0040-4039/81/0101-0029\$02.00/0

THE "SYN-EFFECT" IN SULFINES AND CARBONYL OXIDES: CONFORMATIONAL PREFERENCES OF CH₃CHSO AND CH₃CHOO¹

Eric Block,* Robert E. Penn, Ali A. Bazzi Department of Chemistry, University of Missouri-St. Louis St. Louis, Missouri 63121

Dieter Cremer* Lehrstuhl für Theoretische Chemie, Universität Köln D-5000 Köln, 41, West Germany

Theoretical calculations indicate that the preference of ethanethial S-oxide for syn-stereochemistry with a staggered HCCH conformation, as determined by microwave spectroscopy, is explained in terms of orbital and electrostatic interactions between the terminal oxygen and methyl hydrogen atoms.

Propanethial S-oxide (1), isolated from the onion or from synthetic sources, and its lower homologue ethanethial S-oxide (2) show a remarkable preference for (Z)- or syn-stereochemistry.² Thus, flash vacuum pyrolysis at 250-600°C of compounds 3-8 or treatment of sulfinyl chloride 3 with triethylamine at -20°C has been found by microwave spectroscopy to afford predominantly 1-Z and 2-Z with ¹H or ¹³C FT-NMR indicating the presence of no more than 1-5% of the (E)(anti)isomer.^{1,2} We have found that the conformational behavior of 2, that is the relative energies of species 2a-2d, calculated with a restricted Hartree-Fock theory agree very well with the experimental results. This agreement has prompted our interpretation of the Hartree-Fock wavefunctions in terms of orbital and electrostatic interactions responsible for the observed syn conformational preference. This "syn-effect" is found in a number of compounds, *e.g.* theoretically in the valence isoelectronic carbonyl oxide methylperoxymethylene, CH₃CHOO (9)³ and experimentally in methylthionylimide, CH₃NSO,⁴ among numerous other examples.⁵

Fig. 1. Relative energies of conformers of ethanethial S-oxide(2) and methylperoxymethylene(9) (kcal/mol).

Restricted Hartree-Fock calculations on methylperoxymethylene (9) have shown that the synisomer <u>9b</u> is more stable than the anti-isomer <u>9c</u> by 3.3 kcal/mol.³ We now find that similar calculations for ethanethial S-oxide <u>2</u> using a variety of basis sets and employing both a rigid and non-rigid rotor model for the CH₃-rotation⁶ show syn form <u>2a</u> to be more stable than the anti form <u>2c</u> by 1.7 (1.8 rigid rotor) kcal/mol. The barriers to three-fold rotation of these species are 0.8 (0.9) kcal/mol for $\underline{2a}$ and 1.4 (1.5) kcal/mol for $\underline{2c}$ with maxima in the $\underline{2b}$ and $\underline{2d}$ conformers, respectively. Energy minima with respect to CH₃ internal rotation occur with the HCCS "eclipsed" conformation $\underline{2a}$. In a parallel microwave study of $\underline{2}$, the only conformation observed is $\underline{2a}$, being unambiguously distinguished from $\underline{2c}$ or $\underline{2d}$ by a comparison of observed and calculated rotational constants and from $\underline{2b}$ by the rotational constants of the methyl-d₁ isotopically modified species (prepared according to eq 1). The absence of the anti isomer above ca. 5% suggests an energy of that species relative to $\underline{2a} \ge 2kcal/mol$. The methyl barrier to internal rotation is determined to be 0.83 kcal/mol. Although the methyl group internal rotation barrier is not available for the anti conformer, an apt comparison with the calculated value might be the observed 1.36 kcal/mol methyl barrier of ethanethial, CH₃CHS.⁷

Scheme 1

The conformational preferences for structures $\underline{2}$ and $\underline{9}$ can be explained in terms of orbital and electrostatic interactions between the terminal oxygen and methyl hydrogen atoms which are negligible in the anti form. For $\underline{9}$ in the absence of oxygen-hydrogen interactions the HCCO eclipsed anti form $\underline{9c}$ is more stable than $\underline{9d}$ by 0.8 kcal/mol. Going from the anti form to the syn form two types of interactions become important. These can be of the π -type, characterized by the formation of an "aromatic" 6π -electron system favoring $\underline{9b}$ or of the σ -type, characterized by the formation of 6σ -MOs of which the HOMO is 1,5 bonding, favoring form $\underline{9a}$ as depicted in Fig. 1 (X=0). Since $\underline{9b}$ is more stable than $\underline{9d}$ by 4.1 kcal/mol while $\underline{9a}$ is more stable than $\underline{9c}$ by only 0.7 kcal/mol the π -effect clearly outweighs the σ -effect in methylperoxymethylene.

The situation is similar in the case of sulfine $\underline{2}$ although modified by the longer C-X and X-O bonds and the increased polarity of the latter. By replacing the central oxygen atom in peroxymethylene by sulfur the distance between the terminal O atom and the closest methyl hydrogen atoms in $\underline{2a}$ and $\underline{2b}$ increases by about 0.3 Å to 2.5 Å ($\underline{2a}$) and 3.0 Å ($\underline{2b}$), respectively. The *m*-effect which, of course, is more sensitive to changes of the O \cdots H distance, becomes significantly smaller. We find a reduction of the (positive) O \cdots H overlap populations by more than

50% in <u>2b</u> but just 45% in <u>2a</u> when comparing the computed values of ethanethial S-oxide with those of methylperoxymethylene at the same level of theory.⁸ Also accompanying the replacement of oxygen by sulfur is a substantial increase in X-O electronegativity difference resulting in an accumulation of negative charge at the terminal oxygen atom which is twice as large in <u>2</u> as in <u>9</u> (see Table 1).⁹ Consequently besides the σ - and π -effect, we encounter a third effect in the syn forms <u>2a</u> and <u>2b</u>, namely an attractive electrostatic interaction between the positively charged methyl hydrogens and negatively charged terminal oxygen atom.⁹ Like the σ - and π -effects, this effect is missing in the anti forms 2c and 2d.

The relative values of the methyl barriers for the syn and anti forms of 2 and 9 can be explained with reference to Fig. 2. Both the anti to syn *decrease* in methyl barrier for 2 and the anti to syn *increase* in methyl barrier for 9 result primarily from the greater stabilization in going from form d to b than in going from form c to a.

*o***-stabilization**

 π -stabilization

Fig. 1. Orbital interactions in ethanethial S-oxide(2)(X=S) and methylperoxymethylene(9)(X=O).

Fig. 2. Conformational barriers of ethanethial S-oxide(2) and methylperoxymethylene(9).

	0°	syn 60°	o° anti 60°	
Atom	<u>2b(9b</u>)	<u>2a(9a)</u>	<u>2d(9d)</u>	<u>2c(9c)</u>
0 ^a	4702(2405)	4748(2471)	4694(2415)	4727(2432)
s or 0 ^b	+.6282(0305)	+.6299(0288)	+.6327(0285)	+.6342(0273)
Cı	2521(+.0995)	2486(+.1028)	2508(+.1017)	2488(+.1022)
C ₂	1807(1851)	1847(1938)	1824(1853)	1811(1858)
нс	+.0684(+.0945)	+.0675(+.0950)	+.0721(+.0986)	+.0719(+.0989)
н ^d	+.0669(+.0778)	+.0779(+.1107)	+.0700(+.0819)	+.0614(+.090)
не	+.0698(+.0922)	+.0664(+.0806)	+.0639(+.0865)	+.0676(+.0826)

Table 1. Calculated charge distribution in ethanethial S-oxide (2) and methylperoxymethylene (9; in parenthesis) conformers

a terminal b inner c on C_1 d in plane, CH_3 e out of plane, CH_3

Acknowledgment. We thank R.W. Murray for helpful suggestions, acknowledge support from NSF (CHE 80-01490), the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the University of Missouri-St. Louis, and thank the Rechenzentrum Köln for providing computation time at the CDC CYBER 76, and J. Roderburg for technical assistance.

References and Footnotes

- a) This is paper 8 of the series "The Chemistry of Sulfines". For part 7, see E. Block, Pure Appl. Chem., in press. b) Presented at the 9th International Symposium on Organosulphur Chemistry, Riga, USSR, June 9-13, 1980.
- a) E. Block, A.A. Bazzi and L.K. Revelle, J. Am. Chem. Soc., <u>102</u>, 2490 (1980). b) E. Block, L.K. Revelle and A.A. Bazzi, *Tetrahedron Lett.*, 1277 (1980). c) L.K. Revelle, *Ph.D. Thesis*, University of Missouri-St. Louis, 1980.
- 3. D. Cremer, J. Am. Chem. Soc., 101, 7199 (1979).
- 4. V.M. Rao, J.T. Yardley, and R.F. Curl, Jr., J. Chem. Phys., 42, 284 (1965).
- 5. a) Carbonyl oxides: P.S. Bailey, "Ozonation in Organic Chemistry", Vol. 1, Academic Press, N.Y., 1978; P.S. Bailey, T.M. Ferrell, A. Rustaiyan, S. Seyhan, and L.E. Unruh, J. Am. Chem. Soc., 100, 894 (1978); J.-S. Su and R.W. Murray, J. Org. Chem., 45, 678 (1980). b) Imine anions and allyl and heteroallyl anions, K.W. Houk, R.W. Strozier, N.G. Rondan, R.R. Fraser, and N. Chauqui-Offermanns, J. Am. Chem. Soc., 102, 1426 (1980) and references therein. c) Additional theoretical studies: R. Hoffmann and R.A. Olofson, J. Am. Chem. Soc., 88, 943 (1966), R.C. Bingham, *ibid.*, 98, 535 (1976), and N.D. Epiotis, W.E. Cherry, S. Shaik, R. Yates, and F. Bernardi, Top. Curr. Chem., 70, 1 (1977).
- 6. The full details of this study will be published elsewhere.
- 7. H.W. Kroto and B.M. Landsberg, J. Mol. Spectrosc., 62, 346 (1976).
- 8. Actually, the reduction of bonding π -overlap between the terminal oxygen and the two hydrogens is 60% in <u>2b</u>. However, this reduction is somewhat counterbalanced by σ -overlap also acting in form <u>2b</u>.
- 9. The calculated gross atomic charges suggest that contrary to peroxymethylene the zwitterionic and not the biradical character is dominant in sulfine.

(Received in USA 8 October 1980)