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The analysis of NMR spin–spin coupling leads to a unique insight into the electronic structure of

closed-shell molecules, provided one is able to decode the different features of the spin–spin

coupling mechanism. For this purpose, the physics of spin–spin coupling is described and the way

how spin–spin coupling constants (SSCCs) can be quantum mechanically determined. Based on

this insight, a set of requirements is derived that guide the development of a quantum mechanical

analysis of spin–spin coupling. It is demonstrated that the J-OC-PSP (=J-OC-OC-PSP:

Decomposition of J into orbital contributions using orbital currents and partial spin polarization)

analysis method fulfills all requirements. J-OC-PSP makes it possible to partition the isotropic

indirect SSCC J or its reduced analogue K as well as the four Ramsey terms (Fermi contact (FC),

spin dipole (SD), diamagnetic spin orbit (DSO), paramagnetic spin orbit (PSO)) leading to J (or

K) into Cartesian components (for the anisotropic Ramsey terms SD, DSO, PSO), orbital

contributions or electron interaction terms. For the purpose of decoding the spin–spin coupling

mechanism, FC, SD, DSO, and PSO coupling is discussed in detail and related to electronic and

bonding features of the molecules in question. The myth of empirical and semiempirical

relationships between SSCCs and bonding features is unveiled. It is found that most relationships

are only of limited, partly dubious value, often arising from a fortuitous cancellation of terms

that cannot be expected in general. These relationships are replaced by quantum chemical

relations and descriptions that directly reflect the complex electronic processes leading to

spin–spin coupling.

1. Introduction

When a new chemical compound is synthesized, one of the first

investigations to be carried out will be the measurement of the

nuclear magnetic resonance (NMR) spectrum. Because of the

sensitivity of NMR parameters such as NMR chemical shifts

or spin–spin coupling constants (SSCC) to structural and

conformational features of a molecule, NMR spectral data

provides in a relatively easy way useful information on the

identity and the structure of the new compound.1–15 There

exist in most cases sufficient reference data that makes a

qualitative structure determination or verification possi-

ble.16–19 Only after these first NMR investigations have been

done, is it normally decided whether a direct structure deter-

mination with other methods such as X-ray, electron diffrac-

tion or microwave spectroscopy should be performed or

whether a detailed spectroscopic, thermochemical, etc. char-

acterization is desirable. However, all these additional inves-

tigations require in most cases much more time and efforts

than the NMR measurements and, therefore, they are only

done for interesting compounds. This is the reason why for

many compounds, there is just an NMR spectrum available

that has to provide all the information and insights an

experimentalist wants to have on a new compound.

The information content of an NMR spectrum can be

extended and completed with the help of quantum chemical

calculations of NMR parameters.20–22 This is best done when

for some appropriate trial structure NMR chemical shifts and

spin–spin coupling constants (SSCCs) are calculated and

compared with the existing NMR data. If the two sets of

NMR data agree, the compound in question is most likely to

possess the molecular structure used in the calculation and,

therefore, is positively identified. All molecular properties

determined in the calculation can be assigned to the new

compound and, accordingly, the experimentalist gets a de-

tailed description of the compound in question. If the quan-

tum chemical description of the molecule can be obtained in a

faster and more economical way than additional experimental

investigations, an ideal basis for the collaboration between

experimentalists and quantum chemists will exist.

The importance of calculating NMR parameters was early

recognized, however it took till the 1980s before reliable

quantum chemical programs for the routine calculation of

NMR magnetic shieldings and chemical shifts became avail-

able. The calculation of magnetic shieldings is described in

several review articles23–27 and is not the subject of this article.

Equally or even more important for structure elucidation via

NMR spectroscopy are SSCCs, either measured or calculated

ones.28–32 Value and sign of a SSCC are directly related to the

pattern of bonds connecting the coupling nuclei and therefore

a manifold of relationships between structural and conforma-

tional features of a molecule and its SSCCs have been estab-

lished in the last five decades.1–15,28–32 Best known is the
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Karplus relationship,33–35 which relates the value of a vicinal

SSCC 3J(A,D) between nuclei A and D in a molecular frag-

ment A–B–C–D to the dihedral angle t(A–B–C–D). Detailed

summaries and extensive discussions on the various structural

relationships based on SSCC have been given among others by

Contreras and co-workers30–32 (see also articles in ref. 15 and

summaries in ref. 7 and 11–14).

Clearly, quantum chemical calculations of SSCCs can sub-

stantially aid the understanding of the spin–spin coupling

mechanism and thereby increase the value of SSCCs as

structural and conformational descriptors of molecules. Quan-

tum chemistry can advance the analysis of SSCCs to a point

that the information content of SSCCs also with regard to the

electronic structure of a molecule becomes accessible. The

SSCC between two nuclei depends on the distribution of

electrons in a bond or a chain of bonds connecting these

nuclei and, therefore, it indirectly describes the bonding situa-

tion of the molecule under investigation.

There have been many attempts to relate the SSCC to the

electronic structure of a molecule, where in the beginning these

attempts were limited to qualitative considerations. Early

work considered excitation patterns, the nodal topology of

the orbitals involved or orbital through-space overlap.36,37

More advanced work tried to rationalize the coupling mechan-

ism by decomposing it into orbital contributions38,39 where

special interest was given to the core orbital contributions40 or

the indirect contributions of the p-orbitals.41–44 Contreras and
co-workers used localized orbitals and a polarization propa-

gator approach to identify orbital contributions important for

a given spin–spin coupling mechanism such as through-bond

or through-space.45–48 More recently, localized natural bond

orbitals (NBOs) have been used by Contreras49,50 for an

analysis of SSCCs. Their NJC (natural J-coupling) analysis49

was later applied in similar or in modified form by others (see

also ref. 32).51,52 Lazzeretti53 developed a local analysis of the

spin–spin coupling mechanism based on current and energy

densities. In this connection, investigations should be men-

tioned that split up SSCCs into different path contributions in

those cases where the topology of the molecular bonding

framework offers different coupling paths.54–57 These studies

did not directly relate to the electronic structure of a molecule,

however they were essential for the analysis of spin–spin

coupling insofar as they showed (although never mentioned

in this form) that spin–spin coupling in general is not bound to

just one coupling path.

The majority of all attempts to analyze the spin–spin

coupling mechanism has focused on the FC term. Early work

in this direction was also hampered by the fact that unreliable

or incomplete theory had to be used to calculate SSCCs. In

none of these investigations, a global, unified approach to the

problem was presented. Emphasis was always laid on special

aspects of spin–spin coupling interesting for a given problem

considered.

With the routine calculation of fairly accurate SSCCs based

on density functional theory (DFT),58 (for later developments

see ref. 59 and 60) there is for the first time the possibility of

assessing electronic structure features in a systematic way

directly from routinely computed SSCCs. For this purpose,

we developed the J-OC-PSP (=J–OC–OC–PSP: decomposi-

tion of J into orbital contributions using orbital currents and

partial spin polarization) method in recent years and applied it

to a variety of SSCC problems.61–74 J-OC-PSP is based on a

decomposition of the SSCC into one-, two-, and n-orbital

contributions.61,62 It can be applied to all four Ramsey con-

tributions75 of the coupling mechanism, namely the Fermi

contact (FC),61,62 spin dipole (SD),63 paramagnetic spin–orbit

(PSO), and the diamagnetic spin orbit (DSO) part64,65 where

one distinguishes between one- and two-electron interac-

tions.69 Results of the analysis are presented in terms of spin

density, orbital current, and energy density distribu-

tions.61–65,68 This helps to understand which orbitals are

actively or just passively transferring spin information between

the coupling nuclei.62 Using localized molecular orbitals

(LMOs) as suitable descriptive tools, one can study the con-

tribution of the bond LMOs in dependence of atom electro-

negativity and bond polarizability,61,70 the influence of lone

pair LMOs on the coupling mechanism,61,70 the passive but

nevertheless important role of p-orbitals for spin trans-

port,62,65,66 the description of multiple bonding and p-deloca-
lization by the non-contact terms,66,67 or rear lobe interactions

of bond LMOs in saturated molecules.68 Also, general me-

chanistic features such as through-bond and through-space

coupling,68,73 across-H-bond coupling,71,72 long range cou-

pling,66 and multipath coupling74 can be efficiently analyzed

in this way.

In the following we will discuss the quantum mechanical

basis of the spin–spin coupling mechanism and the calculation

of SSCC with the help of DFT (section 2). In section 3,

previous efforts of relating SSCCs to the electronic structure

of a molecule, especially its bonding features will be summar-

ized. Section 4 is devoted to the description of J-OC-PSP

method where its characterization in more general terms, its

relation to the physical mechanism of spin–spin coupling, and

its applicability is at the focus rather than a detailed derivation

of its mathematical and quantum mechanical basis. Finally, in

section 5, we will discuss some selected SSCC problems to

demonstrate the superiority of J-OC-PSP compared to other

methods.

2. Theory of NMR spin–spin coupling constants

The appearance of an NMR spectrum is determined by the

magnetic shielding values of the nuclei in a molecule and the

SSCCs between these nuclei. Therefore it is useful to include

both parameters in the theoretical treatment with the goal of

focusing later just on a special set of SSCCs, namely the

isotropic indirect SSCCs. The theory of NMR spin–spin

coupling constants (SSCCs) can be sketched in seven steps.

(1) Explanation of the measured NMR spectrum with the

help of an effective spin-Hamiltonian.

(2) Expression of the energy of a closed shell molecule in the

presence of an external homogeneous magnetic field and the

magnetic field of the nuclei of the molecule. This can be best

done utilizing perturbation theory where the terms of the

perturbation expansion can be identified using the effective

spin-Hamiltonian from (1).

(3) NMR shieldings and SSCCs result as second derivatives

of the electronic energy with regard to the external magnetic
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field and the magnetic field of the nuclei. General formulae for

the second derivatives can be found with the help of non-

degenerate time-independent perturbation theory.75

(4) Development of the electronic molecular Hamiltonian

considering its dependence on the magnetic induction B

caused by an external field and on the nuclear magnetic

moments MN where N denotes nuclei A, B, etc.

(5) Determination of the derivatives needed in (3) for

calculating the SSCC using the electronic molecular Hamilto-

nian from (4).

(6) Analysis of the operator derivatives required for the

calculation of the indirect isotropic SSCC.

(7) Use of DFT to calculate the indirect isotropic SSCC.

When outlining the theory we will apply the following

conventions: The perturbing nucleus will be denoted by (B)

and the responding nucleus by (A). The spin moment of

nucleus (B) will always be a, that of nucleus (A) always b.
The spin polarization terms will be described using either spin

orbitals cks (s: spin index) or space orbitals fk. Unperturbed

orbitals will be denoted with the superscript (0), the first-order

perturbed orbitals with a superscript of the form (B), X where

X = FC, SD, or PSO. The same superscript will be used for

the resulting spin polarization and current densities. The use of

space orbitals is possible because only closed-shell systems are

considered and accordingly the magnetic perturbations cause

either identical (PSO) or opposite (FC,SD) first-order space

orbitals for a pair of spin orbitals (cka, ckb). For the spin orbit

terms space orbitals fk are considered exclusively. We will use

indices i, j for electrons and (equivalently) occupied spin

orbitals, k, l, m,. . . for occupied space orbitals, indices

a, b,. . . for virtual (unoccupied) spin or space orbitals, and

indices p, q,. . . for general spin or space orbitals. Occupied

orbitals are assumed to be localized, i.e. LMOs, and, unless

otherwise stated, virtual orbitals to be canonical, i.e. CMOs.

The Dirac (bra-ket) notation will be applied for orbitals.

However, when no misunderstandings are possible, orbitals

are simply denoted by their index for brevity. Cartesian

coordinates are labeled with k, l.

2.1 Explanation of the measured NMR spectrum

NMR spectroscopy measures the transitions between the

eigenstates of the nuclear spin system of a closed-shell mole-

cule when exposed to an external homogeneous magnetic field.

The eigenstates reflect the interactions between magnetic

nuclei and external field modified by a direct (through-space)

dipolar coupling between the nuclei and an indirect coupling

mediated by the electrons of the closed-shell molecule. A given

nucleus leads to an NMR signal provided it possesses a non-

zero magnetic dipole moment ~mA

~mA ¼ �hgAIA ð1Þ

where gA is the magnetogyric ratio, and IA the spin angular

momentum (in units of �h) of nucleus A. The fact that each

nucleus of a molecule is surrounded by electrons which inter-

act via their spin magnetic moment or their orbital angular

moment with the magnetic moments of the nuclei, has two

consequences: (i) the electrons screen each nucleus magneti-

cally as reflected by the nuclear magnetic shielding tensor s
A

where the degree of shielding is directly reflected by the

position of the NMR signal of a given nucleus. (ii) Beside

the direct spin–spin coupling between the magnetic moments

~mA and mB as described by the classical dipolar coupling tensor

D
AB

D
AB
¼ m0

4p

3RABRAB � IR2
AB

R5
AB

ð2Þ

(m0 is the Bohr magneton and RAB = RB � RA), there is also

the indirect coupling mediated by the electrons and described

by the indirect spin–spin coupling tensor J
AB

. The coupling

tensor J
AB

represents or leads to the coupling properties

measured in a NMR experiment. In theory however, it is more

useful to work with the reduced spin–spin coupling tensor

K
AB

, which is related to J
AB

via eqn (3)

J
AB
¼ h

gA
2p

gB
2p

K
AB

ð3Þ

The value of the reduced spin–spin coupling tensor reflects

directly the impact of the electrons on spin–spin coupling

whereas the elements of the tensor J
AB

are scaled by the

magnetogyric ratios g of the coupling nuclei A and B. The

larger gA is the larger is the sensitivity of nucleus A and the

larger becomes the spin–spin coupling of A with other nuclei,

which for a NMR spectroscopist is of considerable relevance

when measuring NMR spectra. Since values of g are well-

known for all common nuclei of the periodic table,2,15,76 the

analysis of spin–spin coupling is better done for reduced

spin–spin coupling (tensor K
AB

and isotropic reduced coupling

constant Kiso
AB, see below). In the present paper, all values of

spin–spin coupling constants are given for the isotopes 1H,
13C, and 19F.

Considering just magnetic shielding and spin–spin coupling,

a relatively simple effective spin-Hamiltonian can be formu-

lated where the term effective indicates that the electronic

degrees of freedom have been eliminated from the Hamilto-

nian and condensed into a number of parameters. The effective

spin-Hamiltonian accounts for the major features of an NMR

spectrum, namely the position of the signals of the various

magnetic nuclei of a molecule as determined by nuclear

magnetic shielding tensors and the splitting of the signals as

caused by spin–spin interactions of the magnetic nuclei,2 as it

is observed when an external homogeneous magnetic field B0 is

applied:

Ĥ ¼ �
X
A

B
y
0ð1� s

A
Þ~mA þ

1

2

X
A;B6¼A

~myAðDAB
þ K

AB
Þ~mB ð4Þ

Hamiltonian (4) can be used to calculate the features of an

NMR spectrum, however it does not provide any insight into

the relationship between electronic structure of the molecule

and the NMR parameters since it generates the energy eigen-

states of the nuclear spin system without any reference to the

indirect spin–spin coupling mechanism as transported by the

electrons of the molecule.

In the gas, liquid phase or any solution phase, molecules

rapidly tumble and therefore rotational averages of the second

rank tensors s
A
, D

AB
, and K

AB
have to be taken. Contrary to

s
A

and K
AB

, the direct coupling tensor D
AB

is a traceless

tensor so that its rotational average vanishes, i.e. the direct
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coupling between nuclei A and B of the tumbling molecule

vanishes. Hence, the NMR spectrum of the molecule is

determined by just the isotropic magnetic shielding constants

sisoA and the isotropic reduced spin–spin coupling constants

Kiso
B . The averaged (isotropic) effective spin-Hamiltonian for a

uniform magnetic field parallel to the z-axis takes the form

Ĥ iso ¼ �
X
A

ð1� sisoA ÞB0mA;z þ
1

2

X
A;B 6¼A

K iso
AB~mA �~mB ð5Þ

where

sisoA ¼
1

3
Trs

A
¼ 1

3
ðsxxA þ syyA þ szzA Þ ð6Þ

and

K iso
AB ¼

1

3
TrK

AB
¼ 1

3
ðKxx

AB þ K
yy
AB þ Kzz

ABÞ ð7Þ

In the following, the superscript iso will be suppressed for

reasons of brevity.

2.2 The energy of a molecule in the presence of magnetic

perturbations

The nuclear magnetic excitations and the electronic excitation

in a molecule proceed at rather different energy scales (for

example, changes in the nuclear energy level of 1H at 400 MHz

are just of the order of 10�5 kcal mol�1). Owing to this fact,

one can determine the parameters sA and K
AB

in eqns (4) and

(5) by adapting the Born–Oppenheimer approximation to the

nuclear magnetic moments (rather than the nuclear coordi-

nates). That means that one replaces the operators ~̂mA in eqns

(4) and (5) by classical vector quantities ~mA. Then, the total

energy of the molecule can be written as a function of the ~mA
and the external magnetic field B0.

Generally, the energy E(0) of a molecule changes under the

impact of a (vector) perturbation u according to eqn (8)

EðuÞ ¼ Eð0Þ þ Eð1Þuþ 1

2
uyEð2Þuþ � � � ð8Þ

which represents the Taylor series expansion of E at the

reference point u = 0. In eqn (8), E(1), Eð2Þ,� � � are vector,

second-rank tensor, (higher rank tensor) quantities that repre-

sent molecular properties and measure the response of the

molecule to the perturbation u. Eqn (8) will hold if the

perturbation u is sufficiently small compared to the electronic

excitation energies of the molecule. Considering that this holds

when the perturbation is caused by a homogeneous external

field and the field of the magnetic nuclei of a closed-shell

molecule, eqn (8) can be written down for the situation of the

NMR experiment carried out under idealized conditions (see

below).

EðB0;~mÞ ¼ Eð0Þ þ 1

2
By0E

ð20ÞB0 þ
X
A

By0E
ð11Þ~mA

þ 1

2

X
A;B 6¼A

~myAE
ð02Þ
A;B
~mB ð9Þ

In eqn (9) it is already considered that first order properties

Eð10Þ and Eð01Þ do not appear for a closed-shell molecule (they

correspond to the g value and the hyperfine structure constant

in EPR spectroscopy77) and that the third order properties are

too small to be of any relevance. Actually, third-order quan-

tities are by the order of a2 (a E 1/137.04. . . Sommerfeld fine

structure constant) i.e., by about a factor of 10�4 smaller than

second-order quantities, which means that they are below the

resolution of the experimental methods available.

Tensor Eð20Þ corresponds to the molecular magnetizability,

which is obtained by taking the total energy derivative with

regard to the external magnetic field (or better: magnetic

induction) at zero field strength and zero magnetic moments:

Eð20Þ ¼ d2EðB0;~mÞ
dB2

0

�����
B0¼0;~m¼0

ð10Þ

for all ~m. Since the molecular magnetizability does not influ-

ence the NMR spectrum it will be discarded in the following.

The other two terms of eqn (9) can be readily identified by

relating them to the effective spin-Hamiltonian (4). The second

order cross term Eð11Þ is obtained by deriving the electronic

molecular energy with regard to the magnetic induction B0 and

the nuclear magnetic moment~mA of nucleus A; it represents the

nuclear magnetic shielding tensor s
A
corrected by a constant.

Eð11Þ ¼ d2EðB0;~mÞ
dB0 d~mA

����
B0¼0;~m¼0

¼ s
A
� 1 ð11Þ

Similarly, the tensor E(02) is found to be

Eð02Þ ¼ d2EðB0;~mÞ
d~mA d~mB

����
B0¼0;~m¼0

¼ D
AB
þ K

AB
: ð12Þ

i.e. equal to the total spin–spin coupling tensor between nuclei

A and B. As mentioned earlier in this section, D
AB

does not

contribute to the isotropic limit of Eð02Þ, i.e., only K
AB

is

needed to determine isotropic SSCCs.

2.3 Calculation of second order properties by perturbation

theory

Nondegenerate time-independent perturbation theory leads to

eqn (13) in the case of a second order property measured as

response of a molecule to a perturbation u:

d2EðuÞ
duk dul

¼ C0
d2Ĥ

duk dul

����
����C0

* +
� 2

X
n40

ðEn � E0Þ�1

� C0
dĤ

duk

����
����Cn

* +
Cn

dĤ

dul

����
����C0

* + ð13Þ

For the first term, just the ground state wave function C0 is

needed whereas for the second term the excited state wave

functions Cn with associated state energies En are required. In

the case of the reduced indirect spin–spin coupling tensor KAB

one obtains:

Kkl
AB ¼

d2Eð~mÞ
dmkA dmlB

¼ C0
d2Ĥ

dmkA dmlB

����
����C0

* +
� 2

X
n40

ðEn � E0Þ�1

� C0
dĤ

dmkA

����
����Cn

* +
Cn

dĤ

dmlB

����
����C0

* +

ð14Þ
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where k and l define Cartesian coordinates x, y, z and the

derivatives are determined for zero nuclear magnetic mo-

ments. For the purpose of evaluating the spin–spin coupling

constants one has to take the first and second derivative of the

Hamiltonian with regard to the Cartesian components (k, l=
x, y, z) of the nuclear magnetic moments ~m of the coupling

nuclei. The first second-order term corresponds to an expecta-

tion value over the ground state wave function whereas the

second term is a sum-over-states (SOS) contribution of the

excited states Cn with energy En. Eqn (14) defines a 2-rank

tensor, the elements of which will split up into at least two

different contributions. In the case of the magnetic shielding

tensor the first term would correspond to the diamagnetic and

the second term to the paramagnetic part. However, in the

case of the spin–spin coupling constants, there are actually

four rather than just two contributions because of the form of

the Hamiltonian and therefore one can no longer speak just of

a diamagnetic and a paramagnetic part. For the purpose of

identifying the various contributions to the NMR spin–spin

coupling mechanism, we have to consider next the form of the

electronic molecular Hamiltonian in dependence of the nuclear

magnetic moments ~mA and a uniform external magnetic

field B0.

2.4 The electronic molecular Hamiltonian in a magnetic field

Without a magnetic field present, the non-relativistic electro-

nic molecular Hamiltonian has the form

Ĥð0Þ ¼ 1

2

X
i

p2i �
X
iA

ZA

riA
þ 1

2

X
i 6¼j

1

rij
þ 1

2

X
A6¼B

ZAZB

RAB
ð15Þ

where pi ¼ �iri is the momentum operator. The magnetic

field B(r) is generally derived from a vector potential A(r) by

the relation

BðrÞ ¼ r � AðrÞ ð16Þ

In the case discussed, B(r) consists of the homogeneous

external field B0 and the fields generated by the nuclear

magnetic momenta ~mA:

BðriÞ ¼ B0 þ
X
A

BAðriÞ

¼ r � A0ðriÞ þ
X
A

AAðriÞ
 !

ð17Þ

Because of its orbital and spin motion, an electron possesses

an orbital magnetic moment ~mli = ge li (ge: magnetogyric ratio

of the electron; l: orbital angular momentum) and a spin

magnetic moment ~msi = �gemBsi (ge: g-factor of the electron;

mB: Bohr magneton; si: spin angular momentum of electron i).

Both the orbital and the spin magnetic momentum of the

electron can interact with the magnetic field, and consequently

the magnetic field gives rise to two kinds of additional terms in

the Hamiltonian. First, the momentum operator pi ¼ �iri

has to be replaced by the momentum operator~pi of electron i

in the magnetic field:

~pi ¼ �iri þ AðriÞ ð18Þ

Secondly, there arises an additional interaction term of the

form
P

i BðriÞ~mi in the Hamiltonian, reflecting the interaction

between the spin moment ~mi of the electron i and the external

field. With these two additional terms added, the non-relati-

vistic molecular Hamiltonian takes the form

ĤðBÞ ¼ Ĥð0Þ �
X
i

piAðriÞ �
X
i

~miBðriÞ þ
1

2

X
i

½AðriÞ�2

ð19Þ

Note that the direct magnetostatic interaction between the

~mA,B and between ~mA and B0 is omitted in eqn (19).

Decomposing B(r) and A(r) into its constituents and expres-

sing BA,B(r) and AA,B(r) through ~mA,B, Ĥ(B) gets the following

form:

ĤðB0; m
!
AÞ ¼Ĥð0Þ �

X
A

m!A
X
i

B̂
l

iA þ
X
i

B̂
s

iA

 !

� B0

X
i

mli � By0ŵ
diaB0

þ By0
X
A

ŝdia
A
m!A þ

1

2

X
A;B6¼A

m!yAK̂
DSO

AB
m!B:

ð20Þ

Here, B̂iA
l and B̂s

iA are the operators for the magnetic fields

induced by the electronic magnetic moments ~mi
l and ~mi

s,

respectively, at position rA; ŵ
dia is the operator for the dia-

magnetic part of the magnetizability, ŝdia
A

is the diamagnetic

part of the chemical shielding for nucleus A, and K̂
DSO

AB
is

the diamagnetic spin–orbit part of the SSCC between nuclei

A and B (see next paragraph). Eqn (20) provides a basis for

the extraction of the Hamiltonian derivatives needed in

eqn (14).

2.5 Extracting the Hamiltonian derivatives needed to calculate

the SSCC

According to eqn (14) the calculation of the SSCC requires the

Hamiltonian derivatives dĤ/d~mA and d2Ĥ/d~mA d~mB. From eqn

(20), one finds that

dĤ

dm!A
¼
X
i

B̂
l

iðrAÞ þ
X
i

B̂
s

i ðrAÞ ð21Þ

where one has to keep in mind that the derivatives have to be

taken for~mA =~mB = B0 = 0. According to (21) derivative dĤ/

d~mA is determined by the magnetic field the electrons generate

at rA. The explicit expressions of B̂l
i and B̂s

i read

B̂
l

iA ¼ a2
riA

r3iA
� pi|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼B̂
PSO
iA

ð22Þ

B̂
s

iA ¼ a2
3ðsi � riAÞ

r5iA
� si

r3iA

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼B̂
SD
iA

þ a2
8p
3
dðriAÞsi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼B̂

FC
iA

ð23Þ

The derivative d2Ĥ/d~mA d~mB can be evaluated explicitly as

d2Ĥ

d~mAd~mB
¼ K̂

DSO

AB
¼ a4

riA

r3iA

riB

r3iB
I � riA

r3iA

riB

r3iB

� �
ð24Þ
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2.6 Analysis of the operator derivatives needed for the

calculation of the indirect isotropic SSCC

The four operators K̂
DSO

AB
, B̂iA

PSO, B̂FC
iA , and B̂SD

iA correspond to

the four coupling mechanisms between the nuclear magnetic

moments and the electron systems that were identified by

Ramsey.75 The first two terms are related to the orbital

currents of the electron system. The DSO term describes the

diamagnetic part of the electron currents, i.e. the part that can

be ascribed to a Larmor precession of the electron system. The

PSO term, in contrast, reflects the paramagnetic part of the

orbital current, which can be understood as a modification of

previously existing orbital currents. The vector potential for a

given magnetic field is not defined unambiguously because its

choice is subjected to a gauge ambiguity. Consequently, the

individual values of the DSO and PSO terms depend on how

the vector potential is gauged. However, the sum of the PSO

and DSO terms is invariant with regard to this ambiguity.

The two terms related to B̂s
i(rA) describe the interaction of

the electronic spin with the nuclear magnetic field. The mag-

netic field of the nucleus consists of two parts: an extended

dipole field outside the nucleus and a strongly localized field

inside the nucleus. The SD term corresponds to the dipole

field, whereas the FC term describes a contact interaction

between electron spin and nuclear magnetic field at the surface

of the nucleus considering that the latter possesses a finite size.

The total SSCC becomes

Kkl
AB ¼ hC0jK̂DSO;kl

AB jC0i � 2
X
n40

ðEn � E0Þ�1hC0jB̂PSO;k
A jCni

� hCnjB̂PSO;l
B jC0i � 2

X
n40

ðEn � E0Þ�1hC0jB̂SD;k
A þ B̂FC;k

A jCni

� hCnjB̂SD;l
B þ B̂FC;l

B jC0i
ð25Þ

where B̂PSO
A ¼

P
i B̂PSO

iA etc. In eqn (25), it has been taken into

account that terms containing products of the form

h� � �B̂PSO
A � � �ih� � �B̂SD,FC

B � � �i do not contribute to the SSCC. In

the case of the isotropic average, terms of the form h� � �B̂SD
A � � �i

h� � �B̂FC
B � � �i cancel as well. Thus the final form of the isotropic

SSCC is

KAB ¼ KDSO
AB þ KPSO

AB þ KFC
AB þ KSD

AB ð26aÞ

KDSO
AB ¼ hC0jK̂DSO

AB jC0i ð26bÞ

KPSO
AB ¼�

2

3

X
n40

ðEn � E0Þ�1

� hC0jB̂
PSO

A jCnihCnjB̂
PSO

B jC0i

ð26cÞ

KFC
AB ¼�

2

3

X
n40

ðEn � E0Þ�1

� hC0jB̂
FC

A jCnihCnjB̂
FC

B jC0i

ð26dÞ

KSD
AB ¼ �

2

3

X
n40

ðEn � E0Þ�1hC0jB̂
SD

A jCnihCnjB̂
SD

B jC0i ð26eÞ

where the factor of 1/3 results from the isotropic averaging. In

summary, the isotropic SSCC consists of four terms, each of

which corresponds to one of the four mechanisms for

spin–spin coupling, i.e., DSO, PSO, FC, and SD coupling.

These four terms were identified first by Ramsey75 and accord-

ingly are called Ramsey terms.

All terms in eqn (26a)–(26e), contain either an operator

connecting nuclei A and B (DSO) or one operator at nucleus A

and one at nucleus B (PSO, FC, SD). This reflects the various

stages of the magnetic interaction leading to nuclear spin–spin

coupling: at the first stage, the magnetic field of nucleus B

(perturbing nucleus) induces either orbital currents (DSO,

PSO) or spin polarization (FC, SD) in the electron system.

At the second stage, orbital currents or spin polarization

mitigate through the electron system of the molecule so that

at the third stage, nucleus A (responding nucleus) experiences

an extra magnetic field. Eqn (26a)–(26e), are symmetric with

respect to the two nuclei. This implies that the coupling

process is invariant to an exchange of perturbing and respond-

ing nucleus.

2.7 Using DFT to calculate isotropic indirect SSCCs

In DFT, the ground-state energy is expressed as a functional

of the one-electron density rather than an expectation value of

the Hamiltonian formed with the ground-state function.78,79

In the Kohn–Sham (KS) formulation of DFT,80 the many-

electron problem is mapped on a model system of non-inter-

acting electrons moving in an effective potential, the so-called

KS potential. The spin orbitals cp(r, s) and orbital energies ep
for these particles are given by the KS equations

F̂cpðr; sÞ ¼ epcpðr; sÞ ð27aÞ

F̂ ¼ 1

2
p̂2 þ vKSðr; sÞ ð27bÞ

vKSðr; sÞ ¼ vNðrÞ þ vHðrÞ þ vXCðr; sÞ ð27cÞ

where F̂ is the KS operator consisting of a kinetic term and the

effective potential vKS(r,s). Potential vKS in turn contains a

term vN for the nucleus–electron attraction, vH for the classical

electron–electron repulsion, and vXC for the description of

exchange (X) and correlation (C) effects. In distinction to the

potential term occurring in many-body Schrödinger theory,

potential vKS depends through vH and vXC on the electron

density and thus needs to be determined self-consistently

together with the KS orbitals cp. The form of vH for a given

electron density follows from electrostatics, whereas the exact

form of vXC is not known, and approximate functionals for the

XC energy EXC and the corresponding vXC have to be used in

practical DFT computation schemes. Different types of ap-

proximate functionals are used for DFT calculations.81–85

While pure XC functionals express EXC exclusively through

the one-particle density,81–84 in hybrid DFT functionals a part

of the X energy is expressed exactly by the KS orbitals.85

Generally, hybrid functionals allow more accurate SSCC

calculations, at the cost of higher computational expenses,58

because they largely suppress the self-interaction error of

KS-DFT.86–89
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Starting from the coupled perturbed DFT (CP-DFT) ap-

proach, an expression for the calculation of SSCC in the

framework of KS-DFT was derived for the first time in

ref. 58. The final expression for the four Ramsey terms takes

the form:

KDSO
AB ¼

Xocc
i

hcijK̂DSO
AB jcii ð28aÞ

KPSO
AB ¼ �

2

3

Xocc
i

Xunocc
a

ðea � eiÞ�1hcijB̂
PSO

A jciihcijB̂
PSO

B þ ~FPSO
B jcii

ð28bÞ

KFC
AB ¼ �

2

3

Xocc
i

Xunocc
a

ðea � eiÞ�1hcijB̂
FC

A jciihcijB̂
FC

B þ ~FFC
B jcii

ð28cÞ

KSD
AB ¼ �

2

3

Xocc
i

Xunocc
a

ðea � eiÞ�1hcijB̂
SD

A jcii � hcijB̂
SD

B þ ~FSD
B jcii

ð28dÞ

The final expressions resemble those for the many-body

formalism (see eqn (25)). However, there are some important

differences:

(i) Expectation values are formed with KS orbitals rather

than the many-body wave function.

(ii) Energy denominators are formed with the KS orbital

energies rather than the energies of the many-electron eigen-

states. (iii) The KS potential appearing in the KS equations

depends on the electron density self-consistently, which leads

to the fact that in addition to the explicitly given operators B̂X
A

(X = PSO, FC, SD), one has to consider the operator F̃X
B that

reflects the feedback of the perturbed KS orbitals on the XC

potential. The operator F̃X
B is connected with the first-order

spin orbitals ~cðXÞ;Bi (for a perturbation of the type X at nucleus

B, the Cartesian components of ~cðXÞ;Bi correspond to the

Cartesian components of the perturbation) by the equations

~FX
B ¼

Xocc
i

Z
d3r

dF
dciðrÞ

~cðBÞ;Xi ðrÞ; ð29aÞ

j~cðBÞ;Xi i ¼ �
Xunocc
a

cð0Þa jB̂X
B þ ~FX

B jc
ð0Þ
k

D E
ea � ei

jcð0Þa i ð29bÞ

where dF/dci(r) is the functional derivative of F̂ with respect to

the KS orbital ci. Eqns (29a) and (b) need to be solved self-

consistently for F̃FC
B and the perturbed orbitals ~cðBÞ;Xi . This is

by far the most expensive part in solving the CP-DFT equa-

tions. It should be noted that F̃PSO
B will vanish if a pure DFT

functional is used, i.e. for pure DFT functionals, KPSO
B does

not need to be determined iteratively.

Neglecting F̃B in eqn (29a) and (29b) leads to sum-over-

states density functional perturbation theory (SOS-DFPT),

which can be performed non-iteratively on the basis of a

conventional KS-DFT calculation. SOS-DFPT amounts to

neglecting the impact of electron–electron interaction on the

response of the perturbed system, which is not justified a

priori. In refined versions of SOS-DFPT, the neglect of F̃B is

partly compensated by corrections to the energy denominators

in eqn (29a) and (29b). Calculations by Bouř et al.90 showed

that an SOS-DFTP approach, even with correction terms in

the energy denominators, does not allow a quantitative pre-

diction of SSCCs.

As has been shown,91 conventional DFT is not strictly valid in

the presence of a magnetic field. Rather, the formalism has to be

extended to current-DFT, where the XC potential depends not

only on the one-electron density but also on the one-electron

current density. However, to date no approximate expressions

for such a current-dependent XC potential are available that are

suitable for routine applications. Therefore, the current depen-

dence of the XC functional is usually neglected in present DFT

calculations of magnetic properties.92

3. Empirical relationships utilizing SSCCs as

descriptors for bonding and the electronic structure

of a molecule

Early experimental and theoretical work in NMR spectro-

scopy emphasized that SSCCs are ideally suited to determine

configuration and conformation of molecules. The first major

breakthrough in this respect was Karplus’ observation that

vicinal SSCC J(A,D) in a fragment A–B–C–D depend on the

dihedral angle t(ABCD) via a trigonometric relationship.33–35

Karplus’ discovery led to a flood of experimentally or compu-

tationally derived Karplus equations varying atoms A, B, C, D

through larger parts of the periodic table, especially however

with regard to those elements typically found in organic

compounds.30–32,93 Work of more than four decades has led

from Karplus equations to Karplus surfaces where beside a

single dihedral angle also adjacent bond angles, a second

dihedral angle, the orientation of substituent bonds or the

electronegativity of the latter was included.93–95 The term

generalized Karplus equation was used in this connection and

applied to the description of puckered and pseudorotating

rings. Cremer and co-workers96–98 demonstrated that in the

latter case, the vicinal SSCC is best expanded as a function of

the Cremer-Pople ring puckering coordinates99–101 in form of

a generalized Karplus surface, which reflects preferred ring

conformations and pseudorotational modes.

SSCCs also depend on other geometric parameters such as

bond distances or bond angles. In many studies measured or

calculated SSCCs (one-bond, geminal, vicinal, long range)

were related to bond or internuclear distances (through-bond

or through-space distances),28–32,102–104 bond or pyramidaliza-

tion angles, lone pair or substituent orientations, the distance

to neighboring charges exerting an electric field effect, or other

geometric parameters. (For summaries, see ref. 28–32).

At an early stage, Muller and Pritchard105,106 demonstrated

that the FC part of 1J(C,H) could be related to the degree of

sp-hybridization at the C atom. Since the FC term dominates

the SSCC of hydrocarbons in most cases this discovery was

understood in an enthusiastic way as a direct experimental

possibility of describing bonding: once the degree of sp-

hybridization is known for the C atoms of a molecule, the

overlap between the hybrid orbitals is found by considering

measured bond lengths and in this way a reasonable estimate
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of the bond strength can be given using the maximum overlap

method. In this spirit numerous relationships were developed

that related one-bond SSCCs to the square of the valence s-

character (AH bonds),7,28,29,107 the product of the s-characters

of coupling nuclei A and B (AB bonds)7,28,29,108 and/or the

overlap S(A,B).109,110 Some of these relationships are still used

today although they all have in common that any application

of these relationships beyond a limited set of bond situations

(e.g. including besides single bond also multiple bonds) leads

to relatively large deviations from the original functional

dependencies between SSCC and s-character.7,30–32

Triggered by investigations showing a relationship between

s-character and the magnitude of the SSCC in hydrocarbons,

one soon established also relationships with the bond or-

der,104,111–115 especially the p-bond order in conjugated sys-

tems, delocalization parameters, NBO occupation numbers115

or charge parameters.116 An astonishingly accurate relation-

ship between 1K(X,H) and the atomic number Z of X was

discovered117 (originally already discussed by Jameson and

Gutowsky relating Z to the s-electron density at the nu-

cleus107) where however for X of fourth and higher periods

reliable experimental data were missing.

In summary, the multitude of empirical relationships avail-

able gives the impression that SSCCs are perfectly suited to

describe the quantum mechanical implications of chemical

bonding and the electronic structure of a molecule. This

however is rarely the case in state-of-the-art studies on SSCCs.

Instead, the relationships discussed are mostly used to estimate

SSCCs of new chemical compounds in an empirical way. This

is a reflection of the fact that none of the relationships relating

SSCCs to some molecular parameters in an empirical way is

based on a quantum mechanical analysis of the spin–spin

coupling mechanism considering all four Ramsey contribu-

tions. Mostly, it is assumed that the FC part dominates the

magnitude of the SSCC and FC coupling is related in some

way to the s-electron density at the nucleus. Insofar it is

justified to say that a systematic quantum mechanical analysis

of all Ramsey terms of SSCCs as descriptors of the electronic

structure of molecules has not been carried out at all. J-OC-

PSP presents for the first time such a complete and systematic

analysis of SSCCs by following strictly the quantum mechan-

ical description of the spin–spin coupling mechanism rather

than referring to empirically derived relationships with limited

applicability.

4. Analysis of the spin–spin coupling mechanism

In the previous sections, we have given an overview over the

physics of NMR spin–spin coupling, the DFT calculation of

SSCCs, and those attempts that have been made to analyze the

spin–spin coupling mechanism. Before we present the J-OC-

PSP method, it is useful to determine those requirements that

an analysis method must fulfill to provide useful results of

general and not method-dependent value.

4.1 Basic requirements for an analysis of the spin–spin

coupling mechanism

A theoretical analysis of NMR SSCCs must fulfill a set of 9

requirements (a)–(i):

(a) Reciprocity requirement: any useful analysis must lead

to a description of the spin–spin coupling mechanism that is

independent of the choice of perturbing and responding

nucleus.

(b) Requirement of unconstrained applicability: a useful

analysis must be applicable to all four Ramsey terms of the

isotropic SSCC or the nondiagonal coupling terms of the

SSCC tensor. Also it must be applicable to any type of

spin–spin coupling (one-bond, two-bond or long range cou-

pling, through-bond or through-space coupling, across H-

bond coupling, etc.) between any possible combination of

nuclei.

(c) Correct reflection of the physics of spin–spin coupling:

(I) Any analysis must be able to resolve and analyze steps (i),

(ii), and (iii) of the spin–spin coupling mechanism:

(i) The perturbing nucleus B induces changes in the electron

system.

(ii) These changes propagate through the electron system.

(iii) The changes in the electron system generate an extra

magnetic field and can thus be sensed by the responding

nucleus A.

(II) Because of the reciprocity of spin–spin coupling, the

analysis of (i) and (iii) should be largely analogous.

(III) Furthermore, Fermi coupling between nuclear and

electronic spin, electron–electron exchange interactions, and

Pauli spin-pairing between electrons must be correctly re-

flected by the mechanistic analysis.

(d) Requirement of a parallel-processing analysis: a corol-

lary of (c) is the need that the analysis method in question is

carried out parallel to the calculation of the SSCC (parallel-

processing method) rather than afterward (post-processing

method). Only in this way is it possible to follow the stepwise

spin–spin coupling process.

(e) Insight beyond the quantum mechanical SSCC formulae:

Any analysis must reflect the anisotropy of DSO, PSO, and

SD term by spatial decomposition in Cartesian components,

provide a distinction between one-electron and electron–

electron-interaction contributions, and must distinguish be-

tween different coupling paths.

(f) Use of reasonable analysis quantities: preferably, any

analysis of the spin–spin coupling mechanism should be based

on quantities that are generally used in quantum mechanics as,

e.g., orbitals, electron density distributions (especially spin

density distributions), and energy density distributions. In

view of the description of spin–spin coupling utilizing pertur-

bation theory, the roles of perturbed orbitals (first order

orbitals) and perturbed electron densities (first order densities)

have to become clear.

(g) Usefulness of results: any useful analysis of the spin–spin

coupling mechanism must lead to results that describe the

mechanism in a compact manner and can be directly related to

accepted quantum mechanical descriptions of chemical bond-

ing and electronic structure.

(h) Additivity requirement: any partitioning of the SSCC

must lead to contributions that sum up to the four Ramsey

terms and the total SSCC.

(i) Feasibility requirement: any analysis of the spin–spin

coupling mechanism must still be feasible in terms of compu-

tational requirements and computational cost.
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The way of calculating SSCC via the use of orbitals (section

2) suggests that orbitals are also employed when analyzing the

spin–spin coupling mechanism. Without limiting any SSCC

analysis to the use of a special type of orbitals, a number of

additional requirements can be formulated for an orbital-

based analysis method:68

(1) The analysis must be capable of distinguishing between

one-, two- and m-orbital contributions where each of

these terms should be connected with a well-defined physical

effect.

(2) The orbital contributions must fulfill the criterion of

nuclear independence, i.e. the same orbital contributions must

be obtained irrespective of the choice of perturbing and

responding nucleus, i.e. the direction of the spin–spin coupling

mechanism (see requirement (a) above).

(3) The orbital contributions should be based on the analy-

sis of zeroth- and first-order orbitals rather than just the total

perturbed orbitals. In this connection, any ambiguity in

choosing the first-order orbitals must be treated in a well-

defined way.

(4) It must be possible to distinguish between active and

passive orbital contributions to the spin–spin coupling me-

chanism. Active orbitals are exclusively involved in the one-

and two-orbital contribution, whereas passive orbitals lead to

three- and m-orbital contributions (m 4 3).

(5) The method in question should not be tied to a particular

type of molecular orbitals.

(6) The individual orbital contributions obtained in the

analysis should add up to the total SSCC or its Ramsey terms

(see requirement (h) above).

(7) For the anisotropic Ramsey terms (PSO, DSO and SD),

it must be possible to perform the analysis for either the

isotropic average of the terms or their Cartesian components

(see requirement (e) above).

(8) A pictorial description of the orbital terms in a way that

the spin–spin coupling mechanism can be stepwise followed is

necessary.

Previous analysis methods were not able to meet either

requirements (a) to (i) nor (1) to (8). In section 4.2, we

will show that J-OC-PSP is able to comply with all require-

ments.

4.2 The J-OC-PSP method

A decomposition of the total spin–spin coupling into contri-

butions from individual mechanisms can be carried out ac-

cording to different decomposition criteria. The J-OC-PSP

analysis method utilizes five decomposition criteria, denoted

(I)–(V) in the following, where each of these criteria spans one

dimension in the space of the analysis. Fig. 1 shows the three

most important of these criteria in form of an incomplete cubic

space:

(I) Ramsey decomposition. The four Ramsey terms de-

scribed in sections 2.5 and 2.6 provide one way to decompose

the total spin–spin coupling into individual contributions. (See

horizontal axis in Fig. 1.)

(II) Orbital decomposition. This is characterized according

to the number and kind of orbitals involved in the spin-

information transport through the electron system (step (ii)

of the 3-step mechanism; vertical axis in Fig. 1). In the simplest

case, the perturbing nucleus (B) affects orbital k, which

directly transfers the spin information to the responding

nucleus (A):

ðBÞ ! k! ðAÞ ð30aÞ

If k is an orbital in the bond path between (A) and (B), the

contribution (30a) will be denoted as bond contribution (see

Fig. 2a and b), otherwise, i.e. if k is external to the bond path

(A) � (B), an external bond contribution (see Fig. 2c and d).

However, processes involving more than one orbital play an

important role in spin–spin coupling.66,68 A change in one

orbital can cause changes in other orbitals in the way that spin

information is transferred along paths involving an arbitrary

Fig. 1 J-OC-PSP decomposition criteria I (Ramsey terms), II (orbital terms), and III (electron terms) of the SSCC shown in 3-D space.

Abbreviation orb denotes the term orbital.
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number of orbitals:

ðBÞ ! k! l ! ðAÞ ð30bÞ

ðBÞ ! k! m! l ! ðAÞ ð30cÞ

ðBÞ ! k! m! n! l ! ðAÞ ð30dÞ

ðBÞ ! k! m! k! ðAÞ ð30eÞ

These orbital paths describe a variety of coupling processes:

(1) In (30b), the perturbing nucleus affects orbital k, which

in turn affects orbital l; nucleus (A) senses the change in orbital

l. If k and l are in the bond path between (A) and (B) (see Fig.

2e and f), this process will be denoted as direct spin transport; if

k or l are external to the bond path (see Fig. 2g), as external

bond interaction.

(2) In (30c), the spin information is transferred from k to l

by mediation of a third orbital m (Fig. 2h); in (30d), the path is

extended by another orbital n (Fig. 2i). Processes of this type

will be called 3-orbital, 4-orbital, etc. spin transport.

It is noteworthy that orbitals k, l as opposed to orbitals m, n

play different roles in the transmission of spin information:

whereas k, l interact directly with one (or both) of the coupling

nuclei, m, n participate in the spin–spin coupling solely by

interactions with other orbitals, i.e., they do not ‘‘see’’ any of

the coupling nuclei. We call orbital contributions that involve

direct interaction with one or both coupling nuclei active

contributions, orbital contributions involving no such direct

interactions are called passive contributions. In the same way,

we speak of active and passive orbitals.

(3) An orbital path may also contain one and the same

orbital several times. In (30e), (B) affects orbital k, which in

turn affects orbital m. The change in m is then fed back into

orbital k, which passes the spin information to nucleus (A).

Orbital m generates an ‘‘echo’’ in orbital k and therefore this

kind of process is called echo effect (Fig. 2k).

The total spin–spin coupling is the sum of the contributions

from all orbital paths. An orbital that makes an active con-

tribution in one path may make a passive contribution in

another path. Also, an orbital may make both kinds of

contributions in one and the same path, as e.g. orbital k in

the path

ðBÞ ! k! l ! k! m! k! ðAÞ ð30fÞ

Keeping track of all individual orbital paths would make the

analysis both time-consuming and produce a large amount of

information that would be difficult to comprehend. In parti-

cular, one and the same set of orbitals can form a variety of

orbital paths, e.g., (30c) as well as (30f) involve k, l and m.

Therefore, the J-OC-PSP analysis focuses on the role indivi-

dual orbitals or groups of orbitals (summed up over all

possible orbital paths) rather than individual orbital paths

play for spin–spin coupling.

The DSO term differs from the FC, SD, and PSO terms as it

does not involve any changes in the orbitals. There are no

orbital interactions in the DSO mechanism, nor any passive

contributions. Consequently, the DSO term consists solely of

active one-orbital contributions (see Fig. 1).

The calculation of orbital contributions is the key part of a

J-OC-PSP analysis. For the purpose of determining the role of

a given orbital, one performs a number of calculations for a

given SSCC. In these calculations, the orbitals under consid-

eration will be allowed to participate in the spin–spin coupling

in different ways:

(a) An active orbital is allowed to interact both with the

coupling nuclei and the other orbitals. It may thus make active

as well as passive contributions to the spin–spin coupling

mechanism.

(b) A passive orbital is allowed to interact with other orbitals

but not with the coupling nuclei. It is thus restricted to passive

contributions.

(c) A frozen orbital is not allowed to undergo any interac-

tions, i.e., it is ‘‘frozen’’ in the shape it has when the perturba-

tion is absent. Accordingly, a frozen orbital cannot make any

contributions to the coupling.

By comparing calculations for one and the same SSCC, one

can identify the active and passive contributions the individual

orbitals make to the coupling.62 In principle, one can refine the

analysis of orbital contributions by selecting not only occupied

but also unoccupied (virtual) orbitals. For instance, instead of

freezing an orbital completely one might restrict excitations

from those orbitals to selected virtual orbitals. An extension of

J-OC-PSP in this spirit would be straightforward. However, a

number of reasons speak against such an extension: the

structure (number, energy, and shape) of the unoccupied

orbitals is sensitive to the method (in case of DFT: sensitive

to the XC functional) and especially the basis set used. Apart

from this, the localization of unoccupied orbitals may be

problematic, e.g., it may give rise to artificial symmetry break-

ing. In addition, a decomposition into contributions from

individual virtual orbitals will drastically increase the number

of J-OC-PSP contributions and make the analysis less com-

prehensible. A more appropriate approach is therefore to plot

and analyze the first-order perturbed orbitals, as is demon-

strated in sections 4.5 and 4.6.

(III) One- and two-electron contributions. This decomposi-

tion criterion is given by the third axis in Fig. 1 and can be

explained along the following lines. Each space orbital can be

occupied by two electrons with opposite spin. Accordingly, a

Fig. 2 Schematic representation of different orbital contributions.

Bold lines symbolize an involvement of the corresponding bond

orbital (orb: orbital). (A) is the responding, (B) the perturbing nucleus.
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one-orbital contribution to a SSCC can comprise two kinds of

processes:

(a) The spin information may be conveyed from (B) to (A)

by one of the electrons without any involvement of the second

one. This kind of transport mechanism will be called direct

Ramsey response.

(b) The interaction between the electrons in the orbital

enhances the response of the orbital to the perturbation, which

can be easily explained for the FC term: the magnetic moment

of the nucleus attracts the b electron (Fermi coupling) and

repels the a electron. Consequently, the electrons in the orbital

get spin-polarized, and the centroids of charge associated with

the two electrons are slightly shifted against each other. This

gives rise to an electrostatic repulsion force between the b and

the a electron, which tends to increase spin polarization and

thus amplifies the response of the orbital to the perturbation

from (B). Since Hartree repulsion between the electrons must

not be changed by any magnetic perturbation, this effect

implies a maximization of the (negative) self-exchange energy

for the two electrons. Therefore it is justified to call this effect

self-exchange interaction.

As regards two- or more-orbital contributions, there are two

mechanisms for the spin-information transfer from one orbital

to the next:

(c) If orbital l changes its shape by mixing with the virtual

orbital a (described by excitation l - a and caused by the

magnetic perturbation) then the one-particle energy has to be

re-optimized in the way that orbital k undergoes a small

delocalization k - l, which has to be accompanied by a

partial excitation k - a to maintain orthogonality. This effect

provides an interaction between perturbed (first order) orbitals

k and l which does not involve electron–electron repulsion.

This interaction is a consequence of the Pauli principle and

related to the well-known orbital delocalization effect of

unperturbed orbitals (zeroth order orbitals). Therefore, this

effect is called first order delocalization.

First-order delocalization effects do not occur when (delo-

calized) canonical molecular orbitals (CMOs) are used for the

description of spin–spin coupling. Although this might be

considered as a way of simplifying the analysis, CMOs have

the disadvantage of disguising an important source of infor-

mation about the coupling mechanism. LMOs reveal how spin

information is conveyed from orbital to orbital via first order

delocalization, whereas in a CMO description this effect is

hidden in the shape of the orbitals.

(d) If orbital l undergoes a change, then orbital k will re-

optimize its shape such that the exchange interaction between

the electrons in k and l is maximized, i.e. the overlap between

equal-spin orbitals is maximized and that between opposite-

spin orbitals is minimized. This effect is related to the steric

repulsion in chemistry and will therefore be called steric

exchange interaction.

Given the ambiguity in the choice of the orbitals, neither

effects (a) and (c) nor effects (b) and (d) can be separated strictly.

Both (a) and (c) describe the spin–spin coupling processes at the

one-electron level, whereas (b) and (d) reflect the impact of

electron–electron interactions on the spin–spin coupling. Effects

(b) and (d) can eventually be related to the minimization of a2

b overlap for the electrons in the perturbed molecule.

Similarly as for decomposition criterion III, the DSO term is

different from the other three terms in that there are no

electron-interaction contributions. As there are no orbital-

interaction terms either, only case (a) is relevant for the

DSO term (Fig. 1).

The separation of the total SSCC into one- and two-electron

contributions can be done as described in ref. 69: all orbital

contributions of interest are calculated at the CP-DFT level

and at the SOS-DFPT level. The SOS-DFPT calculation will

provide the one-electron part (i.e., effect (a) or (c)) for the

respective orbital contribution as was explained in section 2.7

whereas the difference between CP-DFT and SOS-DFPT

results will yield the two-electron part (i.e., effect (b) or (d)).

(IV) Lewis and non-Lewis contributions. Even in an LMO

description, the MOs comprise delocalization tails indicative

of, e.g., conjugation effects. These delocalization tails can play

a crucial role for the transport of spin information, especially

for higher-order SSCC’s, because they may establish efficiently

contact to other orbitals or to the coupling nuclei. The

contribution of these delocalization tails to the SSCC can be

quantified by decomposing each occupied orbital into a so-

called Lewis part, which reflects the character of the orbital in

the Lewis scheme (i.e., bond, lone pair, or core orbital), and a

non-Lewis part, reflecting all delocalization effects not de-

scribed in the Lewis scheme.68 The J-OC-PSP approach is

able to cover both the Lewis and the non-Lewis parts of

spin–spin coupling.68 For this purpose, one proceeds as

follows:

(a) One starts with a J-OC-PSP analysis as described in (II).

(b) One determines the natural bond orbitals (NBOs) of the

unperturbed system.118

(c) The electron structure of the unperturbed system is then

modified such that all Lewis NBOs are doubly occupied

whereas all non-Lewis orbitals are kept unoccupied.

(d) The J-OC-PSP analysis is redone starting from this

modified electron structure.

The results obtained in step (d) can be considered as Lewis

contributions, whereas the difference between the results from

steps (a) and (d) determines the impact of the non-Lewis

contributions, i.e. thus providing the delocalization features

to spin–spin coupling.

(V) Cartesian components. Even though only the isotropic

average of the SSCC tensor can be observed in experiment the

decomposition of SSCC into their Cartesian contributions

provides additional insight into the coupling mechanism and

can be related to the anisotropy of the electron density

distribution.70

The J-OC-PSP method is set up in a way that the individual

J-OC-PSP contributions are reciprocal as was required in

section 4.1: each J-OC-PSP contribution can be formulated

as a mixed derivative of a properly chosen energy expression

with respect to ~mA and ~mB, or their Cartesian components. The

value of such a mixed derivative does not depend on an

interchange of nuclei A and B.

As is shown in Fig. 1 for (I)–(III), one can in principle apply

all dimensions (decomposition criteria) of the analysis simul-

taneously, i.e., decompose the total SSCC into Ramsey terms,
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each Ramsey term (except the DSO term) into one-electron

and two-electron contributions, each one-electron contribu-

tion into direct Ramsey response and first-order delocaliza-

tion, etc. However, there are a number of reasons why such a

complete analysis is more the exception than the rule:

(i) The large number of terms resulting, if calculated on a

routine basis, is expensive to compute.

(ii) The amount of data makes it difficult to rationalize the

results.

(iii) Apart from this, many of the contributions shown in

Fig. 1 can be expected to be small, e.g., two-electron contribu-

tions to the PSO term are small in most cases.

Therefore it is advisable to select for each SSCC problem

those decomposition criteria and that level of detail that is of

interest for the questions to be answered. Often the investiga-

tion is refined for individual terms in an iterative process where

one e.g. starts with an investigation along (I) and (II) and then

considers (III), (IV), or (V) for selected terms. Thus, the J-OC-

PSP analysis may be seen as a versatile ‘‘tool box’’ rather than

a rigid algorithm for the investigation.

4.3 Computational considerations

The computational realization of the J-OC-PSP method is

described in detail in ref. 61–64, 68 and 69. The basic idea is to

perform a number of calculations for each SSCC under

consideration where in each calculation selected orbitals are

either kept passive, i.e., their interaction with the coupling

nuclei is switched off, or kept frozen, i.e., the orbitals are kept

fixed to the shape they have without the magnetic perturba-

tion. The J-OC-PSP contributions are then obtained as the

difference of the SSCC values for different sets of passive or

frozen orbitals.

The idea of the J-OC-PSP analysis is initially not tied to a

particular method to calculate the SSCC. However, the prop-

erties of the algorithm lead to a number of requirements: (i)

The calculation method needs to be efficient, as a number of

SSCC calculations is required for each pair of coupling nuclei.

(ii) The method is based on an orbital picture, with a sharp

distinction between occupied and unoccupied orbitals. Thus,

the method should provide orbitals in a natural way. (iii)

Clearly, to be applicable, the method has to provide reliable

values for the SSCC.

The DFT calculation of SSCCs58 meets these criteria,

providing a relatively cheap but still reliable calculation of

SSCCs and a representation of the results in terms of zero- and

first-order KS orbitals. Therefore, the method has been im-

plemented as an extension of our code for the DFT calculation

of SSCCs contained in the COLOGNE 2006 package.119

COLOGNE 2006 allows to solve the CP-DFT equations in

terms of LMOs, i.e., the J-OC-PSP algorithm could be inte-

grated into the code for SSCC calculations in a natural way.

The J-OC-PSP analysis can be performed in any kinds of

canonical or non-canonical MOs. To comprehend the cou-

pling mechanism in the best possible way, one should use a set

of orbitals that suits the chemist’s intuitive understanding of

bonding and electronic structure in terms of bonding, lone

pair, or core electrons. Therefore, the J-OC-PSP analysis is

usually performed in terms of LMOs. The proper choice of the

LMO’s is critical for the relevance of the J-OC-PSP re-

sults.61,68 Natural LMOs (NLMOs) have a similar shape as,

e.g., LMOs obtained from a Boys localization,120 however

they lead, contrary to Boys-localized LMOs, to unreasonable

orbital contributions, due to their construction. NLMOs are

formed from natural atomic orbitals (NAOs), which implies

that the NLMO core orbitals contain tails made up from

valence shell orbitals. Analogously, the bond and lone pair

NLMOs become contaminated by the core orbitals. This

mixing between different types of orbitals in the NLMOs gives

rise to artifacts in the J-OC-PSP contributions reflected by

relatively large core orbital contributions to the spin–spin

coupling mechanism, which are mechanistically seen unrea-

sonable. Boys-localized orbitals120 do not show these artifacts,

provided that the localization is performed separately for

groups of orbitals (core, s valence orbitals, p orbitals). There-

fore, Boys-localized orbitals are preferentially used for the

J-OC-PSP analysis.

In the following we will demonstrate the usefulness of the

J-OC-PSP analysis method for the example of the one bond

coupling constant of FH.70 The experimental gas phase
1J(19F,1H) value is 529 Hz,121 which has to be corrected for

vibrational contributions to compare it with the calculated

value. In recent years, various ways of calculating vibrational

corrections for SSCCs have been developed122–125 and it has

been shown that their magnitude can be substantial. In the

case of the one-bond FH SSCC calculated vibrational con-

tributions vary between 26 and 37 Hz126,127 thus correspond-

ing to (equilibrium) Je constants between 555 and 566 Hz.

These values agree reasonably with the 553 Hz obtained in a

BLYP(60,40) calculation at Re(FH) = 0.9169 Å , in which

60% of exact exchange and 40% of Becke exchange58 have

been used together with a large (15s6p3d1f/10s3p1d)

[15s4p3d1f/10s3p1d] basis set to describe FC and PSO term

reasonably accurately.70 According to this calculation, the FC

term contributes 355 Hz, the PSO term 204 Hz whereas SD

(�6 Hz) and DSO terms (0.2 Hz) are small.70 The SSCC is

large because the magnetogyric ratio of both the proton

(26.7522 � 107 rad T�1 s1) and 19F (25.1815)76 are rather

large. Normally, one analyzes the reduced SSCC K to exclude

the influence of the magnetogyric ratios and to obtain compar-

able quantities. In the present case, we consider SSCC J

because we want to consider just the usefulness of J-OC-PSP.

4.4 The spin-polarization terms

The first mechanism for the transfer of spin information

between perturbing (H) and responding nucleus (F) is pro-

vided by spin-polarization of the electron density distribution.

As pointed out in section 2.6, the electrons can interact with

the magnetic field of the nucleus in two ways (see Fig. 3).

(a) The internal uniform magnetic field of the nucleus can

only be experienced by those electrons which have a finite

probability of being located at the contact surface of the

nucleus, i.e. only the s-electrons can ‘‘see’’ the internal mag-

netic field of the nucleus (lower part of Fig. 3). Accordingly, s-

orbitals are in this case active orbitals, which does not exclude

that s-density, once spin polarized, passes on spin polarization

to other electrons that do have a zero-probability of being

2802 | Phys. Chem. Chem. Phys., 2007, 9, 2791–2816 This journal is �c the Owner Societies 2007



located at the contact surface (p-, d-, f-electrons). Active and

passive contributions together establish the FC coupling me-

chanism.

(b) The FC-passive electrons ‘‘see’’ the external dipole field

of the nucleus and therefore they become spin polarized (upper

part of Fig. 3). When they pass this spin polarization directly

or indirectly to the responding nucleus, the SD term results.

Although both FC and SD coupling mechanisms follow the

three-step transfer mechanism described above, they differ in

one fundamental aspect, which is reflected by the form of the

FC and SD operators discussed in section 2.6. The former is an

isotropic operator (because its kernel is the Dirac delta

operator d(riA), see section 2.6) that leads just to one contribu-

tion (per orbital) whereas the latter is an anisotropic operator

that has to be isotropically averaged. First, we will consider

the FC coupling mechanism.

4.4.1 The Fermi contact (FC) coupling mechanism. A typi-

cal explanation of the 1J(F,H) value would use a Dirac vector

model of spin–spin coupling to predict the dominant mechan-

ism and the sign of the SSCC (see Fig. 4). Assuming a spin for

the perturbing nucleus H, the Fermi hyperfine interaction

between nucleus and electron should lead to a preference of

b spin close to H. The other electron in the bond must have a
spin (to comply with the Pauli principle and to maintain spin-

neutrality for the bond orbital) and because of electron

correlation it should be close to the F nucleus, which then as

a result of another Fermi interaction prefers b spin. Accord-

ingly, the spins of the coupling nuclei have the favorable a–b
configuration thus leading to a positive SSCC. Although this

kind of explanation is used often, it is flawed in several ways.

(1) The Dirac vector model describes only the coupling

mechanism caused by the FC term. The assumption that the

FC term dominates the coupling mechanism is valid only for

special situations, however does not hold in general. In the

case of the one-bond coupling in FH the PSO coupling

mechanism is equally important.

(2) An explanation of spin–spin coupling based on the Dirac

vector model as shown in Fig. 4a could be misunderstood in

the way that the spin transfer mechanism is tuned to Pauli

pairing and electron correlation rather than exchange effects.

It is correct that b-spin density at the perturbing nucleus H

causes more b-spin density withdrawn from the region of F to

increase and optimize exchange interactions in the region of

the proton. This leads to a dominance of a spin in the region of

the F nucleus with the described consequences for Fermi

hyperfine coupling at this nucleus. Hence, the maximization

of stabilizing exchange interactions, rather than dynamic

electron correlation, is the basic spin transfer mechanism

indicated by the Dirac vector model. This is more clearly

shown in Fig. 3b.

(3) The information provided by the Dirac vector model is

valid exclusively for the contact region and not for any other

region in the valence shell or bond region. The sign of spin

polarization can change several times according to the number

and the positions of the nodal surfaces of zeroth- and first-

order LMOs in the molecule, which has nothing do with

electron correlation or the Pauli principle. The latter is active

also without any magnetic perturbation.

(4) One has also to consider that the Dirac vector model

refers only to the contribution of the bond orbital, which is

just one of several contributions. In the case of FH, the lone-

pair contributions may be equally important and their sign

cannot be determined with the standard Dirac vector model.

The Dirac vector model can be used to predict the sign of

the FC term in the case of two-, three- and n-bond spin–spin

coupling for acyclic unsubstituted hydrocarbons because for

these molecules the bond orbital contributions to the FC

coupling mechanism are dominant. Between perturbing and

responding nuclei there are one or more nuclei along the

Fig. 3 Magnetic field of a finite nucleus with radius R. In the lower

part of the drawing, the nucleus with radius R is enlarged to see the

internal uniform magnetic field.

Fig. 4 Dirac vector model of spin–spin coupling (a) in the form

normally presented in the literature, (b) in a revised form, which

explains the driving force of the FC coupling mechanism. The nuclear

spin is indicated by large up (a) and down (b) arrows surrounded by a

circle symbolizing the finite size of the nucleus.
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coupling path. One has to consider for these nuclei and the

surrounding electron shells the exchange interactions at an

atom as described by the intra-atomic Hund rule, which

predicts that all valence electrons at an atom involved in

bonding possess the same spin. By doing so, the Dirac vector

model predicts that the geminal H,H FC coupling term in

methane should have a negative sign, the vicinal H,H FC

coupling term in ethane a positive sign, etc.15.

After having clarified the contents and the limitations of the

Dirac vector model, it is appropriate to describe the FC

coupling mechanism in more detail by considering the electron

structure of the FH molecule in terms of bond, lone pair, and

core LMOs. The bond LMO makes indeed a large positive

contribution to the FC term (2055 Hz, Table 170), which is

almost six times as large as the FC term itself. To analyze this

contribution further, we introduce the FC spin polarization

density distribution as a first order density distribution de-

scribing the FC coupling mechanism:61

mðBÞ;FCðrÞ ¼ 2
Xocc
k

X
s

cð0Þks ðrÞc
ðBÞ;FC
ks ðrÞ

¼ 4
Xocc
k

fð0Þk ðrÞf
ðBÞ;FC
k ðrÞ ð31Þ

where the FC term is given by

KFC
AB ¼

8

3
pa2 mðBÞ;FCðRAÞ; ð32Þ

i.e., the FC term is proportional to the FC spin polarization

density at the position of the responding nucleus (A) and the

FC spin polarization density is obtained from summing over

products of zeroth and first order orbitals. One can split

m(B),FC into one- and two-orbital contributions in the same

way as the FC term itself:61
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In Fig. 5, the generation of the FC spin polarization density

distribution of the FH bond orbital via multiplication of the

zeroth order bond orbital with the corresponding first order

orbital according to eqn (34a) is shown. The sign of the FC

coupling term is determined by the signature of the FC spin

polarization density at the position of perturbing nucleus (H:

negative = b-FC spin polarization density; dashed contour

lines; Fig. 5) and responding nucleus (F: positive = a-FC spin

polarization density; solid contour lines) and is in line with the

prediction made with the help of the Dirac vector model

(Fig. 4).61

Fig. 5 reveals that the signs of the FC spin polarization

density at the coupling nuclei can be anticipated by just

Table 1 FC orbital contributions to the one-bond coupling constants 1J(FH) in FHa

Orbital Term FC SD PSO DSO Total

One-orbital terms
Bond Direct Ramsey response 847 �16 �44 �13 774

Self-exchange interaction 1208 �18 �10 — 1181
Sum 2055 �34 �54 �13 1955

Lone pair s Direct Ramsey response �393 �2 40 4 �352
Self-exchange interaction �183 �1 7 — �178
Sum �576 �3 47 4 �530

Lone pair p Direct Ramsey response 0 23 124 10 157
Self-exchange interaction 0 21 78 — 99
Sum 0 44 202 10 256

Two-orbital terms
lp s 2 c external Steric exchange interaction �54 �54
bd 2 lp s echo 1st order delocalization 56 �1 55

Steric exchange interaction 69 �2 67
Sum 125 �3 123

bd 2 lp s external 1st order delocalization �319 �4 �323
Steric exchange interaction �763 �9 �772
Sum �1082 �13 �1095

Three-orbital terms
c 2 bd 2 lp s Steric exchange interaction �132 �132
s 2 p Steric exchange interaction 30 30
Ramsey terms Direct Ramsey + 1st order delocalization 191 120 0.2 311
(All orbitals) Self-exchange + steric exchange 164 �6 84 — 242

Sum 355 �6 204 0.2 553

a All values are given in Hz for the isotopes 19F and 1H. LMO contributions are denoted as c (core), bd (bond), lp (lone pair). For the two-orbital

contributions the double-headed arrow indicates that both the contribution B - k - l - A and the contribution B - l - k - A is included.
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considering the bonding LMO. For any XH bond of molecules

XHn the bonding LMO has the same signature ratio (+�)
determined by the nodal structure where the number of nodal

surfaces increases for X being an element of successively

higher periods in the periodic table without changing the

signature ratio. In the same way, the signature ratio of the

corresponding first order bond LMO (++ or ��) can be

anticipated because this LMO is characterized by the mixing

of the zeroth order s(XH) LMO with a dominant s*(XH)

contribution, which adds one additional nodal surface to the

existing nodal structure and, accordingly, leads at one of the

nuclei to one sign switch. When forming the FC spin polariza-

tion density by multiplication of zeroth order and first order

LMO the signature ratio of the former is preserved thus

yielding a positive bond orbital contribution to the FC term

as discussed above. In these considerations, the phase factor of

the zeroth order LMO can be taken freely where, however, the

role of perturbing and responding nucleus must be adjusted.

In the same way as the bond orbital contribution can be

analyzed it is also possible to analyze and anticipate the sign of

all other FC orbital contributions where that of the s lone pair

orbital is the most important one. For zeroth order and first

order s lone pair orbitals there exist again fixed signature

ratios at the coupling nuclei (�� or ++) determined by the

nodal structures of these LMOs. Again, the first order LMO is

characterized by the mixing in of the s*(XH) LMOwhich now

leads to the adding of two additional nodal surfaces between

the coupling nuclei in the way that there is a synchronous

change of the signatures at the coupling nuclei in the first order

LMO. Again, the signature of the FC orbital contribution is

fixed by the signature ratio of the zeroth order orbital at the

coupling nuclei. This is used in Fig. 6 to explain why the FC

lone pair contribution must be negative utilizing extended

Dirac vector diagrams, which show also the zeroth order

orbital in question.61,70

The distribution of spin in an LMO is given by its nodal

structure. The lobe surrounding perturbing nucleus is the

region of b electron spin, the adjacent lobe of the LMO

separated by a nodal surface the region of a electron spin. If

there is just one nodal surface, as in the case of FH, the FC

spin polarization density at the responding nucleus will be

determined by its position with regard to the nodal surface. If

it is in the adjacent lobe, it will be a and the FC contribution is

positive (Fig. 6, bond orbital; upper left); if it is in the same

lobe, it will be b and the FC contribution is negative (Fig. 6, s
lone pair orbital; lower left). These considerations and the

extended Dirac vector diagrams shown in Fig. 6 are valid for

any one-bond XH coupling contribution to the FC term as we

have shown previously.61,70

In Table 1, the one-orbital FC contributions are further

analyzed by splitting them in direct Ramsey response and self-

exchange interaction part. For the bond LMO, the direct

Ramsey response is smaller (847 Hz, Table 1) than the self-

exchange part (1208 Hz). This can be explained by considering

that the large electronegativity of F leads to a very polar and

tight bond orbital difficult to distort. Accordingly, the space

confinement leads to a large self-exchange value. The s lone

pair orbital is more diffuse, easier to distort and less confined.

Hence, the direct Ramsey response (�393 Hz) becomes abso-

lutely larger than the self-exchange part (�183 Hz). The total

contribution of the lone pair orbital (�576 Hz) is smaller than

that of the bond LMO (2055 Hz) because of the lower density

at H (positioned far out in the diffuse back lobe of the s lone

pair orbital) thus leading to a lower FC spin polarization

density at this nucleus.

Since both bond and lone pair LMO are confined in the

region of F, a strong steric exchange interaction (�763 Hz,

Fig. 5 FC spin polarization density distribution of the FH bond

orbital (right side) generated by multiplying the zeroth order bond

orbital (upper left) with the corresponding first order orbital (lower

left) all given in form of contour line diagrams. Solid contour lines of

the FC spin polarization density distribution indicate a, dashed

contour lines b FC spin polarization density. For the LMOs, solid

(dashed) contour lines denote positive (negative) amplitudes. The

signature of LMOs and FC spin polarization density at the coupling

nuclei is indicated.

Fig. 6 Total FC spin polarization density distribution of the FH

coupling constant given in form of a contour line diagram. Solid

contour lines of the FC spin polarization density distribution indicate

a, dashed contour lines b FC spin polarization density. The signature

of the FC spin polarization density at the coupling nuclei is indicated.

The major contributions to the total FC spin polarization density

result from the bond orbital and the s lone pair orbital. The signs of

these contributions are given by the extended Dirac vector diagrams

on the left side of the drawing (see text).
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Table 1) between these orbitals results. One can show using the

sign pattern discussed before61,70 that this must be negative

where the steric exchange contribution is absolutely larger

than the first order delocalization (�319 Hz), again because of

bond polarity and space confinement. A three-orbital contri-

bution involving these LMOs and the core LMO is also

negative (�132 Hz, Table 1) so that the FC term is dominated

by the positive bond LMO contribution, which is substantially

reduced by lone pair LMO contributions. Taking all one- and

two-orbital terms together a positive FC term results (355 Hz,

Table 1), the sign of which is confirmed by the total FC spin

polarization density distribution being negative at H and

positive at F (Fig. 6).

By analyzing the one-bond FC term of 1J(F,H), a basic

understanding of the FC coupling mechanism for all one bond

SSCCs of the type 1J(X,H) and also 1J(X,Y) with X and Y

being any element of the periodic table is gained. It turns out

that (i) the node patterns are the same for all zeroth order XH

bond LMOs and (ii) also for all zeroth order lone pair (X)

LMOs in any XHn molecule. (iii) The same holds for the first

order LMOs so that (iv) all one- and two-orbital FC contribu-

tions to 1K(X,H) have the same sign as found for FH. (v) This

means that the relative size of bond and lone pair LMOs

determines the magnitude and the sign of the FC term in one-

bond XH coupling constants. The relative size of the various

LMO contributions depends in turn on the physicochemical

properties of X, especially its electronegativity and polariz-

ability. For example, it is easy to predict that the negative lone

pair FC contributions should increase within a group (X = F

to I) because of increasing lone-pair density at the position of

the proton, which should be more pronounced than the

increase of bonding electron pair density at H. Accordingly,

the exponential increase of the 1FC(X,H) term within a group

of the periodic table61,117 will be reduced and finally inverted

with increasing number of valence electron lone pairs for

molecules XHn. This is of course relevant in connection with

the observed dependence of total 1K(X,H) values on the

atomic number117 where however other Ramsey terms will

also play a role.61

Extension of the observations and predictions made for one-

bond XH SSCCs to one-bond XY SSCCs is straightforward

where however it has to be considered that the two- and three-

orbital contributions play a larger role. Geminal, vicinal, and

long range FC coupling mechanisms can be analyzed in a

similar way.62,66,68 In this connection a differentiation between

through-bond and through-space coupling mechanisms be-

comes important.

4.4.2 The spin dipole (SD) coupling mechanism. There are

some essential differences between the FC and the SD coupling

mechanisms. Responding (perturbing) nucleus and the elec-

tron system interact in the latter case nonlocally. The perturb-

ing nuclear moment of (B) generates a dipole field that is

monitored by the quadrupolar potential residing at the re-

sponding nucleus (A). Hence, the SD term is contrary to the

FC term in being orientation dependent. For the purpose of

determining the isotropic SD term, one has to calculate the

diagonal elements of the SD tensor, which are obtained when

the quadrupole potentials represented by operators B̂SD
A and

B̂SD
B adopt the same orientation. If they have different orienta-

tions, the off-diagonal elements of the SD tensor will be

obtained, which do not enter the isotropic SD term.

The diagonal components of the SD tensor, KSD
AB,ii (k= x, y,

z) are evaluated from six subcomponents KSD
AB,(kl):

63

KSD
AB;kk ¼

X
l

KSD
AB;ðklÞ ð35aÞ

KSD
AB;ðklÞ ¼ 4

Xocc
k

fð0Þk j B̂ SD
A;ðklÞ

� �
jfðBÞ;SDk;ðklÞ

D E
: ð35bÞ

where the symbol (kl) = (xx), (yy), (zz), (xy), (xz) or (yz)

specifies the orientation of the spin moment of the perturbing

nucleus (first index) and the component of the associated

dipole field (second index). Hence, for each SD orbital con-

tribution these six subcomponents have to be calculated to

obtain the three diagonal components and finally the isotropic

value of SD. This holds also for the SD spin polarization

density and its orbital contributions

m
ðBÞ;SD
ðklÞ ðrÞ ¼ 4

Xocc
k

fð0Þk ðrÞf
ðBÞ;SD
k;ðklÞ ðrÞ ð36Þ

with

fðBÞ;SD
k;ðklÞ ¼

X
a

hfð0Þa jF
ðBÞ;SD
ðklÞ jf

ð0Þ
k i

ea � ek
jfð0Þa i ð37Þ

and

F̂
ðBÞ;SD
ðklÞ ¼ B̂

ðBÞ;SD
ðklÞ þ ~F

ðBÞ;SD
ðklÞ ð38Þ

where space orbitals f rather than spin orbitals C have been

used. At the responding nucleus (A), the SD spin polarization

density distribution is weighted with the quadrupole potential

B̂(A),SD
(k, l)

B̂
ðAÞ;SD
ðklÞ ¼ a2 3

xA;kxA;l

r5A
� 1

r3A
dkl

� �
ð39Þ

to yield the six subcomponents of the SD energy density

distribution.

rðABÞ;SDðklÞ ðrÞ ¼ B̂
ðAÞ;SD
ðklÞ m

ðBÞ;SD
ðklÞ ðrÞ ð40Þ

These can also be split into one- and two-orbital terms. Hence,

the subcomponents of the SD term can be written in short

form as

KSD
AB;ðklÞ ¼

Z
d3r B̂

ðAÞ;SD
ðklÞ m

ðBÞ;SD
ðklÞ ðrÞ

¼
Z

d3rrðABÞ;SDðklÞ ðrÞ
ð41aÞ

and the total isotropic SD term as

KSD
AB ¼

1

3

X
kl

KSD
AB;ðklÞ ¼

1

3

X
kl

Z
d3rrðABÞ;SDðklÞ ðrÞ

¼
Z

d3rrðABÞ;SDðrÞ ð42Þ

where r(AB),SD(kl) (r) is the total isotropic energy density distribu-

tion.
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As can be seen from Table 1, the total SD term of 1J(FH) is

just �6 Hz because individual orbital contributions cancel

each other largely. The s LMOs make together a negative

contribution of�37 Hz whereas the p lone pair orbitals lead to

a positive contribution of 44 Hz. Magnitude and sign of these

LMO contributions can be understood when considering the

SD coupling mechanism.

Fig. 7a shows a contour line diagram of the calculated

m(H),SD
(zz) subcomponent of the SD spin polarization density

distribution (perturbing moment at the H nucleus in z direc-

tion; z-component of spin polarization) resulting from the s
bond and lone pair LMO. Fig. 7c gives the corresponding

diagram for the (xx) subcomponent. The two spin polarization

density distributions resemble each other apart from the

opposite signature. The SD spin–spin coupling mechanism

for the s LMOs is, similarly to the FC coupling mechanism,

dominated by excitations into the s*(FH) bond orbital as is

confirmed by Fig. 7b showing a contour line diagram of the

first-order bond orbital for the (xx) subcomponent of the SD

spin polarization density distribution. The first order bond

LMOs for the SD(xx) and the FC term resemble each other

where the latter has a larger s character at the H nucleus in

response to the localized FC perturbation. The first order

bond LMO for SD(xx) however possesses considerable pz
character at both F and H thus making an SD contribution

for this LMO possible according to the following selection

rules for p-orbitals:63

B̂
ðBÞ;SD
ðxxÞ : px ! p�x; py ! �p�y; pz ! �p�z ð43aÞ

B̂
ðBÞ;SD
ðyyÞ : px ! �p�x; py ! p�y; pz ! �p�z ð43bÞ

B̂
ðBÞ;SD
ðzzÞ : px ! �p�x; py ! �p�y; pz ! p�z ð43cÞ

B̂
ðBÞ;SD
ðxyÞ : px ! p�y; py ! p�x ð43dÞ

B̂
ðBÞ;SD
ðxzÞ : px ! p�z ; pz ! p�x ð43eÞ

B̂
ðBÞ;SD
ðyzÞ : py ! p�z ; pz ! p�y ð43fÞ

where * denotes a higher lying unoccupied p-orbital.

The scheme in the lower part of Fig. 7 gives in a simplified

way the form of the m(H),SD
(zz) subcomponent generated by the

bond orbital (similar pictures apply to all one- and two-orbital

terms involving s LMOs). It resembles a double cone along

the z-axis with a dominance of b spin density along the FH

axis and a surplus of a spin density in the outer regions of the

F atom perpendicular to the bond axis. The signatures of the

quadrupole potential generated by the responding nucleus

(shown in Fig. 7a and c by the encircled plus and minus signs)

reveal that the corresponding SD energy density distributions

are dominantly negative where one has to consider the weight-

ing with a factor rA
�3, i.e. only the SD spin polarization

density close to the F nucleus makes a sizable contribution.

The SD(zz) subcomponent due to the bond LMO contribution

is �68 Hz (Fig. 7), which dominates the value of the diagonal

element SD(zz) (66 Hz) of this LMO.

The p(F) lone pair orbitals participate in the SD coupling

mechanism mainly by excitations into high-lying Rydberg p-

orbitals with some FH antibonding p* character. The (xx),

(yy), and (zz) subcomponents all make positive contributions

to 1SD(F,H) (2 � 40 and 53 Hz, respectively; see Fig. 8a). This

can be explained in the same way as done for the s LMOs.63

Taking all orbital contributions together, the total isotropic

SD energy density distribution of Fig. 8b results, in which the

axially oriented negative contributions of the s LMOs can be

clearly distinguished from the positive contributions from the

p(F) lone pair LMOs which fill a torus around the F nucleus

Fig. 7 Analysis of the SD term of the SSCC 1J(F,H) calculated at the CP-DFT/BLYP(60:40) level of theory. (a) Contour line diagram of the SD

spin polarization density distribution of the (zz) subcomponent for the contribution from the bond and s lone-pair orbitals. (b) SD first-order

bond orbital s(FH) calculated for the (xx) subcomponent. (c) SD spin polarization density of the (xx) subcomponent for the contribution from the

bond and s lone-pair orbitals. Solid contour lines indicate positive values, dashed contour lines negative ones. The signature of the quadrupole

potential at the responding nucleus F is indicated in sections (a) and (c). The drawing in the lower part gives schematically the double cone of the

spin polarization density oriented along the bond axis (z-direction) as caused by the bond orbital.
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perpendicular to the axis. Because of the rA
�3 weighting, the

SD energy density is concentrated around the responding F

nucleus. The regions of positive and negative SD energy

density largely cancel so that a small negative isotropic SD

term results for 1J(F,H) (Table 1).

4.5 The spin–orbit terms

The second mechanism for the mediation of spin information

between perturbing and responding nucleus is provided by the

spin–orbit (SO) coupling mechanism (section 2.6). Despite the

gauge ambiguity of the DSO and PSO terms, it is reasonable

to ascribe them two different physical coupling processes: the

DSO term reflects a Larmor precession of the electron system

induced by the magnetic moment, i.e. an induction of orbital

currents that are not present without the applied magnetic

field. In contrast, the PSO mechanism describes a situation

where orbital currents and resulting magnetic orbital moments

are always (i.e. also in the absence of an external magnetic

field) present but cancel each other as, e.g., in the case of a

closed p-shell. The applied magnetic field will modify (increase

or decrease) these orbital currents and lift the mutual cancella-

tion, resulting in a net orbital current and magnetic moment.

This picture of para- and diamagnetic interactions is in line

with the notion of para- and diamagnetism in classical electro-

dynamics.1–5

The DSO and PSO mechanisms require that different selec-

tion rules are fulfilled for the orbitals involved where these

rules can be derived from the form of the perturbation

operator. An easier way of comprehending the selection rules

is based on the physical nature of the DSO and PSO coupling

mechanisms. A Larmor precession can be induced in any

orbital. Consequently, DSO coupling involves all orbitals of

the molecule.

In contrast, the PSO term requires (i) previously existing

orbital currents that (ii) must be modifiable by the external

magnetic perturbation. Requirement (i) implies that PSO

coupling can only take place if occupied orbitals with non-s

character exist at the coupling nuclei. In most cases, the orbital

currents are carried by p orbitals. Requirement (ii) implies that

in addition low-lying virtual orbitals with non-s character

must be present at the coupling nuclei. A more detailed

analysis reveals64 that the unoccupied orbitals must have the

same angular momentum quantum number c as the corre-

sponding occupied orbital but be of a different type, i.e. differ

with regard to the magnetic quantum number ml, e.g., px -

py* leads to a PSO contribution whereas px - px* does not.

Contrary to the ubiquitous DSO mechanism, the PSO me-

chanism will occur only if suitable occupied and virtual

orbitals are available at the coupling nuclei. If PSO coupling

is present it will mostly outweigh DSO coupling. Again, this is

in line with para- and diamagnetism in classical electro-

dynamics.1–5

In analogy to the FC and SD terms, appropriate densities

are useful to describe the coupling mechanism from a local

point of view. These densities may be considered for the total

SO coupling or for DSO and PSO separately. As in the case of

the SD term, two kinds of densities are introduced to empha-

size the separated roles of perturbing and responding nuclei: (i)

the current densities j(B),XSO
n (r) (k = x,y,z, XSO = SO, DSO,

PSO) describe the orbital current induced by the magnetic

perturbation at atom B oriented in direction k. (ii) The energy
densities r(AB),XSO

k (r) specify the current density weighted with

the vector potential from the nuclear magnetic moment at

nucleus A, i.e., the local contributions of the induced current

density to the indirect spin–spin interaction energy. We will

discuss the DSO and PSO terms for the FH molecule, making

use of orbital contributions, current densities, and energy

densities.

The spin–spin coupling between two nuclei is reciprocal,

and an appropriate choice of the perturbing nucleus can

simplify the analysis of the coupling mechanism. In the

analysis of the SO terms, we will consider F as the perturbed

nucleus and H as the responding one.

4.5.1 The diamagnetic spin–orbit (DSO) coupling mechan-

ism. The DSO term is calculated utilizing the unperturbed

(zeroth order) orbitals. Consequently, the DSO term com-

prises only one-orbital contributions, which we consider as

direct Ramsey response terms. Calculated orbital contribu-

tions for the SD term of 1J(F,H) are listed in Table 1.

The total DSO contribution amounts to just 0.2 Hz and is

negligible as compared to the total 1J(F,H) value. However,

both the individual Cartesian components (maximally 90 Hz;

not shown, see ref. 70) and the orbital contributions to the

DSO term are non-negligible, which shows that the small total

DSO contribution is due to a nearly complete mutual com-

pensation between both Cartesian components and orbital

contributions. As regards individual orbitals, the valence and

lone-pair orbitals contribute between �12.8 Hz (bond orbital)

and 9.5 Hz (p lone pair orbitals). Noteworthy is that the total

contribution of the valence LMOs amounts to just 0.5 Hz,

revealing that individual contributions from this group of

LMOs largely cancel each other.

Magnitude and sign of the DSO orbital contributions can be

explained with a theorem derived by us recently utilizing a

multipole expansion of the charge densities and vector poten-

tials around the perturbing nuclei:58 A spherical charge dis-

tribution centered at one of the coupling nuclei, e.g. the

Fig. 8 Analysis of the SD term of the SSCC 1J(F,H) calculated at the

CP-DFT/BLYP(60:40) level of theory. (a) Contour line diagram of the

SD spin polarization density distribution of the (xx) subcomponent

for the contribution arising from the lone pair ppy(F) orbital. (b) Total
isotropic SD energy density distribution of the FH coupling constant

given in form of a contour line diagram. Solid contour lines indicate

positive values, dashed contour lines negative ones. The signature of

the quadrupole potential at the responding nucleus F is indicated in

section (a).
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perturbing nucleus, does not contribute to the isotropic DSO

term as long as it is restricted to a sphere with radius r(A,B).

This theorem can be comprehended using a simple physical

consideration: As mentioned in section 2, the direct spin–spin

coupling between two nuclei vanishes in the isotropic average

although the individual Cartesian components of the direct

coupling tensor can be large. For a spherical charge distribu-

tion centered at the perturbing nucleus, the Larmor precession

always takes place around an axis parallel to the magnetic

nuclear moment and has always the same angular velocity.

The resulting electronic magnetic moment has always the same

magnitude and is always parallel to that of the perturbing

nucleus. Consequently, DSO coupling mediated by such a

charge distribution just acts as a slight amplification of direct

spin–spin coupling. In the same way as the original direct

spin–spin coupling, this amplification has non-vanishing in-

dividual Cartesian tensor components but a vanishing isotro-

pic average.

In Fig. 9a and b, the DSO current density is shown for the

perturbation oriented in x and z direction (now F being the

perturbing nucleus to simplify the following discussion), re-

spectively. The current densities indicate ring currents concen-

trated around the F nucleus, supporting the picture that the

DSO coupling in FH acts as a slight amplification of the direct

spin–spin coupling.

The core 1s(F) LMO leads to a very small DSO contribution

(�0.3 Hz), which simply reflects the spherical symmetry of this

orbital. For the valence LMOs, the inference can be reversed:

the small total contribution of this orbital group indicates that

(i) their total charge density is approximately spherical around

the F nucleus and (ii) that the larger part of this spherical

electron density distribution fits into a sphere with radius r

being half the bond distance d(FH). Point (i) suggests that the

FH bond is strongly polar so that the charge distribution

around the F atom closely resembles that of a free F� ion. In

other words, the small total DSO value is a descriptor of the

bond polarity of the FH molecule and by this also for the

electronegativity difference between F and H. The value close

to zero predicts large ionic character of the FH bond.

The signature of the valence and lone-pair contributions can

be understood from another theorem formulated recently by

us:58 The charge density inside the sphere around the diameter

d(AB) of bond AB makes a negative contribution to the DSO

term of J(A,B), the charge density outside this sphere, a positive

contribution. The DSO energy density distribution for J(F,H)

is shown in Fig. 9c. The sphere that separates the region with

negative DSO energy density (inside) from the region with

positive DSO energy density (outside the sphere) is indicated

(radius r = 0.5 d(F,H)). This second theorem predicts the

bond orbital contribution to be negative (�13 Hz: the bond

orbital is situated mainly inside the reference sphere; Fig. 9c

and Table 1) and the lone pair contributions to be positive (4,

5 and 5 Hz: the s and p lone pair LMOs are situated mainly

outside the reference sphere, Fig. 9c and Table 1). The total

DSO term is small (typically Ko 0.1 SI units) for the majority

of all spin–spin couplings investigated. The question is

whether there are indirect SSCCs, for which one should expect

a large DSO term. The two theorems mentioned in this

paragraph clarify that the DSO term scans charge anisotropy

around each of the coupling nuclei. Thus, a large DSO

contribution should be expected if the charge distribution

around one of the coupling nuclei strongly deviates from

isotropy as one may find this for certain transition metal

atoms.

4.5.2 The paramagnetic spin–orbit (PSO) coupling mechan-

ism. The total PSO term for 1J(F,H) amounts to 204 Hz (Table

1) and makes, contrary to the DSO term, a substantial

contribution to the total 1J(F,H) SSCC. FH is insofar peculiar

as the PSO term possesses the same order of magnitude as the

FC term (355 Hz), whereas the total SSCC of hydrocarbons is

often dominated by the FC term. The large weight of the PSO

coupling in FH is due to three cooperating circumstances: (i)

since the gyromagnetic ratios of the 19F and 1H nuclei are

among the highest ones that have been observed,76 the elec-

tronic spin-information transport is efficiently converted into

large spin–spin coupling. (ii) The FC coupling mechanism is

relatively weak in FH. In reduced units, FC(F,H) in FH is just

about 50% of FC(C,H) in CH4 and about 10% of FC(C,C) in

C2H2. (iii) The electron structure in FH provides an intense

PSO coupling mechanism between the F and H nuclei.

The large PSO term of 1J(F,H) results almost exclusively

from the lone-pair contributions. The p lone pair term is 202

Hz (Table 1), i.e. nearly equal to the total PSO term (204 Hz)

Fig. 9 Analysis of the DSO term of the SSCC 1J(F,H) calculated at the CP-DFT/BLYP(60:40) level of theory.70 Contrary to the contour line

diagrams shown for the spin polarization terms, the F nucleus is chosen as the perturbing nucleus. The positions of F and H nuclei in the drawing

plane are indicated by the element symbols. Contour levels chosen in geometric progression with a factor of 1001/5 between neighboring contour

lines. Solid (dashed) lines refer to positive (negative) scalar densities or current densities out of (into) the drawing plane (indicated by ‘‘out’’ or

‘‘in’’). Contour lines for 0.1 and 10 are printed in bold. All densities scaled by a factor of 10. (a) Total DSO current density distribution j(F),DSO for

the perturbation in z-direction. (b) Total DSO current density distribution j(F),DSO for the perturbation in x-direction. (c) The total isotropic DSO

energy density distribution rDSO.
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as the contributions from bond and s lone pair LMO cancel

each other largely (�54 and 47 Hz, respectively; Table 1). An

analysis of the Cartesian components of the p lone pair

contribution reveals that the x and y parts (318 Hz each)

dominate over the z part (�23 Hz) and by this are the largest

individual contributions to the total PSO term.

In view of the selection rules for a PSO contribution,64 the

zz component of the PSO coupling tensor is related to excita-

tions of the kind px - p*y or py - p*x, the xx component to

excitations py - p*z or pz - p*y, and the yy component to

excitations px - pz* or pz - px*.
64 Fig. 10a shows the first-

order orbital for the py(F) lone pair LMO for the perturbation

in x-direction, which possesses a distinct pz character at the F

nucleus because of the fact that it is dominated by the low-

lying s*(FH) orbital. The resulting orbital current (Fig. 10c) is

a spatially extended ring current around the F atom with the

ring axis in x-direction. This ring current has a large magnetic

moment, giving rise to a strong induced magnetic field at the H

atom and eventually to the observed large x PSO component

for the p(F) lone pair LMOs.

The first-order py (F) lone pair LMO with perturbation in z

direction (Fig. 10b) is dominated by a Rydberg 3px (F) orbital

with a strong orthogonalization tail in the outer sphere of the

F nucleus. The amplitude of this orbital is largest in the core

region of F and relatively small otherwise, with a nodal sphere

enveloping the F core region. The resulting orbital current

(Fig. 10d) is characterized by two opposite ring currents

(compare ‘‘in’’ and ‘‘out’’ signs in Fig. 10d), namely a rela-

tively strong one in the core region of F and a weaker one in

the region outside the core. The magnetic fields resulting from

these ring currents largely cancel each other at the position of

the H atom, which explains the relatively small zz PSO

component resulting from the p(F) lone pair LMO

(�23 Hz70). A similar observation can be made for the s
orbitals because lone pair and bond LMO lead to opposing

ring currents, which again cancel each other largely.

The isotropic average of the total PSO energy density

distributions is shown in Fig. 10e. The alternation of regions

with positive and negative energy densities around the F

nucleus results from the structure of the ring current (in-plane

and out-of-plane currents make opposite contributions to the

total PSO term), whereas the alteration of the energy density

distribution around the H nucleus reflects the way the re-

sponding nucleus weights the orbital current density.

In subsection 4.5.1, we explained that, according to the DSO

LMO contributions, the charge distribution around the F

nucleus in FH resembles that of an F� ion. DSO coupling

from F to H just provides a slight amplification of the direct

spin–spin coupling mechanism with substantial Cartesian

components but a nearly vanishing isotropic average. One

might expect that the same argumentation should apply for

the PSO term and the isotropic PSO average should also

become small. This is not the case for two reasons: (a) the

PSO coupling probes not only the density but also the orbital

structure close to the coupling nuclei. The orbital structure

reflects anisotropy more sensitively than the electron density

distribution. Therefore, there is a much closer resemblance

between the DSO current densities for different orientations of

the perturbing moment (see Fig. 9a and b) than for the

corresponding PSO densities (see Fig. 10c and d). (b) The

argumentation in section 4.5.1 assumed that the induced

currents are restricted to the sphere centered at F with radius

Fig. 10 Analysis of the PSO term of the SSCC 1J(F,H) calculated at the CP-DFT/BLYP(60:40) level of theory.70 Contrary to the contour line

diagrams shown for the spin polarization terms, the F nucleus is chosen as the perturbing nucleus. The position of F and H nucleus in the drawing

plane are indicated by the element symbols. Contour levels chosen in geometric progression with a factor of 1001/5 between neighboring contour

lines. Solid (dashed) lines refer to positive (negative) scalar densities or current densities out of (into) the drawing plane (indicated by ‘‘out’’ or

‘‘in’’). Contour lines for 0.1 and 10 are printed in bold. All densities scaled by a factor of 10. (a) PSO first-order py(F) lone pair LMO given for the

perturbation in x direction. (b) PSO first-order py lone pair LMO given for the perturbation in z direction. (c) PSO current density distribution

from the two (p) lone pair LMOs in the xy-plane for the perturbation in x direction, thus leading to a current in the yz-plane. (d) PSO current

density distribution from the two p(F) lone pair LMOs in the xy-plane for the perturbation in z-direction, thus leading to a current in the xy-plane.

(e) Total PSO energy density distribution for the responding nucleus H.
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r(FH). The comparison of Fig. 9a and b on the one hand and

10c, 10d on the other hand reveals that this is true for the DSO

current densities but not for the PSO current densities. The

different behavior of the DSO and PSO terms underlines that

these two terms probe different features of the electronic

structure and thus provide complementary information.

Remarkably, the p(F) lone pair contribution of the PSO

term contains a substantial portion (39%: 78 Hz, Table 1) of

self-exchange repulsion. This term reflects that the exchange

interaction between moving electrons is different from that of

resting electrons with comparable orbital densities. It is also

noteworthy that interactions between different orbitals play

only a negligible role for the PSO term.

4.6 Comparison of J-OC-PSP to other analysis methods

Mechanistic analyses of the indirect spin–spin coupling are an

active field of research, and a number of approaches have

recently been suggested in the literature. One group of meth-

ods is to comprehend the coupling mechanism, in a similar

spirit as the spin polarization, current, and energy densities we

introduced in ref. 61–64. Malkina and Malkin130 introduced a

coupling energy density (CED), which was used among others

to study through-bond and through-space contributions to
31P–31P coupling constants.131 The usefulness of the CED is

limited by the facts that (i) it covers only FC coupling and (ii)

one has to calculate the perturbed wave function or orbitals of

the molecule up to second order to determine the CED. The

local approach developed by Soncini and Lazzeretti,53 in

contrast, covers all Ramsey terms and can be performed based

on a conventional CP-DFT calculation. The current and

energy densities defined in ref. 53 were used to study
3J(H,H) in ethane132 and the multipath coupling in propane

and bicyclobutane.133 The approach described by Soncini and

Lazzeretti53 is similar to ours64 for the SO terms. The FC and

SD terms, in contrast, are described with the help of current

densities rather than spin polarization ones. Thus, the method

of Soncini and Lazzeretti makes a formally uniform descrip-

tion of all four Ramsey terms possible. However, the descrip-

tion of the FC and SD coupling with a current density is

physically less transparent than with a spin polarization

density as done in J-OC-PSP.61–63 As a complement to their

original approach, Soncini and Lazzeretti described the steric-

exchange part of the FC interaction with the help of a local

exchange energy density.134

The NJC approach developed as NJC-1 by Contreras

et al.49 and later modified by Weinhold et al.51,52 to yield

NJC-2 allows an orbital analysis subsequent to an SSCC

calculation at low computational cost and may therefore

appear as an alternative to the J-OC-PSP approach. However,

the NJC methods show a number of shortcomings: (i) Only

NJC-1 is applicable to all Ramsey terms whereas NJC-2 is

limited to the FC term. (ii) NJC focuses on the last step of the

spin–spin coupling procedure, i.e. the interaction of the elec-

tron system with the responding nucleus. Thus, a balanced

analysis of the whole spin–spin coupling is not possible. (iii)

NJC is constrained to one-orbital contributions. It does not

allow to determine orbital-interaction contributions. (iv) NJC

is dependent on the use of NLMOs. As a consequence, NJC

analyses are inevitably flawed by the problems that are con-

nected with the use of NLMOs (see section 4.3). (v) NJC-2

requires that the magnetic perturbation is treated by finite-

difference perturbation theory (FPT) rather than analytically.

FPT does not provide an unambiguous definition of first-order

orbitals in the same way as CP-DFT. Consequently, the

definition of orbital contributions is not as transparent in

NJC-2 as it is in a method based on CP-DFT. An alternative

to NJC was suggested by Contreras et al.50 In distinction to

NJC, this approach provides a symmetric description of

perturbed and responding nucleus. However, as it is based

on an SOS approach, it gives no proper description of two-

electron contributions. Recently, Contreras and co-workers

studied the long-range coupling mechanism in substituted

cubanes135 and the influence of hyperconjugative effects on
1J(C,H) couplings136 based on conventional CP-DFT calcula-

tions of SSCC. To this purpose, a NBO analysis was per-

formed for the molecules under investigation and the

calculated SSCCs were correlated with the NBO occupation

numbers. This approach allows in principle to settle one of the

limitations of NJC, viz. its restriction to the FC term; however,

it gives insight into the coupling mechanism in a rather indirect

way only.

5. Concluding remarks and outlook

This article presents the work that has led to a better under-

standing and a detailed, quantum mechanically based analysis

of the spin–spin coupling mechanism.61–74 Our work is based

on the reliable quantum mechanical calculation of SSCCs

utilizing CP-DFT58 and the J-OC-PSP analysis, which uses

five different partitioning criteria considering (a) the physics of

spin–spin coupling (Ramsey terms); (b) the spatial dependence

of coupling (Cartesian components of SD, DSO, PSO terms);

(c) the electron interactions that mediate the coupling (one-

and two-electron contributions); (d) the role of the orbitals in

the coupling process (orbital contributions); and (e) through-

bond versus through-space or through-tail coupling (see sec-

tion 5.2) (coupling via bond orbitals or orbital delocalization

tails: Lewis or non-Lewis contributions). For the analysis,

suitable sets of orbitals (LMOs, NBOs, etc.), spin polarization

densities (FC and SD), orbital current densities (DSO and

PSO), and Ramsey energy densities can be used. The Ramsey

terms and their components have been reformulated to use

either spin polarization densities or Ramsey energy densities

thus facilitating the understanding of the coupling mechanism.

The J-OC-PSP analysis developed by us fulfills the reciprocity,

unconstrained applicability, physical justification, parallel

processing, usefulness, additivity, and feasibility as well as all

orbital criteria discussed in section 4.1. It correctly reflects the

three-steps of the coupling mechanism and provides the

physical and chemical insight into the nature of spin–spin

coupling.

The J-OC-PSP method has been applied to a number of

typical coupling situations between nuclei of the first two rows

of the periodic table. These investigations have shown that

measured SSCC, if combined with reliable calculations of their

four Ramsey terms, provide a wealth of information on the

electron structure of molecules, especially their bonding
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situation. Important observations could be made utilizing the

J-OC-PSP analysis. Here, just a few analysis results and

observations should be mentioned.

5.1 General observations

The sign of a SSCC. It is possible to derive in certain cases

rules for clarifying the sign of SSCCs. Based on the nodal

structure of the zeroth order orbitals one can predict that of

first order orbitals, FC and SD spin polarization densities as

well as SD, DSO, and PSO energy density distributions so that

the signature of orbital contributions for the Ramsey terms

can be anticipated. In a number of cases it is also possible to

identify the dominating terms so that the signature of the

SSCC can be predicted. This is well-known for the case of
nJ(C,H) and nJ(C,C) SSCCs in hydrocarbons,15 which we

could verify with the help of the J-OC-PSP analysis.61,68 If

hetero-atoms with lone pair orbitals are present, there is also

the possibility of making predictions with regard to the

signature of SSCC, at least in the case of one-bond SSCCs.

However, in general it is not possible to reliably foresee the

sign of a SSCC just by considering the nodal structure of

zeroth and first order orbitals. The interplay of the various

electronic effects in the coupling mechanism is too complex to

make general predictions concerning the signature, which also

has to be seen in connections with all the empirical or

semiempirical attempts in this direction.

5.2 The FC coupling mechanism

Previous investigations focused on the FC coupling mechan-

ism because this is the easiest to analyze and understand.

Nevertheless, work with the J-OC-PSP method shows that a

basic physical understanding of this mechanism was, despite

the many investigations, dating decades ago, still missing.

The role of the bond orbital for one-bond FC coupling. The

magnitude of the FC term of one-bond SSCC of the type
1J(X,H) is strongly influenced by a positive bond LMO

contribution, which increases within a group and a period

(exceptions from the latter trend are explained in ref. 61). The

J-OC-PSP analysis reveals that an efficient FC coupling

mechanism requires both a large electronegativity (leading to

a large contact spin density at the nucleus) and a large

polarizability of X (leading to an effective transmission of spin

polarization). The increase of the bond orbital term within a

group results from an increase in the polarizability, and that

within a period from an increased electronegativity.61

The role of the lone pair orbital for one-bond FC coupling.

The lone pair and bond-lone pair LMO contributions to the

FC term of one-bond SSCC of the type 1J(X,H) are both

negative, which is a result of the nodal properties of the lone

pair LMO and can be rationalized with the help of the

extended Dirac vector diagrams discussed in section 4.4.1.

There is a similar increase of the absolute lone pair LMO

contributions in dependence of the electronegativity and po-

larizability of X as found for the bond LMO contributions. If

the number of lone pair LMOs increases within a period, it

outweighs for higher atomic numbers the bond LMO con-

tribution and leads to a negative FC term.61

Through-bond versus through-space coupling. Wilkens and

co-workers have claimed using the NJC analysis51 that the FC

coupling mechanism for vicinal SSCCs such as 3J(H,H) in

ethane depends predominantly on through-bond coupling (the

Lewis part of the coupling mechanism, see section 4.2). J-OC-

PSP reveals that this claim is erroneous.68 Spin–spin coupling

is almost exclusively mediated via the tails of the CH bond

orbitals in line with the rear-lobe mechanism of Barfield36,37 or

the first analysis of 3J(H,H) in ethane by Karplus.33–35 Ac-

cording to the J-OC-PSP results, the s(CC) bond orbital in

ethane has only a contribution of 0.1 Hz to the vicinal SSCC
3J(H,H). The coupling mechanism in ethane takes an inter-

mediate position between through-bond and through-space

interaction, for which we have coined the term through-tail

interaction.68 We could explain the obscure findings of the

NJC approach51 by two of the insufficiencies of the NJC

approach (see section 4.6): (a) NJC does not provide an

analysis of all three steps of spin–spin coupling but only of

the third step. This results in an incorrect separation between

Lewis and non-Lewis contributions. (b) Since NJC is tied to

NLMOs68 and since the generation of NLMOs always leads to

a mixing of orbitals, which contribute in a different way to the

coupling mechanism, the NLMOs lead to a description of the

spin–spin coupling mechanism, in which a separation of

through-bond and through-space (through-tail) contributions

is no longer possible.

The Karplus relationship and its dependence on substituent

effects. The steric exchange two-orbital contribution of vicinal

CH bonds and the corresponding bond orbital relaxation

contributions (i.e. the individual contributions of the two

CH bond orbitals) dominate the FC term of the vicinal SSCC
3J(H,H) and govern also the form of the Karplus relationship

between 3FC (H,H) and dihedral angle t. Since in all these

terms the tails of the CH bond orbitals play the dominant role,

one can consider coupling to be mediated by a through-tail

mechanism (=through-space). The through-tail coupling

vanishes at dihedral angles close to 901 and it is strongest at

0 and 1801. An electronegative substituent at a C atom of

ethane leads to a contraction of the nearby CH bond orbital

tails and thereby significantly reduces spin–spin coupling,

whereas an electropositive substituent has the opposite effect

(expansion of the tail; larger spin–spin coupling).

FC coupling via more than two bonds. The simplified picture

that the spin–spin coupling mechanism follows the path given

by the chemical bonds, i.e. a path of maximum electron

density connections, is only true for the FC mechanism of

one- or two-bond SSCCs in a limited way. Even for the FC

term, through-space mechanisms are more important than is

generally realized and they can become dominant for three-

and more-bond SSCCs. This finding, obtained from the J-OC-

PSP analysis of a large variety of SSCCs, is in line with

Barfield’s emphasis of rear-lobe interactions between orbitals

as the major mechanism for through-space FC coupling over

more than two bonds in hydrocarbons.36,37

The role of p-orbitals in the FC coupling mechanism. The p
orbitals make a passive contribution to the FC coupling

mechanism across a double bond adding 4.5 Hz to the FC
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value (totally: 79.1 Hz62). This contribution can arise in two

ways: either a p orbital gets spin polarized by an active orbital

(spin-polarized directly by the perturbing nucleus) and causes

in turn a change of that active orbital (echo mechanism); or an

active orbital carries spin information to a p orbital, which

forwards it to another spin orbital (transport mechanism).

Either intra-atomic (intra-atomic Hund rule) or interatomic

exchange interactions are responsible for the spin polarization

mechanism.

Long-range H–H coupling in p systems. The J-OC-PSP

analysis reveals that the long-range H–H coupling in polyenes

is dominated by FC(p) contributions. The p system transports

spin information efficiently over large distances along the bond

framework where the mechanism is largely analogous to the

through-tail mechanism found for the vicinal HH coupling in

ethane, i.e. the p orbitals transfer spin information across the

formal single bonds through their delocalization tails, which

allow a formal single bond to be bridged by steric exchange

interactions between adjacent p orbitals. This mechanism is

so effective that nJ(H,H) values should be observable up to

n = 17.66

5.3 The SD coupling mechanism

The SD coupling mechanism requires occupied and unoccu-

pied non-s orbitals. For CC bonds, the SD term results

primarily from the (positive) one-orbital p contributions,

which arise from p - p* excitations. Small contributions

(either positive or negative) are also given by pseudo-p orbi-

tals. The positive SD terms increase cubically with the bond

order (or p character) of the CC bond.

SD-dominated long-range coupling. Long-range coupling in

p systems should contain substantial SD contributions if the

coupling nuclei are incorporated into the p system, e.g. for

J(C,C) in unsaturated hydrocarbons or J(F,F) in the fluori-

nated analogues. The J-OC-PSP analysis shows that, under

certain circumstances, for these couplings the SD term be-

comes the dominating contribution to the total coupling,

which is relevant for quantum computing based on NMR

spin–spin coupling.128,129

5.4 The DSO coupling mechanism

Since the DSO term is always rather small, the DSO coupling

mechanism was so far the least interesting and therefore also

the least investigated mechanism. However, the degree of

smallness of the DSO term is a direct indicator of the

anisotropy of the charge distribution centered at the coupling

nuclei. A spherical charge distribution around one of two

coupling nuclei X and Ymakes only a little contribution to the

DSO term of the SSCC. The bond and lone pair charge

distributions at a nucleus X are normally nonspherical. How-

ever, their sum is approximately spherical at X so that the

different orbital contributions cancel each other. Generally,

those parts of the density distribution that are inside (outside)

a sphere around the bond X–Y lead to negative (positive)

contributions to the DSO term, thus explaining why the bond

orbital contribution is negative, whereas the lone pair and

external bond contributions are positive. In this way the DSO

coupling mechanism is indicative of bond polarity and the

electronegativity difference between two atoms X and Y.

5.5 The PSO coupling mechanism

The PSO coupling mechanism requires occupied as well as

unoccupied non-s orbitals at the coupling nuclei. In the case of

coupling between two first row atoms, the PSO mechanisms

occur typically in p systems and systems containing hetero-

atoms with lone pairs. The J-OC-PSP analysis reveals that the

isotropic PSO term is a consequence of several, sometimes

contradicting, factors: (a) the existence of orbital pairs (occu-

pied, unoccupied) with pp or ps character and the right

angular relationship, i.e., xy, xz or yz for perturbation in the

z-, y- or x-direction. The second component of the orbital pair

is important for the nodal behavior of the first order orbital;

(b) the induction of strong ring currents requires low excita-

tion energies from the x to the y (y to x), the x to the z (z to x)

or y to the z (z to y) component of the orbital pairs; (c) the

orbital overlap between zeroth order and the first order orbital

influences the magnitude of the ring current; (d) the nodal

properties of zeroth and first order orbitals are decisive for

whether a local ring current is increased or decreased. One can

separate the various factors determining the PSO coupling

mechanism if one considers its xx, yy, and zz components

separately. On this basis it is easy to show why the isotropic

PSO term is smaller for 1J(C,C) in acetylene (negative s(CC)
LMO contribution partly cancels positive p(CC) LMO con-

tribution) than the absolute isotropic PSO term for the same

SSCC in ethene (negative s(CC) LMO contribution and

negative p(CC) LMO contribution). In the way the PSO

coupling mechanism becomes clear it is possible to relate it

to bond order, p-strength, electronegativity, and the magnetiz-

ability of a bond.64,65

5.6 Description of bonding with the help of spin–spin coupling

All results obtained so far with the J-OC-PSP analysis demon-

strate clearly that there is no basis for the correlation of SSCCs

such as 1J(C,C) (or any other type of one-bond SSCC) with

bond properties such as bond length, bond strength, bond-

stretching frequencies, degree of hybridization (s-character),

etc. The many previous, seemingly successful attempts in this

direction were misleading because the number of data points

was always too small and the selection of sample points biased.

Nevertheless, there are some relationships, which are worth

mentioning.

FC coupling. The FC term correlates linearly with the FC

spin polarization density at the responding nucleus, which is

insofar trivial as the FC term is determined, apart from a

prefactor, directly from this spin density. Since the Fermi spin

polarization density is in no simple way related to the s-density

at the responding nucleus, it is obvious that relationships

between FC term and s-density (degree of hybridization,

s-character, etc.) can only hold for a limited number of similar

bond situations.

Assessing the p character of a CC bond from the non-contact

(NC) terms. The NC Ramsey terms provide a sensitive antenna

for the p-character of a CC bond.65,67 There is a cubic
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dependence of the NC terms on increasing multiple bond

character of a CC bond. The NC terms decrease from 1.2

Hz (normal CC single bond), to �0.4 (CC single bond with

hyperconjugation), �1.5 (formal CC single bond in a conju-

gated system), �5.7 (aromatic CC bond), and �6 Hz (CC

double bond), before they increase again to �3.9 (allene

double bond), and 20 Hz (CC triple bonds). The cubic-type

dependence of the NC term on the p character (bond order) of

the CC bond results from the PSO term, which in turn adopts

this form from the orbital contribution p(CC). It can be used

to qualitatively assess the p-character of a CC bond.65,67

Nature of hydrogen bonds in biomacromolecules. According

to the results of the J-OC-PSP analysis, spin–spin coupling

across H bonds is based on two different effects: (I) an

electrostatic field effect and (II) an orbital delocalization effect.

Effects I and II show different geometry dependence. By an

interplay of measurements and calculations, SSCC in bio-

macromolecules can be used to gain insight into the nature

of the H-bonds.71,72

Multipath coupling. The J-OC-PSP analysis shows that the

unusually large SSCC 2J(C,C) between the bridge C atoms in

bicyclo[1.1.1]pentane is dominated by through-bond interac-

tions in the three C–C(H2)–C paths (multipath coupling)

between the coupling C atoms, with significant contribution

arising from interactions between pairs of C–C(H2)–C paths.

For cyclopropane, which is another molecule with strong

multipath coupling, the coupling mechanism reflects bonding

features in the strongly strained ring: a large positive one-bond

contribution (54 Hz: between 35 Hz for a CC single bond and

68 Hz for a CC double bond,74), reflecting the considerable p
character of the CC bond in cyclopropane, a two-bond path

contribution (geminal term: 10 Hz), a large negative through-

space term corresponding to large overlap between CH bond

orbitals (�27 Hz), and a substantial path-interaction term

(�25 Hz). Together they lead to 12 Hz for 1J(C,C) in line with

measurements.74

5.7 Future use of the J-OC-PSP analysis

Despite the huge amount of literature on the nature of

spin–spin coupling and its relationship to other molecular

and especially bonding properties, this article shows that for

a long time the true quantum mechanical nature of spin–spin

coupling was not analyzed and understood in detail. Since the

J-OC-PSP analysis provides for the first time a consistent and

detailed analysis of all four Ramsey terms, within a relatively

short time, the understanding of typical spin–spin coupling

situations could be considerably advanced. Future work will

focus on (a) the analysis of SSCC between heavier nuclei,

especially those of transition metals,137 (b) the search and

design of SSCCs with special coupling features as, for exam-

ple, a large SD term and (c) the development of relationships

between SSCCs, their Ramsey terms and special electronic

features. The present as well as the future work is/will be

aimed at establishing SSCCs as sensitive antennae for the

electronic structure of molecules.
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24 U. Fleischer, C. v. Wüllen and W. Kutzelnigg, in NMR Chemical
Shift Calculation: ab initio, in Encyclopedia of Computational
Chemistry, ed. P. v. R. Schleyer, N. L. Allinger, T. Clark, J.
Gasteiger, P. A. Kollman, H. F. Schaefer and P. R. Schreiner,
Wiley, Chichester, UK, vol. 3, 1827.

25 H. Fukui, Prog. Nucl. Magn. Reson. Spectrosc., 1992, 21, 106; H.
Fukui, Prog. Nucl. Magn. Reson. Spectrosc., 1993, 22, 138.

26 Modeling NMR Chemical Shifts: Gaining Insights into Structure
and Environment, ed. J. C. Facelli and A. C. de Dios, ACS Symp.
Ser. 732, American Chemical Society, Washington, DC. 1999.

27 A. C. de Dios and C. J. Jameson, in The NMR chemical shift:
Insight into structure and environment, in Annual Reports on NMR
Spectroscopy, ed. G. A. Webb, Academic Press, London, 1994,
vol. 29, p. 1.

28 J. Kowalewski, Prog. Nucl. Magn. Reson. Spectrosc., 1977, 11, 1.

2814 | Phys. Chem. Chem. Phys., 2007, 9, 2791–2816 This journal is �c the Owner Societies 2007



29 J. Kowalewski, Annu. Rep. NMR Spectrosc., 1982, 12, 81.
30 R. H. Contreras and J. C. Facelli, Annu. Rep. NMR Spectrosc.,

1993, 27, 255.
31 R. H. Contreras and J. E. Peralta, Prog. Nucl. Magn. Reson.

Spectrosc., 2000, 37, 321.
32 R. H. Contreras, V. Barone, J. C. Facelli and J. E. Peralta, Ann.

Rep. NMR Spectrosc., 2003, 51, 167.
33 M. Karplus and D. H. Anderson, J. Chem. Phys., 1959, 30, 6.
34 M. Karplus, J. Chem. Phys., 1959, 30, 11.
35 M. Karplus, J. Am. Chem. Soc., 1963, 85, 2870.
36 M. Barfield, S. A. Conn, J. L. Marshall and D. E. Miller, J. Am.

Chem. Soc., 1976, 29, 6253.
37 M. Barfield and B. Chakrabarti, Chem. Rev., 1969, 69, 757.
38 J. M. Schulman, J. Ruggio and T. J. Venanzi, J. Am. Chem. Soc.,

1977, 99, 2045.
39 J. M. Schulman and T. J. Venanzi, J. Am. Chem. Soc., 1976, 98,

4701.
40 R. M. Dickson and T. Ziegler, J. Phys. Chem., 1996, 100, 5286.
41 A. R. Engelmann, R. H. Contreras and J. C. Facelli, Theor. Chim.

Acta, 1981, 59, 17.
42 H. Fukui, T. Tsuji and K. Miura, J. Am. Chem. Soc., 1981, 103,

3652.
43 H. Fukui, K. Miura, K. Ohta and T. Tsuji, J. Chem. Phys., 1982,

76, 5169.
44 A. R. Engelmann, G. E. Scuseria and R. H. Contreras, J. Magn.

Reson., 1982, 50, 21.
45 M. A. Natiello and R. H. Contreras, Chem. Phys. Lett., 1984, 104,

568.
46 A. C. Diz, C. G. Giribet, M. C. Ruiz de Azua and R. H.

Contreras, Int. J. Quantum Chem., 1990, 37, 663.
47 C. N. Cavasotto, C. G. Giribet, M. C. Ruiz de Azua and R. H.

Contreras, J. Comput. Chem., 1991, 12, 141.
48 R. H. Contreras, M. C. Ruiz de Azua, C. G. Giribet, G. A. Aucar

and R. Lobayan de Bonczok, J. Mol. Struct. (THEOCHEM),
1993, 284, 249.

49 J. E. Peralta, R. H. Contreras and J. P. Snyder, Chem. Commun.,
2000, 2025.

50 A. L. Esteban, M. P. Galache, F. Mora, E. Diez, J. Casanueva, J.
San Fabian, V. Barone, J. E. Peralta and R. H. Contreras, J.
Phys. Chem. A, 2001, 105, 5298.

51 S. J. Wilkens, W. M. Westler, J. L. Markley and F. Weinhold, J.
Am. Chem. Soc., 2001, 123, 12026.

52 E. M. Sproviero and G. Burton, J. Phys. Chem. A, 2002, 106,
7834.

53 A. Soncini and P. Lazzeretti, J. Chem. Phys., 2003, 118, 7165.
54 J. L. Marshall, L. G. Faehl and R. Kattner, Org. Magn. Reson.,

1979, 12, 163.
55 R. H. Contreras and G. E. Scuseria, Org. Magn. Reson., 1984, 22,

441.
56 G. A. Aucar, M. C. Ruiz de Azua, C. G. Giribet and R. H.

Contreras, J. Mol. Struct. (THEOCHEM), 1990, 205, 79.
57 G. A. Aucar, V. Zunino, M. B. Ferraro, C. G. Giribet, M. C. Ruiz

de Azua and R. H. Contreras, J. Mol. Struct. (THEOCHEM),
1990, 205, 63.
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