes outside the enveloping curve, one can say that the dynamical origin
of the normal mode principle will be fulfilled. (Dynamical origin of normal
mode concept)

4) While 3) provides a crude qualitative test, its quantification is given by the
quantity hny

hoy = Any Adny (59)

which has the dimension of a frequency and can be considered as an uncertainty
of the internal mode frequency. It provides a quantitative measurement of the
usefulness of amplitude Apny. In the normal case, the uncertainty hn, should have
small vanishing values while an accumulation of large hny values indicates
deficiencies of amplitudes Anu. (Uncertainty test of internal mode frequencies)

Provided the dynamical origin of the normal mode concept is correctly
considered, the amplitude Ap, will adopt a large value if the frequency difference
Aopn = ®y-n is relatively small, which simply means that the internal mode vp
associated with the internal coordinate qn dominates the normal mode 1, and
that the normal mode frequency wy, indicates the presence of the structural unit
on characterized by qn and the internal mode frequency wy:

Any (targe) = Awy, ; (small) (60)

Relationship (60) is the basis for the empirical assignment of measured
frequencies to structural units or fragments of a molecule.

Similarly, if there is a normal mode frequency w, placed far from an internal

mode frequency ®, associated with fragment ¢y, then one will not expect a large
amplitude since it is unlikely that the internal mode v, dominates the normal
mode 1.

Aw, ,(large) = A, (small) (61a)
Hence, the case

Aw, ,(large) = A, (large) (61b)

should not occur. Of course, due to strong couplings within the molecule it can
happen that, although a normal mode frequency wy, possesses a similar value as

e —i
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the internal mode frequency ®,, normal mode 1 has nothing in common with
internal mode vyn. This will be indicated by a low value of amplitude Any
according to

Ao, (small) = A, (small) (62)

I amplitudes Any are plotted as a function of Awpn, then the distribution of

amplitude points should be enveloped by the Lorentzian (bell-shaped) curve of
Figure 2 similar to the one describing the line shape of spectroscopic bands [9]
since this curve complies with expectations (60) - (62).

8. DEFINITION OF INTERNAL MODE AMPLITUDES A

Any procedure to define an amplitude A must guarantee that normal and
internal vibrational modes are related in a physically reasonable way [20]. The
internal mode vector v, describes how the molecule vibrates when internal
coordinate gn that initiates ("leads") the internal motion is slightly distorted from
its equilibrium value. From the NMA, one obtains normal mode vectors I, each
of which shows how the atoms of a molecule move when the normal coordinate
Q, is changed. By comparing the normal mode I, with the internal mode v, the
amplitude Ay is obtained that describes [, in terms of the vibration of the smaller
structural unit-¢n represented by displacement vector vy. Clearly, amplitude Any,
has to be defined as a function of I, and vy:

A, = f{1,.v.) (63)

The internal mode vector v, can be defined with the help of the c-vectors (Eq.
22) as is implicitly assumed within the PED analysis [25-27]. Alternatively, one
can use the adiabatic internal modes a, which are led by the associated internal
parameters qp as internal vibrational modes. The latter are preferred since they
have a better physical justification than vectors ¢n, which should pay off when
defining the amplitude Ay, [18-20].

Once vy is chosen, one can compare the normal mode vibration I, with the
vibration vy, of a structural unit ¢ according to Eq. (64) [20]

2
(%)
A L (64)
F T v
where the symbol Apy is used to distinguish between a specific definition of A
and the general amplitude Any. The denominator in (64) accounts for proper
normalization and guarantees that An, will adopt values between 0 and 1.

The scalar product (a,b), which appears in the definition of the amplitude An,
(Eq. 64), can be defined in the most general way as

(a,b)= ) a,0.b; (65)
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where Oj; is an element of the metric matrix O and a; and bj are components of
vectors a and b in Cartesian space. For the metric O, there atre three natural
choices, namely

o (662)
o1 (665)

with Mijj and fij being elements of the mass and force constant matrix,
respectively. Eq. (66a) provides an estimate whether the two vectors a and b are
spatially close, i.e. it measures their "spatial overlap”. Eq. (66b) compares the two
vectors kinetically ("mass comparison”) and Eq. (66c) compares them dynamically
("force comparison"). Egs. (66b) and (66c) reveal the influence of the atomic
masses (via mass matrix M) or that of the electronic structure (via force constant
matrix f) on the form of the normal mode I,,.

The amplitude Apy defined in Eq. (64) can be considered as an “"absolute
amplitude”. It is common practice to renormalize amplitudes and to express
them as percentages according to Eq. (67):

A
AP =—2L 100 (67)
i
DL,

to have a convenient way to compare them. This advantage has to be balanced
against the fact that because of Eq. (67) amplitudes are no longer independent of
the parameter set chosen.

According to which internal vibrational modes (c- or a-vectors: Cv or Av) and
according to which metric O is used in Eq. (66) (O = S, M, f), different amplitudes
can be defined, which are abbreviated in the following way:

{AVAS AvPS
0= o

CvAS CvPS (68)
O {AVAM AvPM
CvAM CvPM 69)
i {AVAF AVPF
CvAF CvPF (70)

where also the notation for P matrix based "amplitudes” used in the PED analysis
[25-27] and discussed in Ref. 20 have been added.
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On pufely theoretical grounds as well as on application examples it has been
shown [20,21] that only two of the twelve amplitudes given in Egs. (68), (69), and

(70), namely AvAF and AvAM, are suitable for the task of comparing wy with ®n
or decomposing 1y, in terms of vy. The six Cv... amplitudes based on c-vectors are
largely unstable with regard to changes in the internal coordinates chosen to
describe a molecule and, therefore, they are not suited for a comparison of
normal modes and internal modes. On theoretical grounds, the A-type
amplitudes are clearly superior to the P-type amplitudes of the PED analysis, [25-
27] which excludes the six P-based amplitude definitions of Egs. (68), (69), and
(70). A spatial comparison of two vectors or functions, although a common
practice when one considers dipole moments, orbitals, etc., provides little
information in the case of the dynamic process of vibrating molecules. Therefore,
it is more useful to use as metric matrix either the mass matrix M (kinematic
comparison) or the force constant matrix f (dynamic comparison), which leaves
of the twelve possible amplitudes just AvAM and AvAF as amplitudes suitable
for a comparison of normal modes and internal modes within the CNM analysis.

A short symmary of these results is provided in Figure 3, which shows
frequency uncertainty tests in form of Any-Awpn diagrams, in which normalized
amplitudes A, are plotted as a function of frequency differences Aoy, for the
benzocyclobutadiene molecule. Amplitudes and frequencies were calculated at
the HF/6-31G(d,p) level of theory for both a nonredundant set of internal
coordinates (Figures 3a - 3d) and a strongly redundant set of internal coordinates
(Figures 3e - 3h), which are described in Ref. 21. Amplitudes AvAF, AvPF, CvAF,
and CvPF are employed in connection with adiabatic internal frequencies and c-
vector frequencies.

In Figures 3a-3d, there are relatively large differences between the correlation
patterns for Av- and Cv-type amplitudes where the former lead to clearly better
results. In view of an expected Lorentzian-shaped correlation pattern Apy -Aeny,
the worst result is obtained in the case of the CvPF amplitudes of the PED
analysis, which indicates that the PED approach is a rather poor basis for carrying
out a CNM investigation. Replacing the P-type amplitude by the corresponding
A-type amplitude as in the CvAF diagram improves the situation somewhat,
however, there are still severe shortcomings of the description, which is
obviously a result of the shortcomings of the c-vectors [19].

Clearly, the best correlation pattern complying exactly with the expected
Lorentzian form is obtained in the case of the AVvAF amplitudes in connection
with a comparison of frequencies o, with adiabatic internal frequencies ,.
Adiabatic internal modes, the amplitude definition of Eq. (64) and the force
constant matrix fas a suitable metric for comparison provide the right
ingredients for a physically well-founded CNM analysis.

Using a redundant internal coordinate set as in the case of Figures 3e - 3h, a
significant improvement of all correlation patterns can be observed. This has to
do with the fact that with increasing size of the redundant parameter set c-vectors
adopt more the form of a-vectors [19]. For example, in the case of the
nonredundant internal coordinate set the average overlap between adiabatic and
c-vectors is 0.69, which means that the two types of internal mode vectors are
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- s indeed significantly different. In the case of the redundant coordinate set, the
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#8, ¢', out of phase CH; sym. stretch  #9, e¢', CH, asym scissor def

#13, ", CH, rock + CH, twist #14, e", CH, twist + CHj rock

Figure 4. Vibrational modes of cyclopropane as obtained at the HF/6-31G(d,p) level
of theory. Arrows indicate the direction and amplitude of each atomic motion.
Symmetry assignments and a characterisation of each mode is also given in line with
the notations used in Table 1.

#10, ¢', CH, wag #11, e', C-C ring def
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by McKean using isolated CH frequencies obtained by appropriate deuteration of
cyclopropane [30].

Table 2
Adiabatic internal frequencies of cyclopropane and some simple hydrocarbons.

Molecule CC stretch CH stretch HCH def

Ethene 1798 3344 1626

Cyclopropane 1169 3328 1614

Cyclobutane 1114 3222 (ax) 1621
3233 (eq)

Cyclohexane 1132 3172 (ax) 1621
3200 (eq)

Propane 1143 3192 1623

a All frequencies in cm-l. HF/6-31G(d,p) calculations from Ref. 28.

As a second example, the CNM analyses of two related three-membered ring
molecules, namely dioxirane (1) [31] and difluorodioxirane (2) [32], are given in
Table 3. The analyses reveal how the vibrational modes change upon
replacement of the two H atoms in 1 by two F atoms. Mode #1 of 2 is dominated
by symmetric CO stretching (63%), however, it possesses also a strong admixture
of symmetric CF stretching (30%) and 5% of CF scissoring, which is contrary to 1
where just 9.5% OO stretching are mixed into this mode. Mode #2 is made up of
60% symmetric CF stretching, 27% OO stretching and 13% symmetric CO
stretching. Again, this differs from the situation in 1 where mode #2 is a pure
symmetric CH stretching mode. Clearly, these differences result from the fact that
by a replacement of H atoms by F atoms mass coupling of the normal modes is
increased.

Modes #3 (84% OO stretching), #4 (88% CF> scissoring), #5 (100% CF3 twisting),
and #7 (92 % CF; rocking) of 2 are less coupled with remaining contributions (see
Table 3) being < 10%. Again, strong coupling is found in modes #6 (78%
asymmetric CF stretching, 22% CF, rocking), #8 (67% asymmetric CO stretching,
33 % CFp wagging), and #9 (73% CF» wagging and 27% asymmetric CO stretching).
In the case of 1, just two of the nine normal modes, namely the two symmetrical
ring stretching modes, modestly couple with each other (admixtures < 10%)
while all other modes are almost uncoupled. This strikingly shows the influence
of mass in mode coupling.

The calculated adiabatic frequencies reveal that the CO stretching modes
increase by 70 cm-! upon geminal F-substitution while the uncoupled OO
stretching mode frequency decreases by just 44 cm-l. Compared to oxirane
(adiabatic CO stretching @: 1130 cm1), the adiabatic CO stretching frequency of 1
(1121 cm-1, Table 3) is normal while it is considerably increased for 2 (1189 cm1).

Table 3

Characterization of normal modes in terms of adiabatic internal modes for difluorodioxirane and dioxirane. 2

Adiabatic Frequencies

Dioxirane (1)

Difluorodioxirane (2)

CCSD(T),sc.

Sym

1

Characterization

Characterization CCSD(T)

exp.

1121, CO

1189, CO

89.4% CO sym. str.
(9.5% OO str.)

1311

62.6% CO sym. str. (29.3% CF
sym. str.; 5.5% CF scissor)

1467 1470

al

3180, CH

1200, CF

99.5% CH sym. str.

3109

60.3% CF sym. str. (27.2% OO

918 910
str.; 12.5% CO sym. str.)
84% OO str. (8.9% CF

al

844,00

800, OO

93.4% OO str.

759

658 658

al

(6.1% CO sym. str.)

sym. str.; 7% CO sym. str.)

88% CF; scissor

1267, HCO

688, FCO

93.8% CHj scissor

1578

512

511

al

1267, HCO
3180, CH

688, FCO
1200, CF

100% CHp> twist
99.9% CH asym. str.

1050
3187

5.6% CO sym. str.
100% CF twist
78.2% CF asym. str.
(21.8% CF; rock)
92.5% CF7 rock

416 389
1260 1259

ap
by

1267, HCO

688, FCO

99.9% CH32 rock

1200

557 559

by

(7.5% CF asym. str.)

1121, CO

1189, CO

99.6% CO asym. str.

931

66.7% CO asym. str.
(33.3% CF; wag)
73.2% CF, wag

1068

1062

b

1267, HCO

688, FCO

96.1% CHj, wag

1292

621 617

b2

(26.8% CO asym. str.)

a Normal mode frequencies [cm-1] for 1 from Ref. 31 (CCSD(T)/cc-VTZ2P+£,d), for 2 from Ref. 32 (CCSD(T)/cc-VTZ2P+f) and from Ref. 33 (exp.).

Decomposition of normal modes in %. Second and third contributions are given in parentheses to facilitate reading. Adiabatic frequencies in cm-1
according to MP2(full)/cc-VTZ2P calculations are given with regard to internal coordinates specified after each frequency as CO for CO stretching

frequency, FCO as FCO bending frequency, etc.
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This indicates typical changes in the CO bond strength upon geminal F
substitution in 1.

As indicated for 1 and 2, the CNM analysis in terms of adiabatic internal modes
makes it rather simple to correlate the vibrational spectra of related molecules
and to discuss the influence of substituents, heteroatoms, and structural changes
in terms of the internal mode frequencies. In the following section, we will
provide further examples how vibrational spectra of different molecules can be
correlated with the help of the CNM analysis.

10. CORRELATION OF VIBRATIONAL SPECTRA OF DIFFERENT MOLECULES

The CNM analysis in terms of adiabatic internal modes has been carried out to
correlate the calculated vibrational spectra of the three dehydrobenzenes, namely
ortho- (3), meta- (4) and para-benzyne (5), with the vibrational spectrum of
benzene (6). Investigation of dehydrobenzenes with the help of infrared
spectroscopy is of considerable interest at the moment since these molecules have
been found to represent important intermediates in the reaction of enediyne
anticancer drugs with DNA molecules [34-37]. Both 4 and 5 are singlet biradicals
and, therefore, they are so labile that they can only be trapped at low temperatures
in an argon matrix upon photolytic decomposition of a suitable precursor [38-40].

A positive identification of the dehydrobenzenes in the matrix requires,
besides an expert set up of the experiment, high level ab initio calculations of the
infrared spectra of the compounds trapped so that comparison between measured
and calculated spectra becomes meaningful. In this way, both 4 and 5 have been
identified and investigated in the matrix [38,39]. To further understand the
electronic nature and the relationship of the three dehydrobenzenes, a
correlation of their calculated vibrational spectra is desirable.

Kraka and co-workers [41] have calculated the vibrational spectra of 3,4, and 5
at the GVB(1)/6-31G(d,p) level of theory where in each case the bitadical nature of
the dehydrobenzenes was described by the two-configuration approach of GVB. In
Tables 4, 5, and 6, a CNM analysis of the calculated spectra based on calculated
adiabatic internal modes is presented.

With the CNM analyses presented in Tables 4, 5, and 6 and a similar analysis
for benzene, it is straightforward to correlate the vibrational spectra of the three
benzynes with each other and with that of benzene. This is done in Tables 7, 8,
and 9, which should be read considering that benzene has 30 normal modes
while the benzynes have only 24. Hence, not all normal modes of benzene can be
correlated with normal modes of the benzynes.

Tables 7, 8, and 9 are the basis for the correlation diagram shown in Figure 5
that compares the calculated infrared spectra of the three benzynes with that of
benzene. Only the normal modes with infrared intensities larger than 0.1 are
considered in this comparison. The numbers in parentheses denote the mode
numbers used in Tables 4-9. Dashed lines connect infrared bands that are related
according to the CNM analyses presented in Tables 4, 5, and 6.

Table 4

CNM analysis of the vibrational spectrum of 1,2-didehydrobenzene (0-benzyne, 3)

calculated at the GVB(1)/6-31G(d,p) level of theory. 2

# Sym Freq Characterization Detailed characterization

24 a1 3387  HC(88%) HC(2*44)

23 by 3384  HC(94%) HC(2*47)

22 aj 3358  HC(86%) HC(2*43)

21 by 3341  HC(94%) HC(2*47)

20 a 1942 CC(66%) CC(66%)

19 b2 1688  CC(40%)+HCC(30%) CC(2*20)+HCC(2*8+2*7)

18 a1 1607  HCC(58%)+CC(30%) HCC(2*15+2*14)+CC(20+10)
17 by 1559  HCC(62%)+CC(30%) HCC(2%24+2*7)+CC(2*15)
16 a1 1398 HCC(46%)+CC(37%) HCC(2*16+2*7)+CC(2*15+7)
15 bz 1362  HCC(58%)+CC(34%) HCC(2*29)+CC(2*17)

14 a 1234  CC(53%)+HCC(44%) CC(17+2*14+8)+HCC(2*22)
1380 b)! 1210  HCC(50%)+CC(38%) HCC(2*16+2*11)+CC(2*19)
12 ap 1106 HCCC(78%)+CCCC(19%) HCCC(2*28+2*11)+CCCC(19)
11 ap 1104  CC(68%)+HCC(8%) CC(2*34)+HCC(2*4)

10/ ) 1086  CC(76%)+HCC(10%) CC(44+2*16)+HCC(2*5)

9 b, 1057  HCCC(90%) HCCC(2*28+2*17)

8 a 974 HCCC(96%) HEECE2433+2515)

7. b2 969 CCC(98%) CCC(2*28+2*14+2*7)

6 b 833 HCCC(98%) HCCC(2*25+2%24)

5 az 692 CCCCOY1%) CCCC(20+2*17+2*13+11)

4 a1 657  CCC(68%) CCC(2*34)

S oy 593  CCC92%) CCC(2*36+2*10)

2 a2 493 CCCC(91%) CCCC(37+20+2*17)

1 b1 448 CCCC(90%) CCCC(2*26+2*19)

a Frequencies in cm'l. The following notation is used: CC: CC stretching; HC: HC
stretching; CCC: CCC bending; HCC: HCC bending; CCCC: ring torsion; HCCC(op):
hydrogen out-of-plane bending. The last column gives a detailed analysis of each
normal mode in terms of adiabatic modes. E.g., normal mode #18 is described by
58% HCC in-plane bending and 30% CC stretching. The HCC in-plane bending
comprises four different HCC bending modes, two with 15% and two with 14%, and
the CC stretching mode comprises two different CC stretching modes, one with 20%
and one with 10%.
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Table 5
CNM analysis of the vibrational spectrum of 1,3-didehydrobenzene (m-benzyne, 4) I
calculated at the GVB(1)/6-31G(d,p) level of theory. 2

# Sym Freq Characterization Detailed characterization

24 a; 3420 HC©9%) HC(99%) '
23 a1 3377  HC(99%) HC(42+41+16) ?’
22 by 3371 HC(100%) HC(2*50) ‘
21 a; 3342 HC@®2%) HC(82%) |
20 a 1792 CC(68%) CC(2%24+2*10)

19 by 1685  CC(42%)+HCC(26%) CC(2*21)+HCC(26) |
18 ap 1552  HCC(49%)+CC(42%) HCC(25+24)+CC(2*12+2*10)

17 by 1544  HCC(64%) HCCQ0+17+16+11) i
16 a; 1384  HCC(89%) HCC(61+2*14) ,
15 by 1313 CC(60%)+HCC(27%) CC(2*16+2*14)+HCC(27)

14 by 1201  CC(64%)+HCC(31%) CC2*17+2*15)+HCC(2%9+8+5)

e o 1183  HCC(46%)+CC(26%) HCC(2#23)+CC(2*13)

12 a 1109  CC(68%) CC(2*18+2*16)

11 by 1102 HCCC(83%) HCCC(57+2*13)

10 by 1068  CC(70%) CC(2%24+2*11)

9 a 977 CCC(90%) CCC(2*24+22+2*10)

8 ias 966  HCCC(92%) HCCC(2*46)

7. bi 953  HCCC(80%) HCCC(76+4)

6 b 857  HCCC(71%) HCCC(23+2*18+12)

SHED) 685  CCCC(94%) CCCC(4*16+2*15)

4 by 655  "CCC96%) CCC(2*26+2%22)

3 532 CCCC(60%) CCCC(2*30)

2, 531  CCC(96%) CCC(39+21+2*18)

10 b 447  CCCC(82%) CCCC(2*22+2*19) i

a See footnote in Table 4.

Table 6

CNM analysis of the vibrational spectrum of 1,4-didehydrobenzene (p-benzyne, 5)

calculated at the GVB(1)/6-31G(d,p) level of theory. 2

# Sym  Freq Characterization Detailed characterization
24 ag 3379  HC(100%) HC(4*25%)

23  bou 3378  HC(100%) HC(4*25%)

22 bag 3362  HC(100%) HC(4*25%)

21 bia 3361 HC(100%) HC(4*25%)

20 bag 1785  CC(72%) CC(4*18%)

19 ag 1646  CC(36%)+HCC(24%) CC(2*18%)+HCC(4*6%)
18 biu 1604 HCC(64%) HCC(4*16%)

17  bay 1456  HCC(40%)+CC(22%) HCC(4*10%)+CC(2*11%)
16 bag 1397  HCC(92%) HCC(4*23%)

15 boy 1297 CC(64%)+HCC(28%) CC(4*16%)+HCC(4*7%)
14 ag 1250  HCC(76%) HCC(4*19%)

13 biu 1124  CC(52%)+HCC(28%) CC(4*13%)+HCC(4*7%)
128 boy, 1117  CC(64%)+HCC(16%) CC(2*32%)+HCC(4*4%)
11  ag 1097 CC(98%) CCQ2*17%+4*16%)

108 ay, 1080 HCCC op(88%) HCCC op(4*22%)

9 by 1050 CCC(100%) CCC(2*20%+4*15%)

8  bog 1042  HCCC op(76%) HCCC op(4*19%)

7  big 897 HCCC op(100%) HCCC op(4*25%)

6 " bay 853 HCCC op(88%) HCCC op(4*22%)

5 bag 715 CCCC(96%) CCCC(6*16%)

4 ag 662 CCC(60%) CCC(2*30%)

3 bag 640 CCC(96%) CCC(4*24%)

200 om 492 CCCC(100%) CCCC(4*25%)

1 ay 464 CCCC(62%) CCCC(2*31%)

a See footnote in Table 4.
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Table 7
Correlation of the normal modes of benzene (6) with those of 1,2-didehydrobenzene
(o-benzyne, 3). 2
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Table 8
Correlation of the normal modes of benzene (6) with those of 1,3-didehydrobenzene
(m-benzyne, 4). 2

Benzene ortho-Benzyne
# Sym  Characterization # Sym  Characterization
30 ayg sym HC st 24 HC(88%)
29 equ asym HC st 23 by HC(94%)
28 e1u - - -
27 eyg asym HC st - - -
26 exg 22 aj HC(86%)
25 b1y asym HC st 21 by HC(94%)
24 eyq ring st 20 ap CC(66%)
23 ey 19 by CC(40%)+HCC(30%)
22 ' elu ring def - - -
oo S -
20 ayg HCC def 17 by HCC(62%)+CC(30%)
19 boy HCC def 16 a1 HCC(46%)+CC(37%)
18  exg HCC def 14 a CC(53%)+HCC(44%)
17 exg 13 by HCC(50%)+CC(38%)
16 boy ring st - - -
15 ey HCC def 11  ap CC(68%)+HCC(8%)
14 ey - - -
13  bag H twist 12 ap HCCC(78%)+CCCC(19%)
12 epy H twist - - -
11  epy 9 iby HCCC(90%)
10 by asym ring breath 7 b CCC(98%)
9 aig sym ring breath 10 CC(76%)+HCC(10%)
8 elg HC wagging - - =
7  elg 8 az HCCC(96%)
6 byg chair o.p 5 az CCCC(91%)
5 Ay HC wagging 6 b HCCC(98%)
4 ey ring déf 3l by CCC(92%)
3 ey 4 ay CCC(68%)
20 e twist boat o.p 2 a CCCC(91%)
! eu boat o.p 1 b1 CCCC(90%)

a For an explanation of the notation used, see Table 4.

| Benzene meta-Benzyne
# Sym  Characterization # Sym  Characterization
30 aig sym HC st 23 a1 HC(99%)
29 equ asym HC st 23 a1 HC(99%)
28 e1u 224 by HC(100%)
27  eyg asym HC st 22 by HC(100%)
26 eg 21 ay HC(82%)
2500 b asym HC st 21 ap HC(82%)
24 ey ring st 20 a1 CC(68%)
23 ey 19 by CC(42%)+HCC(26%)
22 el ring def 18 ap HCC(49%)+CC(42%)
21 equ 17 by HCC(64%)
20 ayg HCC def 16 a1 HCC(89%)
19 boy HCC def 15 b2 CC(60%)+HCC(27%)
18  eq HCC def 13 a; HCC(46%)+CC(26%)
17 eyg 14 by CC(64%)+HCC(31%)
16 boy ring st 10 b CC(70%)
15 e HCC def 13 a1 HCC(46%)+CC(26%)
14 ey - - -
13 bag H twist 11 by HCCC(83%)
12 eau H twist 8 a HCCC(92%)
11 ey il by HCCC(83%)
10 biy asym ring breath 9 a1 CCC(90%)
9 alg sym ring breath 12 a1 CC(68%)
8 eyg HC wagging 8 a HCCC(92%)
7 el 7. iy HCCC(80%)
6 bog chair o.p 55 by CCCC(94%)
5 oy HC wagging 6 b, HCCC(71%)
4 exg ring def 2 a1 CCC(96%)
3 exg - - -
2 eu twist boat o.p 3 a CCCC(60%)
1 e2u boat o.p 1 b1 CCCC(82%)

a For an explanation of the notation used, see Table 4.



294

Table 9

Correlation of the normal modes of benzene (6) with those of 1,4-didehydrobenzene

(p-benzyne, 5). a

Benzene para-Benzyne
# Sym  Characterization # Sym  Characterization
30 ag sym HC st 24 ag HC(100%) |
29 ey asym HC st 210 by HC(100%)
28 e1u 23 by HC(100%)
27  eyg asym HC st 22 bzg HC(100%)
26 ey 24 ay HC(100%)
2580 b asym HC st 20 S HC(100%) i
24 exg ring st 19 ag CC(36%)+HCC(24%)
23 ey 20 bgg CC(72%)
22 elu ring def 18 biy HCC(64%)
21  equ 17 by HCC(40%)+CC(22%)
20 ayg HCC def 16  bag HCC(92%)
19 boy HCC def 15 boy CC(64%)+HCC(28%)
18  eyq HCC def 14 ag HCC(76%)
17 eyg 16  bag HCC(92%)
16 boy ring st 12 bay CC(64%)+HCC(16%) ‘
15 e1qu HCC def 13 by CC(52%)+HCC(28%)
14 ey 13" by CC(52%)+HCC(28%)
13 byg H twist 8  byg HCCC op(76%)
12 ejy H twist 10 ay HCCC op(88%)
11 ey 6 bay HCCC op(88%)
10/ by asym ring breath 9 by CCC(100%)
9 ag sym ring breath 11 ag CC(98%)
8 eqg HC wagging 7  byg HCCC op(100%)
7 e1 - - -
6 bzi chair o.p 5 boy CCCC(96%) '
5l acy HC wagging 6 iba, HCCC op(88%,)
4 tieo ring def 4 ag CCC(60%)
3 ey 3  bag CCC(96%)
2 ey twist boat o.p 1 ay CCCC(62%)
1 €2y boat 0.p 208 bay CCCC(100%)

a For an explanation of the notation used, see Table 4.
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Figure 5. Correlation of the calculated infrared spectra of benzene (6), para-benzyne
(5), meta-benzyne (4), and ortho-benzyne (3). For each infrared band, the
corresponding mode number (in parentheses) and an appropriate characterization
according to the CNM analysis of Tables 4 - 6 is given. Dashed lines correlate the

infrared bands of different molecules.



296

Table 10

Adiabatic internal frequencies (in cm?) of ortho- (3), meta- (4) and para-benzyne (5) calculated at
the GVB(1)/6-31(d,p) level of theory.

(T? jh
il \I{HB i \Tz@ T
il
Cs\chS\ Ho H]/(()Zs\cfcx He HS/CS\C?C?'\ He
tI"l() l"lg
ortho-benzyne meta-benzyne para-benzyne

Parameter Freq Parameter Freq Parameter Freq
C5C6 1787 ci1cz 1356 c1Cc2 1415
@2@3 1213 C1C6 1356 C1C6 1415
CiCe 1386 C2C3 1419 C3C4 1415
C4Cs 1386 C5Cé6 1419 C4C5 1415
cicz 1391 C3C4 1395 C2C3 1317
C3C4 1391 C4C5 1395 C5C6 1317
H7C1 3378 H7C1 3414 H7C2 3366
H10C4 3378 H9C4 3343 H8C3 3366
H8C2 3348 H8C3 3367 HOC5 3366
HIC3 3348 H10C5 3367 H10C6 3366
C1C6C5 739 C2C1C6 735 C1E2E3) 953.8
C4C5C6 739 C3C4C5 963 C2C3C4 953.8
C2C1Co6 919 C1C2C3 786 C4C5C6 953.8
C3C4C5 919 C1C6C5 786 C1C6Co 953.8
ci1caC3 1023 C2C3C4 963 C2C1C6 954.1
C2C3C4 1023 C4C5Co6 963 C3C4C5 954.1
H7CC ip 1423 H7CC ip 1391 H7CC ip 1394
H10CC ip 1423 H9CC ip 1429 H8CC ip 1394
H8CCip 1434 H8CC ip 1403 HICC ip 1394
H9CC ip 1434 H10CC ip 1403 H10CC ip 1394
C1C6C5C4 560 C3C2C1C6 618 C3C2C1C6 638
C1C2C3C4 684 C2C1C6C5 618 C2C3C4C5 638
C2C1C6C5 581 C1C2C3C4 644 C3C4C5C6 638
C3C4C5C6 581 C1C6C5C4 644 C2C1C6C5 638
C3C2C1C6 646 C2C3C4C5 633 C1C2C3C4 639
C2C3C4C5 646 C3C4C5C6 633 C1C6C5C4 639
H7CCC op 957 H7CCC op 910 H7CCC op 945
H10CCC op 957 H9CCC op 1004 H8CCC op 945
H8CCC op 956 H8CCC op 920 H9CCC op 945

H9CCC op 956 H10CCC op 920 H10CCC op 945
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The adiabatic internal frequencies calculated for the three benzynes are listed
in Table 10 together with the associated internal coordinates. They have to be
compared with the corresponding adiabatic frequencies of benzene obtained at
the HF/6-31G(d,p) level of theory: CC 1406, HC 3348, CCC 997, HCC in-plane 1441,
CCCC 653, and HCCC out-of-plane 969 cm-lL.

* With the help of Figure 5, it is possible to identify the three benzynes and to
discuss their electronic features. For example, 3 is best identified by its CC triple
bond stretching frequency close to 1942 cm'! (after scaling at 1690 cm-1), which has
a low intensity, but nevertheless should be observable since no other infrared
bands appear in this region. Similarly, the boat-type ring torsion mode of 5
possesses contrary to the other molecules a stronger intensity in a region where
no other infrared bands should appear (see Figure 5). In the case of 4, it is the
pattern of ring distortion modes in the region between 500 and 1500 cm-1 that
facilitates its identification [38,39,41].

Similar correlations of vibrational spectra have been carried out with the help
of the CNM analysis and the adiabatic frequencies for a number of molecules
[40,41]. They all confirm the value of the CNM analysis that extends beyond a
simple comparison of geometries. For example, in the case of the benzynes (Table
10), the adiabatic CC stretching frequencies do not correlate with the calculated CC
equilibrium bond lengths. This has to do with the fact that, unlike to the
equilibrium bond lengths, the adiabatic stretching frequencies are sensitive to the
environment of the CC bonds. In 4, bond C1C2 has a lower adiabatic frequency
than bond C3C4 since a C1C2 stretching vibration leads to an increase of CH bond
eclipsing strain and, therefore, this bond is stiffer. Bond C2C3, which one might
expect to be comparable with bond C1C2, possesses an even higher adiabatic
stretching frequency indicating in this way CC bond strengthening by through-
bond interactions between the radical center C2 and the c*-orbital of bond C3C4
[36,37]. In a similar way, the other CC stretching frequencies listed in Table 10 can
be discussed.

11. DERIVATION OF BOND INFORMATION FROM VIBRATIONAL SPECTRA

A serious attempt of associating measured normal mode frequencies with
characteristic fragment frequencies was undertaken by McKean who investigated
the stretching mode of the CH group in various hydrocarbons [30]. This author
solved the problem of mode-mode coupling within the molecules investigated
by D-substitution of all H atoms but the one considered thus increasing mass
differences and reducing the amount of intramolecular mode-mode coupling.
His approach led to characteristic CH stretching frequencies in different
molecules and, by this, to an unique insight into the nature of the CH bond
under different situations [30]. McKean could set up a linear relationship between
the isolated CH stretching frequencies he measured and experimentally known
CH bond lengths where both rg and rs values had to be used. McKean suggested to
employ this relationship for the determination of unknown CH bond lengths by
infrared spectroscopy using measured CH stretching frequencies where he
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predicted that this could be done with an accuracy of £0.0005 A which is better
than the accuracy achieved when determining CH bond lengths by microwave
spectroscopy. In Figure 6, the linear relationship between measured C-H
stretching frequencies taken from the work of McKean and equilibrium C-H bond
lengths calculated by Larsson and Cremer [42] is shown. Calculated rather than
measured C-H bond lengths are used since they provide a more consistent
description of the relationship between frequencies and bond lengths than the rg
and rg values used by McKean.

Certainly, it is possible to obtain other characteristic fragment frequencies in a
systematic way although an enormous amount of synthetic work is involved to
get suitable isotopomers in each case. In addition, the measured fragment
frequencies will always be contaminated by some residual coupling. Therefore,
one can predict that it is hardly possible to solve, just by experimental means, the
problem of determining fragment-specific frequencies.

In this situation, an attractive alternative is provided by the adiabatic internal
frequencies. For example, the McKean relationship between C-H stretching
frequencies and equilibrium C-H bond lengths can easily be reproduced with the
help of adiabatic CH stretching frequencies calculated at the HF/6-31G(d,p) level
of theory as is shown in Figure 7. The r? coefficient obtained is 0.998, which is
clearly better than the r2 coefficient for the correlation of the experimental
frequencies (0.991, Figure 6). Eq. (71) gives the relationship between C-H
equilibrium bond lengths and internal frequencies, which can be used

r.(C — H) = -8.0155x10° 0, (C — H) +1.3442 (71)

to calculate CH bond lengths once experimental values of isolated CH stretching
frequencies are known. From a computational point of view, Eq. (72) is more
useful since it provides C-H vibrational frequencies

®,(C—-H)=16710-12476 r (C— H) (72)

once the geometry of the molecule has been calculated.

Figure 7 confirms the McKean relationship [30] and, furthermore, suggests
that calculated adiabatic internal frequencies are as useful or even more useful as
the measured "isolated" C-H stretching frequencies. However, the real advantage
of adiabatic frequencies will become obvious if one attempts to set up McKean
relationships also for other bonds.

This question has been checked in the case of the CC bond [42]. In a molecule
with more than one CC bond, individual CC stretching motions spread over
several normal modes and there is mostly considerable coupling between the
individual modes. To obtain "isolated" CC stretching frequencies similar as in
the case of the CH bonds is impossible both for experimental and mass reasons.
Synthesizing isotopomers, for which the C atoms of neighboring CC bonds are
replaced by heavier isotopes just to “isolate” the CC bond under investigation
would be a synthetically difficult and at the same time fruitless enterprise since a
replacement of 12C by 13C or even 14C isotopes means a too small change in the
relative masses to achieve any effective mass decoupling. If one takes on the

v(H-C)-r(H-C) correlation (experimental)

, cis to Me)

CH-(Me))

11 propene (HpC

10 propene (
12 allene

R2=0.991

13 ethene

i

=

o

S

wy

=

=

I T
oy @

v W
= (=
5 g s
QmNmi
98525
O o0 oo
<t 1D O D\ ©
o I B B o B |

[y] aybus| puoq O-H

-+
220
= o =
oo s -
N oM ) O
AT, (0 Kby oy 1AL (a0 L
QLOULU LU
i mvv
L LUV 2 0o v
ehiciicicio 2 et cllin
mm«s«:‘:-ﬂ%mm
0.0 0088 aas
0000 cVwOoOTGwQl|F
P I R i
o~ f.o00D oaaE
— N O <IN O DN 00N r
| [ | i i ] 3 2 § LI AT § VTR [ |
o V) () N o T (@) n O
(o)) foe] (¢0) N~ N o O n N
e o o 9 0t OO o
- | =) (= { pd { gt { L Crre?

2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400

[cm1]

Isolated frequency

299

ulated at the HF/6-31G(d,p) level of

d the measured "isolated infrared frequencies" of McKean [30].

Figure 6. Linear correlation between CH bond lengths calc

theory [42] an
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v(H-C)-r(H-C) correlation (calculated)
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other hand the CC stretching modes in the way they are calculated in the normal e
mode analysis, then there is little correlation between CC stretching frequencies ‘ S
and equilibrium CC bond lengths as can be seen from Figure 8. There is a ‘ %g
considerable scattering of CC stretching frequencies (r2 = 0.701) around a we/re - “’_1 ﬁ 20
relationship, which has basically quadratic form. < &
The problem can be solved by using adiabatic CC stretching frequencies derived c e
from the normal mode frequencies of Figure 8 [42]. In Figure 9, a correlation W g =
between adiabatic CC stretching frequencies and CC equilibrium bond lengths is () L 5R e &
shown, which is best represented by the quadratic Eq. (73): ) v S
< .8
®,(CC)=18196 — 20742 r,(CC)+ 6268 [r,(CO)T’ (73) g E =
; o =5
which leads to a correlation coefficient r2 = 0.995. ! © F e —is
One can use stretching frequency/bond length relationships to predict h 50
geometrical features of molecules from measured infrared spectra. This should be o. = 52
first checked for a case where verification of the prediction is possible due to an = | © I = s
available geometry obtained from an ab initio calculation. o, - = g5
x E % 5
: e EE
5 n @ o &
| Bm o g S
‘ ; g =9
= I 2 8EH
o x <t O S = o
2 5
! e i O3
The trishomotropenylium cation contains a homoaromatic 2-electron-3-center T oy O _§ E,
system with long 1,3 distances [43]. If one calculates the adiabatic C1C3 stretching I3} ; s 2 SSl o
mode for this system at the MP2/6-31G(d,p) level of theory, one gets a value of [l < o = S
556 cm'l. Using the quadratic relationship between stretching frequencies and CC ! < n’ o °g30
distances shown in Figure 10, one obtains a C1C3 distance of 1.82 A, which is ! o I ~ §30
almost identical with the calculated MP2/6-31G(d,p) distance [43]. Hence, the [ o~ o~ 28L
example shows that distances can be reliably predicted once the value of the Q, o £ ER
internal frequency is known. <! * gg %
T U Ve Ter Voo T Ve P Voot T T T — A § o
12. ADIABATIC INTERNAL MODES FROM EXPERIMENTAL FREQUENCIES 82 2 2 2 g2 2 232 2e S 9%
CmNR=le s e =k s A
Ab initio frequencies of normal vibrational modes and, by this also, adiabatic EOE 5
[,-wo] Kousnbauy jeusayu; & 55

frequencies suffer from the harmonic approximation used in the calculation.
Even when applying efficient scaling procedures, there is no guarantee that ab
initio frequencies accurately reproduce the exact fundamental frequencies of the
experiment. Therefore, one has to ask whether the adiabatic internal frequencies
might not be much more meaningful if they would be based on experimental
frequencies rather than frequencies calculated within the harmonic
approximation.
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An adiabatic mode analysis of measured vibrational spectra i§ possik‘)le. with a
simple perturbation theory approach that was already pubhsheq in the sixties [44].
The basic equation of vibrational spectroscopy (compare with Eq. 19) can be
written in matrix form according to Eq. (74)

FD= G b A (74)

where the matrix A collects the squares of the frequencies wy on its diagf)ga‘l.
Problem (74) can be solved as soon as F is known from an appropriate ab initio
calculation based on the harmonic approximation. One can assume thz?t the
calculated normal mode vectors d, (expressed in terms of mterpal coordinates
and collected in matrix D) represent a reasonable approximation to the true

normal mode vectors d,' so that D ~D . This assumption makes some sense in
view of the fact that reasonable experimental frequencies can be reproduced from
calculated harmonic frequencies by simple scaling procedures. As a matter of f?ct,
all scaling procedures are based on the assumption tha}t Dis cloge to the true D".

Once the experimental frequencies are known, it is .pOSSI.ble to c.ie.rxve an
improved version of Eq. (74) for the experimental situation utilizing the
calculated D:

(F+AF)D = G D (A +AA) (75)

in which the correction matrix AF has to be determined with the help of F, D, G
and A obtained from the ab initio calculation and AA from experimental
frequencies. This can be done by solving

AFD = G lpAA 76)

For this purpose, one defines the matrices defined in Egs. (77a) and (78):

D=G'’D (77a)
DD =DD =1 (77b)
AF= G”%AF G% 78)

so that the eigenvalue problem (79) can be formulated
AFD = D AA (79)

By diagonalization, AF and AF can be determined:
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AF =D A

>

D* (80a)

AF = G™''2 AFG™/2 (80b)

Hence, the experimental situation is described by a change AF of the force
constant matrix and AA in the square of the frequencies relative to the calculated
force constant matrix and frequencies at some level of ab initio theory. Since AA
is known from the differences between experimental and calculated frequencies,
it is straightforward to calculate AF and the true force constant matrix. Once the
true force constant matrix is determined, one can apply the adiabatic mode
analysis in the same way as it is applied for calculated vibrational spectra.

As a simple example, experimental and calculated adiabatic mode frequencies
of ethene and methane are shown in Figure 11. The two sets of adiabatic
frequencies differ on the average by 200 cm'l. It is interesting to compare what
one normally considers as the typical CC stretching frequency in ethene (1623 cm-
1[45]) and the adiabatic stretching frequency (1566 cm-1, Figure 10). The difference
of about 60 cm-! results from coupling of the normal mode dominated by the CC
stretching motion with other normal modes and, of course, from some of the
assumptions included in the calculation of the experimentally derived adiabatic
frequencies.

One can determine experimentally-based adiabatic CC and CH stretching
frequencies and correlate them with bond lengths as discussed in the previous
section. We have checked the McKean correlations between the isolated CH
frequencies and the CH bond lengths in this fashion [42]. Also, we have used
experimentally based adiabatic internal CH stretching frequencies to correlate
them with other bond properties such as dissociation energies. The existence of
correlations between stretching frequencies and dissociation energies has been
discussed in the literature [46,47]. The stretching frequency (and its force constant)
gives a measure for the curvature of the potential energy surface in the direction
of a dissociation reaction. A large (small) stretching frequency suggests a strong
(weak) curvature and a large (small) dissociation energy (see Figure 12).

Figure 13 gives the correlation between dissociation energy D, [48] and

adiabatic internal frequency for a number of CH bonds. It can be expressed by Eq.
(81)

D, = (o, —2080.3)/11.379 (81)

where dissociation energies D, are given in kcal/mol and the correlation
coefficient r2 is 0.969. Clearly, there is a direct relationship between the curvature
of the potential energy surface in the direction of the CH bond dissociation and
the energy difference between molecule and dissociation products, which can be
used to predict D, values.

These examples confirm that the adiabatic mode analysis can be extended with
advantage to experimental vibrational spectra provided all experimental
frequencies are known. However, even in the case, in which the set of
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experimental frequencies is incomplete, appropriately scaled calculated
frequencies can be used to complement the set of experimental frequencies and to
carry out the adiabatic mode analysis.

13. A GENERALIZATION OF BADGER'S RULE

Already in the 30s of this century, diatomic molecules were investigated to
correlate vibrational spectroscopic constants with bond lengths. The most
successful of these relations was the Badger's rule (82) [49]

3
ke(re L dij) =Cy, (82a)
or
r.=(Cy/k)" +d; (82b)

In Eq. (82), re is the equilibrium bond length of a diatomic molecule, ke the
associated bond stretching force constant, and Cij as well as djj are constants,
which depend on the rows i and j of the periodic table containing the atoms
linked by the bond. Badger's rule has often been used to determine re values
from spectroscopic constants. Today, it is applied in ab initio quantum chemical
programs to provide an estimate of the Hessian matrix for the starting point of a
geometry optimization, i.e. all distances of the starting geometry are known and
appropriate k values have to be estimated to set up the Hessian matrix.

Badger found linear relationships between kel/3 and re in the case of diatomic
molecules [49]. Several attempts to generalize these relationships for polyatomic
molecules failed because appropriate force constant values ke for diatomic
subunits within a polyatomic molecule were not available. This problem can
now be solved with the help of the adiabatic modes. In Figures 14 and 15, kel/3
versus re correlations are shown for the CH and CC adiabatic modes of Figures 7
and 9.

Linear relations (correlation coefficients r2 for CH: 0.997 and CC: 0.993) are
obtained for the diatomic subunits of polyatomic molecules similar to those
investigated for diatomic molecules by Badger. This author suggested that the
kel/3 versus re relationships for diatomic molecules constituted of atoms from
different rows of the periodic table could be reproduced by a series of parallel
lines. Badger anticipated similar ke!/3 versus re relationships for polyatomic
molecules, which can now be checked with the help of adiabatic stretching force
constants. In Figure 16, kel/3-re correlations are given for eight different bond
types involving H and first row atoms. For all bond types, a linear relationship is
obtained with a correlation coefficient r2 > 0.98 or even 0.99. One can distinguish
between AH bonds and AB bonds. Within each class correlation lines are parallel
or at least almost parallel where Badger's assumption is better fulfilled for the
bonds AH with A = C, N, O, and B rather than the AB bonds (Figure 16) [42].

e~

e
L W =y
=

— L
(N U @ o, L
g 5§35 5

oy & S o

o) Gy Sl -

b e = s B

; Cpasl = =

T (D, BRGS O8 R G )

@ s e pn Ao an e

1l O g U U UF

o Siag e e

v Ut o 5 v YV VY Y

el Jle s i le cliclic b

TS X0 U2 8 8@ D ©

a5 0l ol g an o o

gl oimiciinis ol ol ol ol

af oo O a6 6o

O =M HINWKN O O

N o= o e

(=
N
R
(=]
'
=
< I
l=p
<t g 5
< (=)
(3¢] A T &
- < > -
Il Il <] S
(] 2 e L
Q = g 2
={ B (o}
L 1 il i
® el L
e z Sl
o @8y o O e
4 cgg g 5w £
>0 VU c v
a>a Nco § a #
Syl g sU oo
f.@ o o wOy e -
— N <O DN 00
1 | 1 L
(=) o (= (o) (=)
= vl sl <°r 5] Q
" oA v o2 e} N
(=) () S (=] (= =

enLy/udpu]

¢/1- M JUBISUOD 310] d1JEqRIPY

Bond length q(HC) [A]

Figure 14. Correlation between adiabatic CH stretching force constants and CH bond lengths

according to Badger. (HF/6-31G(d,p) calculations)

309



311

(suonernares (d'p)otg

-9/4H) “128peg £q paredpnue se spuoq gy pue spuoq HY 105 [orreaed a1e saur] UOHE[2II0D Y], ‘SI[NDI[OW
srurojeAtod 10§ syiBuUa] puOq pue SIULISUOD 3210§ Suny1a1s PUOq dHEGRIPE UdaMIa] UOKE[1I0D) 9T 31y

[y] wdua| puog

310

— — — — —_ — — o
[o,) w S 53 [ = o
2 g 2 g g g g g
1 1 1 1 1 L 00£0
- 00¥°0
I 00S°0
HO =
HN >
- 0090 ,m.
g
W-
- 00L'0
NN A 0D
HO © 20
HO ® HY I 008°0
NO H NH
0060
(suonjepnored (d'p)D1g-9/4H) ~193peg 03 3urpiodde
sy3us] puoq DD PUE SIUBISUOD 2105 SUnydlRs DD dleqRIPe UsaMiaq UOHR[RII0D) 61 am3ry
[y1 (0D)b wdud| puog
= = =] © =) =) =)
z = 2 g : = 3 g 2
L I 1 1 L 1 1 1 Omm.o
m aueInqoAo €1 E W
§M auexayodho 21| L 3
Wm suedoud | | - =
¢ aueyia Q| F00Y0 =
W (9-D) suadoud g - nua
Wm auedoudojaAd g [ g
wm (2-D) suAdoud 4 .IOmv.o &
M auazuaq 9 L o
: (9=)) auadoud g 5 m
mm ausayla ¢ £ 2l
w,.m susje ¢ - 0050 W
vn (puoq a[din) sukdo.d 2 £ Mﬂv
ww ausjf100e | [ &
3 L by
1 - 0550
: r =
€66°0 = 7 i =
69t°0 - (DD)b 10L°0 = e1- QI - 0090 w
[ >
0590




312

However, Badger's rule is fully confirmed by the adiabatic force constants of
polyatomic molecules, which explains its usefulness even for today's research.

14. INTENSITIES OF ADIABATIC INTERNAL MODES

Once internal modes are defined, it is also possible to define the infrared
intensity of these modes. For a normal mode, the infrared intensity is calculated

with the help of the dipole moment derivatives. The dipole derivatives du/dx
with regard to Cartesian coordinates can be determined in the course of an ab
initio calculation of vibrational frequencies. The corresponding dipole
derivatives with regard to normal coordinates Q are obtained by the
transformation

#)-6)

where the normal mode vector I, relates Cartesian coordinates x to the normal
coordinate Q according to Eq. (5).

The matrix of dipole derivatives with regard to normal coordinates du/oQ
contains the derivatives of the dipole moment components with regard to each
normal coordinate. The infrared intensity I, of the normal mode 1, is calculated
according to Eq. (84)

2 2
s (o, Nl
L =cz[£] i Z(gﬁj} )
x=1 N i M

x=1

where C is a conversion factor from atomic units to km/mol that is given by the
degeneracy g of normal mode 1, the Avogadro number Ny and the speed of
light c.

In a similar way as dipole derivatives with respect to normal coordinates are
obtained from dipole derivatives with regard to Cartesian coordinates, one can
also obtain dipole derivatives with respect to the internal coordinates associated
with the adiabatic internal modes:

(5] -] )

)]

where A contains the adiabatic mode vectors an from Eq. (43) and connects the
internal coordinates q with the Cartesian coordinates x by

x=Aq (86)
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Once adiabatic dipole derivatives are known, the infrared intensity of an
adiabatic mode a, associated with the internal coordinate qgn is calculated in a
similar way as that for a normal mode I;:

nec z(‘%) (87)

The dipole moment of a bond is given by i = q p, where in this case q is the
equilibrium bond length and +p defines the partial charges at the atoms
connected by the bond. Hence, the derivative of p with regard to the bond length
q should lead to the partial charges p at the atoms linked by the bond, i.e. the
infrared intensity of the internal mode should provide a measure for the partial
charges of the atoms of a molecule. However, as has been discussed by Zerbi and
co-workers [50], one has to consider also the charge flux opa/dqn toward or away
from atom o caused by the stretching of the bond length qn during a vibration of
the bond. If 3pg/dqn < 0, the flux is directed toward atom o, otherwise away from
atom a during a bond stretching vibration that according to the discussion in the
previous chapters is best described by an. The quantity dpa/dqn measures the
deformability of the charge and also provides insight into the electronic nature of
the bond in question.

For example, the intensity of an adiabatic CH stretching mode in a hydrocarbon
is related to charge pg and charge flux apy/dqn according to Eq. (88):

opy
I (CH) o< —A—g(CH
L(CH) R ipy s 39(CH) q(CH) (88)

If infrared intensities of bond stretching vibrations are known either from
experiment or from theory, atomic charges can be derived. In Table 11, intensity
based C and H charges of some simple hydrocarbons are compared with the
corresponding Mulliken and virial charges [51]. Also, average intensities per CH
bond that have been used by Zerbi to apply Eq. (88) are compared with adiabatic
mode intensities. An average intensity per CH bond, e.g., for ethane is obtained
by summing the intensities of the three infrared active vibrational modes of
ethane and, then, dividing the sum of the intensities by the number of CH bonds
in ethane. In Table 11, experimental intensities In/CH obtained in this way are
listed together with the corresponding calculated values. The latter as well as all
other computed values have been obtained at the HF/6-31G(d,p) level of theory
while the experimental data are from Zerbi's work [50].

Before the data of Table 11 are shortly discussed, one has to stress that the
partial charges derived from adiabatic infrared intensities are not related to
Mulliken charges, virial charges or most other atomic charges used in ab initio
theory. The partial charges p are effective charges which in addition to the atomic
monopole contribution, cover the atomic dipole contribution as well. They are
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related to those effective charges which have been determined by Zerbi and co-
workers [51] from measured intensities. This is confirmed by the fact that the
effective charges determined by Zerbi are parallel to the charges based on adiabatic
mode intensities (Table 11). Clearly, the average intensity per CH bond is not
equal to the adiabatic mode intensity where the differences can be 10-15 km/mol.
It is easy to see that an averaging of CH intensities cannot provide reliable
intensity values for the determination of atomic charges and that adiabatic mode
intensities provide an attractive alternative to average intensities.

It is well known that the electronegativity of a C atom increases with
increasing s-character, which is nicely reflected by the virial charges listed in
; Table 11. The only problem is that virial charges suggest a C*-H- bond polarity
' while Mulliken charges and intensity based charges predict a C-H* bond polarity.
| The H charges derived from (both experimental and calculated) infrared
intensities seem to confirm the increase in the electronegativity of the C atom
with increasing s-character. However, the corresponding C charges reveal that the
electronegativity change from ethene to acetylene is not correctly described and
‘ that a large electronegativity difference between cyclopropane and ethene is
predicted. This is not necessarily an indication that the intensity based charges are
ill-defined.

As mentioned above, they absorb the effects of (true) atomic charges and
atomic dipole moments, where the latter result from the anisotropy of the
electron density at an atom. In the virial partitioning method, atomic charges and
atomic dipole moments (multipole moments) are separately calculated and their
values may cancel largely in the expression for the bond dipole moment. Hence,
effective atomic charges and true atomic charges can differ considerably where of
course it should be more difficult to discuss effective charges since they contain
the cumulatjve effect of at least two quantities. It is interesting to note that
Mulliken charges also do not reproduce the increase in the C electronegativity
when going from ethene to acetylene. This might result from an equal splitting
of overlap populations to get Mulliken charges, which may mix into the atomic
charges higher multipole contributions and, accordingly, may give Mulliken
charges the character of effective rather than pure atomic charges.

It is interesting to note that adiabatic intensity based charges in agreement with
Mulliken and virial charges suggest similar hybridizations for cyclopropane and
ethene as far as the CH hybrid orbitals are concerned. This is in line with other
observations, e.g., made for CH dissociation energies. Effective charges derived
from average values of experimental intensities fail to describe the close
relationship of the CH bonds in ethene and cyclopropane.

We conclude that the adiabatic mode intensities and effective charges derived
from them are the localized counterparts of those effective charges derived from
measured intensities. They should be more appropriate for the description of the
properties of individual bonds. In particular, they should lead to chemically more
meaningful effective charges where future work has to show how effective
charges, atomic monopole and dipole contributions, and the charge flux are
i related.

Ref
50
tw.
tw
tw
tw
tw
28
28

50
50
51
S

1.0568
-0.208
0.208
-0.185
0.185
-0.233
0.233
-0.121
0.121

CoHy
35.2
46.0
42.8

2Hy
9.6
15.2
133
1.0764
-0.268
0.134
-0.240
0.120
-0.254
0.127
0.082
-0.041

c-C3Hg
115
15.2
20.0
1.0760
-0.170
0.085
-0.187
0.094
-0.261
0.130
0.104
-0.052

1.0858
-0.135
0.045
-0.102
0.034
-0.335
0.112
0.237
-0.079

CHy
174
9.9
1.0835
-0.260
0.065
-0.290
0.072
-0.472
0.118
0.244
-0.061
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H
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@
H
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CH Bond lengths [A]

q(CH), cal.

Comparison of infrared intensity based, Mulliken, and virial partitioning based partial atomic charges.
CoHg
28.5
28.7
39.3

a Calculated values based on HF/6-31G(d,p)/ /HF/6-31G(d) calculations.

Intensities [km/mol]

Table 11

Quantity

I,/CH, exp.

I,;/CH, cal.

I./CH, adiab.
Charges [electron] -
exp. Intensity
adiab. Intensity
Mulliken

virial charges
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15. INVESTIGATION OF REACTION MECHANISM WITH THE HELP OF THE
CNM ANALYSIS

While the adiabatic mode analysis was discussed in the previous sections
exclusively for molecules in their equilibrium geometry, we will show in this
section that adiabatic vibrational modes are also useful when describing
molecules during a chemical reaction. For this purpose, we extend the procedure
previously described for constructing adiabatic modes at equilibrium points of the
potential energy surface to points along the reaction path [22,23].

The reaction path is defined by the line X(s) where %(s) is a column vector of
3K mass-weighted Cartesian coordinates x;j. The reaction path is given
parametrically in terms of its arc length s defined by the differential

ds* = dx*Mdx = dx*dx (89)

with M being the diagonal matrix of nuclear masses. The reaction path can be
calculated using standard ab initio methods and reaction path following
algorithms [52]. One starts at the transition state and follows in the forward and
backward direction the path downhill to products and reactants, respectively, by
evaluating at fixed points along the path gradient and Hessian matrix, which are
used to determine at these path points the path direction. It is of advantage to
calculate the 3K-L-1 vibrational modes orthogonal to the path direction and use
them to describe the reaction valley. This is done by diagonalizing the mass-

weighted projected force constant matrix K*(s) given by Eq. (90) [53,54]:
K(s)LA(s) = 0} ()12 (s), (90)

where K#(s)is defined by Eq. (91).

Ké(s) = (1= P(s)(s)(A - P(s)) 91)

In Eq. (91), f(s). is the mass-weighted Cartesian coordinate force constant

matrix, and I-P(s) is a projector onto the (3K-L)-1-dimensional subspace of the
normal mode vibrations orthogonal to the reaction path mode [53,54]. These
modes are called generalized normal modes and describe a "harmonic" reaction
valley according to Eq. (92) (compare with Eq. 34).

leIh
V(s,Q)=V(s)+ -2—2k;(s) [0 () (92)
u=1
where kZ*(s) is the generalized normal mode force constant, Qu8(s) the

generalized normal mode coordinate and V(s) the energy profile along the
reaction path.
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To describe energy transfer along the reaction path, curvature vector K(s),

curvature coupling elements By, s(s) and mode-mode coupling elements By,y(s)
have to be calculated [53,54], of which only the former will be discussed here. The

mass-weighted curvature vector f((s) is defined by (93a) and its Euclidean norm
by (93b).

K(s) = LX)
K(s):%- (93a)
x(s) = VK(s)*K(s) (93b)

The curvature coupling elements B, (s), which represent coefficients of the

expansion of the curvature vector in terms of generalized normal modes 1,5(s),
are defined by Eq. (94):

B, .(5)=K()" 5(s); (94)

. It is common practice to graphically present the norm of the curvature vector,
x(s), and to discuss energy transfer along the reaction path in terms of the
maxima of x(s) [55]. Maximal values of «(s) indicate those points on the path
where energy can flow from the motion along the reaction path into one of the
transverse normal vibrational modes or vice versa thus decreasing or increasing
the reaction rate. The curvature coupling coefficients By,s(s) of Eq. (94) determine

how much energy is transferred into (retrieved from) normal mode i#(s). Due to
the delocalized character of normal modes, it is difficult to identify substituents
or molecular fragments, which by their vibrations are predominantly responsible
for energy transfer from the reaction path mode into vibrational modes (rate
reduction) or alternatively can be used to channel external energy via vibrational
modes into the reaction path mode (rate enhancement). Therefore, it is desirable
to express the curvature coupling coefficients By,s(s) of Eq. (94) in terms of
vibrational modes that can be directly associated with chemically relevant
molecular fragments or structural units. Such modes are the generalized
adiabatic internal modes a,, that can be defined by requiring that the harmonic
part of the energy in Eq. (92) has to be minimized with regard to displacements in
the (3K-L)-1-dimensional vibrational space (rather than the (3K-L)-dimensional
space as originally defined) while relaxing all internal parameters but one [22].

Eq. (95) gives the conditions for obtaining generalized adiabatic internal modes
an8(s) [22]:

V(Q,s) = min (95a)
s = const (95b)
an(5,Q) =qn’ (95¢)
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where in first order the leading parameter qn is some linear function of the
normal mode coordinates, i.e. in the limit of infinitesimal displacements it is
defined by Eq. (96):

Ny
4,(50) =Y, D,.(50,(5) (96)
p=l

Dnp(s) denotes an element of a Wilson B-type matrix D that connects normal
coordinates with internal coordinates. Solving Eq. (95), generalized adiabatic
internal modes and related force constants kn3(s), mass mnp?(s), and frequency

p?(s) are obtained by Egs. (97) [22],

D,,(s)
Kt
(an (s))“ = E—%‘E{)—Z (97&)
D 5)
v=1 kﬁ(s)
B 1
kn (S) g % Dm,(s)z (97b)
v=1 k\g'(s)
sl
mO=5 G (97¢)
0,1(5) = |2 ©74)
m,*(s)

Generalized adiabatic modes can be transformed from normal mode space into
Cartesian coordinate space according to Eq. (98)

N
(a29), = Y. @, (),(a5(s),  i=1....3N, (98)
u=1

where (I,) is component i of normal mode vector 1, in Cartesian coordinates.

Egs. (97) indicate that there is no difference in applying the adiabatic mode
concept to an equilibrium geometry or to a point along a reaction path. In the
latter case, the adiabatic modes are defined in a (3K-L)-1- rather than a 3K-L-
dimensional space and all adiabatic properties are a function of the reaction
coordinate s. Obviously, the adiabatic mode concept and the leading parameter
principle have their strength in the fact that they can generally be applied to
equilibrium geometries as well as any point on the reaction path.

Once generalized adiabatic modes an8(s) have been defined, the normal modes
and curvature vector can be analyzed utilizing the CNM approach of Section 7
[20,21]. For this purpose, the amplitude Ans is defined [22]
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A K(s)*M(s)a,*(s) (99)

a®’ (s)M(s)a,*(s)

which characterizes the curvature vector K(s) in terms of generalized adiabatic
modes associated with internal coordinates used to describe the reaction system.
It corresponds to the A-type amplitude AvAM (with metric M, see Eq. 69), which
was found to present the best choice for kinetically characterizing normal modes
in terms of adiabatic modes in the case of molecules in their equilibrium
geometries [20,21]. Eq. (62) ensures that A s has the same dimension as By,s and,
for 1,8 = ap8, amplitude An,s and coefficient By s are equal. Both curvature vector
and normal modes orthogonal to the reaction path can be characterized in terms
of generalized adiabatic internal modes, however for the latter the A-type
amplitude AvAF (metric f, see Eq. 70) is used since for these modes the dynamic
characterization is more important than a kinetic one.

The generalized adiabatic internal modes are essential for the unified reaction
valley analysis (URVA) developed by Konkoli, Kraka, and Cremer to investigate
reaction mechanisms and reaction dynamics [22,52]. As an example for the
application of the generalized adiabatic internal modes, the hydrogenation
reaction of the methyl radical is shortly discussed here:

CH3(2A2")+ Ha(12g+) -> CHy(1A1) + H(?S) (100)

which has recently been investigated at the MP2/6-31G(d,p) level of theory [22,52].
In Figure 17, the internal coordinates gn used to describe the reaction complex are
given. The most important internal coordinates are q; = R1 and q2 = R2, which
describe the length of the breaking HH bond and the length of the CH distance to
be formed, respectively. The calculated dependence of the normal mode
frequencies ou(s) in dependence of s is shown in Figure 18. The latter reveals that
the strongest changes in the mode frequencies are observed for modes #11 and
#8, which accordingly should closely be connected with the bond breaking/bond
forming process of reaction (100). Noteworthy is an avoided crossing point at s =
0.3 amul/2 Bohr involving the aj-symmetrical modes #11 and #8 (notation
11/8) and a reaction path bifurcation point at s = 0.4 amul/2 Bohr that leads to
zero and, then, imaginary values of the frequencies of the le-symmetrical modes
#1 and #2 (see Figure 18). i

In Figure 19a, the reaction path curvature x(s) is shown as a function of the
reaction coordinate s. There are two distinct peaks of «(s) in the transition state
(TS; the location of the TS is defined by s = 0) region at s = -0.1 and 0.7 amul/2
Bohr (peaks x2 and x3), which are associated with the normal modes 11/8 (i.e. #11
before and #8 after the avoided crossing at s = -0.3) and to some smaller extend
with modes #5 and 8/11 as the decomposition of x(s) in terms of normal mode
contributions reveals. If energy is stored in mode 11 /8, it will be channelled into
the reaction path mode and lead to rate acceleration. Dissipation of energy into
mode 8/11 is small since the avoided crossing between modes #11 and #8 at s =
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Figure 17. Internal coordinates used to describe the reaction complex of the
hydrogenation reaction CH3(2A, )+ H2(1Zg+) > CHy(lAq) + HES).
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Figure 18. Representation of normal mode frequencies @y (s) along the reaction
path. Symmetry symbols and numbering of normal modes are given
according to the order of normal modes calculated for the reactants. The

position of the transition state corresponds to s = 0 amu!/2 Bohr and is given
by a vertical line. The value @14(s) = 0 indicates the location of a bifurcation

point (s = 0.4 amul/2Bohr) of the reaction path. Imaginary le frequencies
calculated for s > 0.4 amul/2 Bohr are given as negative numbers.
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-0.3 amul/2 Bohr is strongly localized and, therefore, the exchange of energy
rather limited.

In the case of reaction (100), it is easy to determine the nature of modes #11
(HH bond stretching) and #8 (CH bond stretching) and, in this way, to relate the
peaks of the curvature vector with the corresponding changes in electronic
structure. However, in general this way of analysis is difficult and, therefore, a
decomposition of the curvature vector in terms of generalized adiabatic internal
modes gives a chemically more meaningful insight into the nature of the
reaction path curvature as can be seen from Figure 19b.

The analysis of the reaction path curvature in terms of generalized adiabatic
modes reveals that peak x2 close to the TS is strongly dominated by the R1
adiabatic HH stretching mode led by internal coordinate R1 while peak «3 after
the TS results from the adiabatic CH stretching mode led by internal coordinate
R2. Since the motions associated with R1 and R2 are closely related in the
reaction, each of the two peaks x2 and «3 also depends to some smaller degree on
the adiabatic partner mode of the pair R1-R2. This duality is indicative for the fact
that HH bond breaking and CH bond forming are closely connected in the
reaction. When the Rl-peak of x(s) (peak x2) starts to develop the HH bonds
begins to break and the CH bond to be formed (Figure 19b). The positive R1-
contribution to x2 is accompanied by a negative, but much smaller R2
contribution, which can be interpreted as indication that the reaction system
resists a further decrease in R2 needed for the formation of the CH bond.

From the second to the third curvature maximum at s = 0.6 amul/2 Bohr (peak
x3) the R2 and R1 amplitudes An s exchange their role, i.e. the R2 amplitude
becomes dominant and positive while the R1 amplitude is relatively small and
negative. Peak «3 identifies the point where the CH bond forming process is
basically finished if the reaction CH3 + Hj is considered; for the reverse reaction
CH4 +H, it is the point where bond C1H2 starts to be broken accompanied by the
resistance of the electronic structure to form as a new bond the HH bond
associated with R1.

If one investigates the changes in x(s) (Figure 19b), a clear picture of the
mechanism of the HH bond breaking and CH bond forming process emerges:
These processes occur simultaneously in the region of the curvature peaks x2 and
k3 (-0.1 s < 0.6) as indicated by maxima or minima of the amplitudes associated
with the internal parameters R1 and R2 describing HH and CH bond. Hence, the
generalized adiabatic modes help to understand the mechanism of bond breaking
and bond forming and, therefore, they are essential for UVAR [22]. Their real
value becomes obvious when investigating larger reaction systems. For example,
the application of UVAR to the Diels-Alder reaction between ethene and
butadiene implies an analysis of reaction path direction and reaction path
curvature in terms of 42 normal modes, which represents a rather complicated
and chemically complex task difficult to interpret [53]. However, use of
generalized adiabatic modes directly clarifies, which structural changes determine
direction and curvature of the reaction path [53].
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Figure 19a. Characterization of the reaction path curvature k(s) (thick solid line) in
terms of normal mode-curvature coupling coefficients By, s(s) (dashed lines). The
curve x(s) has been shifted by 0.5 units to more positive values to facilitate the
distinction between x(s) and By, s(s). For a definition of the internal coordinates,
compare with Figure 17. The position of the transition state corresponds to s = 0
amul/2 Bohr and is indicated by a vertical line.
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Figure 19b. Characterization of the reaction path curvature x(s) (thick solid line) in
terms of adiabatic mode-curvature coupling amplitudes Ap s(s) (dashed lines). The
curve x(s) has been shifted by 0.5 units to more positive values to facilitate the
distinction between x(s) and Ap(s). For a definition of the internal coordinates,
compare with Figure 17. The position of the transition state corresponds to s = 0
amul/2 Bohr and is indicated by a vertical line.
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16. CONCLUSIONS

One of the major goals of vibrational spectroscopy is to associate measured
frequencies with structural features of a molecule and, thereby, to facilitate its
identification. These efforts have led to a number of rules that concern the
similarity and transferability of force constants and frequencies from one
molecule to another provided they contain similar structural units [1-9]. To
provide a mathematical basis for the comparison of measured vibrational
frequencies and force constants, the adiabatic internal vibrational modes were
defined [18], which enable one to investigate molecular fragments in terms of
their internal vibrations defined by the pair (qn, Vn).

The derivation of the adiabatic vectors has been motivated by the observation
that the masses of the atoms of a molecule effectively hinder the appearance of
localized internal vibrations v, associated with fragments ¢n. However, localized
internal vibrations v, can be obtained by setting the generalized momenta
associated with those internal parameters not used for the description of
fragment ¢n to zero and solving the Euler-Lagrange equations under this
condition. This approach is equivalent to exciting the internal motion v, by a
constant perturbation qn" of the leading parameter associated with ¢n and, then,
relaxing the distortions of all other internal coordinates qm until a minimum of
the energy is obtained.

Once adiabatic internal modes a, are defined (see Section 5), it is
straightforward to derive an appropriate adiabatic force constant ky, an adiabatic
mass my, and an adiabatic mode frequency ap (see Section 6). The choice of my as
an appropriate fragment mass is confirmed by the fact that it represents a
generalized reduced mass 1/Gpn. Furthermore, it guarantees that a fragment
frequency does not depend on the masses of those atoms that do not belong to ¢n
and, therefore, it is typical of ¢n and its properties. The dynamics of a vibrating
molecular fragment ¢n is uniquely characterized by the internal frequency op, the
internal mass mp, and the internal force constant ky and this makes it possible to
compare different molecular fragments of one or many polyatomic molecules in
a systematic way.

There are immediately a number of applications of adiabatic internal modes
that lead to a new dimension in the analysis of vibrational spectra. For example,
the adiabatic vectors a, are perfectly suited to present a set of localized internal
modes that can be used to analyze delocalized normal modes. This has led to the
CNM analysis (Sections 7 and 8) of calculated vibrational spectra of molecules as
was discussed in Section 9. With the CNM analysis it is rather easy to correlate
the vibrational spectra of different molecules (Section 10). With the help of
perturbation theory and calculated normal modes, the determination of adiabatic
modes and the CNM analysis can be extended to experimental spectra (Section
12).

Once adiabatic modes are known either from calculations or experimental
data, adiabatic frequencies can be used to characterize chemical bonds. For
example, it is easy to verify a McKean relationship [30] between adiabatic CH or
CC stretching frequencies and the corresponding bond lengths (Section 11). It can
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be shown that with the adiabatic force constants kn Badger's rule can be extended
from diatomic to polyatomic molecules (Section 13). In addition, it is possible to
determine adiabatic mode intensities, which can be utilized to derive effective
charges for the atoms of a molecule (Section 14). Most important, generalized
adiabatic vibrational modes can be defined for reacting molecules so that a
detailed analysis of the direction and the curvature of the reaction path becomes
possible. This is the basis of the UVAR approach [22,23], which leads to a detailed
analysis of mechanism and dynamics of chemical reactions (Section 15). A
chemically easy to understand description of energy transfer and energy
dissipation, quantum mechanical tunneling, structural and electronic changes,
etc. occurring along the reaction path can be made, which provides new and very
detailed insights into chemical reactions.
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