
Abstract. In multicon®guration perturbation theory,
the generalized Brill _ouin theorem is normally ful®lled,
which imposes constraints on the matrix elements
involved in the description of single excitations. This
can be considered as guaranteeing coherence of the
con®gurations and orbitals describing the zeroth order
wavefunction. In quasi-degenerate perturbation theory
(QDPT) single excitations are treated independently,
which causes a loss of coherence. It is argued that a loss
of orbital coherence leads to unreasonable QDPT
correlation energies.
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1 Introduction

There is an ongoing interest in developing new multi-
con®guration perturbation theory (MCPT) methods
that provide the correct starting wavefunction for a
given electronic system with the help of multicon®g-
uration self-consistent ®eld (MCSCF) theory [1]. The
dynamic electron correlation e�ects of a system are then
considered using perturbation theory (PT) [2]. The roots
of this work date back to the pioneering work of
Brandow, Kaldor, Davidsson and others on quasi-
degenerate perturbation theory (QDPT) [3±10] that
was developed to handle systems with nearly degenerate
states while practical versions of MCPT methods
bene®tted from Pulay's work on generalized valence
bond second order Mùller-Plesset perturbation theory
(GVB-MP2) [11]. Today, one can distinguish two basi-
cally di�erent approaches to MCPT [12, 13].

1. The ®rst approach [11, 14±27] can be characterized
as a diagonalize and then perturb (DP) method, that is just
a generalization of MP theory for single reference
Hartree-Fock (HF) wavefunctions [28]. In MCPT-DP

methods, ®rst the MCSCF wavefunction (zeroth order
wavefunction) is optimized: (a) with regard to the con-
®guration interation (CI) expansion coe�cients, which
requires the diagonalization of the Hamiltonian (the D
in the abbreviation DP) in the model space spanned by a
selected number of determinants, and (b) with regard to
orbital rotations, which implies diagonalization of the
Fock operators [1]. In the second step, a suitable set of
functions is constructed that can be used for describing
electron excitations from the zeroth order wavefunction
to excited state wavefunctions. Then, after de®ning the
zeroth order Hamiltonian, perturbation theory of the
Rayleigh-SchroÈ dinger (Mùller-Plesset [28]) or Brill _ouin-
Wigner (Epstein-Nesbet [29]) type is carried out.

2. The second approach to MCPT uses a perturb
and then diagonalize (PD) procedure [12, 13, 30±37]. For
MCPT-PD methods, instead of ®nding an appropriate
set of functions for describing electron excitations, the
diagonalization of the Hamiltonian in the model space
is postponed, in the sense that the Hamiltonian is im-
proved in the perturbation-like manner (the construction
of an e�ective Hamiltonian) and then diagonalized.

MCPT-PD methods are directly based on QDPT but,
despite the early formulation of QDPT, the development
of generally applicable MCPT-PD methods has been
considerably delayed. To the best of our knowledge,
the ®rst application of MCPT-PD was performed by
Nakano [34, 35]. In the following, we will no longer
distinguish between QDPT and MCPT-PD since the
underlying concepts are the same.

There seems to be no formal way to compare MCPT-
DP with MCPT-PD methods and to predict which
method provides a better description of an electronic
system with both dynamic and nondynamic (static)
electron correlation. It is the general understanding that
the advantages or disadvantages of the two approaches
can only be unravelled by applying them and then com-
paring the calculated results [33]. In this work, however,
we will show that the two approaches di�er in the way
they handle single excitations and that this di�erence can
be used to decide which of the two approaches should be
better suited for the description of electron correlation in
typical multireference systems.
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2 Theory

In the case of single determinant perturbation theory
such as MP [28], the contribution of single excitations to
the second-order energy is exactly zero. This is a
consequence of the Brillouin theorem [38], which one
can consider as a ``reward'' for the optimization of the
orbitals. The absence of single excitation contributions
may improve the convergence of the perturbation series.
There are two problems which make a generalization of
HF-MP approach to MCPT-DP methods di�cult. First,
it is not clear how to de®ne the single excitation space
in MCPT and, second, there is no clear method to
construct a perturbation theory which leads to zero
contributions from single excitations once the latter have
been introduced.

Wolinski et al. [25] have suggested a procedure for
de®ning a single excitation space within MCPT theory:

W s
r � �Ê s

r ÿ Ê r
s�W0 �1a�

Ê s
r � syr � syr: �1b�

Since the generalized Brillouin theorem [39] holds:

hW0jH jW s
ri � 0; �2�

there are no single excitation contributions to the
second-order energy.

An extension of Pulay's approach to MCPT-PD [12,
34] is not possible since single excitations will always give
non-vanishing contributions to the second-order energy
within any MCPT method as will be shown in the
following. Of course, a priori it is not clear whether
nonvanishing single excitation contributions are physi-
cally unreasonable and, therefore, have to be avoided in
any way. There is no quantum chemical law that
requires vanishing single excitation contributions in the
second-order PT energy. However, we present argu-
ments in this work that nonvanishing single excitation
contributions indicate a de®ciency of the multicon®gu-
ration (MC) wavefunction used.

We use the two con®guration wavefunction of Eq. (3)
as a simple example of a MC wavefunction.

W0 � AU1 � BU2 �3�
where

U1 � j�core�nnj; and U2 � j�core�mmj: �4�
The notation (core) indicates core orbitals while n,m,...
denote valence orbitals and a,b,... virtual orbitals.

The QDPT Hamiltonian Ĥ � Ĥ0�QDPT � � V̂ �QDPT �
for wavefunction (3) can be written according to Eqs.
(5a, b):

Ĥo�QDPT � �
X

i

�i�iyi� iyi� � �n�nyn� nyn�

� �m�mym� mym� �
X

a

�a�aya� aya�; �5a�

V̂ �QDPT � � Ĥ ÿ Ĥ0�QDPT �; �5b�
with V̂ being the perturbation operator.

The second-order e�ective Hamiltonian Ĥ �2�eff is de-
®ned in Eq. (6) [3]:

H �2�eff �J ; I� �
X

a

hUJ jV̂ �QDPT �jUai�E 0
I ÿ E 0

a�ÿ1

hUajV̂ �QDPT �jUIi; �6�
where Ua indicates a set of functions used to describe
the complement of the space spanned by U1 and U2.
After diagonalizing the e�ective Hamiltonian Ĥeff of
Eq. (7),

Heff �1; 1� Heff �1; 2�
Heff �2; 1� Heff �2; 2�

� �
~A
~B

� �
� EQDPT

~A
~B

� �
; �7�

the second-order contribution to the energy is obtained
by Eq. (8):

E �2�QDPT � ~A2H �2�eff �1; 1� � ~B2H �2�eff �2; 2�
� ~A ~B H �2�eff �1; 2� � H �2�eff �2; 1�

h i
: �8�

For the set Ua only those functions presenting single
excitations will be considered:

fUa�Single�g
� fU a

n;U
a
n; U a

m;U
a
m; U n

i ;U
n
i
; U m

i ;U
m
i

; U m
n ;U

m
n ; U a

i ;U
a
i
; g;
�9�

where U can be U1 or U2. In Eq. (9), only those wave-
functions are considered that are unique in the sense
that they do not represent linear combinations of other
members of the set. There is no unique way of de®ning
single excitations for a MC wavefunction. In the case
of set Eq. (9), the single excitations are chosen to
comply with the generalized Brillouin theorem given in
Eq. (2).

Provided the MC wavefunction is variationally opti-
mized with regard to orbital rotations, contribution
from single excitations vanish in the second-order energy
[17]. Since any function W s

r can be written as a linear
combination of the members of Eq. (9), the choice of a
QDPT single excitation space according to Eq. (9) is
justi®ed.

With the help of Eq. (9), the energy E�2�QDPT given
in Eq. (8) can be partitioned into contributions from
di�erent single excitations:

E �2�QDPT �Single� �
X
a;a

E �2��U a
n;U

a
n� �

X
a;a

E �2��U a
m;U

a
m�

�
X

i;i

E �2��U n
i ;U

n
i
� �

X
i;i

E �2��U m
i ;U

m
i
�

� E �2��U m
n ;U

m
n � �

X
i;a;i;a

E �2��U a
i ;U

a
i
�:

�10�

For wavefunction Eq. (3), U a
n (or U a

n) covers only one

singly excited con®guration U a
1n�or U a

1n�. Considering
this and Eqs. (8) and (6), the ®rst energy term of Eq. (10)
can be written according to Eq. (11):
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E�2��U a
n;U

a
n� � E�2��U a

1n� � E�2��U a
1n� � 2E�2��U a

1n�

� 2

"
~A2 hU1jĤ jU a

1nihU a
1njĤ jU1i

E 0
1 ÿ E0a

1n

� ~B2 hU2jĤ jU a
1nihU a

1njĤ jU2i
E 0

2 ÿ E 0a
1n

� ~A ~BhU1jĤ jU a
1nihU a

1njĤ jU2i�
1

E 0
2 ÿ E 0a

1n

� 1

E 0
1 ÿ E 0a

1n

�#
: �11�

Using the generalized Brillouin theorem [Eq.(2)],
Eq. (12) can be obtained:

AhU1jĤ jU a
1ni � BhU2jĤ jU a

1ni � 0: �12�
The denominators of Eq. (11) can be determined by Eqs.
(13a, b)

E 0
1 ÿ E0a

1n � �n ÿ �a; �13a�
E 0

2 ÿ E0a
1n � 2�m ÿ �n ÿ �a: �13b�

Finally, using Eqs. (11), (12), and (13), Eq. (14) follows:

E�2��U a
n;U

a
n� � E�2��U a

1n� � E�2��U a
1n� � 2E�2��U a

1n�

� 2

�
1ÿ

~BA
~AB

�D
U1jĤ jU a

1n

E2
~A2

�n ÿ �a
ÿ

~A ~BA
B�2�m ÿ �n ÿ �a�

� �
: �14�

In the same way as described above, one can obtain
explicit expressions for other energy terms of Eq. (10):

E�2��U a
m;U

a
m� � E�2��U a

2m� � E�2��U a
2m� � 2E�2��U a

2m�

� 2

�
1ÿ

~AB
~BA

�D
U2jĤ jU a

2m

E2
~B2

�m ÿ �a
ÿ

~A ~BB
A�2�n ÿ �m ÿ �a�

� �
; �15�

E�2��U m
i ;U

m
i � � E�2��U m

1i� � E�2��U m
1i� � 2E�2��U m

1i�

� 2

�
1ÿ

~BA
~AB

�D
U1jĤ jU m

1i

E2
~A2

�i ÿ �m
ÿ

~A ~BA
B��m � �i ÿ 2�n�

� �
; �16�

E�2��U n
i ;U

n
i � � E�2��U n

2i� � E�2��U n
2i� � 2E�2��U n

2i�

� 2

�
1ÿ

~AB
~BA

�D
U2jĤ jU n

2i

E2
~B2

�i ÿ �n
ÿ

~A ~BB
A��n ÿ �i ÿ 2�m�

� �
; �17�

E �2��U m
n ;U

m
n � � E �2��U m

1n� � E �2��U m
1n� � 2E �2��U m

1n�

� 2 ~A2

�
1ÿ

~BA
~AB

��
1�

~BA
~AB

� hU1jĤ jU m
1ni2

�n ÿ �m
;

�18�

where we have used the fact that U m
1n � U n

2m �or U m
1n �

U n
2m�. Eqs. (14±18) reveal that the single contributions

are proportional to the factors �1ÿ ~BA
B ~A
� and �1ÿ ~AB

A ~B
�,

respectively. If ~A were equal to A and ~B equal to B,
then the single contributions would not contribute to the

second-order energy.
All that remains is to analyse the last term of Eq. (10),

which is given by Eq. (19)

E �2��U a
i ;U

a
i � � E �2��U a

1i� � E �2��U a
1i�

� E �2��U a
2i� � E �2��U a

2i�
� 2 E �2��U a

1i� � E �2��U a
2i�

h i
� 2

�
~A2 �

~B2A4

B4

� hU1jĤ jU a
1ii2

�i ÿ �a
; �19�

since hU2jĤ jU a
1ii � hU1jĤ jU a

2ii � 0.
Clearly, the right side of Eq. (19) will not vanish even

if ~A � A and ~B � B. On the other hand, one has to re-
alize that U a

i corresponds to the hidden double excita-
tion U na

in (or U ma
im ) (see, e.g., Murray and Davidson [22])

and, therefore, should make a contribution to the sec-
ond-order energy as correctly predicted by Eq. (19).
Hence, we come to the conclusion that all genuine single-
excitation contributions in Eq. (10) will vanish for ~A � A
and ~B � B. However, they will be di�erent from zero
and contribute to the second-order energy (despite the
fact that all orbitals are variationally optimized) if ~A 6� A
and ~B 6� B holds or, in other words, if ~A and ~B appear in
the energy formula Eq. (6) rather than coe�cients A and
B of wavefunction Eq. (3). The question is whether
single excitation contributions of Eq. (10) have any
physical relevance or whether they are an artefact of the
theory. There are two possible scenarios (which do not
necessarily exclude each other):

1. The orbitals of the two determinants U1 and U2 are
simultaneously optimized and, therefore, their ®nal
forms depend on each other. We say that they are ``co-
herent'' and speak of the coherence of the two states
associated with U1 and U2. This coherence should be
kept when applying perturbation theory. However, the
non-zero contributions of the single excitations of Eq.
(10) indicate that the diagonalization procedure, which
leads to ~A 6� A and ~B 6� B, destroys this coherence. This
is simply a result of the fact that during the perturbation
part of MCPT-PD theory the two determinants are de-
coupled from each other and are treated independently.

2. The coe�cients A and B change to ~A and ~B because
of the projection of the exact eigenfunctions onto the
model space. Accordingly, the orbitals have to be rero-
tated slightly to accommodate for this change. This
rerotation of orbitals is described by the nonvanishing
single excitation contributions.

The ®rst scenario corresponds to a physically unrea-
sonable situation characterized by an uncontrolled loss
of orbital and state coherence, which will probably be
enhanced in higher orders of perturbation theory. The
second scenario should be unproblematic since it re-
quires just some reoptimization of the orbitals by ap-
propriate orbital rotations. However, there could be a
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more serious problem hidden in the second situation.
Coe�cients ~A and ~B depend on the e�ective Hamiltonian
and, thereby, on higher orders of PT. On the other hand,
the single excitation energies of Eq. (10) are ®xed func-
tions of ~A and ~B [see, e.g., Eq.(11)]. Therefore, the single
excitation contributions depend on higher orders of PT
through the values of ~A and ~B. The form of Eq. (11) does
not change with higher orders of PT. This means that
second-order orbital mixing is largely decoupled from
higher orders of PT. Since ~A and ~B are used in the cal-
culation rather than A and B, a value for E�2�QDPT �Single�
di�erent from zero results. This could indicate a loss of
coherence owing to improper treatment of higher orders.
Of course, one could think of using Brueckner orbitals in
this situation to eliminate single excitations [40, 41];
however no use of Brueckner orbitals in QDPT has been
reported so far.

We conclude that QDPT (MCPT-PD) used to add
dynamic correlation e�ects to MC wavefunctions su�ers
from a loss of coherence of orbitals. This is indicated by
nonzero contributions of single excitations in second-
order PT, which are physically unreasonable. As a
consequence, MCPT-PD energies are no longer com-
parable to MCPT-DP energies, which represent more
reasonable correlation energies.
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