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Abstract For the local (adiabatic) vibrational modes of

Konkoli and Cremer (Int J Quantum Chem 67:29–40,

1998), infrared intensities are derived by setting up the

appropriate adiabatic conditions. It is shown that the local

mode intensities are independent of the coordinates used to

describe a molecule and correctly reflect the molecular

symmetry and isotope composition. Normal mode inten-

sities are related to local mode intensities via an adiabatic

connection scheme (ACS). The ACS reveals intensity

changes due to local mode mixing and avoided crossings,

which are easily identified and quantified. The infrared

intensities of simple molecules such as H2O, CH4, O3,

HOOH, CH3OH, and the water dimer are discussed, and

the influence of isotopes is quantified.

Keywords Local vibrational modes � Local stretching

force constant � Infrared intensities � Local mode

intensities � Adiabatic connection scheme � Isotope effects

1 Introduction

One of the primary objectives in chemistry is to determine

the properties of the chemical bond [1]. Chemists have

collected bond dissociation energies (BDE), bond lengths,

stretching force constants, and other properties to derive

suitable bond strength descriptors [2–4]. Although BDE

values may be useful in a qualitative sense, they fail to be

bond strength descriptors in a quantitative way because

they depend on both the strength of the bond to be broken

and the stabilization of the dissociation fragments caused

by electron density redistribution, geometry relaxation, and

avoided crossings between electronic states [5, 6]. The

bond length has been used as bond strength descriptor for

small, nonpolar molecules however becomes problematic

for molecules with strongly polar bonds as is documented

in the literature [7]. More suitable as bond strength

descriptors are the stretching force constants of a vibrating

molecule, which are obtained with the help of vibrational

spectroscopy [4, 8, 9].

The use of stretching force constants to describe the

chemical bond dates back to the 20s and 30s of the last

century when Badger [10] found a relationship between

force constant and bond length for diatomic molecules

[11]. The extension of the Badger relationship to poly-

atomic molecules turned out to be difficult because spec-

troscopically derived stretching force constants are not

unique, reflect coupling between the vibrational modes,

and depend on the internal coordinates used for the

description of the molecule in question [11]. Repeated

attempts have been made to use stretching force constants

by assuming that the bond stretching frequencies of certain

functional groups are less effected by mode–mode cou-

pling and therefore provide at least approximate measures

for the bond strength via the associated force constants [12,

13]. These attempts are based on the general understanding

that the stretching force constants of a molecule in its

equilibrium geometry are the appropriate measures of the

bond strength. Vibrational force constants are related to the

curvature of the Born–Oppenheimer potential energy sur-

face (PES) E(q) spanned by the internal coordinates qn of
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the molecule in question. They can be obtained by calcu-

lating the Hessian of E(q), which collects all second

derivatives of the molecular energy with regard to the qn-

coordinates and is identical (apart from some conversion

factors) to the force constants matrix Fq expressed in terms

of internal coordinates.

The stretching force constant corresponds to an infini-

tesimally small change of the bond, and therefore, it is an

ideal dynamic measure of the bond strength, which is no

longer influenced by electronic structure reorganization or

geometry relaxation effects. However, the stretching force

constants obtained for a polyatomic molecule by either

directly calculating the Hessian matrix or, alternatively,

deriving them from measured stretching frequencies by

solving the basic equation of vibrational spectroscopy [8]

can because of coupling effects, no longer be related to

individual bonds. Therefore, vibrational spectroscopists

have pursued various ways of obtaining local mode

stretching force constants.

Already in the 60s, Decius [14] suggested to solve the

force constant problem by reverting to the inverse force

constant matrix C ¼ ðFqÞ�1
and introducing the compli-

ance constants Cnn as local bond strength descriptors.

Ample work has been carried out with the compliance

constants to describe the properties of chemical bonds [15–

19] although their physical meaning and relationship to the

normal vibrational modes remained unclear. McKean [20–

22] solved the problem of obtaining local XH stretching

force constants by synthesizing isotopomers of a given

molecule where all H atoms but the target hydrogen were

replaced by deuterium. By measuring then the isolated XH

stretching frequency, a reasonable approximation for a

local mode frequency was obtained. Henry [23] obtained

local mode information on CH-stretching vibrations from

overtone spectra. Apart from this, there were numerous

attempts to set up relationships between stretching force

constants or frequencies and bond strength descriptors such

as BDE values, bond orders, bond lengths, etc., which are

discussed in a 2010 review article that underlines the

necessity of obtaining local mode information from normal

vibrational modes [11].

Konkoli and Cremer [24] determined for the first time

local vibrational modes directly from normal vibrational

modes by solving the mass-decoupled Euler–Lagrange

equations. Each local mode is associated with an internal

coordinate qn (n = 1,. . .;Nvib with Nvib ¼ 3N � R; N num-

ber of atoms; R number of translations and rotations),

which drives the local mode [24]. These authors also

demonstrated that each normal vibrational mode can be

characterized in terms of local vibrational modes, where

their characterization of normal mode (CNM) method is

superior to the potential energy distribution analysis [11,

25]. Cremer et al. [26] developed a way of calculating from

a complete set of 3N � R measured fundamental frequen-

cies the corresponding local mode frequencies. In this way,

one can distinguish between calculated harmonic local

mode frequencies (force constants) and experimentally

based local mode frequencies (force constants), which

differ by anharmonicity effects [27, 28]. Larsson and

Cremer [29] showed that McKean’s isolated stretching

frequencies are equal to the local mode frequencies if there

is a complete decoupling of the CH-stretching modes in a

deuterium isotopomer. Zou et al. [30] proved that the

reciprocal of the compliance constant of Decius is identical

with the local force constant of Konkoli and Cremer.

Furthermore, they proved that the local vibrational modes

of Konkoli and Cremer are the only modes, which directly

relate to the normal vibrational modes.

A local mode depends only on the internal coordinate it

is associated with (leading parameter principle [24]) and

is independent of all other internal coordinates used to

describe the geometry of a molecule. Accordingly, it is

also independent of using redundant or non-redundant

coordinate sets. The number of local vibrational modes

can be larger than Nvib, and therefore, it is important to

determine those local modes, which are essential for the

reproduction of the normal modes. They can be deter-

mined with the help of an adiabatic connection scheme

(ACS), which relates local vibrational frequencies to

normal vibrational frequencies by increasing a scaling

factor k from 0 (local frequencies) to 1 (normal fre-

quencies). For a set of redundant internal coordinates and

their associated local modes, all those frequencies con-

verge to zero for k! 1, which do not contribute to the

normal modes so that a set of Nvib dominant local modes

remains [30, 31].

The infrared intensities of vibrational modes have been

used to determine effective atomic charges of a molecule

[32–34]. The measured intensities are associated with the

atomic polar tensor (APT), which is the matrix of dipole

moment derivatives with regard to the geometrical

parameters of a molecule. If it is possible to obtain the APT

from measured infrared intensities and if in addition the

geometry of a molecule is known, one can directly deter-

mine effective atomic charges from measured infrared

intensities. Much work has been done in this direction [32–

35] where however all attempts so far have been based on

normal rather than local vibrational modes. Since each

normal mode is delocalized because of mode–mode cou-

pling, it is questionable whether reliable charge informa-

tion can be obtained from normal mode intensities. It is

much more likely that in these cases, as in the case of the

bond strength description, local mode rather than normal

mode information is needed.
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In this work, we will make the first and necessary step

for obtaining effective atomic and bond charges from

infrared intensities and APT by deriving the local mode

intensity. Furthermore, we will relate the local mode

intensities to those of the normal modes utilizing an

intensity ACS as was recently done for the frequency ACS

[30]. Equipped with these theoretical tools, we will be able

to analyze normal mode intensities and discuss them in

terms of local mode intensities, mode–mode coupling,

isotope-dependence, and symmetry.

Before doing so it is necessary to clarify the term local

mode because it is used in the literature in at least four

different ways. (i) In computational chemistry, the normal

modes are calculated using the classical description of a

vibrating molecule introduced by Wilson et al. [8]. In this

description, normal modes are delocalized because of mode

coupling and their counterparts (derived by Konkoli and

Cremer [24]) are the local modes of this work. Other terms

such as isolated [20] or intrinsic [36] have been used in

connection with local mode descriptions, but these latter

terms refer to normal vibrational modes, which are local

only in an approximate sense. (ii) Henry et al. [23, 37–40]

have developed local mode (an)harmonic oscillator models

to quantum mechanically calculate the overtones of XH

stretching modes. The higher overtone modes (n = 5 or 6)

for isolated XH groups are largely decoupled, which jus-

tifies speaking of local modes. Contrary to the normal and

local modes of classical physics (see i), the local modes of

the oscillator models and their frequencies are true eigen-

functions and eigenvalues of a quantum mechanical

Hamiltonian acting on the vibrational wave function. (iii)

Reiher et al. [41–43] calculate unitarily transformed nor-

mal modes associated with a given band in the vibrational

spectrum of a polymer where the criteria for the transfor-

mation are inspired by those applied for the localization of

molecular orbitals. The authors speak in this case of local

vibrational modes because the modes are localized in just a

few units of a polymer. Nevertheless, Reihers local modes

are still delocalized within the polymer units. (iv) Yet,

another use of the term local modes is made in solid-state

physics where it refers to the vibrational mode(s) of an

impurity in a solid material [44, 45].

The results of this work will be presented in three

sections. In Sect. 2, the theory of the local mode inten-

sities and the intensity ACS will be developed. Local

mode intensities are analyzed and discussed for some

small molecules in Sect. 3. It is shown how the normal

mode intensities can be stepwise converted into local

mode intensities and vice versa. In Sect. 4, the chemical

relevance of the local mode intensities is discussed. In

the final section, conclusions are drawn and an outlook is

presented.

2 Theory of local vibrational modes

The vibrational secular equation expressed in Cartesian

coordinates is given by Eq. (1): [8, 9, 46]

Fx ~L ¼M ~LK ð1Þ

where Fx is the force constant matrix, M the mass matrix,

matrix ~L collects the vibrational eigenvectors ~ll in its

columns, and K is a diagonal matrix with the eigenvalues

kl, which leads to the (harmonic) vibrational frequencies

xl according to kl = 4p2c2xl
2. In Eq. (1), the number of

vibrational modes is given by Nvib, i.e., R translational and

rotational motions of the molecule are already eliminated.

Here and in the following, a tilde above a vector or matrix

symbol indicates mass weighting. Matrix ~L has the

following properties

~L
y
M ~L ¼ I ð2Þ

~L
y
Fx ~L ¼ K ð3Þ

i.e., matrix ~L and eigenvalue matrix K are obtained by

diagonalization of the mass-weighted force constant

matrix. Usually, the normal mode vectors ~ll are re-

normalized according to

ll ¼
1
ffiffiffiffiffiffiffi

~l
y
l
~ll

q

~ll ¼
ffiffiffiffiffiffi

mR
l

q

~ll ð4Þ

or

L ¼ ~LðMRÞ1=2 ð5Þ

where mR
l ¼ ~l

y
l
~ll

� ��1

is the reduced mass of mode l.

Matrix L also satisfies Eq. (1) in the form

FxL ¼MLK ð6Þ

which leads to

LyFxL ¼ K ð7Þ

LyML ¼MR ð8Þ

Equations (7) and (8) define the diagonal normal force

constant matrix K and the reduced mass matrix MR (with

elements ml
R), respectively.

The vibrational secular equation expressed in internal

coordinates qn is given by Wilson et al. [8]

Fq ~D ¼ G�1 ~DK ð9Þ

Here, ~D contains the normal mode vectors
~dlðl ¼ 1; . . .;Nvib), and matrix G ¼ BM�1By (Wilson

matrix) gives the kinetic energy in terms of internal

coordinates [8]. The eigenvector matrix ~D has the

properties
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~DyG�1 ~D ¼ I ð10Þ
~DyFq ~D ¼ K ð11Þ

Renormalization of ~D according to

D ¼ ~DðMRÞ1=2 ð12Þ

leads to

FqD ¼ G�1DK ð13Þ

and

DyFqD ¼ K ð14Þ

DyG�1D ¼MR ð15Þ

The relationship between Dð ~D) and Lð ~L) is given by

Zou et al. [31]

L ¼ CD ð16Þ

~L ¼ C ~D ð17Þ

Matrix C is the pseudo-inverse matrix of B, where the

latter is a rectangular (Nvib 9 3N) matrix containing the

first derivatives of the internal coordinates qn with regard to

the Cartesian coordinates.

C ¼M�1ByG�1 ð18Þ

Equations (1)–(18) are needed to present and derive in the

following the properties of the local vibrational modes.

2.1 Properties of a local mode

The local vibrational modes of Konkoli and Cremer [24]

can be directly determined from the normal vibrational

modes. The local mode vector an associated with qnðn ¼
1; . . .;Npara with Npara being the number of internal coor-

dinates to specify the molecular geometry) is given by

an ¼
K�1dyn

dnK�1dyn
ð19Þ

where the local mode is expressed in terms of normal

coordinates Ql associated with force constant matrix

K. Here, dn denotes a row vector of the matrix D. The

local mode force constant kn
a of mode n (superscript

a denotes an adiabatically relaxed, i.e., local mode) is

obtained with Eq. (20):

ka
n ¼ aynKan ¼ ðdnK�1dynÞ

�1 ð20Þ

Local mode force constants, contrary to normal mode force

constants, have the advantage of being independent of the

choice of the coordinates to describe the molecule in

question [24, 26]. In recent work, Zou et al. [30, 31] proved

that the compliance constants Cnn of Decius [14] are sim-

ply the reciprocal of the local mode force constants:

ka
n ¼ 1=Cnn.

The reduced mass of the local mode an is given by the

reciprocal diagonal element Gnn of the G-matrix [24].

Local mode force constant and mass are sufficient to

determine the local mode frequency xn
a

ðxa
nÞ

2 ¼ 1

4p2c2
ka

nGnn ð21Þ

2.2 Adiabatic connection scheme (ACS) relating local

to normal mode frequencies

With the help of the compliance matrix Cq ¼ ðFqÞ�1
, the

vibrational eigenvalue Eq. (9) can be expressed as [30]

ðCqÞ�1 ~D ¼ G�1 ~DK ð22Þ

or

G ~R ¼ Cq ~RK ð23Þ

where a new eigenvector matrix ~R is given by

~R ¼ ðCqÞ�1 ~D ¼ Fq ~D ¼ ð ~D�1ÞyK ð24Þ

Next, the matrices Cq and G are partitioned into diag-

onal (Cq
d and Gd) and off-diagonal (Cq

od and God) parts: [30]

ðGd þ kGodÞ ~Rk ¼ ðCq
d þ kCq

odÞ ~RkKk ð25Þ

where the off-diagonal parts can be successively switched

on with a scaling factor k (0 B k B 1), so that the local

mode description given by the diagonal parts (k = 0) is

stepwise converted into the normal mode description

obtained for k = 1. For each value of k a specific set of

eigenvectors and eigenvalues collected in ~Rk and Kk,

respectively, is obtained. Equation (25) is the basis for the

ACS.

2.3 Infrared intensity of a normal mode

The infrared intensity of normal mode l is determined by

[34, 47, 48]

Inm
l ¼ ðdnm

l Þ
y
dnm

l ð26Þ

where superscript nm denotes a normal mode and the

dipole derivative vectors dnm
l are collected in a matrix dnm

given by Eq. (27):

dnm ¼ CD ~L ¼ CDLðMRÞ�1=2 ð27Þ

The APT matrix D is of dimension 3 9 3N and contains

the dipole moment derivatives with regard to Cartesian

coordinates [32, 34]. If the normal mode intensity Il
nm is
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given in km/mol and D and MR in atomic units, the con-

version factor C in Eq. (27) is 31.22307.

2.4 Infrared intensity of a local mode

The intensity In
a of a local mode an associated with internal

coordinate qn has to fulfill a number of requirements: (i) In
a

must be characteristic of the local mode in question (and

the associated displacement coordinate), however inde-

pendent of any other internal coordinate used for the

description of the molecular geometry. (ii) It must be

characteristic of the masses of the atoms participating in

the local vibration, but at the same time it must be inde-

pendent of any other atomic masses in the molecule. (iii) In

case of symmetry, symmetry-equivalent local modes must

possess identical intensities. (iv) For diatomic molecules,

the local mode intensity must be identical with the normal

mode intensity.

For the derivation of the local mode intensity, Eq. (27) is

re-written in terms of internal coordinates utilizing Eqs.

(10), (17), and (18):

dnm ¼ CD M�1ByG�1
� �

~D ð28Þ

¼ CDM�1Byð ~DyÞ�1 ð29Þ

If Npara = Nvib, the inverse of ~D exists.

For the adiabatic situation with k = 0, Eq. (22) becomes

ðCqÞ�1
d

~D0 ¼ G�1
d

~D0K ð30Þ

and the normalization condition (10) takes the form

~Dy0G�1
d

~D0 ¼ I ð31Þ

where the subscript 0 denotes k = 0. If the local modes are

ordered according to increasing frequencies xl
2, then matrix

~D0 will be diagonal. Hence, matrix D0 ¼ G
�1=2
d

~D0 is also

diagonal where MR
0 ¼ G�1

d . Accordingly, it holds that

D
y
0D0 ¼ ~Dy0G�1

d
~D0 ¼ I ð32Þ

or

X

Nvib

m

ðD0ÞlmðD0Þml ¼ ðD0Þ2ll ¼ 1 ð33Þ

which implies that ðD0Þll ¼ �1 where only the positive

value is used for reasons of simplicity. We conclude that

matrix D0 is the unit matrix.

Hence, the local mode condition with k = 0 implies that

(i) D0 = I, (ii) MR
0 ¼ G�1

d , and (iii) ~D0 ¼ G
1=2
d . Equation

(29) takes for local mode an the form

da ¼ CDM�1ByG
�1=2
d ð34Þ

which leads to the local mode intensity

Ia
n ¼ ðda

nÞ
y
da

n ð35Þ

It can be easily proved that Eq. (34) is both isotope-inde-

pendent and parameter-independent and, in addition, leads

to symmetry-equivalent intensities thus fulfilling the

requirements (i), (ii), and (iii) for local mode intensities.

For a diatomic molecule, Eq. (34) collapses to Eq. (27).

The fulfillment of (i), (ii), and (iii) is demonstrated for the

water molecule (see Table 1).

The water example shows that the bending intensity is

relatively large and literally identical for normal and local

mode where the difference results from a small coupling

between bending and symmetric stretching mode. The local

OH stretching intensities are identical and of medium size,

which changes as a consequence of coupling between the

two OH stretching modes. The symmetric stretching mode

has only a small intensity because it leads to a relatively

small change in the charge distribution. It is noteworthy

that the measured intensity of the symmetric stretching

mode is 2.2 km/mol [33], which is a result of a small

mixing of stretching and bending vibration. The asym-

metric stretching mode causes a large change in the charge

distribution and accordingly has a large normal mode

intensity.

If the bending parameter is replaced by the distance

between the H atoms, a much lower intensity is obtained

because the charge changes become smaller during this

non-bonded stretching motion. However, none of the OH

stretching vibrations changes its intensity value confirming

that the local modes are independent of the other internal

coordinates used for determining the molecular geometry.

In this connection, it is important to note that the HH

distance is used here only for test purposes. If the fre-

quency ACS of the water molecule is set up with a

redundant set of six internal coordinates (three distances

and three angles in a hypothetical triangle), three local

Table 1 Local and normal mode intensities In
a and Il

nm of H2O and

HDO

Molecule Parameter In
a (km/mol) Mode l Il

nm (km/mol)

H2O H–O 23.4868 1 40.8595

H–O 23.4868 2 3.2361

H–O–H 69.1712 3 69.5078

H�H 11.3848

HDO H–O 23.4868 1 24.7171

D–O 14.9527 2 11.2932

H–O–D 59.8634 3 59.5745

D–O 14.9527

H�D 16.9479

B3LYP/cc–pVTZ calculations based on Eqs. (26) and (34)
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mode frequencies associated with HH distance and the two

OHH angles converge to zero.

If one H is replaced by D, the local DO stretching

intensity adopts a lower value because of the large mass of

the D atom. Again, this does not lead to a change in the

local OH stretching intensity. Also, there is no change

when the bending angle is replaced by the H � D non-

bonded distance.

Because of the parameter-independence, Eq. (34) can be

formulated for an individual local mode associated with qn

as

da
n ¼

C
ffiffiffiffiffiffiffiffi

Gnn

p DM�1byn ð36Þ

where bn is a vector of matrix B. Since byn=
ffiffiffiffiffiffiffiffi

Gnn

p
has the

unit of amu1/2, the conversion factor C in Eq. (36) does not

depend on bn, i.e., the conversion factors for bond

stretching, bending, or torsion are the same, which is dif-

ferent from the case of local mode force constants [31].

2.5 Adiabatic connection scheme for intensities

Equation (29) can be used as a starting point for deriving

an ACS for infrared intensities.

dk ¼ CDM�1Byð ~DykÞ
�1 ð37Þ

i.e., the intensity Ik depends on the eigenvector matrix ~Dk

obtained from Eq. (38):

C�1
k

~Dk ¼ G�1
k

~DkKk ð38Þ

or

Cq
d þ kCq

od

� ��1 ~Dk ¼ Gd þ kGodð Þ�1 ~DkKk ð39Þ

with the scaling factor k increasing from 0 (local modes;

~Dk¼0 ¼ G
1=2
d and dk¼0 ¼ da) to 1 (normal modes; ~Dk¼1 ¼

~D and dk¼1 ¼ dnm).

Equation (39) has a number of advantages compared

with Eq. (25). The latter becomes unstable in the case of

small normal mode frequencies associated with small

normal mode force constants because ~R of Eq. (24)

becomes also small. This can no longer happen if one

works with the inverse of matrices Gk and Ck.

In the following, we give some application examples,

which illustrate the method described. Also, the usefulness

of local mode intensities is discussed.

3 Local mode intensities and ACS for infrared

intensities

In Figs. 1a–d, 2a, b and 3a, b, intensity and frequency ACS

diagrams are shown for H2O, CH4, O3, HOOH, CH3OH,

and the water dimer, (H2O)2, as obtained (if not otherwise

noted) at the xB97X-D/aug–cc–pVTZ level of theory [49,

50]. For ozone, CCSD/aug–cc–pVTZ calculations were

carried out to get more reliable results. The calculated

geometries and the notation of the atoms are given in

Fig. 4. In Table 2, calculated normal and local mode fre-

quencies and intensities are compared. In the following, we

will discuss interesting features of the intensity ACS,

which help to understand the magnitude of the normal

mode intensity.

3.1 Water

The two local OH stretching modes are equivalent and,

accordingly, the two local OH stretching frequencies are

identical as are the corresponding intensities (see Fig. 1a).

These identities reflect the symmetry of the molecule

although none of the two local OH stretching vectors can

by classified to have a symmetry of the C2v point group.

However, an infinitesimal increase of k by � leads to an

large change in the OH stretching intensities caused by the

fact that the symmetry of the molecule is switched on. In

this sense, k ¼ e (e! 0) denotes a catastrophe point [51]

in the ACS diagram for intensities (according to Thom’s

theory of catastrophes) [52].

Contrary to the vibrational frequencies, the k-dependent

intensities explicitly depend on the mode vectors [see

Eq. (37)]. For a given normal mode l, one can define the

mode dependent part as

tlðkÞ ¼ ½ð ~DykÞ
�1�l ¼ ½ðGkÞ�1 ~Dk�l ð40Þ

which in the case of the local mode (k = 0) becomes

tnðk ¼ 0Þ ¼ ½ð ~Dyk¼0Þ
�1�n ¼ ½G

�1=2
d �n ð41Þ

i.e., the local mode vector tn contains only zeroes with the

exception of position n.

This may be demonstrated for H2O at k = 0 where the

following matrix contains the three column vectors tn

corresponding to internal coordinates H–O–H, O–H1, and

O–H2:

0:0000 0:0000 0:9737

0:0000 0:9737 0:0000

1:2416 0:0000 0:0000

0

@

1

A ð42Þ

At k = e = 10-4, the column vectors change strongly

�0:0001 0:6886 0:6885

�0:0001 0:6886 �0:6885

1:2416 0:0008 0:0000

0

@

1

A ð43Þ

indicating that there is an intensity catastrophe leading to

the splitting into a large asymmetric OH stretching inten-

sity and a small symmetric OH stretching intensity.
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(a) (b)

(c) (d)

Fig. 1 Intensity ACS for a water, b methane, c ozone, and d hydrogen

peroxide. The different mode symmetries are indicated by different

colors. For the purpose of identifying intensity catastrophes, the I (k)

curves are started with an arbitrary negative k value so that the

splitting at k = 0 can be made visible. For the numbering of atoms,

see Fig. 4. xB97X-D/aug–cc–pVTZ or CCSD/aug–cc–VTZ (ozone)

calculations

(a) (b)

Fig. 2 a Frequency and b intensity ACS for methanol, CH3OH. The

different mode symmetries are indicated by different colors. For the

purpose of identifying intensity catastrophes, the I (k) curves are

started with an arbitrary negative k value so that the splitting at k = 0

can be made visible. For the numbering of atoms, see Fig. 4 . xB97X-

D/aug–cc–pVTZ calculations
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The magnitude of the intensity splitting for equivalent

modes depends on the corresponding values of the APT

(the change in the charge distribution caused by the local

mode), the ratio of the masses involved and the coupling of

the mode vectors. In the case of H2O, the two stretching

mode vectors involve as a common atom the O atom,

which is a prerequisite for a large coupling (proximity

effect). However, the angle between the mode vectors is

with 105� (Fig. 4) close to 90� where the coupling of the

OH stretching modes vanishes. Also the light–heavy–light

situation of the three atoms involved leads to a smaller

coupling. However, the changes in the charge distribution

upon OH stretching are significant so that the splitting

values DI of the local OH stretching intensities at the

catastrophe point takes a medium-seized value of ±28 km/

mol (see Table 3; Fig. 1a).

An intensity catastrophe is not found in the case of

isotopomer HOD because of the difference in the OH and

OD stretching modes. At k = 0, three different tn vectors

are determined:

0:0000 0:0000 0:9737

0:0000 1:3375 0:0000

1:4164 0:0000 0:0000

0

@

1

A ð44Þ

and at k ¼ e;

0:0001 0:0007 0:9737

0:0001 1:3375 �0:0007

1:4164 0:0008 0:0006

0

@

1

A ð45Þ

for which the changes are moderate in comparison to (44).

It can be concluded that sudden changes in the intensity are

connected with catastrophe points caused by a switching on

of the molecular symmetry as a result of an infinitesimal

change of k = 0 to k ¼ e:

3.2 Other examples with catastrophe points

CH4, O3, and HOOH. For methane, Nvib = Npara = 9 where

the four CH bond lengths and five of the six H–C–H

bending angles are used. There are just two local mode

(a) (b)

Fig. 3 a Frequency and b intensity ACS for the water dimer, (H2O)2.

The different mode symmetries are indicated by different colors. For

the purpose of identifying intensity catastrophes, the I (k) curves are

started with an arbitrary negative k value so that the splitting at k = 0

can be made visible. For the numbering of atoms, see Fig. 4. xB97X-

D/aug–cc–pVTZ calculations

Fig. 4 xB97X-D/aug–cc–

pVTZ or CCSD/aug–cc–VTZ

(ozone) geometries of the

molecules investigated
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frequencies and two local mode intensities, which in two

separate catastrophes (catastrophe points both at k ¼ e) slit

up into five different intensities with weight factors

3:2:1:2:1 (stretching, bending, bending, bending, stretch-

ing; see Fig. 1b). In the case of the CH-stretching modes,

an intensity value of 22 km/mol associated with the 2T2-

symmetrical (triply degenerate) asymmetric CH-stretching

modes and an intensity of 0 associated with the A1-sym-

metrical CH-stretching mode is obtained. It is noteworthy

that the intensities of the CH-stretching modes fulfill a sum

rule

X

Nd

k

ðDIÞk ¼
X

Nd

k

ðIk¼�Þk � ðIk¼0Þk ¼ 0 ð46Þ

The intensity sum rule is a result of the molecular sym-

metry and is fulfilled provided that the members of a set of

equivalent local modes (i.e., all members of the set have

identical local mode frequencies) cannot mix with other

modes possessing the same symmetry. Hence, the deviation

from the zero value given by the intensity sum rule is a

measure for the degree of mode mixing. In Table 3, the

sum rule is tested for the infrared intensities of the mole-

cules investigated in this work.

The sum rule of the local mode intensities is nicely

fulfilled for the set of local CH-stretching modes (xn
a =

3,126 cm-1, Table 2) and the set of local HCH bending

modes (xn
a = 1,450 cm-1, Table 2). For the former, the

positive DI values of the three asymmetric CH-stretching

intensities (2T2 symmetry) is balanced by the strong

decrease in the symmetric CH-stretching intensity (1A1)

leading to a sum of just -0.02 km/mol. For the HCH

bending intensities, the situation is different as the

intensities associated with the 1T2- and 1E-symmetrical

mode sets split up into three parts (2:1:2). This is a result

of the fact that from six possible HCH bending angles

only five are relevant thus fulfilling the requirement

Nvib = Npara. The sum rule leads to a value of 0.02, which

is indicative for some residual mixing of modes of the

same symmetry.

In the case of ozone (see Fig. 1c), there is a deviation

from the intensity sum rule by 0.67 km/mol (see Table 3),

which results from the mixing of the symmetric OO

stretching mode with the bending mode. This is stronger

Table 2 Comparison of normal mode and local mode frequencies

and intensities obtained by xB97X-D/aug–cc–pVTZ or CCSD/aug–

cc–VTZ (ozone) calculations

Molecule

mode l
Sym. xl

nm

(cm-1)

Il
nm

(km/

mol)

Local mode

parameter n

xn
a

(cm-1)

In
a

(km/

mol)

H2O C2v

1 A1 1,634.8 76.6 HOH 1,634.8 76.4

2 A1 3,878.3 4.9 OH 3,913.2 35.5

3 B2 3,985.4 62.6 OH0 3,913.2 35.5

CH4 Td

1, 2, 3 1T2 1,360.4 13.3 HCH (93) 1,450.1 5.4

4, 5 1E 1,577.0 0 HCH (92) 1,450.1 5.4

6 1A1 3,041.7 0 CH 3,126.2 15.9

7, 8, 9 2T2 3,159.8 21.7 CH (93) 3,126.2 15.9

O3 C2v

1 1A1 761.8 5.2 O0OO00 866.5 2.5

2 1B2 1,253.7 231.8 OO0 1,249.7 143.0

3 2A1 1,272.9 0.2 OO00 1,249.7 143.0

HOOH C2

1 1A 3,93.5 164.5 HOO0H0 394.0 164.0

2 2A 1,025.6 0.4 OO0 1,020.5 0.0

3 1B 1,361.6 99.0 OO0H0 1,365.2 47.3

4 3A 1,468.8 0.4 O0OH 1,365.2 47.3

5 2B 3,839.7 54.6 OH 3,836.2 34.9

6 4A 3,841.1 14.3 O0H0 3,836.2 34.9

CH3OH Cs

1 1A00 300.4 107.7 HOCHi 348.9 86.8

2 1A0 1,069.6 101.4 CO 1,111.7 114.2

3 2A0 1,100.0 22.0 COH 1,260.4 77.2

4 2A00 1,189.0 0.5 OCHo 1,302.2 8.6

5 3A0 1,377.8 27.2 OCHi 1,277.5 2.3

6 4A0 1,485.0 2.6 OCH0o 1,302.2 8.6

7 3A00 1,505.3 3.5 HiCHo 1,487.8 2.7

8 5A0 1,523.2 6.0 HiCH0o 1,487.8 2.7

9 6A0 3,019.2 61.6 CHo 3,044.3 57.4

10 4A00 3,073.3 53.1 CH0o 3,044.3 57.4

11 7A0 3,134.5 25.3 CHi 3,120.3 25.0

12 8A0 3,916.3 34.1 OH 3,911.3 33.8

(H2O)2 Cs

1 1 A00 129.8 167.2 H3O4H5 264.7 126.3

2 2A00 166.8 3.4 H5O4H3O1 354.7 66.5

3 1A0 168.2 192.3 H3O4H6 264.7 126.3

4 2A0 203.3 106.2 O4H3H 587.6 413.4

5 3A0 381.3 45.0 O1H3O4H 380.9 63.9

6 3A00 643.2 95.4 H2O1H3O4 357.0 98.0

7 4A0 1,637.8 93.4 H5O4H6H 1,621.7 81.0

8 5A0 1,659.2 40.0 H2O1H3H 1,564.4 49.7

9 6A0 3,755.4 330.4 O1H3 3,757.2 390.9

10 7A0 3,871.7 11.1 O4H5 3,902.3 52.8

11 8A0 3,950.4 88.7 O1H2 3,918.1 30.1

Table 2 continued

Molecule

mode l
Sym. xl

nm

(cm-1)

Il
nm

(km/

mol)

Local mode

parameter n

xn
a

(cm-1)

In
a

(km/

mol)

12 4A00 3,974.8 85.0 O4H6 3,902.3 52.8

A star indicates that a change in ordering occurred due to an avoided

crossing. For a notation of atoms, see Fig. 4

Theor Chem Acc (2014) 133:1451 Page 9 of 15 1451

123



than in the case of H2O because of an increase in the

bending angle from 105� to 118� (Fig. 4) and a mass ratio

equal to 1, which both facilitate mode mixing.

The intensity ACS in Fig. 1c reveals that the intensity of

the 1B2-symmetrical mode decreases from 284.9 to

231.8 km/mol. This is a direct effect of mass coupling, as

reflected by the increase in the negative off-diagonal ele-

ment of matrix G�1; which connects the asymmetric with

the symmetric OO stretching mode. Actually, the same

effects can be found for the intensities of the asymmetric

XH stretching modes in H2O and CH4. However, the

decrease in the local mode intensities is much smaller in

these cases because mass coupling is smaller for these

light–heavy–light situations.

It is interesting to note that the intensity of the local OO

stretching modes are high (143 km/mol, Table 2), which is

predominantly due to a large ATP element, which in turn is

in line with a relatively large change in charge upon OO

stretching in a molecule with high biradical character.

For hydrogen peroxide, the sum rule is exactly fulfilled

for the OH stretching intensities and approximately for the

OOH bending intensities (Table 3). Mass coupling has a

relatively small effect on the intensities as can be seen in

Fig. 1d. The largest element in the APT is found for the

torsional motion as a result of the relatively large change in

the charge distribution upon HOOH torsion.

3.3 Methanol, CH3OH

There are 12 normal and 12 local vibrational modes, which

are shown in the frequency ACS of Fig. 2a. The corre-

sponding intensity ACS is given in Fig. 2b. There are

familiar features such as the intensity splitting of the two

CHo stretching intensities and that of the two O–C–Ho

bending intensities where only the first fulfill the intensity

sum rule and the latter deviate because of coupling with

other modes of the same symmetry (see Table 3). The CO

stretching mode and the H–O–C–Hi torsional mode possess

the largest intensities which is due the polarity of the CO

bond and the relatively large changes in the charge distri-

bution accompanying these vibrational modes as is con-

firmed by the corresponding elements of the APT.

Contrary to the intensity ACS shown in Fig. 1a–d, in

which the intensity lines mostly change almost linearly

(after a possible catastrophe point) from the local mode to

the normal mode intensities for k = 1, there are strong

variations in the intensity of the CO stretching, the C–O–H

bending, the O–C–Ho bending, and the O–C–Hi bending

modes (Fig. 2b). These variations in the intensity are the

results of avoided crossings between these modes. For

example, there is an avoided crossing at k = 0.87 between

modes 1A0 and 2A0; which are related to the local CO

stretching and C–O–H bending modes (see Fig. 2a). At the

avoided crossing, there is a strong mode mixing accom-

panied by the exchange of mode character and mode

energy. Figure 2b reveals that as a consequence also the

mode intensities change in the sense that the CO stretching

intensity is enhanced and that of the C–O–H bending

Table 3 Splittings DI of intensities of equivalent local modes at the

catastrophe point e ¼ 0:01

Molecule

parameter

Sym. Ik=0

(km/mol)

Ik¼e

(km/mol)

DI

(km/mol)

H2O

OH 2A1 35.49 7.43 -28.06

OH 1B2 35.49 63.52 28.03

Sum -0.03

CH4

HCH 1T2 (92) 5.43 10.87 5.44

HCH 1T2 (91) 5.43 3.93 -1.50

HCH 1E (91) 5.43 1.50 -3.93

HCH 1E (91) 5.43 0.00 -5.43

Sum 0.02

CH 1A1 15.89 0.00 -15.89

CH 2T2 15.89 21.18 5.29

Sum -0.02

O3

OO 2A1 143.02 0.45 -141.90

OO 1B2 143.02 284.92 142.57

Sum 0.67

HOOH

OOH 3A 47.31 0.00 -47.31

OOH 1B 47.31 94.67 47.36

Sum 0.05

OH 4A 34.89 14.71 -20.18

OH 2B 34.89 55.07 20.18

Sum 0

CH3OH

OCHo 4A0 8.58 5.53 -3.05

OCHo 2A00 8.58 10.59 2.01

Sum -1.04

CHo 6A0 57.37 53.67 -3.70

CHo 4A00 57.37 61.11 3.74

Sum 0.04

(H2O)2

HOH 1A0 126.29 51.13 -75.16

HOH 1A00 126.29 195.00 68.71

Sum -6.45

OH 7A0 52.82 19.05 -33.77

OH 4A00 52.82 86.47 33.65

Sum -0.12

Sum denotes the value according to the sum rule of Eq. (46). For a

notation of atoms, see Fig. 4
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intensity by about the same amount decreased. In the

region of the avoided crossings, the two intensity curves

change in a complementary fashion.

Avoided crossings are also found at k = 0.02 between

modes 2A0 and 3A0, which are related to the local C–O–H

and O–C–Hi bending modes (Fig. 2a) and at k = 0.98

between modes 4A0 and 5A0; which are related to the local

O–C–Ho and H–C–H bending modes (Fig. 2a). These

avoided crossings are responsible for the steep comple-

mentary changes in the C–O–H and O–C–Hi bending

intensities I (k) for small k (i.e., on the local mode side).

Involved is also the local O–C–Hi intensity due to an

avoided crossing between modes 3A0 and 4A0 (Fig. 2a). The

avoided crossing at k = 0.98 is however too late to have a

large impact on the 4A0 and 5A0 intensities (Fig. 2b)

3.4 H2O dimer, (H2O)2

The intensity ACS of the water dimer (Fig. 3b) is char-

acterized by a large intensity change of the H-bond

(O4 � � �H3) stretching intensity from 588 to 106 km/mol of

the 2A0 mode, which due to a transfer of the mode char-

acter from the 3A0 to the 2A0 mode at the avoided crossing

at k = 0.8 (Fig. 3a) where the latter becomes the H-bond

stretching mode (mixed with O1� H3 � � �O4 bending

character) and, because of the 2A0 � 1A0 avoided crossing

at k = 0.98 (Fig. 3a), an addition of H3 � � �O4�H5 bending

character [27]. Again at the two avoided crossings, the

changes of the 3A0 and 2A0 (2A0 and 1A0) intensity curves

are complementary (Fig. 3b).

This observation leads to the important conclusion that

the local H-bond stretching intensity has a large value

because of a large change in charge accompanying the

stretching motion. This effects the polarization of the

charge distribution in the two water molecules since this is

determined by H-bonding. However, mass coupling

(caused by stepwise switching on of the masses of the other

four atoms in the water dimer; H3 and O4 have already

their correct masses) leads to a significant decrease in the

intensity. Therefore, the measured normal mode intensity is

no longer a reliable descriptor of the charge distribution

caused by H-bonding in the dimer.

As noted before, there are no avoided crossings in the

intensities. Hence, one must follow the frequency ACS,

which is obtained by solving the vibrational eigenvalue

problem in dependence of k to determine that normal

mode, which is dominated by H-bond stretching character.

This is the 2A0 mode, which can be confirmed by the

analysis of normal modes in terms of local modes [25, 53].

It is noteworthy that the local O1–H3 stretching mode

has also a relatively large intensity because it is directly

involved in the charge polarization caused by H-bonding.

However, this mode (6A0) does not experience any avoided

crossings with other A0 modes (Fig. 3a) and its mass

dependence is smaller than that of O4 � � �H3. Therefore,

the decrease in the intensity is just from 391 to 330 km/mol

(Table 2).

There are also jumps in the intensity ACS curve of the

local H3 � � �O4�H5 bending mode (converting to the 1A00

normal mode, which starts at 126.3 km/mol for k = 0 drops

down to 51 km/mol because of a catastrophe point (mixing

with the H3 � � �O4�H6 bending), then continues to

decrease to 0 km/mol because of avoided crossings with

the torsional modes H2�O1�H3 � � �O4 and

H5�O4 � � �H3�O1 (converting into 3A00 and 2A00), and

finally experiencing a steep increase to 167 km/mol

because of an avoided crossing with the 2A00 mode at k =

0.98, which makes the intensity of the 3A00 mode drop

down to 3 km/mol. Other changes in the intensity curves of

Fig. 3b can also be explained by identifying the avoided

crossings in the frequency ACS. Conversely, an avoided

crossing in the frequency ACS can be confirmed by

inspection of the intensity ACS and identifying then the

complementary changes in the intensity lines of the modes

involved.

4 Chemical relevance of the local mode intensities

As mentioned in the introduction, local mode intensities

are derived to get a direct insight into the charge distri-

bution of a molecule. Secondly, the local mode intensities

together with the local mode frequencies provide the basis

for analyzing infrared spectra. Also, the local mode

intensities are tools for a better quantum chemical calcu-

lation of infrared intensities. Finally, local mode intensities

can be used for the calibration of weakly coupled or

completely uncoupled anharmonic oscillator models.

4.1 Infrared intensities and the molecular charge

distribution

The derivation of atomic charges from measured quantities

has been a major effort in chemistry. Promising in this

respect is the determination of effective atomic charges

from infrared intensities, [32] which was strongly advo-

cated by Person and Zerbi [33], Galabov and Dudev [34]

and their co-workers. The approach had limited success

although the line of action was well-defined. This had to do

with the fact that for the determination of effective atomic

charges, the APT is needed, which could not be obtained

from intensities without addition information from quan-

tum chemistry. However, if the APT is fully known,

effective atomic charges, which reasonably correlate with

Theor Chem Acc (2014) 133:1451 Page 11 of 15 1451

123



natural bond orbital (NBO) charges, [54] can be deter-

mined as was demonstrated by Milani et al. [35].

In our work, we pursue a different approach. We will

use the local bond stretching intensities to determine

effective bond charges, [34] which determine the charge

transfer between two bonded atoms and by this the bond

polarity. The exact quantum chemical calculation of the

bond polarity is only possible by using highly correlated

coupled cluster methods because this requires a well-bal-

anced description of covalent and ionic states in a corre-

lated wave function. For the understanding of bonding, one

needs to know the covalent and the ionic (polar) contri-

butions to the bond strength.

The new method of calculating effective bond charges

from local mode intensities will comprise the following

steps: (i) Calculation of the APT of a target molecule; (ii)

Improvement in the APT with the help of measured normal

mode intensities; (iii) Use of Eq. (35) to obtain local mode

intensities; (iv) Determination of bond charges Dpn using

the relationship Dpn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ia
n=Gnn

p

; and (v) Calculation of

bond dipole moments from the known molecular geometry

and the Dpn values. If only relative intensities are mea-

sured, which is mostly the case, a reliable quantum

chemical calculation of the infrared intensities is needed to

convert them into absolute intensities. For quantum

chemically calculated intensities, it will be interesting to

see how the effective bond polarity and the bond dipole

moment derived from local mode intensities differ from

those obtained by a population analysis (often derived in a

somewhat arbitrary way).

4.2 Analysis of infrared spectra

In this work, we have shown that the normal mode

intensities are the result of mode mixing. Therefore, they

are not associated with a specific structural unit. By

determining the local mode frequency and intensity, the

consequences of mode coupling for normal mode fre-

quencies and intensities can be given in detail by the ACS

diagrams such as those shown in Figs. 1, 2 and 3. This is

particularly interesting when local mode properties are

determined on the basis of measured vibrational data [27,

28]. Then, it is possible to determine the strength of a

bonding interaction from the local stretching force constant

and the bond polarity from the local intensity. Since this

information would be extracted from experiment rather

than quantum chemical data, the shortcomings of method,

basis set, or harmonic approximation used in a quantum

chemical calculation would not need to be discussed. Such

an analysis would show that H-bonding is combined with a

large charge separation contrary to the small intensity of

the H-bond stretching band at 143 cm-1 [27]. The com-

bination of APT and local mode intensity would provide

the effective atomic charges and the magnitude of the

effective bond charge equal to the charge transfer.

4.3 Improved scaling procedures

The local mode frequencies can be used for a superior

scaling of quantum chemical frequencies calculated for

large molecules utilizing the harmonic approximation.

Since a local mode is associated with a given internal

coordinates, local mode frequencies for molecular units

such as XH, AB, ABH, ABC, etc. can be determined

from measured [26] and calculated frequencies. The

determination of scaling factors for well-defined struc-

tural units is straightforward and can be used to an

individual normal mode frequency. Each normal mode

can be decomposed into local mode contributions, i.e.,

for each mode the percentage of XH stretching, ABC

bending, etc. can be determined. Then, each mode con-

tribution is assigned the appropriate local mode scaling

factor and an individual frequency scaling factor is cal-

culated from the properly weighted local scaling factors

of the local modes contributing to the normal mode in

question. This dynamic scaling approach is superior to

previous static scaling procedures, which could not con-

sider the effect of mode coupling. A stretching mode

may have a significant contribution from bending, and

therefore, significant down-scaling of the frequency as

needed for pure stretching frequencies is inappropriate

because harmonic bending frequencies have to be less

reduced than harmonic stretching frequencies.

The need for individual intensity scaling is even larger

than for frequency scaling as was emphasized in various

articles [55, 56]. The use of an individual scaling scheme as

described in the case of the normal mode frequencies is

only possible with the help of the local mode intensities.

For example, in a recent investigation, the cyano-stretching

intensities were scaled with a common factor leading to an

improved but not exact agreement with experiment [56].

This we see as a result of different coupling situations for

the CN stretching vibration with other modes, thus trig-

gering stronger changes in the intensity ACS. Another

source of error results from solvent influences, which are

different for polar and nonpolar groups in a molecule. The

calculation of local mode intensities can provide exact

information with regard to solvent dependable intensity

changes.

4.4 Calibration of harmonically coupled oscillator

models (HOM)

The local mode model of molecular vibrations developed

in the 70s by Henry et al. [37] has been used in the

description of CH-stretching overtone spectra [38–40, 57,
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58]. In this approach, harmonically coupled Morse oscil-

lators (including anharmonicity effects) are used to quan-

tum mechanically determine the vibrational frequencies

and wave functions of the HOM. By employing quantum

chemical methods to calculate the dipole moment function

and then the oscillator strengths in the CH-stretching overtone

spectra of various small and medium-seized organic mole-

cules (alkanes, alkenes, alcohols, H-bonded complexes, etc.) a

useful account of frequencies and intensities of overtones up

to v = 6 could be determined [23].

In previous work, Cremer and co-workers demonstrated

that the local mode frequencies of Konkoli and Cremer

[24] linearly correlate (R2 = 0.990) with the overtone fre-

quencies of Henry for v = 6 [11]. Also, it could be shown

by these authors that residual couplings lead to deviations

from the ideal local oscillator model. This opens up the

possibility of providing suitable local force constants for

the parametrization of the HOM. This can be done for

anharmonically corrected force constants where the latter

are derived from measured vibrational frequencies using

the Konkoli–Cremer approach [26]. Rong et al. [40]

observed that the harmonically coupled anharmonic oscil-

lator model leads to exaggerated intensities depending on

the quantum chemical method and basis set used for cal-

culating the dipole moment function. Clearly, the predic-

tion of overtone intensities can be improved by proper

scaling where again local mode intensities derived from

experiment and from calculations would lead to suitable

scaling factors as described in the previous subsection.

5 Conclusions

In this work, we have introduced the local mode intensities

and the intensity ACS for the purpose of analyzing normal

mode intensities. A number of conclusions can be drawn

from the work presented here.

1. The local mode intensity has been derived by

expressing the normal mode intensity in internal

coordinates and then applying the adiabatic condition

(k = 0), which leads to three requirements defining

D0;M
R
0 ;

~D0; and by this also the local mode intensity

In
a associated with mode an and the internal coordi-

nate qn. Local mode intensities Il
nm are independent of

the coordinates qm, (m = n) used for the description

of the molecular geometry. They are also indepen-

dent of any variation in the isotope distribution in

other parts of the molecule but the target fragment

described by qn. The local mode intensity values of a

molecule comply with the molecular symmetry and

become identical for diatomic molecules to the

normal mode intensity.

2. The intensity ACS has been derived in this work by

exploiting the dependence of the normalized internal

coordinate mode vectors on k, which can be

expressed in the form ðGkÞ�1 ~Dk: The first term of

the matrix product reflects the effect of mass

coupling on the intensity, which increases as the

off-diagonal elements of the G-matrix increase with

k. The second product term describes the effect of

mode mixing on the intensity Ik.

3. Mass coupling leads to an essentially linear decrease

or increase in the local to the normal mode intensity.

This can be anticipated by an analysis of the matrix

G�1:
4. Symmetry-equivalent local modes strongly couple,

which leads to a large change in the corresponding

intensities upon an infinitesimal increase of k from 0

to �; for which we have coined the term intensity

catastrophe because the sudden change in the local

mode intensities complies with the mathematical

definition of a catastrophe [51]. The changes in the

intensities accompanying an intensity catastrophe

depend on the position of the local mode units in the

molecule (proximity effect), the alignment of the

local mode vectors, the ratio of the masses involved

and the change in the charge distribution caused by

the local mode vibrations.

5. All members of a group of equivalent local modes are

involved in an intensity catastrophe and if there is no

coupling with modes outside the group, the intensity

changes DI caused by the catastrophe sum to zero

(intensity sum rule). The deviation from the sum rule

is a quantitative measure for the coupling with other

modes of the same symmetry.
6. Avoided crossings in the frequency ACS between

modes of the same symmetry can lead to strong

nonlinear changes in the intensity curves Ik, which

are largely complementary for the vibrational

modes involved. Depending on the type of avoided

crossing, the mode character is transferred from

one mode to the other or the original mode changes

its character by absorbing additional local mode

contributions. This has to be considered when

analyzing intensity changes from local to normal

modes.
7. There are no avoided crossings in an intensity ACS.

However avoided crossings in the frequency ACS

can be detected by identifying modes with strong, but

complementary changes in the intensities.

8. In each case investigated, one obtains detailed

physical explanations why a normal mode intensity

adopts a particular value. This is facilitated by

evaluating matrices D;M�1;By; ðGkÞ�1; and ~Dk for
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specific values of k between 0 and 1 where the first

three matrices do not change with k.

9. There have been attempts to relate normal mode

intensities to bond charges [34, 47]. On the back-

ground of this work, we can say that these attempts

are only meaningful in cases of minimal local mode

coupling and large mass ratios. In general, this

approach is useless as long as it does not start from

local mode intensities.

10. We have shown the chemical relevance of local mode

intensities with regard to the determination of bond

charges and bond polarity, for the analysis of infrared

spectra, for the development of a dynamic scaling

method of calculated harmonic infrared intensities,

and for the calibration of harmonic and anharmonic

oscillator models.

In this work, we have not put emphases on the correct

calculation of the infrared intensities because the derivation

of the basic concept of local mode intensities and the

analysis of normal mode intensities in terms of the former

is at the primary focus of this work. However, in future

work we will focus on the determination of local mode

intensities from experimental intensities or coupled cluster

intensities. Also, we will derive effective bond charges

from local mode intensities, which are no longer contam-

inated by mass- or mode-coupling.
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