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Abstract The self-interaction error (SIE) plays a central

role in density functional theory (DFT) when carried out

with approximate exchange-correlation functionals. Its

origin, properties, and consequences for the development

of standard DFT to a method that can correctly describe

multi-reference electron systems by treating dynamic and

non-dynamic electron correlation on an equal footing, is

discussed. In this connection, the seminal work of Colle

and Salvetti on wave function-based correlation functionals

that do no longer suffer from a SIE is essential. It is

described how the Colle–Salvetti correlation functional is

an anchor point for the derivation of a functional multi-

reference DFT method.
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1 Introduction

Electron correlation plays a crucial role when describing

chemical systems and processes with quantum chemical

methods. Of special interest, and at the same time partic-

ularly challenging for computational chemistry, are

situations where short-range dynamic electron correlation

coexists with long-range, non-dynamic electron correla-

tion. Such situations are found for molecules with (quasi)-

degenerate states, Jahn–Teller systems, dissociating

multiple bonds, conjugated low-spin biradicals, etc. The

most widely used method of contemporary computational

chemistry, Kohn–Sham density functional theory

(KS-DFT) [1, 2], is in principle capable of describing both

dynamic and non-dynamic correlation. However, the

available approximations for the exchange and correlation

(XC) functional in KS-DFT (see, e.g., [3–16]) focus on a

suitable description of dynamic electron correlation

whereas the description of non-dynamic correlation effects

within standard KS-DFT is problematic [17].

The treatment of long-range electron correlation in the

framework of DFT has been an active field of research for a

long period, and a variety of approaches has been sug-

gested. Most of these approaches follow either strategy (1)

or (2).

(1) Standard DFT is applied in such a way that non-

dynamic electron correlation is mimicked non-spe-

cifically via the XC-functional or by introducing

additional degrees of freedom when optimizing the

single-determinant DFT wave function. (see, e.g.,

[17–19]).

In this case, errors of the standard XC-functionals are

utilized to account for the missing correlation effects.

Proper use of this approach requires that the errors of
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standard-DFT XC-functionals have been analyzed

and understood. The advantage of this approach is its

simplicity; however, its applicability is limited. Some

XC-functionals are specially calibrated for the

description of non-dynamic correlation in special

cases, e.g., for weakly bound complexes [7, 16] or for

transition states [16].

Strategy (1) is applied for the description of bond

dissociation reactions, low-spin biradicals, etc. utiliz-

ing broken-symmetry (BS)-spin-unrestricted (U) DFT

[17–19], combined in some cases with extrapolation

schemes [18, 20].

(2) One develops hybrid methods where the non-dynamic

electron correlation is described explicitly, e.g., by a

multi-reference approach or an additional term in the

correlation functional. In this approach, the use of

standard-DFT is restricted to the description of

exchange (possibly) and dynamic correlation [21–42].

Strategy (2) is more general than strategy (1) in that

it, in principle, can be used to describe any pattern of

non-dynamic electron correlation. A crucial point in

its proper application is the suitable separation

between dynamic and non-dynamic correlation to

avoid any double-counting of correlation effects

[24–26, 29, 30, 35, 39]. This implies two require-

ments: (i) The KS-DFT correlation functional used

must not cover any portion of non-dynamic correla-

tion, i.e., it must be restricted to short-range

correlation effects. (ii) Also, the XC functional must

not spuriously mimic long-range attraction or repul-

sion inside the system. Conversely, that component of

the approach used to account for non-dynamic

electron correlation should not introduce any portion

of the dynamic correlation; if it does, this portion has

to be quantified and deducted when determining the

KS-DFT correlation energy.

Our previous work involves methods in the realm of

both strategy (1) [17–19] and strategy (2) [28, 35, 36, 39].

In the following, we will focus on that part of our method

development work that follows strategy (2); not the least

because our work in this field has greatly benefited from

the work of Colle and Salvetti [23–25, 29].

The specific errors in a DFT calculation depend on the

XC-functional used. One error that is common to a wide

class of functionals is the self-interaction error (SIE) [43].

For a system consisting just of one electron, DFT predicts

an non-physical self-interaction energy. This problem has

already been noticed by Fermi and Amaldi in the early

1930 [44] in connection with the Thomas–Fermi approxi-

mation [45, 46]. A thorough analysis in the framework of

DFT was performed by Perdew and Zunger [43], who

suggested an explicit correction term that makes any

XC-functional SIE-free. An alternative way of avoiding the

SIE of approximate XC-functionals was suggested by Colle

and Salvetti already in 1975 who used wave function the-

ory (WFT) to develop the first SIE-free C-functional [23].

The Colle–Salvetti (CS) functional laid the basis for the

work of Lee et al. to develop the LYP correlation func-

tional, [9] which is also SIE-free.

In the description of non-dynamic correlation, the SIE

can play two different roles: if strategy (1) is used, the SIE

may improve the accuracy of standard DFT by mimicking

part of the non-dynamic electron correlation of a given

molecule [17, 18, 47–54]. However, within the framework

of strategy (2) the SIE has to be avoided, at least with regard

to the long-range part of electron–electron interactions.

The current work is organized as follows. In Sect. 2, we

will briefly summarize the origin and the features of the

SIE and explain its role when following strategy (1). Sec-

tion 3 is devoted to multi-reference DFT and the question

how dynamic and non-dynamic electron correlation effects

can be handled at the DFT level in a more general way

based on strategy (2). Finally, in Sect. 4 conclusions of this

work are presented.

2 Origin and features of the self-interaction error

Indication of the SIE is already provided by the electron

density distribution calculated with standard XC-function-

als [53, 54]. This becomes obvious when comparing

densities obtained from exchange-only DFT calculations

directly with MP or coupled cluster densities and then

investigating the changes in the DFT electron density

caused by adding the correlation functional. Such studies

reveal that the DFT density is influenced most strongly by

the exchange part, to which the correlation part adds only

minor corrections. If Hartree–Fock (HF) exchange is

replaced by the local-density approximation (LDA) or the

generalized gradient approximation (GGA) exchange, the

molecular electron density distribution will change in a

typical way that reminds of the changes caused by the

inclusion of dynamic electron correlation at the MP2, MP4,

[55] or CCSD(T) [56] levels of theory [17, 53, 54].

A thorough analysis of the density changes caused by

X-functionals such as Becke88 (B) [4] or Perdew-Wang91

(PW91) [5–6] leads to the conclusion that at this level

already strong pair and some higher correlation effects are

mimicked where it is not clear whether these might be

characterized as short-range (dynamic) or long-range (non-

dynamic) electron correlation effects [53]. It has to be

noted in this connection that the short-range, dynamic and

the long-range, non-dynamic correlation effects, in spite of

their different character, may lead to similar features of the

one-electron density.
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In view of these observations two questions arise: (a) If

correlation is already included (in whatever way) by the

X-functional, what role does the C-functional play? (b)

Why does a standard X-functional mimic (dynamic or non-

dynamic) correlation effects? These questions can be

answered by again comparing density changes as they are

caused by the C-functional and in addition investigating the

exchange-correlation hole.

An LDA correlation functional (VWN, VWN5 [8] or

Perdew local correlation (PL) [43]) increases the electron

density distribution in the atom, bond, and (inner) non-

bonding regions whereas it decreases the density in the van

der Waals regions [53, 54]. These changes are rather small

when compared with those caused by the X-functional and

largely independent of the molecule investigated. They can

be explained by the fact that a LDA C-functional leads to an

attractive local potential that becomes stronger the higher

the density is [17]. Accordingly, negative charge is shifted

from regions with low electron density to regions with high

electron density. This implies that correlation effects are

exaggerated because the magnitude of the local density

decides on the redistribution of negative charge rather than a

specific electron correlation effect as in the case of a WFT-

based correlation method such as MP [55] or CC [56, 57].

The CS correlation functional [23, 24] largely avoids the

problem of exaggerating electron correlation because it

was derived with the help of WFT to account for both local

and non-local correlation effects and therefore does not

solely depend on the magnitude of the local electron den-

sity. Compared to an LDA correlation functional, the CS

functional moves some of the density from the bond and

valence regions back to the van der Waals regions because

the non-local electron correlation effects counterbalance

the dependence of the local correlation effects on high

densities.

GGA correlation functionals such as PW91 [5, 6] lead to

density changes that are intermediate to those caused by

LDA and those caused by the CS functional. Electron

density is redistributed from the core and bond regions to

the outer valence regions rather than the van der Waals

regions as the CS-functional does. For the GGA C-func-

tionals, the basic error of the LDA C-functionals (attractive

potential for high densities) still exists, however the con-

sequences of the error are less severe. In regions where the

reduced gradient of the density, rq/q4/3, is small (e.g.,

bond regions) but q relatively large, the GGA correlation

density becomes smaller than the LDA correlation density.

In the nonbonding regions between the atoms the reduced

gradient is relatively large and q relatively small with the

consequence that a larger GGA correlation density results

as in the LDA case.

At the nuclei, the GGA correlation and exchange

potential become both singular [17]. The singularity for the

correlation potential is repulsive whereas that of the

exchange functional is attractive with the result that the

two singularities partly compensate each other with regard

to their consequences. The main effect of the gradient

corrections to the correlation potential is a redistribution of

electron density from the core and bond regions into the

outer valence regions of the atoms, thus reducing slightly

the effects of the LDA correlation potential.

As regards its impact on the density distribution, the

DFT C-functional plays a much smaller role than electron

correlation does in general in WFT. One can compare DFT

correlation with the higher order correlation effects inclu-

ded by coupled cluster methods such as CCSD or CCSDT

[58, 59]. Low-order correlation effects such as pair or

three-electron effects mostly lead to an expansion of the

electron density and to more diffuse molecular orbitals.

This causes longer bonds, smaller bond angles, lower

atomic charges, and smaller effective electronegativities.

Higher order correlation effects are essentially discon-

nected correlation effects characterized by a complicated

coupling between two or more low-order correlation

effects whereas connected correlation effects with N [ 4

electrons do not play a significant role. The coupling

between low-order correlation interactions reduces the

changes in the density caused by the diagonal low-order

correlations, i.e., the electron density becomes somewhat

more contracted, bond lengths shorten, bond angles widen,

atomic charges and effective electronegativities become

larger, and bond polarities increase. This is the reason why

CCSD or CCSDT reduce and revert trends in molecular

properties obtained at the MP2 or MP4 levels of theory [58,

59]. According to the changes in the electron density dis-

tribution caused by C-functionals, DFT correlation seems

to be comparable with the high order correlation effects

observed in WFT rather than the corresponding low-order

diagonal correlations.

It remains to be clarified how the low-order correlation

effects, which are also present in the DFT density distri-

bution, are mimicked by the X-functional. For this purpose,

the DFT exchange (X)-hole has to be investigated and

requires that points (i)–(v) have to be considered.

(i) The analysis of the DFT X-hole implies that it is

referenced to an exact X-hole, which suitably is taken

from a HF calculation. For the purpose of eliminating

differences in the DFT and HF X-hole caused by

differences in the one-particle densities, both X-holes

are calculated with the same set of HF orbitals.

(ii) The X-hole of a many-electron system (N [ 2) can be

split into an intraelectronic part that accounts for the

self-exchange of the electrons and an interelectronic

part that results from the Fermi interaction of different

electrons or, in other words, the antisymmetry of the
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wave function. For reasons of simplicity, we constrain

the following discussion to a spin-coupled two-

electron system such as the H2 molecule in its 1Rg
?

ground state so that the interelectronic part of the

X-hole does not play any role and the X-hole becomes

identical to the intraelectronic part.

(iii) For a one-electron system (e.g., H2
?) with $d3r

qa(r) = 1, qb : 0, the correct XC-functional must

lead to an electron density distribution that fulfills

Eqs. 1 and 2.

EJ½qa� þ EX½qa; 0� ¼ 0; ð1Þ
EC½qa; 0� ¼ 0; ð2Þ

which simply mean that a single a electron does not

interact with itself, i.e., the self-repulsion energy of

the electron given by EJ[qa] is canceled by the self-

exchange energy EX[qa, 0] covered by the X-func-

tional. Also, a single electron does not possess any

self-correlation energy EC [qg, 0]. An approximate

XC functional may violate either condition (1), (2) or

both and, accordingly, self interaction corrections

have to be introduced into DFT to obtain a SIE-free

method. Given that the exchange interaction occurs

only between electrons of like spin, Eq. 1 remains

valid for a spin-coupled two-electron system, e.g.,

the H2 atom; an analogous relationship holds for the

b spin density.

(iv) The HF X-hole (see Fig. 1, we consider here always

just one of the two possible spin values) takes the

form of the negative of the rg
2 density of H2 and

reflects the self-exchange of its two electrons. It is

delocalized having two troughs at the positions of the

H nuclei. Accordingly, it reflects the electronic

structure of the H2 molecule in the same way as

the electron density distribution q(r) does.

(v) In the general case, the X-hole changes its form in

dependence of the position of the reference electron.

Hence, one may expect that a detailed account of the

form of the X-hole requires a large (in the extreme an

infinite) number of positions of the reference electron

and therefore makes the analysis tedious. However, in

reality only two or three positions of the reference

electron are sufficient to identify general features of

the X-hole, which are needed for the identification of

correlation effects accounted for by a given

X-functional.

In Fig. 1, the LDA X-hole is compared with the HF

X-hole. It depends on the position of the reference electron

(Fig. 1, position P1: reference electron is at the center of

the bond; position P2: reference electron is at the left H

nucleus) and is, contrary to the HF X-hole, unstructured. It

is always localized and centered at the position of the

reference electron where one has to keep in mind that for

reasons of comparison in Fig. 1 the same electron density

is used. The exact and the LDA X-hole have in common

that they are negative everywhere and that they are nor-

malized to -1. The lowest point of the LDA X-hole for H2

is equal to the negative electron density at this point, which

means that at P1 the LDA hole is shallower and more

diffuse whereas at P2 the hole becomes deeper and more

contracted.

Self-interaction corrected LDA (SIC-LDA) possesses an

X-hole that is identical to the HF X-hole provided the same

HF orbitals are used (Fig. 1) [48]. Hence, it is static and

delocalized in the same way as the HF X-hole. The SIE

part of the LDA X-hole is obtained by subtracting the SIC-

LDA hole from the LDA hole. Accordingly, it can be both

positive and negative. Since both the LDA and the SIC-

LDA X-hole integrate to -1, the SIE part of the LDA

Fig. 1 One-dimensional cut

through the X-hole calculated

for H2 in its 1Rg
? ground state

with with Dunning’s cc-pVTZ

basis at 0.742 Å along its bond

axis at the HF, SIC-LDA (both
bold blue line), and LDA

(X-only; green and bluegreen
lines) levels of theory for

positions P1 (center of H2 bond)

and P2 (position of first H

nucleus) of the reference

electron. The SIE part of the

LDA X-hole is given by the red
and purple lines for P1 and P2.

For the purpose of simplifying

the comparison, HF orbitals are

used in all calculations
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X-hole integrates to zero. Although the SIE part depends as

the LDA X-hole on the position of the reference electron, a

typical pattern emerges for the SIE part (Fig. 1).

The SIE part is always zero at the position of the ref-

erence electron and increases the probability of finding the

second electron in the opposite part(s) of the H2 molecule,

i.e., if the reference electron is at one (position P2) or

closer to one nucleus, the other electron will be at or in the

vicinity of the second nucleus; if it is at the center of the

bond (position P1), the other electron will be found with

equal probability at either the first or the second nucleus

(Fig. 1). Although the X-hole adopts a somewhat different

form for GGA functionals, the same general observations

can be made in this case [50].

It is obvious from Fig. 1 that the SIE converts the de-

localized, structured SIC-LDA X-hole into an unstructured,

spherically symmetric localized LDA X-hole. Accordingly,

it must adopt a structure that is related to wave function and

electron density q(r) where this relationship has to be seen

in dependence of the position of the reference electron. At

P1, the SIE part reflects the electronic structure close to the

nuclei; at P2 it gives the situation at the other nucleus.

Clearly, the SIE part of the LDA X-hole mimics long-range

left–right electron correlation. By this, the electron density

changes in a way that is typically found for wave function

methods including left–right electron correlation.

Contrary to WFT, the non-dynamic electron correlation

effects introduced by an X-functional with SIE are non-

specific, i.e., they will always appear, independently of the

electronic system described. This improves the single-

determinant DFT description of electron systems with

multi-reference character, which otherwise can only be

correctly treated with multi-configurational wave function

methods, but provides no possibility of differentiating

between electron systems with different multi-reference

character. Because of the left–right correlation mimicked

by the SIE, DFT can perform much better than any other

single-determinant method. At the same time, this implicit

introduction of non-dynamic electron correlation effects

provides a major obstacle for a systematic improvement of

DFT.

When applying one of the strategies (1) and (2) dis-

cussed in the introduction, the SIE and its role in

connection with the description of electron correlation has

always to be considered. An improvement of DFT via the

XC-functional has to be adjusted to the SIEs of both X and

C parts. For example, a combination of B-exchange [4]

with LYP-correlation [9] as found in the widely used

BLYP functional is problematic as B-exchange mimics

left–right electron correlation in the way described above

whereas the LYP functional is SIE-free because it excludes

all equal-spin correlation. Hence, a partial cancellation of

the SIEs of X- and C-part as found for the PWPW91

functional [47, 53, 54] is not possible and the SIE is at its

maximum. In terms of C-effects included, the situation for

the BLYP functional is somewhat more transparent than

for the PWPW91 functional since the electron correlation

effects are better identified in the former case (for PW91

correlation, the SIE introduces correlation effects that are

difficult to characterize [47]).

Similarly, any new XC-functional (GGA, meta-GGA,

hybrid) has always to be analyzed with regard to the SIEs

included or excluded. The situation is complicated and

cannot be handled in a systematic manner [47–54]. Even

larger problems of identifying correlation effects arise

when the form of the DFT wave function leads to an

inclusion of extra correlation effects as it is the case for BS-

UDFT [17–19] or Restricted Ensemble Kohn–Sham

(REKS) DFT [49]. If these methods are applied with BLYP

or other XC-functional suffering from an SIE, a double

counting of electron correlation effects is the consequence:

Non-dynamic electron correlation is introduced both by the

method (BS-UDFT or REKS) and by the X-functional.

Therefore, results become unpredictable and are difficult to

analyze [49].

If one develops hybrid methods where the non-dynamic

correlation effects are described explicitly (strategy 2), e.g.,

by using a multi-reference approach or an additional term

in the C-functional, one has to abandon the use of SIE-

contaminated XC-functionals altogether. For example

long-range correlation as needed for the description of

dispersion interactions is poorly described by the majority

of approximate C-functionals in use today [60, 61]. The

problem can be solved if a dispersion functional is added

that reproduces the exact 1/R6 dependence between two

electronic systems separated by distance R (R approxi-

mately equal to the sum of the van der Waals radii) and

interacting via dispersion forces. However, such a remedy

would be in vain if the XC-functional used leads to artifi-

cial long-range attraction/repulsion forces and by this

contaminates or even annihilates the effect of the disper-

sion functional. Hence, one has to cut off first the long-

range part of the XC-functional and replace it by exact

exchange and an accurate dispersion functional. This can

be done by splitting the Coulomb potential vðrÞ ¼ 1=r

according to Eq. 3

1

r
¼ 1� erfðlrÞ

r
þ erfðlrÞ

r
ð3Þ

into a short-range and a long-range part and adjust their

domains with a suitable control parameter l [62–64]. The

short-range part is then described in the usual way where

the XC-functional describing this part may or may not

possess a SIE.

There is also need for suppressing SIEs when setting up

CAS-DFT (Sect. 3). In this case, the X-part is described

Theor Chem Acc (2009) 123:171–182 175

123



correctly by the CAS wave function and accordingly the

correlation part described by a C-functional must not have

any SIE. In this situation, it is of advantage to choose a

wave-function based C-functional such as the CS-func-

tional that does not suffer from a SIE. This we will discuss

in more detail in the next section.

3 Accounting for non-dynamic and dynamic

correlation effects: CAS-DFT

The occurrence of non-dynamic electron correlation

implies a multi-reference (MR) character of the wave

function, i.e., the total wave function is dominated by a

number of configuration state functions (CSFs) with non-

negligible weights rather than a single CSF. This is difficult

to describe with standard KS-DFT using approximate

XC-functionals. DFT relates the ground state of the real

many-particle system to a fictitious system of non-inter-

acting electrons. The latter move in an effective potential

adjusted in such a way that the reference system has the

same electron density as the real electron system. One can

use the adiabatic connection scheme [65] and replace the

effective potential in the reference state adiabatically via a

continuum of intermediate states by the real electron–

electron interaction with the help of the perturbation

parameter k (Fig. 2). In Fig. 2, the adiabatic connection

scheme is schematically shown for the situation of an

electron system that encounters just dynamic electron

correlation (Fig. 2a) and one that encounters both dynamic

and non-dynamic electron correlation (Fig. 2b).

If the electron–electron interaction parameter k is con-

tinuously increased from 0 (situation of the reference state

with noninteracting electrons) to 1 (real state), dynamic

electron correlation will adopt its full magnitude. This is

indicated in Fig. 1 by increasing the weighting coefficients

of the excited CSFs Wi (i = 1, 2, …) to their finite, but

still small values whereas the weighting coefficient of the

ground state CSF W0 decreases to some value below, but

still close to 1. In the case of an electron system with both

dynamic and non-dynamic electron correlation, at least one

of the excited state CSFs adopts for some value kx (kx \ 1;

Fig. 2b) a large value whereas the weighting coefficient of

W0 is drastically decreased. Although the weight(s) of W1

(W2,…) are still below that of W0, the wave function is no

longer dominated by the ground state CSF but by those of

the two (three or more) lowest CSFs.

WFT uses for the treatment of systems with non-

dynamic correlation a MR wave function from the begin-

ning, such as the complete-active-space self-consistent

field (CASSCF [66, 67]) or the generalized valence-bond

(GVB) [68] method. However, CASSCF or MCSCF

methods are inefficient for the description of dynamic

electron correlation, which requires a huge number of

electronic configurations with tiny weights in the wave

function.

Accordingly, a simultaneous description of non-

dynamic and dynamic correlation requires hybrid methods

where each kind of electron correlation is described in a

suitable way. A number of such hybrid methods rest

completely in the realm of WFT, such as the different

flavors of CASSCF-based perturbation theory [69, 70] or

Fig. 2 Schematic illustration of dynamic and non-dynamic electron

correlation with the help of the adiabatic connection scheme and the

composition of the wave function in terms of configuration state

functions (CSFs) Wi given by their weighting coefficients wi. The

perturbation parameter k increases the relative strength of the

electron–electron interactions from the KS reference state (k = 0)

to the real ground state (k = 1). a Electron system with dynamic

electron correlation. b Electron system with multi-reference

character leading to both dynamic and non-dynamic electron

correlation
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GVB-MP2 [71]. However, there are also attempts to

develop hybrid methods combining the power and versa-

tility of MR-WFT with the efficiency of DFT.

A general problem with such combined MR-DFT

approaches is the double counting of correlation energy:

The MR wave function covers not only the non-dynamic

electron correlation but also part of the dynamic electron

correlation. DFT correlation functionals, which scan the

MR wave function only locally, are not sensitive to any

dynamic electron correlation already accounted for, and

include dynamic correlation a second time thus artificially

increasing the correlation energy. In the approach by Lie

and Clementi [21, 22] and the GVB-LSDA method

developed by Kraka et al. [27, 28], this problem was

handled by keeping the active space of the MR wave

function as small as possible. However, in a generally

applicable MR-DFT approach, double-counting has to be

detected and canceled explicitly.

These problems were early recognized by Colle and

Salvetti, who performed a long-standing research work on

a cost-effective description of dynamic electron correlation

based on HF or MR wave functions. In 1975 [23], Colle

and Salvetti suggested a functional for the a posteriori

determination of the correlation energy based on a HF

calculation, thus providing an alternative to a configura-

tion-interaction (CI) calculation. The derivation of the

CS-functional rested upon a Jastrow-type wave function

[72], where the Jastrow factor models the local correlation

cusp and contains parameters for both the depth and the

extent of the local C-hole. The local gain in correlation

energy was expressed in a simple analytic expression

containing the local density q(r) and the pair density

P(r,r0); more specifically, the on-top pair density P(r,r)

and the mixed gradient q/qr q/qr0 P(r,r0)
�
�
r0¼r

. The

parameters in this expression were calibrated against

accurate CI calculations for the He atom.

The original CS-functional had been designed for

closed-shell systems without significant non-dynamic cor-

relation. In 1979, Colle and Salvetti extended their

approach to open-shell systems and systems with multi-

reference character [24, 25, 29]. In this generalized

approach, the reference function may be either a HF or a

MR-SCF wave function. A straightforward combination of

the original CS-functional with a MR wave function would

have led to the aforementioned double-counting of a part of

the dynamic correlation energy. For the purpose of

avoiding this double-counting, Colle and Salvetti intro-

duced a local measure for the quality of the reference wave

function. This measure is designed in such a way that it

compares the curvature K0 of the reference wave function

W0 at the coalescence point r1 = r2

K0 ¼
o2

or2
1

W0ðr1; r1; r2; r2; . . .; rN ; rNÞjr2¼r1
ð4Þ

with its counterpart KHF for the HF reference wave

function WHF that is obtained from W0 if all except the

lowest configuration are eliminated,

KHF ¼
o2

or2
1

WHFðr1; r1; r2; r2; . . .; rN ; rNÞjr2¼r1
ð5Þ

If W0 = WHF, i.e., if no multi-reference wave function is

used, K0 : KHF throughout space. If W0 contains some of

the dynamic correlation effects, it will be |K0| [ |KHF|; if, in

particular, W0 were the exact wave function, |K0| ? ?
would hold due to the derivative discontinuity of the wave

function for r1 = r2 (which in turn gives rise to the

correlation cusp). The CS C-functional is then modified in

a way that, depending on K0 and KHF, the local contribution

to the correlation energy is scaled down (for |K0| [ |KHF|)

or set to zero (for |K0| ? ?), so that the CS correlation

energy covers only that part of the dynamic correlation

energy not covered by the MR wave function.

The idea to use a local measure for the quality of the

reference wave function has been used by Miehlich, Savin,

and Stoll (MSS) [26, 30] and later adapted in our CAS-DFT

approach [35, 36, 39]. At each position, in addition to the

real density q(r), one calculates the reference density qref(r)

one would obtain if all active orbitals in the wave function

were doubly occupied. The ratio sðrÞ ¼ qrefðrÞ=qðrÞ, where

s(r) C 1, is then a measure for the local size of the active

space: For s(r) = 1, all active orbitals are fully occupied

locally, i.e., the wave function looks as a HF wave function

locally and contains no dynamic correlation. Conversely,

sðrÞ � 1 indicates that a large set of active orbitals is

present locally, i.e., the wave function should contain a

large amount of the dynamic correlation for this position,

which should be eliminated from the DFT correlation

energy. For s(r) ? ?, all local correlation effects are

contained in the MR wave function, and the DFT C-energy

should be put to zero locally. The elimination of local

correlation contributions from the DFT C-energy is handled

by introducing a scaling factor f(q, qref) with

0\
f ðq; qrefÞ ¼ 1 for q ¼ qref

f ðq; qrefÞ\1 for q\qref

f ðq; qrefÞ ! 0 for qref !1
ð6Þ

and calculating the corrected DFT C-energy according to

EMSS
c ¼

Z

d3r f ðq; qrefÞ�c½q� rj : ð7Þ

The scaling factor f is calibrated based on a recalculation of

the correlation energy for the homogeneous electron gas
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where the space of virtual orbitals is restricted in order to

model the impact of different qref values. The results of

these calculations are parameterized once and for ever into

an analytic expression, which is then used in production

calculations. The original MSS approach shows a number

of limitations, which we had to overcome when developing

CAS-DFT.

3.1 Distinction between active and inactive orbitals

In the original MSS approach, it is assumed that all

occupied orbitals are active, i.e., involved in the

description of the non-dynamic correlation effects. In

practice, however, only those orbitals relevant for non-

dynamic electron correlation are involved into the active

space to keep the numerical cost at a reasonable level.

Core orbitals as well as valence orbitals not involved in

non-dynamic electron correlations are treated as ‘‘inac-

tive’’, i.e., at the same level as in a HF calculation. The

DFT C-functional should thus fully account for the

dynamic electron correlation involved in these orbitals.

However, the scaling factor f defined above falsely

decreases the DFT C-energy contributions from the

inactive orbitals and thus overcompensates the double-

counting of the correlation energy.

For CAS-DFT, we developed two alternatives to remedy

this shortcoming:

CAS-DFT 1 For the purpose of modeling the situation in

a real CASSCF calculation with both active

and inactive orbitals, we consider in the

homogeneous electron gas only orbitals

above a limiting energy as active whereas

electrons in orbitals with energies below the

limiting energy are considered to be passive.

The value of the limiting energy is used to

model the size of the inactive space relative

to that of the active one. The calculations

were parameterized in an analytic expres-

sion for the generalized scaling factor f0.
Within the framework of this approach, the

DFT correlation energy gets the form

ECAS�DFT1
c ¼

Z

d3r f 0ðqact;qinact;qrefÞ�c½q� rj :

ð8Þ

CAS-DFT 2 In the CAS-DFT2 approach, we

distinguished between active and

inactive orbitals by explicitly adding a

correlation term accounting for the

latter:

ECAS�DFT2
c ¼ EMSS

c þ
Z

d3r f ðqinact; qrefÞ½

� f ðqinact; qÞ��c½qinact� rj : ð9Þ

where qinactðrÞ is the density related to the inactive orbitals.

The CAS-DFT2 approach did thus not require a reparam-

eterization for the scaling factor f.

3.2 Open-shell versus closed-shell states

The original MSS approach was implemented for closed-

shell states only. We extended the approach to also handle

open-shell states according to (1) and (2):

(1) Generalization of f to the open-shell case. The scaling

factor f has to reflect the local spin polarization

fðrÞ ¼ ½qaðrÞ � qbðrÞ�=qðrÞ: We generalized the cal-

culation of f performed in [26] to the case of a spin-

polarized homogeneous electron gas and adjusted the

parameterization of f accordingly.

(2) Proper distinction of equal-spin and opposite-spin

correlation in the calculation of f. The relative

contribution of equal-spin correlation to the total

correlation energy is much larger in the homogeneous

electron gas than in real electron systems. Conse-

quently, the role of equal-spin correlation is

overestimated in the determination of f, which

eventually results in an overstabilization of open-

shell states relative to closed-shell states [39].

Adapting a suggestion by Stoll, Pavlidou and Preuß

(SPP) [73], we recalculated f for both open-shell and

closed-shell situations in a way that equal-spin

correlation effects were eliminated completely.

3.3 Balanced description of high-spin and low-spin

open-shell states

In a singlet open-shell state, it is f(r) : 0. The open-shell

version of CAS-DFT based on (1) and (2) of Sect. 3.2

describes open-shell singlet states in the same way as

closed-shell states, thus resulting in a destabilization of the

former states relative to their high-spin isoelectronic

counterparts. Hence, it is necessary to describe high-spin

and low-spin open-shell states on an equal footing. We

accomplished such a description by employing a modified

version of the effective unpaired-electron density intro-

duced by Davidson et al. [74, 75], which identifies singly

occupied orbitals, no matter whether part of a high-spin or

low-spin state, as indicators for an open-shell

configuration.
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3.4 Reparameterization of the scaling factor f

In the course of our work, it turned out that the parame-

terization of f suggested by MSS is not flexible enough for

the required generalization of f. We therefore developed an

alternative parameterization model, which reflects bound-

ary conditions for f more properly and allows to reproduce

the f factor with sufficient accuracy.

For the testing of the CAS-DFT method, we used the

three lowest electronic states of methylene, i.e., the 3B1,
1A1, and 1B1 states. Methylene is a suitable test example

for computational schemes. In spite of the fact that it

contains just six valence electrons, methylene provides a

wide range of electronic features (open-shell vs. closed-

shell states, high-spin vs. low-spin open-shell states,

coexistence of non-dynamic and dynamic electron corre-

lation). We calculated the 3B1, 1A1, and 1B1 states for

varying sizes of the active space and different levels of

refinement for the DFT C-functional. These tests clearly

corroborated the reasoning that had led to improvements in

the development of CAS-DFT described in Sects. (3.1)–

(3.3) and showed that each of these steps was relevant to

obtain a balanced description of the three states investi-

gated. The work clearly confirmed the fact that one cannot

construct a functioning MR-DFT approach by simply

adding a DFT functional to a MR-WFT function, as was

already pointed out by Colle and Salvetti in 1979 [24, 25].

In WFT-based hybrid methods such as CASPT2, the

dynamic correlation operator scans the reference wave

function in terms of many-electron configurations, which

provides a natural basis for a separation of non-dynamic

and dynamic correlations. In a MR-DFT approach, where

the DFT functional scans the reference wave function just

in terms of local one- and two-electron properties, one has

to make sure that all required information on the reference

wave function is passed to the DFT functional. However, if

this is done properly, one will be able to develop an

approach that is competitive in its quality to CASPT2 and

comparable methods, at a considerably lower computa-

tional cost level. In CASPT2, the perturbational calculation

of the dynamical correlation energy may require about the

same CPU time as the CASSCF step whereas the calcu-

lation of the DFT correlation energy implies only

negligible extra cost, i.e., CASDFT is equally expensive as

a conventional CASSCF calculation.

A crucial point in the development of CAS-DFT was the

proper choice of the DFT C-functional. In view of the

discussion given in this and the previous chapter, the

following requirements have to be fulfilled by a CAS-DFT

C-functional:

(1) In distinction to standard DFT, the CAS-DFT-C-

functional has to be evaluated on the basis of a many-

electron wave function rather than a set of KS

orbitals. That is, it should utilize the information

contained in the density q(r) and the pair density

P(r,r0).
(2) There is no SIE in the multi-reference part of the

energy functional, neither for the X-part nor for non-

dynamic correlation part. Consequently, the DFT-C-

functional has to be SIE-free to avoid unidentified and

uncontrollable electron interaction effects.

(3) The CAS-DFT-C-functional should be strictly

restricted to short-range (dynamic) electron correla-

tion to exclude a double-counting of correlation

effects already accounted for by the multi-reference

part of the functional.

(4) The CAS-DFT-C-functional should be sensitive to the

differences in dynamic correlation between closed-

shell and low-spin open-shell states.

These requirements are fulfilled by the CS-functional,

which therefore is a suitable choice for the DFT-C-func-

tional in CAS-DFT. The crucial point is that the CS-

functional has been derived in a wave function context with

a finite system (He atom) as reference, which has the fol-

lowing consequences:

(a) The CS-functional is defined in terms of q(r), P(r,r),

and o=or o=or0Pðr; r0Þjr0¼r.

(b) For a one-electron system, P(r,r0) : 0. By virtue of

this, CS is able to detect single-electron states and is

thus SIE-free.

(c) There is no long-range electron correlation in the He

atom. Consequently, the CS-functional is designed for

a description of short-range electron correlation only.

(d) The on-top pair density P(r,r) is sensitive to the

difference between closed-shell and low-spin open-

shell states in distinction to the spin-resolved densi-

ties qa,b(r) used in standard KS-DFT.

In view of this, it is appropriate to emphasize that the

work of Colle and Salvetti has been crucial for the devel-

opment of CAS-DFT, namely by

(1) introducing a local measure for the quality of the

reference wave function,

(2) providing the appropriate DFT C-functional.

It should be mentioned that in 1990 Colle and Salvetti

suggested an alternative MR-DFT approach [29]. Given

that the local measure used in their 1979 work was con-

structed in an ad-hoc fashion, Colle and Salvetti developed

a method that does not require any ad-hoc correction fac-

tor. The basic idea of the 1990 method was to account

dynamic electron correlation before rather than after taking

the multi-reference character into account. For this pur-

pose, the correlation energy was calculated separately with
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the original CS-functional for each CSF to be included into

the MR wave function. In addition, transition Hamilton

matrix elements were calculated between different CSFs,

incorporating the dynamic correlation effects within each

of the CSFs. The (correlated) energies of the individual

states and the correlated transition Hamilton matrix ele-

ments were then used to set up a Hamilton matrix for the

set of CSFs. Diagonalization of this Hamilton matrix led to

the energy spectrum of the multi-reference system to be

described. In the terminology of multi-reference perturba-

tion theory, this approach can be characterized as ‘‘perturb

then diagonalize’’ strategy [76]. In this respect, it can be

considered as a predecessor of the REKS method devel-

oped later by Filatov and Shaik [33, 34].

4 Conclusion and outlook

Despite the wide use of DFT in computational chemistry,

origin, properties, and consequences of the SIE of

approximate XC-functionals are hardly known, often

overlooked, or wrongly considered as being negligible.

Apart from the importance of considering the SIE when

analyzing DFT results, especially in the case of odd-elec-

tron systems and charge transfer reactions, it plays also an

important role when describing electron systems with

multi-reference-character and trying to assess the reliability

of standard KS-DFT. In the latter cases, the SIE improves

DFT results by artificially including left–right correlation.

However, this fact must not be misunderstood as a guar-

antee that DFT with SIEs can correctly describe MR

electron systems. The inclusion of non-dynamic electron

correlation via the the SIE of the X-part is done in a non-

specific way and therefore cannot adjust to the situation of

multi-reference systems with specific non-dynamic elec-

tron correlation effects. If the SIE-induced correlation

effects lead to an improvement of DFT results it is certainly

an improvement for the wrong reason that provides an

uncertain starting point for further method or XC

improvements. Especially problematic are those cases

where an improvement of the XC functional leads to a

deterioration of DFT results. This is often an indication of

a reduction of the X-SIE, as it happens when converting

a GGA XC functional into a hybrid functional with a sig-

nificant portion of exact exchange. The advantages of the

improved XC functional often can only be made visible

when including non-dynamic electron correlation effects

via the form of the wave function as, e.g., in a BS-UDFT or

REKS calculation.

Although it is not directly relevant for the discussion

presented in this work, it has to be mentioned that defini-

tion of the SIE is no longer unambiguous for many-electron

systems. This problem has recently been discussed by a

number of authors. Ruzsinsky et al. [77, 78] studied dia-

tomic molecules with fractional occupation numbers in the

dissociation limit and pointed out the difficulties of getting

XC functionals which are not only one- but also many-

electron SIE. Cohen et al. [79] interpret the one- and many-

electron SIEs as delocalization errors which can be best

understood when studying fractional charge distributions.

Körzdörfer et al. [80] showed that the variance of the

Perdew–Zunger SIE-corrected XC energy functional [43]

with respect to orbital rotations is directly related to the

problem of defining the SIE for many electron systems and

suggest an optimized effective potential (OEP) version of

the Perdew–Zunger functional, which handles this problem

in a better way. In all these studies it is emphasized that the

SIE is one of the most serious problems of DFT, which has

not been solved so far in a generally satisfying way.

Until the early 90s, WFT and DFT constituted two

disjunct realms within the field of electronic structure

calculations. This segregation was aggravated by the fact

that WFT was used nearly exclusively by chemists whereas

DFT was preferred by physicists. Colle and Salvetti were

among the first to combine the strengths of WFT and DFT

in hybrid approaches. Their work demonstrated both the

potential and the challenge of such hybrid approaches:

DFT-like functionals allow an effective but still cheap

description of the dynamic correlation effects missing in a

MR wave function. However, one has to be aware that

WFT and DFT employ different languages: In a pure WFT

method, e.g., CASPT2, the perturbation approach scans the

MR wave function in terms of many-body configurations,

which effectively eliminates a double-counting of corre-

lation contributions. On the contrary, a DFT C-functional

assesses only local information from the MR wave function

and is blind to the configurations contained in the wave

function. When developing a MR-DFT approach, one has

to convey the relevant information to the DFT C-functional

via suitable local properties. However, if this problem is

satisfactorily solved, MR-DFT methods will provide reli-

able descriptions for a wide range of multi-reference

electron systems, as has been demonstrated by the use of

CAS-DFT in these cases [35, 36, 39].

Today, the combination of WFT- and DFT-based tech-

niques becomes more and more accepted. The development

of MR-DFT methods is a field of active research. Apart

from this, modern DFT functionals employ ingredients

stemming from WFT: Hybrid X-functionals [10, 11] use

the WFT exchange expression to determine a portion of the

X-energy. Meta-GGA functionals [12, 15, 16] use local

indicators combining derivatives of the one-particle density

and the KS density matrix to detect single-electron regions

and eliminate the SIE of the C-functional. An extension of

this idea can be found in the X-functional by Kümmel and

Perdew [81], where a local indicator is used to vary the
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portion of exact X-in the X-functional on a per-point basis,

so that the SIE may be incorporated where it is desirable to

mimic non-dynamic electron correlation and excluded in

single-electron regions.

In all these developments, the CS functional has played,

as outlined in this article, an important role. Nevertheless,

it should not be elided that there has been criticism as to the

usefulness of the CS functional. Singh et al. [82] pointed

out that the CS wave function functional is not properly

normalized and the Coulomb hole sum rule is violated

among some other deficiencies, which are typical of most

other correlation functionals currently in use. Tao et al.

[83] and Caratzoulas and Knowles [84] demonstrated that

the CS functional lacks long-range electron correlation,

which is why the CS correlation energy is incorrect in the

limit of a homogeneous system. It should be noted, though,

that the lack of long-range corelation does not pose a

problem in CASDFT because in this case long-range

electron correlation is described by the multi-reference

wave function. More recently, Moscardo et al. [85, 86]

suggested modifications of the Colle–Salvetti approach to

remedy the inconsistencies pointed out in the literature

[82–84].
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