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THE "SYN-EFFECT" IN SULFINES AND CARBONYL OXIDES:

CONFORMATIONAL PREFERENCES OF CH3CHSO AND CH3CHOOl
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Theoretical calculations indicate that the preference of ethanethial S-oxide for syn-ster-
eochemistry with a staggered HCCH conformation, as determined by microwave spectroscopy, is
explained in terms of orbital and electrostatic interactions between the terminal oxygen and
methyl hydrogen atoms.

Propanethial S-oxide (l), isolated from the onion or from synthetic sources, and its lower
homologue ethanethial S-oxide ��� show a remarkable preference for (Z)- or s1O-stereochemistry.2
Thus, flash vacuum pyrolysis at 250-600°C of compounds ��� or treatment of sulfinyl chloride l
with triethylamine at -20°C has been found by microwave spectroscopy to afford predominantly l-Z
and 2-Z with IH or 13C FT-NMR indicating the presence of no more than 1-5% of the (E)(anti)-
�������� We have found that the conformational behavior of l, that is the relative energies
of species 2a-2d, calculated with a restricted Hartree-Fock theory agree very well with the
experimental results. This agreement has prompted our interpretation of the Hartree-Fock wave-
functions in terms of orbital and electrostatic interactions responsible for the observed syn
conformational preference. This "syn-effect" is found in a number of compounds, e.g. theoreti-
cally in the valence isoelectronic carbonyl oxide methylperoxymethylene, CH3CHOO (9)3 and exper-
imentally in methylthionylimide, CH 3NSO,4 among numerous other examples. S
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Fig. 1. Relative energies of conformers of ethanethial ���������� and methylperoxymethylene(.2.)
(kcal/mol) .

Restricted Hartree-Fock calculations on methylperoxymethylene (.2.) have shown that the s1o-
isomer 9b is more stable than the anti-isomer 9c by 3.3 kcal/mol. 3 We now find that similar
calculations for ethanethial S-oxide 2 using a variety of basis sets and employing both a rigid
and non-rigid rotor model for the ������������� show syn form 2a to be more stable than the anti

form 2c by 1.7 (1.8 rigid rotor) kca1/mo1. The barriers to three-fold rotation of these species



30

are 0.8 (0.9) kca1/mo1 for Za and 1.4 (1.5) kca1/mo1 for Zc with maxima in the Zb and Zd confor-

mers, respectively. Energy minima with respect to CH3 internal rotation occur with the HCCS

"eclipsed" conformation Za. In a parallel microwave study of �� the only conformation observed

is Za, being unambiguously distinguished from Zc or Zd by a comparison of observed and calculated

rotational constants and from Zb by the rotational constants of the methy1-d j isotopically modi-

fied species (prepared according to eq 1). The absence of the anti isomer above ca. 5% suggests

an energy of that species relative to Za ����������� The methyl barrier to internal rotation is

determined to be 0.83 kca1/mo1. Although the methyl group internal rotation barrier is not

available for the anti conformer, an apt comparison with the calculated value might be the

observed 1.36 kca1/mo1 methyl barrier of ethanethia1, CH 3CHS.
7
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The conformational preferences for structures Z and 9 can be explained in terms of orbital

and electrostatic interactions between the terminal oxygen and methyl hydrogen atoms which are

negligible in the anti form. For 9 in the absence of oxygen-hydrogen interactions the HCCO

eclipsed anti form 9c is more stable than 9d by 0.8 kca1/mo1. Going from the anti form to the
syn form two types of interactions become important. These can be of the n-type, characterized

by the formation of an "aromatic" 6n-e1ectron system favoring 9b or of the a-type, characterized

by the formation of 6a-MOs of which the HOMO is 1,5 bonding, favoring form 9a as depicted 1n Fig.

1 (X=O). Since 9b is more stable than 9d by 4.1 kca1/mo1 while 9a is more stable than 9c by

only 0.7 kca1/mo1 the n-effect clearly outweighs the a-effect in methy1peroxymethylene.

The situation is similar in the case of su1fine 1 although modified by the longer C-X and

X-O bonds and the increased polarity of the latter. By replacing the central oxygen atom in

peroxymethy1ene by sulfur the distance between the terminal 0 atom and the closest methyl hydro-
a a °

gen atoms in Za and Zb increases by about 0.3 A to Z.5 A (2a) and 3.0 A (2b), respectively. The

n-effect which, of course, is more sensitive to changes of the 0 ••• H distance, becomes signifi-

cantly smaller. We find a reduction of the (positive) 0 ••• H overlap populations by more than
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50% in 2b but just 45% in 2a when comparing the computed values of ethanethial S-oxide with
8those of methylperoxymethylene at the same level of theory. Also accompanying the replace-

ment of oxygen by sulfur is a substantial increase in x-o electronegativity difference resulting
in an accumulation of negative charge at the terminal oxygen atom which is twice as large in l as

in 9 (see Table 1).9 Consequently besides the 0- and n-effect, we encounter a third effect in

the syn forms 2a and 2b, namely an attractive electrostatic interaction between the positively
9charged methyl hydrogens and negatively charged terminal oxygen atom. Like the 0- and n-effects,

this effect is missing in the anti forms 2c and 2d.

The relative values of the methyl barriers for the syn and anti forms of l and � can be

explained with reference to Fig. 2. Both the anti to syn decrease in methyl barrier for land

the anti to syn increase in methyl barrier for � result primarily from the greater stabilization

in going from form d to b than in going from form c to a.
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Fig. 1. Orbital interactions in ethanethial S-oxide(2)(X=S) and methyl-
������������������������

5

4 -1' 9d}
0.8 anti barrier

-I 2dl -"'-9c
3

E 1.4 anti barrier +9 alreI 2 .j.
(kcal/moU --2 c

syn barrier

--:r 2b } syn barrier0.8
0 -"'-2 a -9b

Fig. 2. Conformational barriers of ethanethial S-oxide(2) and methyl-
�������������������



32

Table 1. Calculated charge distribution in ethanethial S-oxide ��� and methylperoxymethylene
��� in parenthesis) conformers

syn anti
0° 60° 0° 60°

Atom 2b(9b) 2a(9a) 2d(9d) 2c(9c)

Oa -.4702(-.2405) -.4748(-.2471) -.4694(-.2415) -.4727(-.2432)

S or Ob +,6282(-,0305) +.6299(-.0288) +.6327(-.0285) +,6342(-,0273)

Cj -. 2521( +.0995) -,2486(+.1028) -.2508(+.1017) -.2488(+.1022)

C2 - ,1807( - .1850 -.1847(-.1938) - .1824( - .1853) -.1811(-.1858)
HC +.0684(+.0945) +.0675(+.0950) +.0721(+.0986) +.0719(+.0989)
Hd +.0669(+.0778) +.0779(+.1107) +.0700(+.0819) +.0614(+.090)
He + .0698( + .0922) +.0664(+.0806) +.0639(+.0865) +.0676(+.0826)

a terminal b inner c on Cj d in plane, CH 3 e out of plane,CH 3
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