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The dissociation behavior as well as the equilibrium properties of radical cations with three-electron bonds,
namely He2

þ�, N2H6
þ�, O2H4

þ�, F2H2
þ�, and Ne2

þ� are investigated using standard and self-interaction-
corrected density functional theory (SIC-DFT) in connection with a variety of pure and hybrid exchange-
correlation (XC) functionals. The impact of the self-interaction error (SIE) on the results of standard DFT is
analyzed considering the individual orbital contributions to the SIE, the dependence of the SIE on the
separation distance between the dissociation fragments, and its impact on the equilibrium properties of 2–6.
A local analysis of the SIE in terms of exact and DFT exchange holes reveals that the SIE mimics not only
non-dynamic but also an increasing amount of dynamic electron correlation effects as the number of valence
electrons is enlarged. Standard DFT describes the dissociation of three-electron bonds qualitatively incorrectly.
This can be traced back in the first instance to the SIE of the bonding b electron, which mimics a spurious long-
range correlation with a non-existing delocalized a electron in the same bond. A comparison of the covalent
(symmetric) and ionic (symmetry-broken) state of radical cations 2–6 at large interaction distances provides
further insight in the inconsistencies of the DFT description: (i) Not only the SIE but also the approximate
description of the interelectronic exchange contributes to the incorrect description of the dissociation.
(ii) Dissociating three-electron bonds show a specific form of long-range correlation effects, which is neither
accounted for by standard DFT, SIC-DFT nor Hartree–Fock theory. Indeed, SIC-DFT provides a qualitatively
better description of the dissociation of radical cations, however in general a poor performance when describing
equilibrium properties. There is no need for SIC-DFT methods. Instead, there is need for XC functionals with
exact exchange and long-range correlation effects (e.g. mimicked by the exchange SIE) absorbed in the
correlation functional. Implications of our findings for the construction of new density functionals are
discussed.

1. Introduction

The development of improved exchange-correlation (XC)
functionals for Kohn–Sham (KS) density functional theory
(DFT)1,2 has to consider the self-interaction error (SIE) of
approximate X- and C-functionals.3,4 In recent work, we have
described the consequences and the impact of the SIE on a
DFT description of molecules both in their equilibrium geome-
try and in the situation of bond breaking.5–11 For this purpose,
we have developed as descriptive tools an energy decomposi-
tion analysis based on the Perdew–Zunger approach3 for
self-interaction corrected DFT (SIC-DFT),5 the difference den-
sity analysis reflecting the impact of the SIE,5–7 and a decom-
position analysis of the exchange hole, which makes it possible
to relate the SIE to the correlation effects described in standard
KS DFT.8–10 Our work is in line with many investigations
focusing on the SIE,12–27 which had their forerunners already
in the thirties in the work of Fermi and Amaldi28 and in the
fifties.29 Our investigations revealed that the SIE of approxi-
mate X functionals accounts for non-specified short-range
and long-range electron correlation effects, which can improve
results of a standard DFT calculation and in general increase
the stability of the KS-DFT solutions. This was also found
or anticipated by authors such as Slater29 (in connection with
the discussion of charge transfer complexes), Becke30 (when
deriving the hybrid functionals) and in particular Baerends
and co-workers who presented the first in detail discussion
on this aspect of the SIE.23 A quantification of the extra-corre-
lation effects mimicked especially by the X-functional was
possible by the combination of SIC-DFT calculations with

difference density and exchange hole studies carried out in
our previous work.5–10

The ambivalent role of the SIE, namely being an error and
at the same time mimicking useful correlation effects, has to
be considered when correcting standard DFT: SIC-DFT is
not necessarily a better and more accurate method than stan-
dard DFT. On the other hand, SIC-DFT seems to be unavoid-
able if odd electron systems are investigated.31–40 It is well
known that standard DFT leads to an erroneous description
of the dissociation of radical cations. For example, standard
DFT predicts for the dissociation of H2

þ an artificial transition
state and a dissociation limit being just 14 kcal mol�1 above
the equilibrium energy. Similar failures have been reported
for the dissociation of other radical cations.31–40 Consequently,
much effort has been focused on the development of SIE-free
DFT methods, which was either based on the Perdew–Zunger
approach3 or the idea to mix in exact exchange any time a large
SIE is indicated by a suitable antenna as for example the von
Weizsäcker kinetic energy density.41,42

In this work, we will show that SIE-free DFT leads to a
number of new problems, which in general deteriorate the per-
formance of DFT. For this purpose, we will investigate radical
cations with three-electron bonds, which are known to present
the most drastic SIE problems in DFT. We will describe these
systems with different XC functionals ranging from the local
density approximation (LDA) to modern hybrid functional
theory and using both standard DFT and SIC-DFT. The accu-
racy of the various methods will be tested against experimental
data (if available) or high level ab initio calculations. The cal-
culated SIEs will be first decomposed in a pure electronic effect
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and an orbital relaxation effect and then into orbital contri-
butions to identify orbitals with the strongest SIE. We will
investigate exchange holes and by determining various contri-
butions to the exchange hole identify those effects that lead to a
deterioration of the DFT description. In particular we will
answer the following questions.
(1) Does the SIE lead to systematic errors in calculated equi-

librium properties of radical cations with three-electron bonds?
Can they be quantified? Can one eliminate these errors for the
radical cations? Or do other errors of standard DFT play a
similarly important role so that a correct description of the
radical cations is also not possible with SIC-DFT?
(2) How does the SIE influence the dissociation curves of

radical cations with three-electron bonds? Is the electronic or
the orbital relaxation effect of the SIE the main reason for
the poor DFT description of the dissociation curves? Can
SIE-free DFT improve the description of the dissociating
radical cations?
(3) What is the correct description of the dissociation limit?

Is it ionic (separation into a radical cation and a closed shell
system) or is it covalent (separation into two fragments with
charge and spin of 1/2 each)? Which DFT method gets closest
to the correct description? How does the SIE of the fragments
affect the results?
(4) What long-range correlation effects (if any) play an

important role for the dissociation? Can standard DFT or
SIC-DFT account for these effects?
(5) What conclusions can be drawn for the performance of

standard DFT and SIC-DFT, for example for the description
of radicals in general, transition states in radical or biradical
reactions, or charge transfer complexes?
(6) What conclusions can be drawn for the development of

new XC functionals? Is it desirable to use SIE-free XC func-
tionals or do we have to change the strategy for the develop-
ment of new XC functionals?
We will discuss these questions after a short description of

the theory of the SIE and the SIC-DFT method used in this
work (Section 2). Our discussion will be based on six different
radical cations where we have included the H2

þ� (1) radical
cation, which possesses just a one-electron bond, as a refer-
ence. The radical cations with a three-electron bond will be
He2

þ� (2), N2H6
þ� (3), O2H4

þ� (4), F2H2
þ� (5), and Ne2

þ�

(6). These molecules can be considered as representatives for
a large class of systems with odd-electron bonds. There will
be enough evidence resulting from the discussion of the SIE
accompanying the description of radical cations 1 to 6 for a
balanced discussion of SIE-free XC functionals and their use
in DFT. A strategy for the further development of XC correla-
tion functionals will be derived in Section 4.

2. Computational methods

Coulomb interaction, exchange, and correlation occur between
different electrons in a system. Hence, in a one-electron system,
the correlation energy EC must vanish, and the exchange
energy EX must exactly cancel the Coulomb energy J of the
one electron. For any a-spin density Ra that integrates to
one, the following relations must hold:3

EX½Ra; 0� ¼ �J½Ra�; ð1aÞ
EC½Ra; 0� ¼ 0: ð1bÞ

None of the commonly used approximate XC functionals
obeys both eqns. (1a,b), i.e., these XC functionals predict
an unphysical self-interaction of the electrons. The construc-
tion of XC functionals that avoid this SIE intrinsically is
difficult. Perdew and Zunger3 suggested an expression for
the XC energy that cancels the SIE orbital by orbital. The
XC energy for the SIC-DFT formalism takes then the

following form

Ecorrect
XC ¼ Eapprox

XC ½Ra; Rb� � ESIE
XC ; ð2aÞ

ESIE
XC ¼ ESIE

X þ ESIE
C ; ð2bÞ

ESIE
X ¼

X
s¼a;b

XNs

i¼1

ðEX½Ris; 0� þ J½Ris�Þ; ð2cÞ

ESIE
C ¼

X
s¼a;b

XNs

i¼1

EC½Ris; 0�; ð2dÞ

where Ris(r) ¼ |jis(r)|
2 is the density that corresponds to the

KS spin orbital jis .
The SIC-DFT-KS equations differ from the standard-KS

equations in two ways: (a) The KS operator F̂ contains an
additional orbital-dependent term that accounts for the correc-
tion of the SIE. (b) Orbital rotations between the occupied
orbitals affect the total energy, and one is no longer free to
choose the representation of the occupied KS orbitals (i.e.
canonical or localized), instead this choice is a part of the
energy optimization. As a rule, the resulting KS orbitals are
localized.13

Solving the SIC-DFT-KS equations self-consistently (SC) is
by far more expensive than a standard KS-DFT calculation. A
reasonable approximation to SC-SIC-DFT is to abandon self-
consistency and to calculate the SIC perturbatively for the
orbitals resulting from a standard KS calculation. A subtle
point in the perturbative (P) SIC-DFT scheme is the appropri-
ate choice of the orbitals for the calculation of the SIC. SC-
SIC-DFT yields localized orbitals in most cases, hence, a
reasonable approach is to localize the occupied KS orbitals,
e.g. according to the Foster–Boys criterion43 before obtaining
the P-SIC-DFT results. P-SIC-DFT allows assessment of the
impact of the SIE at a computational cost comparable to a
standard KS-DFT calculation. Furthermore, the combination
of P-SIC-DFT and SC-SIC-DFT as done in this work makes it
possible to separate the pure electronic and the orbital relaxa-
tion effect of SIE, which are oppositely directed in most cases.
Both SC-SIC-DFT and P-SIC-DFT were implemented in the
program package COLOGNE 2003.44 The details of the imple-
mentation are described elsewhere.11

Special care has to be taken with the P-SIC-BLYP calcula-
tions for radical cations such as 6. A simultaneous localization
of all valence orbitals leads to instabilities in the localization
procedure, resulting in fluctuations of the total energies by
about 0.2 kcal mol�1, which make a geometry optimization
impossible. Therefore, the orbitals of 6 were localized in three
groups: (i) the 1s orbitals, (ii) the 2s and 2p s orbitals, and (iii)
the 2p p orbitals. This required in turn a consistent description
of the Ne atom and the Neþ ion. The localization of orbital
group (ii) in 6 leads to two sps orbitals (half-bond and lone
pair) at each Ne atom. For b spin, one obtains a bond orbital,
which has predominantly pp character, and a localized s orbi-
tal at each Ne atom. Therefore, in the Ne atom a localization
was done for the 2s and one of the 2p orbitals for a spin
whereas the canonical orbitals were used for b spin. For the
Neþ ion, canonical orbitals were used throughout.
For radical cations 2, 3, 4, 5, and 6, we calculated dissocia-

tion curves with a number of pure and hybrid XC functionals
that combine different mixtures of the Becke 88 exchange45 and
exact exchange with the Lee-Yang-Parr (LYP) functional:46

the BLYP functional45,46 with the portion aHF of exact
exchange being 0, the B3LYP functional46,47 with aHF ¼ 0.2,
the BH&HLYP functional46,48 with aHF ¼ 0.5, and the
HFLYP46 functional, which combines exact exchange with
LYP correlation, i.e., aHF ¼ 1. HFLYP is the most common
representative for the so-called HF-KS schemes, which
combine HF exchange with a DFT correlation functional.
As the LYP correlation functional contains no self-interaction,
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the HFLYP functional is SIE-free by construction. The dis-
tance R(X–X) ¼ R between the two atomic or molecular
fragments was used as the dissociation parameter. The geome-
tries of 3 to 5 were optimized for a number of points along the
dissociation curve with the given value of R frozen. As a refer-
ence we calculated the dissociation curves with CCSD(T).49

For the purpose of studying the impact of self-interaction cor-
rections on the result, we recalculated the BLYP dissociation
curves both with P-SIC and with SC-SIC. For all dissociation
curves, Dunning’s cc-pVTZ basis set50 was used except for the
SC-SIC calculations where we had to resort to the cc-pVDZ
basis set50 to ensure convergence. For 10, 2, and 6, we calcu-
lated in addition the orbital contributions to the SIE in depen-
dence of R for P-SIC-BLYP and the cc-pVTZ basis set.
Beside the BLYP and the BLYP related functionals, a num-

ber of other LDA and GGA (generalized gradient approxima-
tion) XC functionals were used to determine the bond length
re , the dissociation energies De , and the harmonic vibrational
frequencies oe both with standard KS-DFT and with P-SIC-
DFT employing cc-pVTZ basis set for 1, 2, and 6: (1)
SVWN,51,52 (2) PW91PW91,53 (3) BP86,45,54 (4) BPW91,45,53

(5) B3P86,47,54 (6) B3PW91,47 (7) mPW1PW91.55

As a basis for discussing differences between even-electron
bonded and odd-electron bonded molecules, we additionally
computed dissociation curves for neutral H2 (10) at the BLYP,
P-SIC-BLYP, and SC-SIC-BLYP levels of theory (SC-SIC-
BLYP is actually equivalent to HFLYP for 1), both spin-
restricted and spin-unrestricted. As suitable reference, we
calculated the dissociation curve with both spin-restricted
and spin-unrestricted CISD56 because CISD corresponds to
full CI for a two-electron system. These calculations were all
done with the cc-pVTZ basis set.50

For P-SIC and SC-SIC, the quantities re and De were deter-
mined by interpolating the calculated points on the dissocia-
tion curve with a cubic spline and calculating the minimum
of this spline function because analytical gradients are cur-
rently not available for these methods. As for the impact of
the SIE on the vibrational spectrum, we evaluated the harmo-
nic adiabatic stretching frequencies oa

e (X–X)57 in the case of
the polyatomic radical cations 3, 4, and 5. Adiabatic vibra-
tional modes are strictly localized at that internal coordinate
that leads the adiabatic mode (e.g. the bond distance). The
force constant of the adiabatic X–X stretching frequency gives
the curvature of the dissociation curve at re and behaves in a
similar way as the true harmonic vibrational frequency oe

corresponding to X–X stretching. The latter however is deloca-
lized and contains small contributions of the motions of other
atoms.
For the purpose of investigating the existence and stability

of covalent and ionic state, each of these states was calculated
for 1, 2, and 6 at an interaction distance of 10 Å with the four
DFT functionals mentioned above, additionally with HF and
SC-SIC-BLYP. Stability tests58,59 were performed for all meth-
ods except SC-SIC. The geometries were prepared in the fol-
lowing ways: For the ionic states, we started from the
geometries of the neutral and ionic fragments, i.e. NH3 (7)
and NH3

þ� (7þ�) for 3, OH2 (8) and OH2
þ� (8þ�) for 4, FH

(9) and FHþ� (9þ�) for 5, and assembled these fragments at a
distance R of 10 Å between the heavy atoms using the appro-
priate symmetry (C3v according to HNNH dihedral angles of
60� for 3, Cs according to the anti form of 4, and C1v for
the linear arrangement of the fragments in 5). Radical cation
4 is more stable in the gauche conformation, which is true at
all levels of theory used in this work. For the purpose of sim-
plifying the analysis of the SIE in this case the C2-symmetric
anti form was used throughout this work. In Scheme 1, all
molecules and their conformations are shown.
All SIC-DFT calculations were carried out with the Cologne

2003 program package,44 CCSD(T) calculations with the
ACES II program package,60 and standard DFT calculations

with the Gaussian 98 program package.61 COLOGNE 2003
contains also program routines for the calculation of exchange
holes and their presentation in the form of one- or two-dimen-
sional diagrams.8–11

3. Results and discussion

In Tables 1, 2, and 3, the calculated properties (X–X bond
lengths re , X–X dissociation energies De , and harmonic X–X
stretching frequencies oe) for diatomic radical cations 1, 2,
and 6 are summarized. For the polyatomic radical cations 3,
4, and 5, these properties are listed in Table 4. Calculated dis-
sociation curves are shown in Fig. 1 (1, 2, and 6) and Fig. 2 (3,
4, and 5). We will first discuss the calculated properties of the
diatomic radical cations, and then those of the polyatomic
radical cations.

3.1 Properties of radical cations with three-electron bonds

Standard DFT gives a slight (about 3–5 kcal mol�1) overbind-
ing of 1 and a strong overbinding of 2 (15 kcal mol�1 for LDA)
and 6 (43.5 kcal mol�1 for LDA). For 1, the LDA value is in
the interval spanned by the GGA values; for 2 and even more
so for 6, LDA gives a stronger overbinding than GGA. P-SIC-
GGA calculations underestimate the dissociation energies of
2 by up to 9 kcal mol�1, whereas P-SIC-LDA calculations
slightly (5 kcal mol�1) overestimates this dissociation energy.
Equally as for the bond lengths, mixing in an increasing por-
tion of exact exchange reduces the overbinding as well as the
differences between standard-DFT and P-SIC-DFT values.
The P-SIC-DFT values are less dependent on the choice of
the XC functional, both with respect to the approximation
used and the introduction of hybrid exchange, than the
standard-DFT ones.
It is important to note that the De value for three-electron-

bonded systems decreases strongly with aHF . This can also
be seen from Figs. 1 and 2 to an increasing extent when com-
paring dissociation for 3, 4, 5, and 6. For one-electron-bonded
systems, De is much less sensitive to aHF , as can be seen from
the results for 1 (see also ref. 11).
Similar trends can be found for the calculated bond lengths

and harmonic frequencies. Since these properties have been
partially discussed in the previous literature, we refrain from
discussing them here.

Dissociation curves of radical cations with three electrons.
Figs. 1 and 2 show the X–X dissociation curves for 2 to 6
for BLYP, B3LYP, BH&HLYP, HFLYP, SC-SIC-BLYP,
P-SIC-BLYP, and CCSD(T). The standard-DFT calculations
show a qualitatively incorrect dissociation behavior: For the
separation distance R increasing from the equilibrium bond
length, the energy does not increase monotonically to zero
but possesses a maximum for a finite R, beyond which it pre-
dicts a Coulomb repulsion between the fragments and a nega-
tive limit energy, i.e., for increasing R the molecule passes an
artificial transition state. The smaller aHF is, the lower is the
energy of this transition state, the stronger is the Coulomb
repulsion, and the more negative is the relative energy (i.e.,
the energy of the supermolecule minus the energy of the frag-
ments) for R!1. HFLYP (i.e. aHF ¼ 1) gives a qualitatively
correct dissociation behavior. It is interesting to note that for 2
the HFLYP dissociation curve is close to the CCSD(T) refer-
ence curve, while HFLYP seriously underestimates De for 3–6.
SC-SIC-DFT leads to the correct dissociation behavior and

a reasonable overall agreement with the CCSD(T) reference.
However, the SC-SIC-DFT and CCSD(T) curves approach
their limit for R!1 in different ways: The CCSD(T) curve
leads smoothly to the limit of a vanishing relative energy for
R!1. The SC-SIC-DFT dissociation curve, in contrast,
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shows a rapid increase of the energy for R slightly above re and
then continues nearly horizontally to the limit value. An ana-
lysis of the SC-SIC-DFT solutions shows that this abrupt
change of the slope is an indication of a symmetry breaking:
For small R the solution corresponds to the covalent state of
the molecule. Above a certain R value, the covalent solution
rearranges into the symmetry-broken (ionic) one where the
positive charge and the spin are more and more concentrated
on one fragment as R increases. The covalent solution still
exists but is unstable.
The same kind of symmetry breaking occurs also for the

HFLYP solution. This has been illustrated for 6 where the
HFLYP dissociation curve is shown both for the covalent
and the ionic state. The ionic solution shows an even more
abrupt change in the slope than the SC-SIC-DFT curve. The
curve for the covalent state, in contrast, is smooth but predicts
a negative relative energy of the supermolecule at large R.
P-SIC-DFT, in contrast to SC-SIC-DFT, yields a positive

relative energy for R!1. However, it avoids the artificial
transition state and leads to smaller deviations from the
CCSD(T) reference than standard DFT. HFLYP and P-SIC,
and to a lesser extent SC-SIC-DFT, systematically underesti-
mate De and tend to give too short bond lengths.
In addition to the dissociation curves, Figs. 1 and 2 show the

SIE for the relative energies, i.e. the SIE of the molecule minus
the SIEs of the fragments both at the P-SIC (P-SIE) and the
SC-SIC (SC-SIE) level of theory for the Becke88 exchange
functional. For R values close to re and above the SIE is a
monotonically decaying, convex function of R. For smaller
R values, the SIE shows an inflection point and becomes a con-
cave function of R. For 4 and 5, P-SIE-B ¼ f(R) has an extre-
mum and becomes monotonically increasing for small R; for
SC-SIE-B, this behavior was not found. In all cases, both the
P-SIE and the SC-SIE correction of the dissociation energies
are negative for all values of R. The SC-SIE correction is gen-
erally more positive, i.e. its magnitude is smaller than than that

Scheme 1 The molecules investigated in this paper and their geometries. Plain typeface: BLYP, boldface: B3LYP, italic: BH&HLYP, italic bold-
face: HFLYP, values in parentheses: CISD for 10, CCSD(T) otherwise. SC-SIC-DFT calculations done with Dunning’s cc-pVDZ basis set,50 all
other calculations with Dunning’s cc-pVTZ basis set.50
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of P-SIE. Hence, the electronic effect included by the P-SIC-
DFT approach gives an exaggerated SIE correction for
De(R), whereas the orbital relaxation correction reduces this.
Both the electronic and the orbital relaxation SIE are larger
for the radical cation than the fragments. P-SIE is a positive
destabilizing correction because stabilizing correlation effects
(see below) mimicked by the SIE are deleted. The difference

in the SIEs of the fragments and the molecule grows with
increasing R and since the latter SIE is deducted from the for-
mer SIEs, the P-SIE becomes increasingly negative. The orbital
relaxation effects are negative (stabilizing) so that the correc-
tion for the relative energies becomes positive. The total SIE
converges to a value given by the BLYP dissociation curve
for large R (Figs. 1 and 2).

3.2 The SIE for three-electron bonds

The SIE of the bonding electron was investigated for one-elec-
tron-bonded radical cations using a simple estimate for the SIE
of the bond orbital dominating the whole error for increasing
R:12,36

E SIE ¼ ð1� aHFÞ
1

2
� C

� �
J|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

<0

þ 1

4R

2
6664

3
7775: ð3Þ

Here, C� 2�1/3, (0.5�C)��0.79, and J is the Coulomb self-
interaction for the case that the bond electron is localized at
either of the two fragments. Estimate (3) reflects (i) the nega-
tive sign of the SIE and by this the strong reduction of the rela-
tive energies for R!1, (ii) the Coulomb decrease of the
dissociation energy (the artificial Coulomb potential in (3)
decreases for increasing R), and (iii) the decrease of the SIE
with increasing aHF . The question arises whether estimate (3)
may be used in the case of three-electron bonds as well. This
is indeed the case: the three-electron bond may be built from
a triplet state with one a electron in the bonding and antibond-
ing orbital each by adding a b electron to the bonding orbital.
If only the a electrons are present, there is exchange repulsion
between the two fragments for small R and no bonding other-
wise. (We ignore the Coulomb repulsion between the two posi-
tively charged fragments as it will be reduced by the screening
effect of the b electron.) Both the bonding and the antibonding
orbital are occupied, and the two a electrons may be treated
either as localized or delocalized. In the calculation of the
SIE, the electrons are to be treated as localized, and conse-
quently the SIE of the two a electrons is small, in particular

Table 1 Calculated equilibrium bond lengths for radical cations H2
þ�

(1), He2
þ� (2), and Ne2

þ� (6)a

Method

1 2 6

Std. P-SIC Std. P-SIC Std. P-SIC

SVWN 1.153 1.054 1.159 1.045 1.823 1.601

BP86 1.134 1.050 1.175 1.056 1.939 1.657

BLYP 1.136 1.048 1.183 1.057 1.941 1.658

PW91PW91 1.130 1.050 1.173 1.050 1.927 1.635

BPW91 1.127 1.049 1.177 1.056 1.966 1.656

mPW91PW91 1.105 1.053 1.130 1.055 1.821 1.647

B3P86 1.110 1.053 1.135 1.057 1.829 1.655

B3LYP 1.114 1.052 1.145 1.058 1.841 1.657

B3PW91 1.110 1.052 1.139 1.057 1.844 1.655

BH&HLYP 1.090 1.055 1.105 1.060 1.754 1.660

HFLYP 1.057 1.057 1.063 1.063 1.658 1.658

lh-BLYPb 1.06 1.06 1.79

HF 1.057 1.075 1.697c

1.877d

CCSD(T) 1.057 1.081 1.721c

1.712d

Experiment 1.052e 1.081e

a Bond lengths given in Å. Abbreviations Std. and P-SIC denote

standard Kohn–Sham DFT and perturbative SIC-DFT calculations.

Dunning’s cc-pvtz basis set50 was used. b From ref. 42. c Covalent

state. d Ionic state. e From K. P. Huber and G. Herzberg, Constants

of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.

Table 2 Dissociation energies De for radical cations H2
þ� (1), He2

þ�

(2), and Ne2
þ� (6)a

Method

1 2 6

Std. P-SIC Std. P-SIC Std. P-SIC

SVWN 67.04 64.37 84.92 61.19 83.53 54.99

BP86 69.11 63.86 82.50 52.96 73.61 37.17

BLYP 69.08 63.65 83.30 53.49 75.41 37.73

PW91PW91 68.90 63.75 78.52 51.14 75.74 44.16

BPW91 69.72 63.70 78.35 48.46 72.43 35.39

mPW1PW91 67.98 63.99 70.96 51.23 55.04 33.97

B3P86 68.09 64.02 76.82 54.87 59.27 34.19

B3LYP 67.83 63.93 77.38 55.31 60.54 34.45

B3PW91 68.35 63.96 73.56 51.44 58.10 32.54

BH&HLYP 66.36 64.15 69.14 56.36 39.99 26.16

HFLYP 64.28 64.28 57.86 57.86 11.32 11.32

lh-BLYPb 64.3 54.9 33.9

HF 64.28 45.41 2.78c

3.18d

CCSD(T) 64.28 56.04 30.87c

30.80d

Experiment 64.39e 56.94e

a Relative energies given in kcal/mol. Abbreviations Std. and P-SIC

denote standard Kohn–Sham DFT and perturbative SIC-DFT calcu-

lations. Dunning’s cc-pvtz basis set50 was used. b From Ref. 42. c Co-

valent state. d Ionic state. e From K.P. Huber and G. Herzberg,

Constants of Diatomic Molecules, Van Nostrand Reinhold, New York,

1979. The De value has been calculated from the experimental D0 and

o values.

Table 3 Harmonic vibration frequencies for radical cations H2
þ� (1),

He2
þ� (2), and Ne2

þ� (6)a

Method

1 2 6

Std. P-SIC Std. P-SIC Std. P-SIC

SVWN 1879.7 2354.6 1311.5 1881.9 392.4 860.0

BP86 1913.9 2380.0 1219.3 1843.7 274.4 766.8

BLYP 1880.8 2395.5 1195.2 1846.8 304.7 775.7

PW91PW91 1919.0 2382.4 1223.1 1869.1 287.3 807.1

BPW91 1929.3 2387.7 1204.5 1845.2 245.6 770.4

mPW1PW91 2053.9 2360.0 1421.9 1840.7 411.3 777.8

B3P86 2038.2 2361.6 1397.9 1831.3 398.8 768.3

B3LYP 2002.8 2369.9 1367.1 1833.1 351.3 771.2

B3PW91 2030.2 2364.8 1379.4 1831.1 380.5 766.6

BH&HLYP 2139.5 2348.4 1562.6 1820.7 404.6 761.0

HFLYP 2334.4 2373.7 1818.7 1818.7 476.8 677.5

HF 2334.4 1746.1 616.1b

160.8c

CCSD(T) 2334.4 1705.9 577.9b

606.5c

Experiment 2324.7d 1698.5d

a Frequencies are given in cm�1. Abbreviations Std. and P-SIC denote

standard Kohn–Sham DFT and perturbative SIC-DFT calculations.

Dunning’s cc-pVTZ basis set 50 was used. b Covalent state. c Ionic

state. d From K.P. Huber and G. Herzberg, Constants of Diatomic

Molecules, Van Nostrand Reinhold, New York, 1979.
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if a GGA functional is used, since the SIE decreases (increases)
with growing localization (delocalization). It depends only
weakly on R (except for very small R where exchange repulsion
is sizable). The bonding between the fragments is accomplished
by the delocalized b electron. This electron dominates the total
SIE, and consequently, the estimate from the one-electron
cases remains valid. This is confirmed by inspection of the
orbital contributions to the SIE and the analysis of the
exchange holes.

Orbital contributions to the SIE. The orbital contributions to
the SIE are shown in Fig. 3 for 1 (Fig. 3a), 2 (Fig. 3b), and 6
(Fig. 3c). In the case of 1 the SIE of the H atom is given as a
reference. The SIE of the paired electrons in 6 and that of the
two a electrons in 2 is independent of R except for small R
values where the exchange repulsion between the fragments
plays a role. The SIE for the bonding b orbital is absolutely
larger than that of the other orbitals and decreases according
to a Coulomb-law term. The sign of the SIE for the localized
orbitals varies: Whereas the SIE for the 1s orbital of 2 is close
to zero, for 6 the SIE is positive for the 1s orbitals and negative
for the localized 2sp orbitals. Becke 88 exchange45 is con-
structed such that the total SIE is small for a compact rota-
tionally symmetric charge distribution. For an isolated Heþ

ion, the SIE of the Becke 88 exchange functional should thus
nearly vanish, which is reflected by the small absolute value
of the SIE. For the Neþ ion, the SIE does not vanish orbital
by orbital, rather there is a compensation between the positive
SIE for the compact 1s orbitals and the negative SIE for the
more diffuse 2s and 2p orbitals.
Eqn. (3) explains the errors in the DFT values for re , De ,

and oe found for 1 and the three-electron-bonded systems 2
to 6. The dominating contribution to the SIE is monotonically
decreasing, except possibly for R values well below re . Conse-
quently, the SIE shifts the energy minimum of the dissociation
curve towards a larger R value. The negative sign of the SIE
accounts for the overestimation of De . The underestimation
of the oe is at a first glance surprising. The SIE is a convex
function of R at R ¼ re for 1, 2, and 6 and should thus increase
the force constant and eventually oe . However, the second
derivative of the energy with respect to R decreases with
increasing R, and the overestimation of re mentioned above
eventually results in an underestimation of oe .
LDA overestimates re more strongly than GGA for 1, while

the situation is vice versa in 2 and 6. This can be understood
from the orbital contributions to the SIE. For 1, only the
SIE of the bonding electron is present, which influences re
more strongly for LDA than for GGA. For 2 and 6, the SIE

of the localized orbitals increases weakly with R, thus tending
to decrease re . GGA has very small SIE’s for localized orbitals,
and the shortening of the bond length is negligible. For LDA
in contrast, the SIE of the localized orbitals is larger, and the
overestimation of R caused by the SIE of the bond electron is
partly compensated.

Analysis of the SIE with the help of the exchange hole. In
Figs. 4 and 5, exchange holes of the bonding b electron of 2
and 6 are shown as calculated for different internuclear dis-
tances, different positions (P1 or P2) of the reference electron,
and for different methods. For both molecules the holes have
been calculated for the bonding b electron because there the
largest differences can be observed. For the two a electrons
of the three-electron bond the HF and GGA hole do not differ
very much. Both are localized for the reference electron being
at one of the nuclei and they vanish for the reference electron
at the bond center P1. For the purpose of analyzing the form
of the various exchange holes, it is useful to outline some
relationships.
(a) The exchange hole can be split into an intraelectronic

(self-exchange) and interelectronic part. The magnitude of
each part depends on the orbitals used. If one uses localized
orbitals, the intraelectronic part is maximized. The intraelec-
tronic exchange hole fulfills the sum rule (integration leads
to �1), which means that integration over the interelectronic
exchange hole leads to zero.
(b) The SIE part of the DFT exchange hole can be evaluated

as the difference between the DFT and the SIC-DFT hole.
Since in this work the same density is used for the description
of the HF, DFT, and SIC-DFT hole to facilitate the compar-
ison, the SIC-DFT and the HF exchange hole are identical for
one electron. In this case the SIE hole results from the
difference between the DFT and HF holes. In general, the
SIE hole is the difference between the intraelectronic DFT
and the intraelectronic SIC-DFT hole because their interelec-
tronic exchange holes are identical.
(c) If the reference electron is in the middle of the X–X bond

at P1, interelectronic HF and GGA exchange are vanishingly
small and the exchange holes are equal to the intraelectronic
exchange parts. Also, the reduced gradient is equal to zero
so that the GGA hole is identical to the LDA exchange hole.
Since the same density is used for the representation of
the exchange hole, all holes must have the same value at the
position of the reference electron.
(d)SIEhole andSIEenergyare related via the electrondensity.

The SIE part of a DFT exchange hole can be rather large, how-
ever if the density is very small at the position of the reference

Table 4 Dissociation energies, equilibrium bond lengths, and harmonic vibrational frequencies for radical cations 3, 4, and 5a

3 4 5

De re oe oa
e De re oe oa

e De re oe oa
e

BLYP 48.55 2.343 304.7 421 59.93 2.204 317.1 657 68.80 2.009 345.0 686

B3LYP 44.21 2.272 351.3 664 52.43 2.122 381.0 635 58.50 1.936 419.0 658

BH&HLYP 37.46 2.209 404.6 671 41.64 2.048 450.7 953 43.76 1.865 503.5 1067

HFLYP 29.16 2.132 476.8 580 27.76 1.957 548.3 853 23.83 1.780 623.0 991

P-SIC-BLYP 39.00c 2.176 750 32.26 2.005 1011 31.71 1.816 1142

SC-SIC-BLYP 39.19c 2.193 1644 40.91 2.050 1508 38.69 1.866 1192

lh-BLYPd 39.8 2.25 35.5 2.08 38.6 1.90

CCSD(T) 36.34 2.173 1634 40.75 2.026 1414 40.22 1.846 1036

a P-SIC-BLYP calculations at BLYP geometries, SC-SIC-BLYP calculations at CCSD(T) geometries. SC-SIC calculations done with Dunning’s

cc-pVDZ basis set,50 all other calculations with Dunning’s cc-pVTZ basis set.50 Energies in kcal mol�1, bond distances in Å, frequencies in cm�1.

The oe values shown are for the N–N, O–O, and F–F stretching vibrations, respectively. For an explanation of the adiabatic frequencies oa
e , see

Section 3. b From K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979. The De value has

been calculated from the experimental D0 and oe value.
c According to SIC-BLYP calculations, 7� is pyramidal. This leads to De values of 33.8 and

32.8 kcal mol�1 at the P-SIC-BLYP and SC-SIC-BLYP levels of theory. d From ref. 42.
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electron the large SIE hole will not have any effect on the SIE
energy.
If the reference electron is at the center of the He–He bond

(position P1, Fig. 4a), the HF exchange hole is symmetric,
delocalized, and equal to the negative electron density distribu-
tion of the b electron. The local GGA exchange hole possesses
at P1 the same value as the HF hole (provided the same density
is used). Otherwise it is rather flat, spherical, and centered at
P1. The difference between the two holes gives the SIE part
of the GGA hole because both the HF hole and the GGA
exchange holes are equal to their intraelectronic part and, in
addition, the HF hole is equal to the SIC-GGA hole. The
SIE accounts for a large portion of the GGA hole and converts
the localized GGA hole into the delocalized SIC-GGA hole. If
the reference electron is at P1, a fictitious second electron is
found with the same probability at either He1 or He2 (Fig.
4a). Hence, a non-dynamic correlation effect is simulated,
which is not needed. Nevertheless, it artificially stabilizes the
radical cation of the DFT description. With increasing R,

the SIE and by this the non-dynamic correlation effect
increases since the separation between the maximum probabil-
ities for the fictitious second electron is also increased.
If the b-electron is at nucleus He2 (position P2 in Fig. 4b),

the form of the HF exchange hole and also that of the SIC-
GGA exchange hole does not change because the delocalized
hole is static (i.e. independent of the position of the reference
electron). A static exchange hole cannot describe any correla-
tion effects. However, if the delocalized SIC-GGA hole is con-
verted into a GGA hole localized close to position P2, this will
be only possible by adding a large SIE part that depends on the
position of P2 and describes again a long-range (non-dynamic)
correlation effect. Again, this effect increases with increasing
distance R.
We can relate the form of the SIE exchange hole to the for-

mula for the SIE energy given in eqn. (3). For this purpose, we
have to combine the hole with the electron density distribution.
The SIE exchange hole can be considered as the difference of
the DFT X hole minus the SIC-DFT X hole or, alternatively
as the sum of the Coulomb self-repulsion and the DFT X hole.
In the latter case, the first part leads to an electron distribution
exactly opposite to the HF ¼ SIC-DFT exchange hole, i.e. two
densities integrating to 1/2 unit charge each repel each other at
the distance R thus yielding the artificial Coulomb potential 1/
(4R). With increasing distance R the destabilizing Coulomb
part vanishes. It remains the localized DFT exchange hole,
which corresponds to an energy approximately equal to
(0.5�C)JA , which is always negative and represents the limit
of the SIE energy for R!1. Hence, the connection between
eqn. (3) and the form of the SIE part of the DFT exchange
hole becomes obvious.
The exchange hole of the b-electron in the ionic state of 2

(Fig. 4c) is, contrary to the symmetry-adapted delocalized X
hole, localized since the electron is now localized at one of
the atoms. Consequently, UHF and UGGA exchange holes
for the ionic state differ only in a limited way. The SIE of
the GGA functional describes some dynamic short-range cor-
relation where these effects are as unrealistic as the non-
dynamic correlation effects mimicked by the the DFT X hole
of the covalent state: A second electron does not exist and,
therefore, there is no dynamic electron correlation of the b
electron; however, the correlation error is now much smaller.
In the case of 6 the b electron experiences beside Coulomb

correlation also interelectronic exchange with the other b elec-
trons missing for 2. In Fig. 5a, the situation of the exchange
hole is shown for the reference electron being located at the
midpoint of the bond (P1). At P1, the effect of the 3sg bonding
orbital is dominant, but the effect of the two sp lone pairs of
the Ne atoms transmitted via their tails is still significant. This
explains the structure of the HF exchange hole, which is sym-
metric and resembles at the nuclei the corresponding exchange
hole of 2; the broadening of the hole in the nonbonding region
is due to the sp lone pair orbitals. The SIC-DFT X hole has a
similar structure, is however no longer identical to the HF
exchange hole because of small deviations in the interelectronic
exchange, which is zero for the GGA X hole but has a small
finite value for HF exchange. The SIE part of the localized,
spherically symmetric GGA hole is again large and mimics
left–right long range (non-dynamic) electron correlation
effects, which are not needed. They lead to an artificial stabili-
zation of 6 for R ¼ 1 Å. This stabilization is however partially
compensated by Coulomb self-repulsion caused by the b
electron so that the net effect is not large.
At 3.5 Å the situation changes significantly because there is

at P1 only the influence of the delocalized b electron. The HF
exchange hole takes a form that is reminiscent of two 2ps orbi-
tals localized at the atoms without any significant overlap in
the bonding region so that the density at P1 is close to zero.
The GGA hole localized at P1 is consequently so flat and shal-
low that it can no longer be distinguished from the zero line

Fig. 1 Dissociation curves for He2
þ (a) and Ne2

þ (b) calculated with
DFT and wave-function methods are shown. The SIE obtained with P-
SIC-BLYP (P-SIE-B) and SC-SIC-BLYP (SC-SIE-B) is given relative
to the SIEs of the fragments. In Fig. 1b, both the symmetry-adapted
(covalent) and symmetry-broken (ionic) solution for HFLYP are
shown. Dunning’s cc-pVTZ basis set50 was used for all calculations.
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(Fig. 4a). HF and SIC-GGA hole are identical and accord-
ingly, a strong SIE being the mirror image of the SIC-GGA
(HF) hole is obtained. The energetic consequences of this
SIE are nil because the electron density at P1 is negligible.
We conclude that because of the low probability of the b elec-
tron being at the midpoint of the bond there is no longer a
non-dynamic correlation effect. This will be recovered to some
extent if the b electron moves closer to a particular Ne atom,
e.g. to Ne2. The SIE part of the exchange hole has a similar
form at Ne1 as shown in Fig. 5a whereas at Ne2, the SIE hole
simulates now also strong short-range (dynamic) correlation
effects.
If the b electron is located at nucleus Ne2 (position P2, Fig.

5b), the X hole becomes localized (contrary to what was found
in the case of 2; Fig. 4b). This is the result of contributions of
the core electrons, which enter the formula for the dominating
intraelectronic exchange hole by the factor ri/r where ri is the
orbital density at P1 and r the total density at this point. The
core electrons strongly reduce the influence of the b electron on

the the form of the X hole so that the localization of the
exchange hole results (insert in Fig. 5b). HF and GGA X hole
are similar although enlargement of the region at the edge of
the hole reveals an oscillation of the GGA X hole. The SIE
mimics now short-range rather than long-range correlation
effects, which are typical of an atom with an increased number
of electrons (the larger the number of atoms and the more con-
tracted the atomic orbitals are the larger are the dynamic
correlation effects).
The X-holes for the the b electron being located at P2 will

not change very much if the the broken-symmetry solution is
applied (Fig. 5c). Again, the b exchange hole is localized at
P2, which will be also true if the reference electron is at P1.
The latter situation is however less interesting because it does
have little influence on the SIE energy as discussed above. For
the ionic solution the SIE mimics just short range correlation
effects reflecting the peculiar form of the intraelectronic
UGGA exchange hole (dotted curve with stars in Fig. 5c),
which is reminiscent of the spherically symmetric form of the

Fig. 2 Dissociation curves for radical cations N2H6
þ (a), O2H4

þ (b), and F2H2
þ (c) calculated with the DFT and wave-function methods are

shown. The SIE obtained with P-SIC-BLYP (P-SIE-B) and SC-SIC-BLYP (SC-SIE-B) is given relative to the SIEs of the fragments. Dunning’s
cc-pVTZ basis set50 was used for all calculations.

Fig. 3 Orbital contributions to the self-interaction error for (a) H2
þ, (b) He2

þ, and (c) Ne2
þ both for the ionic and the covalent solutions.

All calculations are done with Dunning’s cc-pVTZ basis set.50

T h i s j o u r n a l i s Q T h e O w n e r S o c i e t i e s 2 0 0 4 P h y s . C h e m . C h e m . P h y s . , 2 0 0 4 , 6 , 1 0 9 6 – 1 1 1 2 1103



2s orbital with its nodal surface. The interelectronic GGA
exchange hole (which has no relevance for the SIE) cancels lar-
gely the intraelectronic part in the edge regions of the total
hole where a slightly unbalanced cancellation is responsible
for the oscillations of the total GGA hole. Fig. 5c reveals also
that the interelectronic hole of exact exchange is very small
(solid line with triangles in Fig. 5c) whereas interelectronic
exchange is substantial in the edge regions of the hole to cancel
the deviation of intraelectronic GGA exchange from exact
exchange.
Several important conclusions result from the exchange hole

representations in Figs. 4 and 5: (1) The SIE mimics a non-
dynamic correlation effect for the b electron in radical cations
2–6, which increases with increasing distance R. (2) For 2,
there cannot be any other than non-dynamic correlation
effects. However, with increasing number of electrons in the
series 2, 3, 4, 5, 6, the SIE accounts for an increasing amount

of short range (dynamic) correlation effects for increasing R,
which in the case of 6 dominate the non-dynamic effect since
the latter are still just for one fictitious partner of the b elec-
tron. This means that in eqn. (3) the value of JA increases
whereas the Coulomb repulsion term still refers to two halves
of an electron repelling each other. (3) The correction of the
SIE converts the intraelectronic GGA hole into the intraelec-
tronic HF hole. This however leads to an error caused by
the relatively large interelectronic GGA exchange. This is true
for both covalent and ionic solutions as long as the reference
electron is at the core or in the valence region. It does not play

Fig. 5 Graphical representation of the exchange hole for the highest
b electron of Ne2

þ (2Su) calculated along the bond axis at the HF and
GGA(PW91PW91) level of theory for separation distances of 1 and 3.5
Å. (a) The reference electron is positioned at the midpoint of distance
R(Ne1, Ne2). (b) The insert gives the X holes for the reference electron
at the bond center and R ¼ 1 and 3.5 Å. The left part of the hole for
R ¼ 1 Å is enlarged in the figure. (c) The X holes for the broken-sym-
metry solutions at a distance R of 3.5 Å are shown for the position P2
of the b electron. Intra- and interelectronic exchange holes are also
shown. All calculations are with a cc-pVTZ basis set.50

Fig. 4 Graphical representation of the exchange hole for the b elec-
tron of He2

þ (2Su) calculated along the bond axis at the HF and
GGA(PW91PW91) levels of theory using the symmetry-adapted solu-
tion for separation distances R of 1 and 3.5 Å. (a) The reference elec-
tron is positioned at the midpoint of distance R(He1,He2). (b) The
reference point is at nucleus He2 (position P2). (c) The X holes for
the broken-symmetry solutions at a distance R of 3.5 Å are shown
for the position P2 of the b electron. Note that for the one-electron
case, the HF exchange hole is equal to the SIC-DFT exchange hole.
The SIE part of the DFT exchange hole is given as the difference
between DFT and SIC-DFT exchange hole. All calculations are with
a cc-pVTZ basis set.50
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any role for the reference electron being at the bond middle
point.
In the following we have to consider whether the symmetry-

adapted or the broken-symmetry solution leads to a better
description of the dissociating radical cations with three-
electron bonds.

3.3 Covalent and ionic state of the dissociating molecule

The dissociation of a symmetric molecular cation will always
lead to a neutral and an ionic fragment, i.e., the positive
surplus charge gets localized at one of the fragments and the
symmetry of the original molecule is broken. However, a quan-
tum-chemical description may predict a decay into either an
ion and a neutral fragment (ionic state) or two identical frag-
ments carrying a charge of þ1/2 each (covalent state), depend-
ing on which state is lower in energy for the supermolecule in
the limit of large interaction distances R.
Table 5 lists the energies of the covalent and ionic state at an

interaction distance of 10 Å for a variety of DFT and wave-
function methods. In addition, the lowest eigenvalues of the
electronic Hessian for the two states, which is a measure for
their electronic stability,58,59 are shown where available. For
polyatomic radical cations, the energy ordering of covalent
and ionic state is influenced by geometry distortions within
the fragments, which always favor the ionic rather than the
covalent state. Therefore, we restrict this investigation to the
diatomic molecules 2 and 6 because geometry effects do not
play any role for these radical cations.
For both molecules, standard BLYP favors the covalent

state by about 90 kcal mol�1. The covalent state is stable
(l(2) ¼ 0.545; l(6) ¼ 0.530; Table 5) whereas the ionic one is
unstable (l(2) ¼ �0.190; l(6) ¼ �0.581) and difficult to
locate. With increasing aHF the ionic state become less unstable
(Table 5). For HFLYP, the ionic state is lower in energy and
stable whereas the covalent one becomes unstable. At the
HF level, the ionic state is already 14.6 and 35 kcal mol�1

lower in energy than the covalent state of the two molecules
2 and 6 (Table 5). A comparison of HFLYP and HF reveals

that the inclusion of the LYP correlation functional stabilizes
the covalent state by 6.8 kcal mol�1 (2) or 2.7 kcal mol�1 (6),
respectively, whereas it makes the ionic state less stable (reduc-
tion of l(2) from 0.096 to 0.011 and l(6) from 0.225 to 0.205)
and the covalent one less unstable (increase of l(2) from
�0.085 to �0.066 and l(6) from �0.205 to �0.191; Table 5).
Correlated wave-function methods lead to smaller energy

differences between ionic and covalent states (|E(ion)�
E(cov)|< 8 kcal mol�1; Table 5) than standard DFT. Whereas
MP2 stabilizes the ionic state for 2 and the covalent one for 6
all other methods favor the ionic state for both molecules.
CCSD(T) provides within 0.3 kcal mol�1 the same energy for
both states.
Given that the dissociation of radical cations proceeds asym-

metrically, it appears plausible that a correct quantum-chemi-
cal description of the dissociation should predict the ionic state
of the supermolecule lower in energy than the covalent one.
However, the dissociation is a dynamic process where the sys-
tem is not in its electronic ground state. The electronic ground
state for any interaction distance R is covalent for reasons of
symmetry. For increasing R, the excitation energy between
the covalent ground state and the corresponding antibonding
state decays exponentially. This means that bonding and anti-
bonding states become quasi-degenerate, and one can superim-
pose the two eigenstates to two equivalent ionic states (and a
continuum of partially ionic states), all of which have nearly
the same energy. These ionic states are quasistationary rather
than stationary, with a lifetime growing exponentially with
R. The asymmetric dissociation can be described in terms of
these quasistationary states. The electron jumps back and
forth between the two quasistationary ionic states. As R
increases, the probability that the electron tunnels from one
fragment to the other decreases rapidly, and finally the elec-
tron remains at one of the fragments. A correct quantum-
mechanical description should thus predict a covalent ground
state that is nearly degenerate with its antibonding counter-
part. The stability of this state with respect to a transition into
the ionic state has to be positive and to decay exponentially
with R. The ionic and partially ionic states are not electronic
eigenstates for any finite R. They can, however, be made
stationary, and thus feasible for a quantum-mechanical calcu-
lation by applying a weak homogeneous electric field along the
bond axis. This is equivalent to constraining the dipole
moment of the molecule relative to its bond center.
Thus, neither DFT nor HF provide a correct description of

the balance between electronic and ionic state of symmetric
radical cations: Whereas HF predicts the ionic state as electro-
nically stable and lowest in energy, standard DFT yields a
covalent ground state with a non-vanishing positive stability
and a pair of equivalent ionic states whose energy does not
converge to that of the covalent state for R!1. Correlated
wave-function methods, which are based on a HF reference,
partly correct the inconsistency in the HF description and cor-
rect the ionic HF state towards the correct covalent one.
CCSD(T) predicts differences E(ion)�E(cov) of just �0.03
(2) and �0.29 kcal mol�1 (6, Table 5) and, by this, represents
clearly the most accurate method used in this work.
According to calculated energy differences E (ion)�E(cov),

SC-SIC-BLYP seems to offer a significant improvement rela-
tive to DFT. The ionic state is predicted by 7.3 or 11.3 kcal
mol�1, respectively, (Table 5) lower in energy than the covalent
one. We will show in Subsections 3.4 and 3.5 that these energy
differences are actually due to a fortuitous cancellation of
errors, from which SIC-DFT still suffers.

3.4 Non-dynamic correlation effects influencing the
dissociation of three-electron bonds

The non-dynamic correlation effects for the dissociating three-
electron bond are best contrasted against those non-dynamic

Table 5 Energies and electronic stability for the covalent and ionic
ground states of 2 and 6 at different levels of theorya

Molecule Method Ecov Eion�Ecov lcov lion

2 BLYP �5.04761 92.17 0.545 �0.190

B3LYP �5.02800 72.49 0.434 �0.160

BH&HLYP �4.96852 41.90 0.245 �0.032

HFLYP �4.89224 �7.30 �0.066 0.011

HF �4.83688 �14.56 �0.085 0.096

SCSIC-BLYP �4.88097 �7.33

MP2 �4.88660 �4.15

CISD �4.89887 �0.18

CCSD �4.89882 �0.21

CCSD(T) �4.89910 �0.03

6 BLYP �257.25876 91.95 0.530b �0.581

B3LYP �257.23580 66.83 0.389b �0.425

BH&HLYP �257.12858 28.80 0.169b �0.184

HFLYP �257.06194 �32.30 �0.191 0.205b

HF �256.34074 �35.00 �0.205 0.225b

SCSIC-BLYP �256.61324 �11.31

MP2 �256.83884 7.19

CISD �256.80554 �7.80

CCSD �256.83572 �2.85

CCSD(T) �256.84670 �0.29

a Absolute energies in Eh , relative energies in kcal mol�1. Parameter l
denotes the lowest eigenvalue of the stability matrix. b There are eigen-

values equal to zero that are related to excitations within the quaside-

generate 2p orbitals. The table shows the first positive eigenvalue.
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effects experienced during the dissociation of an electron-pair
(even-electron) bond, for example in the simple case of the
H2 molecule (10).
Fig. 6a shows the dissociation curve for 10 calculated at dif-

ferent levels of theory. As is well known, spin-restricted DFT
fails to describe the dissociation limit properly but predicts a
positive limit for the relative energy, i.e., the stretched molecule
has a higher energy than the fragments. For RBLYP the limit
of |De| is about 44.6 kcal mol�1 and is approximately reached
for R� 5 Å. For HFLYP, the limiting value of the relative
energy is as high as 163.6 kcal mol�1. Besides, HFLYP pre-
tends that there is a Coulomb attraction between the two frag-
ments with the product of the charges being 1/2 unit charge,
such that De converges slowly towards its limiting value. If

spin-symmetry breaking is allowed both BLYP and HFLYP
will provide the correct dissociation limit. BS-UBLYP agrees
with the CISD reference within 2 kcal mol�1 i.e. less than
the resolution in Fig. 6a, whereas BS-UHFLYP predicts too
high relative energies in the region around the R!U bifurca-
tion. The use of SIC-DFT does not improve the accuracy. The
P-SIC-RBLYP dissociation curve shows the same behavior as
the RHFLYP curve, with a limit for the relative energy of 169
kcal mol�1. BS-P-SIC-UBLYP behaves very similarly as BS-
UHFLYP. The SCSIC-BLYP level of theory is for 1 equiva-
lent to the HFLYP level.
The dissociation of an even-electron bond causes strong left-

right correlation effects between the two bond electrons. In
terms of configurations, this means that the excited 1(su)

2 con-
figuration becomes occupied with a weight that for R!1
becomes equal to that of the ground-state (1sg)

2 configuration
(see Fig. 7a). These left–right correlation effects, which may
contribute 100 kcal mol�1 and more to the total energy, reduce
the charge fluctuations at the fragments, suppressing zwitter-
ionic contributions and, accordingly, unreasonable Coulomb
attraction effects between the fragments. Coverage of left–right
correlation and consequently suppression of zwitterionic con-
figurations, is thus crucial for an appropriate description of
the dissociation of electron pair (even electron) bonds. Stan-
dard DFT correlation functionals provide no description for
non-dynamic correlation effects because they are designed for
an accurate description of dynamic correlation. This short-
coming can be seen most clearly for RHFLYP, which behaves
qualitatively as RHF in spite of the correlation term. RBLYP
provides no explicit description of the non-dynamic correla-
tion effects either. However, as has been discussed above (see
also refs. 6, 7 and 13), the SIE mimics an increasing amount
of left–right correlation effects as R increases. Consequently,
the SIE in BLYP suppresses the charge fluctuations, and the
RBLYP dissociation energy becomes constant for R above
5 Å. However, RBLYP is not able to account for all
non-dynamic correlation effects.
In Fig. 6b the SIE and the correlation energy for 10 are

shown both for the spin-restricted and the spin-unrestricted
case as a function of R to illustrate the relationship between
the SIE and the correlation energy. The correlation energy
was calculated as the difference between HF and CISD ener-
gies; the difference between the correlation energy obtained
by wave-function theory and that obtained by DFT can be
ignored here. For the spin-restricted case, the SIE accounts
for an increasing part of the correlation energy. In addition,
the SIE cancels the artificial Coulomb attraction between the
fragments. For the spin-unrestricted description, both the cor-
relation energy and the SIE possess a negative peak at the
bifurcation point. This confirms the statement in the previous

Fig. 6 (a) Dissociation curves for H2 calculated with the DFT and
wave-function methods described in Subsection 3.2. (b) Self-inter-
action error (SIE) for H2 calculated at the spin-restricted (R) and
spin-unrestricted (U) BLYP45,46 level, and correlation energy Ecorr

for the spin-restricted and spin-unrestricted treatment of H2 . Dun-
ning’s cc-pVTZ basis set50 was used for all calculations. Experimental
values from K. P. Huber and G. Herzberg, Constants of Diatomic
Molecules, Van Nostrand Reinhold, New York, 1979.

Fig. 7 Schematic representations of those configurations of 2 that
lead to (a) the left–right correlations in the case of the electron pair
bond of the three-electron bond correlations and the in–out
correlations.
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subsection that the UHF/UDFT description of bond breaking
is least accurate around the bifurcation point, where the non-
dynamic correlation effects are relatively strong but are not
simulated by the symmetry breaking. However, the SIE partly
compensates this shortcoming (Fig. 6b). Owing to the SIE,
standard BS-UDFT provides a more balanced description of
bond breaking, including the region around the bifurcation
point, than HF or HF-KS schemes do.
In a three-electron bond, left–right correlation effects analo-

gous to those found in two-electron bonds cannot be estab-
lished. In the case of 2, the a LMOs at both atoms are
occupied, and the a electrons can thus not avoid the b electron
by jumping back and forth between the He atoms. There is,
however, another type of long-range correlation effect39 that
is specific to three-electron bonds and, therefore, will be called
‘‘3e-bond correlation’’ in the following. When an electron is
added to a fragment, it will influence the electronic structure
of this fragment in two ways: First, it will establish dynamic
correlation effects (in–out, angular) with the other electrons.
Second, the density distribution of the other electrons will
become more diffuse, which reduces Coulomb repulsion
between the extra electron and the other ones. If the extra elec-
tron is localized at the fragment this can be regarded as an
orbital relaxation.
If, however, the extra electron is delocalized over two frag-

ments, this will lead to the fact that the shape of the orbitals
depends on the location of the extra electron. Hence, in addi-
tion to the short-range dynamic correlation effects, there is
long-range correlation between the bonding b electron and
the other electrons. It is reasonable to classify this correlation
effect as non-dynamic for two reasons: Firstly, the effect acts
over the whole separation distance R, i.e., it is long-ranged.
Secondly, the response of the remaining electrons depends
not on the exact position of the bonding electron but only
on the fragment at which it resides. In Fig. 7(b), the leading
excited configurations related to 3e-bond correlation are
shown for 2. Both of them include an 1sg! 1su excitation
of the b electron, which is coupled with an excitation of one
of the a electrons either 1su! 2sg or 1sg! 2su .
In all excitations, the electrons change between orbitals of

different symmetry, which reflects the relationship of these
excitations to the left–right movement of a bonding electron.
Note, however, that the excitations of the a electron in first
order do not affect its probability to be found at one or the
other fragment. This distinguishes the 3e-bond correlation
effects from the left–right effects in 2e-bonds. The 3e-bond cor-
relation effects have to be distinguished not only from left–
right correlation effects but also from in–out correlation. In
Fig. 7(b), the leading configurations for the description of
in–out correlation are shown. These configurations do not
include excitations from bonding to antibonding orbitals and
vice versa in line with the fact that these correlation effects
are not related to the left–right movement of the electrons.
The 3e bond correlation makes a considerably smaller energy
contribution, typically around 10 kcal mol�1, than left–right
correlation effects.
At large R, the 3e-bond correlation energy converges to a

constant value, which is the same for the bonding and the anti-
bonding state. This means that for R!1, the 3e-bond corre-
lation effects in the covalent state make the same contribution
to the energy as the corresponding orbital relaxations in the
ionic state. This in turn implies that methods that cannot
describe the 3e-bond correlation effects will have a tendency
to overstabilize the ionic state relative to the covalent one. This
explains why HF always predicts an ionic ground state for 3e-
bonded systems (see the results for 6 as an example) and
HFLYP often predicts ionic ground states, especially for large
R. Correlated wave-function methods based on the HF refer-
ence may predict either an ionic or a covalent ground state
for 3e-bonded systems: Methods that tend to exaggerate

non-dynamic correlation effects such as MP262 will tend to pre-
dict a covalent ground state while variational methods such as
CISD should predict an ionic ground state. High-level ab-initio
methods such as CCSD(T) annihilate to a large extent the
inconsistencies between the HF references for the two states
as is documented for 2 and 6 in Table 5.
Standard DFT, similarly as HF, cannot describe the 3e-

bond correlation effects properly because the DFT correla-
tion functionals are not suitable to describe this specific form
of long-range correlation effects. The question arises whether
the SIE can mimic these correlation effects in a similar way
as left–right correlation for the even-electron bonds. This is
not the case for two reasons: (a) The SIE energy contribu-
tion is much larger than the typical 3e-bond correlation
energy. This explains that standard DFT predicts covalent
ground states for 3e-bonded systems even though the 3e-
bond correlation effects in the covalent state are not covered.
(b) The SIE behaves differently than the 3e-bond correlation
energy as R!1. For the dissociation of 3e-bonds, similarly
as in the case of 1e-bonds, the SIE does not improve the
DFT description but leads even to a qualitatively incorrect
description.
Long-range correlation effects similar to the 3e-bond corre-

lations occur between the bonding electron and all other elec-
trons in the system. This means in particular that an analogous
type of correlation effects occurs in 1e-bonded systems between
the bonding a electron and all other electrons. However, not
all of these correlation effects make a relevant contribution
to the total energy. Only orbitals that are energetically close
to, and equally diffuse as, the bond orbital will give non-negli-
gible contributions to the correlation energy. As a conse-
quence, 1e-bond correlation effects may be negligible,
whereas 3e-bond correlation effects between the bonding b
electron and the two a electrons in the bond are always
relevant for the total energy.

3.5 Interelectronic exchange effects influencing the
dissociation of three-electron bonds

DFT exchange functionals are approximate not only with
respect to the electron self-interactions but also with regard
to interelectronic exchange. This is reflected by the interelec-
tronic exchange holes shown for 6 in Fig. 5. For HF, interelec-
tronic exchange will correspond to a long range effect if the
reference electron is bonding and in the bond region. Standard
DFT fails to describe this effect. If the reference electron is at
the nucleus (Fig. 5c), interelectronic HF exchange is small
(there is little chance of finding a second electron of the same
spin there) whereas interelectronic DFT exchange is consider-
able. As long as the standard X functional is used the effect of
interelectronic exchange is compensated by intraelectronic
exchange (Fig. 5c). This changes for SIC-DFT, for which inter-
electronic exchange is no longer compensated and therefore
becomes a serious error.
A simple estimate similar to that for eqn. (3) and presented

in the Appendix reveals that the error in the interelectronic
DFT exchange of radical cations with a three-electron bond
leads to an artificial stabilization of the covalent state relative
to that of the ionic state that (i) is smaller than the SIE and (ii)
converges quickly as R increases. Nevertheless, the error in the
interelectronic exchange acts together with the SIE and leads
to the large overestimation of the stability of dissociating radi-
cal cations. It has also serious consequences for the dissocia-
tion limit of the radical cations with three-electron bonds.
The DFT error in the description of the interelectronic

exchange can partly compensate the overstabilization of the
ionic state predicted by the BS-UHF description. SIC-DFT,
for which the SIE is corrected but the DFT error in the inter-
electronic exchange is left, provides a description of ionic and
covalent states that seems to be more balanced than both
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standard DFT and HF descriptions. One should, however, be
aware that this cancellation will be accidental and that there
are no principal reasons why 3e-bond correlation energy (pro-
vided by BS-UDFT) and the error in the interelectronic
exchange should be always comparable in size so that they
largely cancel.

3.6 The SIE of the fragments

The dissociation energy of radical cations is influenced by the
SIE of both the dissociating molecule and the fragments. In
general, the orbitals in the fragments are localized, and the
resulting SIE is relatively small and compensates partly the
SIE for the core electrons in the supermolecule. There is, how-
ever, a subtle point in the SIC-DFT description of 7þ� related
to the fact that the Perdew–Zunger SIC-DFT procedure is not
invariant with respect to rotations among the occupied orbi-
tals: 7þ� is known to be planar, which is confirmed both by
wave-function and standard DFT calculations. SIC-DFT, in
contrast, predicts a pyramidal ground state. The P-SIC-BLYP
geometry has a pyramidalization angle of 25� (Scheme 1) and
an energy 5.20 kcal mol�1 below that of the planar form. SC-
SIC-BLYP at the P-SIC-BLYP geometries gives an energy
lowering of 6.40 kcal mol�1 due to pyramidalization.
This result can be traced back to the different orbital locali-

zation patterns in the planar and the pyramidal states of 7þ�:
For the planar state, the localization of the a valence orbitals
gives three N–H bond orbitals with sp2 character at the N
atom and a p(N) orbital. The N–H bond orbitals have an
SIE of �3.3 kcal mol�1 each whereas the SIE of the p orbital
amounts to �30.7 kcal mol�1. If the molecule is pyramidized
the p orbital and the N–H bond orbitals are mixed. The p orbi-
tal gets partial s character and at a pyramidalization angle of
25� its SIE decreases to �13.6 kcal mol�1. The N–H bond
orbitals in turn get increased p character, which increases their
SIE to �6 kcal mol�1 per orbital. The SIE of the b valence
electrons changes by less than 0.2 kcal mol�1 per orbital. Alto-
gether, the SIE of the a valence orbitals is decreased from
�40.7 kcal mol�1 to �31.7 kcal mol�1 by pyramidalization,
i.e. by 9.0 kcal mol�1. Changes in the SIE of the remaining
orbitals and changes in the nuclear attraction and relaxation
effects lead finally to the stabilization energy of 6.40 kcal mol�1

for the pyramidal form.
The SC-SIC-DFT dissociation curves for 3 shown in Fig. 3a

and the De value in Table 4 are calculated based on the (pla-
nar) CCSD(T) geometry for 7þ�. Consequently, the dissocia-
tion energy of the molecule becomes too large by 5.20 kcal
mol�1 for P-SIC-BLYP and 6.40 kcal mol�1 for SC-SIC-
BLYP, which means that the correct P-SICDFT De value of
3 is 33.80 rather than 39.00 kcal mol�1. The same holds for
the P-SIC-BLYP dissociation energy, which is actually 32.79
rather than 39.19 kcal mol�1. Clearly, the lack of unitary
invariance in SIC-DFT leads to a serious deterioration of the
accuracy.

4. Outlook: Requirements for a SIE-free
exchange-correlation functional

A number of important conclusions can be drawn from the
investigation of the radical cations with three-electron bonds.
(1) In general, a correct description of a dissociating three-

electron bond should predict a bonding covalent ground state
for all interaction distances R. For large R, this state is nearly
degenerate with its antibonding counterpart. Superposition of
bonding and antibonding states leads to a continuum of qua-
sidegenerate states that are partly or fully ionic. These states
are quasistationary for any finite R but can be made station-
ary, e.g., by applying a weak homogeneous electric field along
the bond axis. A correct quantum-chemical description of

the dissociation must thus predict a covalent ground state
for all R where the stability with respect to a translation of
the valence electron to one of the fragments must decrease
exponentially with increasing R. If a calculation method favors
either the covalent or the ionic state, this will indicate an
inconsistency. The energy difference between the two states is
a direct measure for this inconsistency.
(2) For polyatomic cations, the ionic state mostly becomes

the ground state by virtue of geometry relaxations. This effect
is small, although present, for 4 and 5. For 3, in contrast, the
neutral fragment becomes pyramidal by a second-order Jahn–
Teller distortion whereas the ionic fragment remains planar,
which leads to considerable stabilization of the ionic state. It
should, however, be emphasized that the statements in (1)
remain valid as long as ionic and covalent state are compared
at the same geometry.
(3) Standard KS-DFT gives an incorrect description of the

dissociation of three-electron-bonds: (i) For large R, the super-
molecule is substantially lower in energy than the dissociated
fragments, in some cases even lower than the radical cation
itself (see 2 and 6). (ii) The dissociation curve passes for
increasing R through a transition state, beyond which the frag-
ments appear to repel each other. Also, the description of
covalent and ionic state is inconsistent: The covalent state is
lower in energy than the ionic one and has a non-vanishing
positive stability even for large R.
(4) The inconsistencies in the DFT description of three-elec-

tron-bonds can be traced back to the SIE of the bonding (delo-
calized) b electron. As R increases, the SIE of the bonding
electron takes the form 1/(4R)þZJA , where Z is a negative
constant depending on the approximate X functional used
and JA is the self-repulsion energy of the b electron. The 1/
(4R) term is related to the artificial Coulomb repulsion men-
tioned in (3), whereas ZJA accounts for the incorrect dissocia-
tion limit. The contribution from the bonding b electron
dominates the total SIE. The two a electrons of the three-elec-
tron bond are localized at one of the fragments each. Conse-
quently, their contribution to the total SIE is small and
independent of R, except for small R. As the dissociations
are considered, the SIE of the a electrons is in most cases
partly compensated by the corresponding SIE of the isolated
fragments.
(5)(a) The function SIE(R) possesses an inflection point

because for R around re the SIE becomes a concave function
of R. This is due to the fact that in the equilibrium region (i)
the spatial extent of the bond orbital is no longer just domi-
nated by R and (ii) the X–H bond orbitals extend because of
hyperconjugation or steric repulsion effects. Any extension of
the localized X–H bond orbitals makes the SIE more negative
for decreasing R< re .
(5)(b) For small R, two situations can be distinguished. (I)

The hyperconjugative effects are small (just second order
hyperconjugation as in 3 or 4 plays a role) and at the equili-
brium the SIE given by the convex function 1/(4R)þZJA
dominates. Standard DFT overestimates bond lengths and
underestimates the frequencies of the X–X stretching vibra-
tions as was found for all radical cations investigated. (II)
Hyperconjugation is strong (first order hyperconjugation plays
a role) and at the equilibrium the concave behavior of the SIE
plays the dominant role. Standard DFT yields too short a
bond length and exaggerated X–X stretching frequencies. This
situation is found for the radical cation H2BBH2 that possesses
a one-electron bond.11

(6)(a) Investigation of the DFT b exchange hole (partitioned
in SIC-DFT and SIE part) reveals that the SIE mimics non-
dynamic correlations between the bonding b electron and a
second electron that is not present in reality. These non-
dynamic correlation effects lead to an artificial stabilization
that increases with increasing R. The same effects are also pre-
sent in the DFT description of the dissociation of electron-pair
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(even-electron) bonds: There, the SIE mimics part of the
non-dynamic correlation between the two paired bonding elec-
trons, which is missing in a RHF description. Consequently,
RDFT, though not correct, reduces the inconsistencies of
RHF in the dissociation limit.
(6)(b) With an increasing number of core electrons in the

series 2 to 6, the value of JA increases. The nature of the SIE
changes is clearly reflected by the exchange holes: Although
the non-dynamic correlation effects associated with the bond-
ing b electron remain, the SIE mimics a large amount of
short-range (dynamic) electron correlation. The dynamic cor-
relation effects increase with increasing R until they reach their
maximum value defined by the artificial self-exchange Z JA .
Hence, standard DFT exaggerates the stability of the dissociat-
ing radical cations by mimicking long-range effects for the
bonding b electron and short-range dynamic electron correla-
tion of the b with all other electrons.
(6)(c) BS-UHF and BS-UDFT improve the wavefunction of

the dissociating neutral molecules by implicit two-configura-
tional descriptions. The BS-UHF and the BS-UDFT exchange
holes of the bonding b-electron are both localized. They differ
only in some short-range correlation effects simulated by the
SIE. BS-UDFT leads to a balanced description of the whole
dissociation of the radical cation with a three-electron bond,
including the recoupling region, neutral molecules by implicit
two-configurational descriptions.
(7) SIC-DFT allows correction of the inconsistencies in stan-

dard DFT calculations. However, the SIE has to be corrected
self-consistently for this purpose. A P-SIC calculation over-
compensates the error of the standard-DFT description con-
siderably leading to an energy for the supermolecule well
above that of the fragments.
(8) An additional stabilization of the covalent state in a DFT

description is caused by the error in the interelectronic
exchange hole, which is often delocalized for exact exchange,
however always localized for approximate DFT exchange. In
the case of the dissociating radical cation, the error due to a
simplification of interelectronic exchange is constant for large
R. SIC-DFT does correct the SIE, however, the error in the
interelectronic exchange remains.
(9)(a) In three-electron-bonds, the two a electrons avoid the

b electron to minimize Coulomb repulsion. In the ionic state,
this leads to an orbital relaxation that makes the orbitals at
the ionic fragment more diffuse than at the neutral one. In
the covalent state, this mutual avoidance of the three bond
electrons results in a specific form of non-dynamic correlation
effects, called 3e-bond correlation effects here, that are different
both from the left–right correlation effects in even-electron
bonds and the (dynamic) in–out and angular correlation
effects. A balanced description of ionic and covalent state
requires that these correlations are covered. The energy gain
due to these correlation effects is R-independent as long as
the fragments are well-separated.
(9)(b) UHF can describe the orbital relaxations in the ionic

state but not the 3e-bond correlations in the covalent one.
Hence UHF predicts a stable ionic ground state for large R.
This is not, as claimed in the literature,33,38 an advantage of
UHF but an indication of its inconsistency. Correlated wave
function methods may predict either a covalent or an ionic
ground state, depending on the method used. CCSD(T)
provides the best description in so far as the energy difference
between ionic and covalent state is negligible.
(9)(c) DFT, similarly as UHF, does not cover the 3e-bond

correlation effects. Of course, the SIE compensates this
shortcoming although not in a specific way: The SIE is (i)
considerably larger than the 3e-bond correlation energy and
(b) contrary to the 3e-bond correlation effects strongly
R-dependent.
(10)(a) SIC-DFT leads to a decreased energy difference

between ionic and covalent dissociation. This, however, is

not an indication for an improved performance of SIC-DFT,
but simply the result of a large error compensation: The over-
stabilization of the ionic state in a BS-SIC-DFT description is
counteracted by the error in the interelectronic DFT exchange
favoring the covalent state. However, there is no exact com-
pensation between the two opposing effects, and the ionic state
for 2 and 6 is still 7 kcal mol�1and 11 kcal mol�1, respectively,
below the covalent one.
(10)(b) The RSIC-DFT description of the radical cations

suffers from two important shortcomings: a lack of long-range
3e-bond correlation effects and the oversimplified interelectro-
nic exchange, which leads also to long-range effects. There is
however a third deficiency of SIC-DFT, which has so far been
overlooked in the literature.
(10)(c) The lack of unitary invariance for the SIC-DFT

energy can lead to unphysical symmetry-breaking effects in
the SIC-DFT description of the fragments. An unrealistic pyr-
amidalization of 7þ� lowers its SC-SIC-BLYP energy by 6.40
kcal mol�1, whereas the correct ground state is planar. Conse-
quently, care is required to select the appropriate reference for
the relative energy in the dissociation of radical cations. We
note that a similar effect is found for the dissociation of the
ethane radical cation.11

The problems discussed in connection with a DFT descrip-
tion of radical cations with one- or three-electron bonds are
also of relevance for DFT descriptions in general. DFT transi-
tion states of radical reactions with closed shell systems are
predicted too low in energy, which is a result of the SIE. The
transition states of XHn (X ¼ F, O, N, C and n ¼ 0, 1, 2, 3)
with H2 are typical examples for this.63 The simplest of these
reactions, namely the reaction HþH2 was preliminarily inves-
tigated with P-SIC-DFT.16,21,64 The SIE leads in this case of an
underestimation of the barrier by 10 kcal mol�1. Furthermore
the reactions of ozone with various organic substrates imply
transition states with an odd number of electrons, which are
typically underestimated by standard DFT.65,66 The DFT bar-
riers of H abstraction reactions are always too low.67 DFT
descriptions of the reactions of singlet biradicals can be flawed
by the same error. In general, any reaction, in which the
chemical processes of bond breaking and forming no longer
involve an even number of electrons, is sensitive to the SIE.
Odd-electron situations are also experienced in charge-

transfer complexes.32 The description of donor–acceptor com-
plexes can lead to substantial SIEs, especially if the acceptor is
a dication. The calculation of transition metal complexes by
DFT becomes particularly problematic because of the SIE.
There are several studies of iron complexes in the literature
where the SIE leads to unbalanced reaction and activation
energies.68

The SIE often leads to the vanishing of transition states and
generates artificial minima (see 7þ� above). In the reaction of
atomic oxygen with dimethylether, Sander and co-workers
observed this problem.69 Artificial minima have also been
found in hydroxyl and hydroperoxyl radical reactions.65,66

Singlet–triplet splittings can also be flawed by the SIE: the
singlet is normally described by RDFT, which leads to a nor-
mal stabilizing SIE. For the triplet, the SIE is normally small
so that the singlet–triplet splitting depends on the question
whether the singlet is stabilized in the right way. For many
closed shell systems and biradicals70 this is indeed the case.
Properties that depend on the correct calculation of singlet–
triplet splittings are reasonably described. The NMR spin–spin
coupling constants71 are an example of this case because the
Fermi contact term requires reliable singlet–triplet excitations.
If they are underestimated (overestimated), the calculated
Fermi contact term is too large (small), which can only be
corrected by using less (more) exact exchange.71 There are
additional SIE effects which can have an influence on the sing-
let–triplet splittings: For a BS-UDFT description there is no
orthogonality constraint between the two singly occupied
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orbitals and therefore, relatively compact orbitals result. In the
triplet, the singly occupied orbitals are orthogonal, which may
lead to delocalized orbitals due to their mutual steric repulsion.
Accordingly, the SIE becomes more negative, which may act as
a second order effect leading to slightly decreased singlet–
triplet splittings.
Despite the fact that the SIE has been extensively discussed

in the literature,3–42 there are still DFT investigations in which
the problem is totally ignored and questionable DFT results
are presented at length in the literature. It seems that especially
in transition metal investigations the problem is not recog-
nized. Baerends and co-workers23 have set up rules how to
identify an odd electron situation, however for charge transfer
reactions it is always best to test the calculated charges and
draw from there appropriate conclusions with regard to the
importance of the SIE. It is also necessary to consider in this
connection the XC functional used. The SIE of the X and
the C functional can cancel each other partially as in the case
for PW91PW91.5–7 Since the LYP functional does not possess
a SIE, BLYP does not benefit from cancellation and the SIE is
relatively large.5–7

Considering that the SIE of approximate XC functionals
concerns not only the radical cations but also many other elec-
tronic systems it is clear that there have been many attempts to
develop SIE-free XC functionals. The SIC-DFT methods
based on the Perdew–Zunger approach are too costly to repre-
sent a solution to the problem. However, even without this
technical disadvantage, SIC-DFT causes more problems than
it solves:
(a) As shown for 10 (Fig. 6a), BS-USIC-DFT provides a

poor description of the recoupling region (1.3–1.9 Å) of the
dissociation of the electron-pair bond. The description can
be improved by orbital relaxation provided by SC-SIC-DFT,
however even then deviations from the correct description
(CISD dissociation curve, Fig. 6a) are large. SIC-DFT incor-
rectly recognizes an odd-electron situation in the recoupling
region (there are now two separated electrons) and annihilates
a large SIE that describes actually useful non-dynamic electron
correlation thus leading to a deterioration rather than an
improvement of the DFT description. This is also true in the
case of any transition state for a bond breaking or forming
process.
(b) Even in the case of the breaking of an odd-electron bond,

a SIE-free DFT method will no longer account for the long-
range bond correlation effects needed for the balanced descrip-
tion of ionic and covalent dissociation limits. Hence SIC-DFT
cannot describe the dissociation of radical cations correctly.
(c) In this work, we have shown that the SIE for bonds

formed by electron-rich atoms accounts for a large amount
of dynamic electron correlation, which is true for odd- as well
as even-electron bonds. In the latter case these extra-effects
help to improve the description of the breaking of electron-pair
bonds. SIC-DFT can no longer provide these improvements.
(d) SIC-DFT improves the description of intraelectronic

exchange, but still suffers from the simplified description of
interelectronic exchange, which can lead to an unbalanced
description of different states. HF interelectronic exchange
comprises long-range effects, which are missing in SIC-DFT.
A balanced DFT functional must fulfill two, apparently con-

tradictory, requirements: (i) In odd-electron situations, the SIE
for the delocalized electron has to be eliminated. (ii) In situa-
tions where the KS reference function misses non-dynamic cor-
relation effects (typically in the recoupling region of breaking
or forming electron-pair bonds), the SIE must be retained.
Conventional hybrid functionals are a compromise between
(i) and (ii). Hence, a reparametrization of hybrid functionals
can just improve the description of a certain type of system
at the cost of others. SIC-DFT obeys (i) but ignores (ii) com-
pletely. An early attempt to obey both (i) and (ii) has been
made by Burke and co-workers,72 where aHF is not fixed in

advance but determined case by case depending on the charac-
ter of the system investigated.
Recently, a number of SIE-free DFT functionals outside the

framework of the PZ formalism have been suggested.41,42

These functionals are unitary invariant and computationally
much less demanding than the PZ formalism. They use
iso-electron indicators, i.e. local functions of the density, the
KS density matrix, and their gradients, to probe the molecule
for regions with one-electron behavior and eliminate the SIE in
these regions. The question arises whether these functionals
obey (i) and (ii). In the same way as PZ-SIC, these methods
are focused on obeying (i), however no particular measures
are taken to fulfill (ii). The local hybrid (lh) functional by Jar-
amillo and co-workers,42 for instance, is constructed such that
it turns into pure DFT for metallic situations, i.e. situations
with small relative density gradients. The values for re and
De of 1–6 obtained with the lh functional from ref. 42 are
superior to the values obtained with standard BLYP or
B3LYP but generally inferior to the SC-SIC-BLYP results.
Furthermore, it is stated in ref. 42 that the lh functionals are
clearly inferior to standard BLYP and B3LYP for the calcula-
tion of atomization energies. It turns out that the lh func-
tionals overestimate the portion of exact exchange required
for a balanced suppression of the SIE. It appears possible in
principle to obey (ii) with a functional using local correlation
indicators, however, so far there is no such functional and
no appropriate indicator that could detect bond-breaking
and similar situations.
From the results obtained in this work, we conclude that the

best way of eliminating all SIE-related problems is to use exact
exchange throughout in DFT calculations. This implies that all
short- and long-range correlation effects discussed in connec-
tion with DFT exchange have to be added to the correlation
functional. It is known that such a HF-KS approach performs
poorly for LDA and GGA correlation functionals, and it has
been pointed out73 that it is clearly inferior to pure GGA even
if the most advanced semi-local correlation functionals are
used. Only in connection with a truly nonlocal correlation
functional can exact exchange provide results superior to
methods employing local or semilocal exchange. Two ways
seem to be prospective to construct such a truly nonlocal cor-
relation functional. First, one could include the DFT exchange
functional into the correlation functional using eqn. (4):

XC ¼ XðexactÞ þ ½c1CðDFTÞ þ c2XðDFTÞ � c3XðexactÞ�
ð4Þ

The XC functional (4) must fulfill the sum rule, i.e. the new
correlation functional must integrate to zero, which means
c1 ¼ c2 . For constant c1 , c2 , eqn. (4) is just a reformulation
of hybrid-GGA. If, however, c1 , c2 are variable in space,
eqn. (4) is a sound starting point for the description of long-
range correlation effects with the help of the long-ranged exact
exchange. According to Perdew and Schmidt,73 functional (4)
would belong to the hyper-GGA functionals of the ‘‘Jacob’s
ladder ’’.
Another possibility would be to derive correlation func-

tionals from high level ab initio calculations in the spirit of
Colle and Salvetti74 with the requirement that they account
for all needed short- and long-range Coulomb correlation.
There is work in progress in this direction, however it is too
early to see a realization that solves all the problems in connec-
tion with the standard XC functionals discussed in this work.
Clearly, there is always the possibility to make the XC func-

tional orbital dependent and to introduce specific correlation
effects needed via the virtual orbitals and to obtain in this
way (at least partially) correct correlation, i.e., to construct a
functional that is on the fifth rung of the ‘‘Jacob’s ladder ’’.73

However, this will be only reasonable if the numerical expenses
of such a functional are significantly smaller than those of
correlated wave-function methods.
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Appendix

The error in the DFT description of the interelectronic
exchange results in an artificial stabilization of the covalent
state relative to the ionic one. For the purpose of proving this
a symmetric radical cation at an interaction distance R large
enough to keep the fragments well separated from each other
is considered. The electron densities at the two fragments
(excluding the bonding b electron) are denoted by RcA and RcB.
If the bonding valence electron is at fragment A or B, its den-
sity in the covalent state will be RvA or RvB, respectively. The
valence density at the two fragments is (RvA þ RvB)/2. (We
neglect orbital relaxations between covalent and ionic state).
The exact interelectronic exchange between two orbitals is

bilinear in the densities of the orbitals. Consequently, the inter-
electronic exchange between the bonding electron and the
remaining electrons is the same no matter whether the valence
density is located at fragment A, fragment B, or one half of it
at each fragment. The interelectronic exchange within the frag-
ments is not affected by the transition from the ionic to the
covalent state. Altogether, exact wavefunction theory gives
the same interelectronic exchange for ionic and covalent state.
For the LDA exchange, the interatomic exchange energies of

covalent and ionic state become

EDFT
X;inter;ion ¼ �CX

Z
d3rf½ðRvAðrÞ þ RcAðrÞ�

4=3

� RvAðrÞ
4=3 þ RcBðrÞ

4=3g � D; ðA1aÞ

EDFT
X;inter;cov ¼ �CX

Z
d3r

1

2
RvAðrÞ þ RcAðrÞ

� �4=3(

� 1

2
RvAðrÞ

4=3 þ 1

2
RvBðrÞ þ RcBðrÞ

� �4=3
� 1

2
RvBðrÞ

4=3

�
� D: ðA1bÞ

Factor CX ¼ (3/2)(3/4p)1/3. D is the intraelectronic
exchange for all core electrons in fragments A and B, which
is the same for ionic and covalent state. Because of the symme-
try of fragments A and B, RcB, R

v
B can be replaced by RcA, R

v
A,

and the difference between EDFT
X;inter;ion and EDFT

X;inter;cov is

EDFT
X;inter;ion � EDFT

X;inter;cov

¼ �CX

Z
d3r

�
xðRvAðrÞ; RcAðrÞÞ:

þxð0; RcAðrÞÞ � 2x
1

2
RvAðrÞ; RcAðrÞ

� ��
; ðA2aÞ

where the function x is defined as

xðx; yÞ ¼ ðxþ yÞ4=3 � y4=3: ðA2bÞ

For any fixed positive value of y and all positive values x,
@2x/@x2< 0 for all x, i.e., x is a concave function of x. This
implies

xðx; yÞ þ xð0; yÞ � 2xðx=2; yÞ < 0 for all x; y > 0: ðA3Þ

Hence, the integrand in eqn. (A2a) is always negative, and
consequently EDFT

X;inter is more positive for the ionic than for
the covalent state. As a correct description should give the
same interelectronic exchange energy for ionic and covalent
state, this result shows that LDA overstabilizes the covalent
state relative to the ionic one. The result can be generalized
to GGA, keeping in mind that the LDA term is the dominating
contribution to the GGA exchange energy.
It should be noted that the overstabilization of the covalent

state due to the interelectronic exchange is independent of R as
long as R is large enough to keep the fragments separated.
There is no 1/R dependence as in the case of the SIE.
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