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The normalized elimination of the small component method is

a first principles two-component relativistic approach that

leads to the Dirac-exact description of one-electron systems.

Therefore, it is an ideal starting point for developing proce-

dures, by which first- and second-order response properties

can be routinely calculated. We present algorithms and meth-

ods for the calculation of molecular response properties such

as geometries, dipole moments, hyperfine structure constants,

vibrational frequencies and force constants, electric polarizabil-

ities, infrared intensities and so forth. The described formalisms

are applied to molecules containing mercury and other heavy

elements, which require a relativistic treatment. Perspectives

for the future development and application of Dirac-exact

methods are outlined. VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24578

Introduction

The influence of relativistic effects[1] on the electronic structure

and the chemical properties of heavy elements was recognized

more than four decades ago.[2–13] At the quantum mechanical

level, the Dirac equation[14,15] provides the basis for an exact

description of a single electron in an external field, and the

Dirac Hamiltonian is a cornerstone of relativistic quantum

chemistry. The Dirac equation considers the electron spin as a

dynamic variable and treats the charge-conjugate particle

(positron) on the same footing as the electron itself. This leads

to a four-component wavefunction, which, in the standard rep-

resentation, comprises the large-component and the small-

component spinors, and imposes a special requirement on the

basis sets used in relativistic quantum chemical schemes.[16,17]

To guarantee the correct kinetic energy of electrons, the basis

functions vL
l and vS

l for the large-component and the small-

component spinors, respectively, should satisfy the kinetic bal-

ance condition[16] given by Eq. (1)

vS
l / ðr � pÞvL

l (1)

in which r is the vector of Pauli matrices and p52ir is the

linear momentum operator. The necessity to impose the

kinetic balance condition leads to a rapid increase of the num-

ber of basis functions and respective molecular integrals

required in the relativistic quantum chemical calculation and

makes these calculations considerably more time consuming

than the corresponding nonrelativistic ones.[7]

The complexity of the four-component relativistic formalism

can be bypassed by switching to the two-component (quasi-)

relativistic approach, which is achieved by decoupling the elec-

tronic and positronic states and by keeping the explicit

description for electrons only.[18] However, with the exception

of a free electron, the exact algebraic form of such a transfor-

mation, the so-called Foldy–Wouthuysen (FW) transforma-

tion,[18] is not known. Several approaches were developed to

tackle the problem of transforming the four-component

relativistic formalism to a two-component one.[19,20] From the

very beginning in the midseventies, the field of (quasi-) relativ-

istic two-component computational schemes was dominated

by an operator-driven approach where the (exact or approxi-

mate) two-component relativistic Hamiltonian is first expressed

in operator form and then transformed to matrix form suitable

for quantum chemical calculations. A widely used formalism

developed by Douglas and Kroll[19] and later extended by Hess

(DKH-method)[21–24] uses a factorization of the unknown FW

transformation operator into a free-particle part, which is

known exactly, and a field-dependent part, which is approxi-

mated to a certain order in the interaction strength. This leads

to a convergent series of approximations which, however, uses

a large number of auxiliary equations for the intermediate

transformation operators and, when converted to matrix form,

results in a huge number of matrix operations.[25,26] Therefore,

it is not surprising that DKH analytic energy derivatives have

been developed only recently and then, only for the low-order

approximation of order 2 (DKH2).[27,28]

An alternative to the operator-driven formulation of the

two-component relativistic methodology was proposed by

Dyall[29] who was probably the first to carry out all the perti-

nent transformations in matrix form starting from the matrix

Dirac equation.[29–32] The resulting normalized elimination of

the small component (NESC) formalism is computationally sim-

ple and transparent and enables one to obtain the exact elec-

tronic (positive-energy) solutions of the Dirac equation.[29,33,34]

The initial success of the NESC methodology has led to a sub-

sequent development of alternative matrix-driven two-compo-

nent methods,[35–38] which have been shown to be equivalent

to NESC.[39] It is also noteworthy that approximate relativistic
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methods based on the so-called regular approximation[20,40–43]

can be easily derived from NESC, which leads to a simple

matrix formulation of these methods.[44,45]

An important advantage of the NESC methodology is the

availability of analytic energy derivatives,[46–49] which enable

one to obtain relativistically corrected atomic and molecular

properties via the response formalism.[50–54] The primary pur-

pose of this article is to provide a succinct overview of the

NESC analytic derivatives formalism and its application to the

calculation of various relativistically corrected molecular prop-

erties. We start by recapitulating the salient features of the

NESC methodology and continue by introducing the first-order

NESC energy derivatives formalism and its application to the

calculation of properties such as the analytic gradient for the

accurate and routine optimization of molecular geometries,

the determination of contact electron densities and electric

field gradients (EFGs) at nuclear positions, or the calculation of

magnetic hyperfine structure (HFS) constants. In the subse-

quent section, the second-order NESC energy derivatives for-

malism and its application to the calculation of vibrational

frequencies, infrared (IR) intensities, and molecular polarizabil-

ities will be described. In the last section, conclusions will be

drawn and some thoughts about the future prospects of the

NESC methodology will be outlined.

The NESC Method

The derivation of the NESC equations starts from the one-

electron Dirac equation represented in matrix form and modi-

fied in such a way that the so-called restricted kinetic balance

condition is folded into the equation.[29–32] The latter is

achieved by introducing[29] a pseudo-large component UL of

the relativistic wavefunction via Eq. (2),

2mcWS5ðr � pÞUL (2)

which connects it to the small component WS used in the tra-

ditional formulation of the Dirac equation. Although not

unique, the definition of the pseudo-large component enables

one to eliminate the dependence of the relativistic metric on

the spin and to partition the modified Dirac equation into the

spin-free and spin-dependent (spin-orbit) parts in a simple and

transparent way as was first discussed by Kutzelnigg[31,32] and

later used by Dyall.[30] In matrix form, the modified Dirac equa-

tion is given in Eq. (3),

V T

T W2T

 !
A2 A1

B2 B1

 !
5

S 0

0 ð2mc2Þ21T

 !
A2 A1

B2 B1

 !

e2 0

0 e1

 !

(3)

where A and B are the matrices collecting the expansion coef-

ficients of the large and pseudo-large components of the rela-

tivistic wavefuction in terms of the basis functions vL
l (or vl

for brevity) and the diagonal matrix e contains the energy

eigenvalues. The superscripts or subscripts 1 and 2 denote

the positive (electronic) and negative (positronic) eigenvalue

and eigenvector solutions of the equation. Symbols S, T, and

V represent the nonrelativistic overlap, kinetic energy, and

potential energy matrices, respectively, and W is the matrix of

the operator ð1=4m2c2Þðr � p̂ÞVðrÞ ðr � p̂Þ. With the use of the

Dirac identity ðr � AÞðr � BÞ5A � B1ir � A3B, the spin-free

and spin-orbit parts of the W matrix can be separated as in

Eq. (4),

W5Wsf1ir �WSO (4)

which leads to the commonly used spin-scalar approximation

resulting from the neglect of the spin-dependent part WSO. In

the following, the spin-scalar approximation will be used

(unless noted otherwise) and superscript sf of matrix Wsf will

be dropped in cases without ambiguity.

By introducing a matrix U that connects the large and the

pseudo-large components via Eq. (5),

B15UA1 (5)

Dyall was able to eliminate the small (pseudo-large) compo-

nent from the modified Dirac equation and to simultaneously

project eigenvalues onto the positive energy (electronic)

states.[29] In passing, it should be noted that a similar projec-

tion onto the positronic states can also be achieved,[29] how-

ever, the latter are not of relevance for chemistry. Focusing on

the electronic states only and dropping the 1 superscript, the

working equations of the NESC method are given by Eq. (6),

~LA5~SAe (6a)

~L5U
†

T1TU2U
†ðT2WÞU1V (6b)

~S5S1
1

2mc2
U

†

TU (6c)

where the NESC Hamiltonian ~L and the NESC large component

metric ~S are introduced. The elimination of the small compo-

nent (ESC) matrix U is to be obtained simultaneously with the

NESC Hamiltonian ~L. This can be achieved either itera-

tively[29,34] by using the relationships in Eq. (7)

U5T21ðS~S21~L2VÞ (7a)

U5UIORA2
1

2mc2
UIORAU~S21~L (7b)

U5UIORA2
1

2mc2
UIORAUS21ðTU1VÞ (7c)

or in a one-step method[29,34] that exploits solutions of the

modified Dirac equation (3).

U5B1A
†

1ðA1A
†

1Þ
21

5B1A
†

1
~S (8)

In Eqs. (7b) and (7c), UIORA5ðT2WÞ21T is the ESC matrix in

the infinite-order regular approximation.[45] The iterative solu-

tion can be achieved by using a damped fixed point iteration

technique,[34] which, if started from an appropriate guess,
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requires fewer number of floating point operations than the

one-step method. The latter method, however, offers a better

stability, especially in cases where a large number of very tight

basis functions are used.

The eigenfunctions and eigenvalues of the NESC method

are fully equivalent to the electronic solutions of the one-

electron Dirac equation.[29,34] For many-electron systems, it is

possible to derive, when starting from the modified Dirac–

Coulomb equation,[55,56] a similar set of equations to obtain

electronic states only.[29] However, this leads to the necessity

of calculating a large number of two-electron integrals in addi-

tion to those required by a nonrelativistic Hartree–Fock (HF)

calculation. A simpler alternative is to consider relativistic

effects in the one-electron part of the many-electron Hamilto-

nian only and treat the electron–electron interactions nonrela-

tivistically.[57] As has been shown by Dyall,[57] the one-electron

approximation defined in this way is a sufficiently accurate

approximation to the many-electron relativistic self-consistent

field (SCF) approach in the FW representation. Within the one-

electron (1e) approximation, the atomic or molecular Fock

operator is given by Eq. (9),

FNESC
1e 5G

† ~LG1ðJ2KÞ5H1e1ðJ2KÞ (9)

where J and K correspond to the Coulomb and exchange con-

tributions to the two-electron part of the nonrelativistic Fock

operator. The total energy of a many-electron system in the

1e-approximation is then given by Eq. (10),

ENESC
1e 5trPH1e1

1

2
trPðJ2KÞ (10)

where P5CnC
†

is the density matrix constructed using the

eigenvectors C of the Fock operator (9) and the diagonal

matrix of the orbital occupation numbers n.

The renormalization matrix G takes care of the transformation

of the one-electron NESC Hamiltonian from the relativistic nor-

malization of the electronic wavefunction to the nonrelativistic

normalization. The G matrix possesses correct transformation

properties under linear transformations of the basis set. It is

calculated as the square root of ~S21S as given in Eq. (11)

G5S21=2ðS1=2~S21S1=2Þ1=2S1=2 (11)

which was derived by Peng and Liu.[58] The NESC formalism

described can be easily implemented in the existing nonrela-

tivistic quantum chemical codes as it does not require the cal-

culation of new molecular integrals over basis functions.

Investigations based on NESC require essentially the same

elapsed central processing unit (CPU) time as the correspond-

ing nonrelativistic calculations. The NESC method provides the

exact quantum mechanical description of any one-electron

system and by this it is fully equivalent to the Dirac four-

component method. Hence, NESC is termed a Dirac-exact

method. Further details on the implementation of the NESC

method can be found in the original publication.[34]

NESC Analytic Energy Derivatives

When differentiating the NESC total energy (10) with respect

to an arbitrary external perturbation parameter k, one obtains

Eq. (12)

@E

@k
5trP

@H1e

@k

� �
1

1

2
trP

@
0

@k
J2Kð Þ1trX

@S

@k

� �
(12)

where X52CneC
†

is the energy-weighted density matrix

(Lagrangian) and the prime at @
0

@k implies that only the two-

electron integrals have to be differentiated.[46]

The first term in Eq. (12) can be explicitly written as

trP
@H1e

@k

� �
5trPG

† @~L

@k
G1trP

@G
†

@k
~LG1trPG

† ~L
@G

@k
(13a)

5tr~P
@~L

@k
1trD

@G
†

@k
1trD

† @G

@k
(13b)

where new matrices ~P5GPG
†

and D5~LGP are introduced. Dif-

ferentiating Eq. (6b) with respect to k and inserting the deriva-

tive into the first term of Eq. (13b) yields

tr~P
@~L

@k
5tr
�

U~P1~PU
†

2U~PU
†Þ @T

@k
1tr
�

U~PU
†Þ @W

@k
1tr~P

@V

@k
(14a)

1tr T2 T2Wð ÞUð Þ~P @U
†

@k
1tr~P

�
T2U

†

T2Wð Þ
� @U

@k
(14b)

Equations (13) and (14) depend on the molecular integral

derivatives already available in most of the nonrelativistic

quantum chemical codes. The only new terms for which deriv-

atives need to be developed are the last two terms in Eq.

(13b) and the terms in Eq. (14b), which depend on the deriva-

tives @G=@k of the renormalization matrix and @U=@k of the

ESC matrix, respectively.[46]

When calculating the derivatives @G=@k, square roots of

matrices [in short: matrix square root, see Eq. (11)] have to be

differentiated. A commonly adopted algorithm[27,48,59] for

obtaining these derivatives is based on the definition of a pos-

itive (semi-)definite matrix in terms of its eigenvalues and the

eigenvectors according to M1=25Cm1=2C
†

, where the diagonal

matrix m1=2 has the square roots of the eigenvalues of matrix

M on its diagonal. Differentiation of this definition leads to

Eq. (11).[27,48,59]

C
† @M1=2

@k
C

� �
ij

5
1

m
1=2
jj 1m

1=2
ii

C
† @M

@k
C

� �
ij

(15)

Using Eq. (15), the derivatives of the square root of a matrix

are calculated element by element and stored to external

memory for later use in the gradient calculation.[27,48] Such an

approach is computationally inefficient and may represent a

bottleneck in the gradient computation. A more efficient com-

putational strategy[46] is based on the fact that the derivatives

of M1=2 contribute to the final gradient in the form of traces

of matrix products [see Eq. (13b)]. Exploiting the cyclic
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property of the trace, that is, trABC5trCAB, these contribu-

tions can be transformed according to Eq. (16),

trX
@M1=2

@k
5trZ

@M

@k
(16)

where two new matrices are introduced: Z with elements

Zij5
X

k;l
CikYklC

†

ljðm
1=2
kk 1m

1=2
ll Þ

21 and Y5C
†

XC. With the use of

Eq. (12), the contributions of the renormalization matrix deriva-

tives @G=@k to the final gradient, that is, the last two terms in

Eq. (13b), are given by Eq. (17)

tr D
@G

†

@k

 !
1tr D

† @G

@k

� �
5trðD0Z1D2Z2D3Þ

@S

@k

2
1

2mc2
trðUD3U

†Þ @T

@k

(17a)

2
1

2mc2
tr TUD3

@U
†

@k
1D3U

†

T
@U

@k

 !
(17b)

where the matrices D0Z , D2Z , and D3 do not depend on the

perturbation k and their calculation requires only a few matrix

multiplications (see the original publication[46] for further

detail). Thus, the algorithm for obtaining the contributions of

the derivatives of the renormalization matrix is formulated

entirely in terms of traces of matrix products, which makes it

convenient for the implementation in existing nonrelativistic

quantum chemical codes.[46]

The calculation of the contributions of the ESC matrix deriva-

tives @U=@k into the energy gradient [see Eqs. (14b) and

(17b)] represent another potential bottleneck for the calcula-

tion, as the ESC matrix U does not have an explicit algebraic

expression in terms of the molecular integrals. The most accu-

rate and computationally efficient way of calculating @U=@k is

based on the use of the response of the modified matrix Dirac

equation (3) with respect to an external perturbation k.[47,48,50]

Differentiating Eqs. (3) and (5) with respect to k and introduc-

ing the orbital response matrix Ok according to Eq. (18),

@A2=@k @A1=@k

@B2=@k @B1=@k

 !
5

A2 A1

B2 B1

 !
Ok

22 Ok
21

Ok
12 Ok

11

 !
(18)

one obtains Eq. (19),

@U

@k
5ðB22UA2ÞOk

21A
†

1
~S (19)

which shows that the ESC matrix derivative @U=@k depends

on the coupling between the electronic and positronic solu-

tions of the Dirac equation as given by the Ok
21 block of the

orbital response matrix.[47,50]

The ESC matrix derivatives @U=@k make contributions to the

final energy gradient in the form of traces of products

trP
†

0 @U=@k1trP0 @U
†

=@k, where the P05
�

T2ðT2WÞU
�

~P2ð1=2mc2
�

TUD3 combine contributions from Eqs. (14b) and

(17b). Exploiting the cyclic property of the trace and the

expression for the orbital response operator (see the original

publications,[47,50] for further detail) after some algebra one

arrives at Eq. (20),

trP
†

0

@U

@k
5trZ

0 †
Ok

215trP
†

0V

@V

@k
1trP

†

0W

@W

@k
1trP

†

0T

@T

@k
1trP

†

0S

@S

@k
(20)

where the new matrices P0X , X5V;W; T ; S do not depend on

the perturbation k and are calculated using the eigenvectors

and eigenvalues of the matrix Dirac equation as described in

the original publications.[50,52]

The NESC analytic derivatives formalism[46,50] requires only a

modest computational effort and can be easily implemented

in the nonrelativistic quantum chemical codes. The formalism

was tested by comparing analytically and numerically obtained

energy gradients for a number of molecules containing heavy

elements. As demonstrated in Table 1, the formalism devel-

oped leads to exact energy derivatives and requires only a

fraction of the CPU time elapsed for a single SCF iteration. In

the following subsections, the NESC analytic derivatives formal-

ism is applied to obtain molecular geometries and other first-

order response properties.

Geometry optimizations using the NESC analytic gradient

The NESC analytic energy gradient was applied to determine

molecular geometries of molecules containing heavy atoms

such as Hg, Tl, I, or Au.[46,60] Zou, Filatov, and Cremer (ZFC)[46]

used the analytic NESC energy gradient in connection with the

NESC/CCSD (coupled cluster with single and double substitu-

tions) method for geometry optimizations and the NESC/

CCSD(T) (CCSD with perturbational treatment of triple substi-

tutions) to obtain bond dissociation energies (BDE) at the

NESC/CCSD geometries. A selection of the calculated geome-

tries and BDEs is given in Table 2.

It was found[46] that the NESC/CCSD geometries are close to

the experimental geometries (see HgCl and HgBr in Table 2)

with deviations of the order of 0.1 Å or less. The agreement

between NESC/CCSD(T) and experimental bond dissociation

enthalpies D0 for mercury halides was excellent in view of a

mean deviation of just 0.3 kcal/mol.[46]

A number of studies have been published since then, which

confirm the reliability of molecular geometries optimized using

NESC in connection with either density functional theory (DFT)

or coupled cluster theory.[47,50–53,60,71]

Table 1. Comparison of numeric and analytic NESC/HF energy gradients

(in a.u./bohr) for a number of diatomic molecules.[a]

Au2 Hg2 HgF

R, bohr 4.000 4.000 3.000

Analytic @E=@R 0.285936 0.340823 0.478037

Numeric @E=@R 0.285925 0.340837 0.478034

Nbasis 254 612 364

Time/SCF iteration, sec.[b] 3 24 23

Time/NESC grad, sec. 1 6 2

[a] Uncontracted SARC basis set used on Au and uncontracted TZ basis

set of Dyall used on Hg. [b] Calculations use eight cores on a 23E5-

2687W workstation.
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NESC contact density and M€osbauer isomer shift

The contact density, which in nonrelativistic quantum theory is

defined as the electron density at the nuclear position, is used

for the interpretation[72–74] of the shift of the resonance

absorption line in nuclear c-resonance spectroscopies, such as

the M€ossbauer spectroscopy[75] or synchrotron nuclear forward

scattering.[76] During the nuclear c-transition, the charge radius

of the nucleus changes and this leads to a slight variation of

the electron-nuclear interaction that can be sensed by experi-

mental measurements.[73,74] The key electronic structure

parameter that defines the magnitude of the resonance line

shift (the so-called isomer shift) is the contact density that, at

a fully relativistic level of description, can be calculated as a

derivative of the total electronic energy with respect to the

nuclear charge radius.[77] According to linear response

approach proposed by Filatov,[77,78] the isomer shift d (and

contact density , see below) is given by Eq. (21)

d5
c

Ec

@EaðRÞ
@R

����
R 5 Ra

2
@EsðRÞ
@R

����
R 5 Ra

 !
DRa (21)

where Ea and Es denote the electronic energy of the absorbing

and source systems, respectively.

A fully analytic approach to obtaining effective contact den-

sities within the linear response formalism based on the NESC

method was presented by Filatov, Zou, and Cremer (FZC).[50]

For this purpose, the point nucleus (pn) model was extended

to a finite nucleus (fn) model. Based on the assumption of a

Gaussian nuclear charge distribution in Eq. (22a),

qK rð Þ5ZK
1

pf2

� �3=2

e2r2=f2
K (22a)

V r2RKð Þ52
1

jr2RK j
erf
jr2RK j

fK

� �
(22b)

fK 5

ffiffiffi
2

3

r
hR2

Ki
1=2 (22c)

the nucleus-electron attraction potential V adopts the form of

Eq. (22b) where the exponential parameter f related to the

nuclear charge radius RK of K-th nucleus is given by Eq. (22c).

Then, the effective contact density is given by[77,78]

qa5
1

2p
1

Zaf
@EðfÞ
@f

����
f5 f0

(23)

in which f0 is the value of the parameter obtained from the

experimentally measured root-mean-square charge radius of

the resonating nucleus a. The effective contact density a can

be directly compared to the contact density calculated within

a traditional approach as the expectation value of the electron

density operator at the nuclear position.[50,77,78] In the context

of the NESC method, the energy derivative in Eq. (23) is given

by Eq. (24),

@ENESCðfÞ
@f

5tr
�
~P1P0V 1ðP0VÞ

†

Þ @V

@f
1tr
�

U~PU
†

1P0W1ðP0WÞ
†

Þ @W

@f
(24)

where matrices ~P, P0V , and P0W are defined in Eqs. (13) and

(20).[46,50]

Using the equations given above, ZFC[50] investigated the con-

tact densities (in e/bohr23) of the Hg nucleus in free mercury

and in a series of mercury compounds, where in the latter

case the contact density differences q–Hg2q–mol were deter-

mined (see Table 3).[50] Trends in the calculated contact den-

sity differences were reasonably reproduced already at the

NESC/HF and NESC/MP2 (second-order M�ller–Plesset pertur-

bation) levels of theory although the NESC/CCSD represented

the most reliable values.[50]

The values of the contact density differences are large when

the electronic environment strongly differs from that of the

Table 2. NESC/CCSD geometries and NESC/CCSD(T) bond dissociation energies De (enthalpies D0) of mercury molecules.[a]

Molecule Sym State Method Geometry parameters De (D0) Reference

HgF C1v
2R1 NESC/CCSD(T)//NESC/CCSD 2.024 33.0 (32.3) [46]

Expt. 32.9 [61]

HgCl C1v
2R1 NESC/CCSD(T)//NESC/CCSD 2.402 23.8 (23.4) [46]

SOC/ECP/CCSD(T) 2.354 22.9 [62]

Expt. 2.395, 2.42 23.4, 24.6 [63–65]

HgBr C1v
2R1 NESC/CCSD(T)//NESC/CCSD 2.546 20.0 (17.5) [46]

SOC/ECP/CCSD(T) 2.498 16.3 [62]

Expt. 2.62 17.2, 18.4 [66–68]

HgI C1v
2R1 NESC/CCSD(T)//NESC/CCSD 2.709 12.9 (7.6) [46]

SOC/ECP/CCSD(T) 2.708 8.6 [62]

Expt. 2.81 7.8, 8.1, 8.9 [64,65,69]

HgCN C1v
2R1 NESC/CCSD(T)//NESC/CCSD Hg-C: 2.118, C-N: 1.161 36.1 [46]

IORA/QCISD Hg-C: 2.114, C-N: 1.179 [70]

HgNC C1v
2R1 NESC/CCSD(T)//NESC/CCSD Hg-N: 2.077, N-C: 1.176 22.4 [46]

HgCH3 C3v
2A1 NESC/CCSD(T)//NESC/CCSD Hg-C: 2.344, H-C: 1.084, Hg-C-H: 104.3 3.2 [46]

[a] From Ref. [46], NESC/CCSD(T)//NESC/CCSD denotes NESC/CCSD(T) energies calculated at NESC/CCSD geometries. For HgX (X 5 F, Cl, Br, I), BDE val-

ues De include SOC corrections and are corrected by ZPE (zero-point energies) to yield D0 values. In the calculation of HgCH3, 14 4f-electrons of Hg

were frozen. D values in kcal/mol, bond lengths in Å, angles in degree.

REVIEWWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2013, DOI: 10.1002/qua.24578 5

http://q-chem.org/
http://onlinelibrary.wiley.com/


free Hg atom. The differences stretch from about 40 e/bohr23

in dimethyl mercury to 293 e/bohr23 in the mercury dication.

With increasing electronegativity of the Hg-substituents, the

difference contact density increases to 104 e/bohr23, which

confirms that the contact densities and M€ossbauer isomer

shifts d are sensitive probes of the electronic environment and

coordination sphere of the Hg nucleus.[50]

As the proportionality constant between the contact density

and the isomer shift depends on the fractional nuclear charge

radius hDr2i5R2ðDR=RÞ, the latter can be determined by com-

paring the experimentally measured isomer shifts with the the-

oretically calculated contact densities in a series of compounds

of the same element. Although measured 199Hg isomer shifts

are scarce, one can attempt to derive the fractional charge

radius of mercury from the isomer shifts of Hg2F2 and HgF2

measured by Wurtinger and Kankeleit.[79] Using simple cluster

models of the Hg2F2 and HgF2 crystals, which were modeled by

an Hg2F2 linear fragment and an HgF4
22 tetrahedral fragment

with the geometries taken from the crystallographic data, the

NESC/CCSD calculations yielded for Dq– with respect to mercury

atom 86.432 e/bohr23 (Hg2F2) and 220.839 e/bohr23 (HgF2),

respectively. Using these densities and the experimental

M€ossbauer isomer shift difference of 21.77 mm/s, a value

hDr2i52:4 � 1023 fm2 was obtained[80] that is in good agree-

ment with hDr2i52:9 � 1023 fm2 for the 199Hg 158.4 keV E2 c-

transition obtained from experimental data on muonic

atoms.[81] This demonstrates the usefulness of the approach

based on the high-level ab initio calculations in connection with

the NESC formalism for refining the nuclear structure data.

Nuclear quadrupole interaction and EFG

Magnetic nuclei with the spin I > 1=2 possess an electric quad-

rupole moment Q, which can interact with an inhomogeneous

electric field caused by electrons and other nuclei in a mole-

cule.[82] The magnitude of the nuclear quadrupole interaction

(NQI), which is associated with the Hamiltonian in Eq. (25),

Ĥ int5
X
a;b

QabVab; a; b5x; y; z (25)

is characterized by the nuclear quadrupole coupling constant

(NQCC) mQ given by Eq. (26),

mQ5
eQhVcci

h
(26)

The NQCC can be measured utilizing experimental techniques

such as M€ossbauer spectroscopy,[83] nuclear quadrupole reso-

nance spectroscopy,[84,85] or perturbed angular correlations

(PAC) of c-rays spectroscopy.[86] In Eq. (18), the nuclear quadru-

pole tensor Qab is defined by Eq. (27),

Qab5
eQ

2Ið2I21Þ
1

2
ð̂Ia Îb1Îb ÎaÞ2

1

3
dabI I11ð Þ

��
(27)

where Q is the nuclear quadrupole moment (NQM). The EFG

tensor Vab is defined by Eq. (28),

Vab5
@

@xa

@

@xb
2

1

3
dabr2

� �
V (28)

Using the NESC analytic derivatives formalism, FZC[51]

expressed the expectation values of the components of the

EFG tensor hViab as derivatives of the NESC total energy with

respect to the quadrupole tensor components of the K-th

nucleus:

hVK
abi5

@ENESCðQK
abÞ

@QK
ab

����
QK

ab! 0

1
X
L 6¼ K

ZL
3Xa;KLXb;KL2dabR2

KL

R5
KL

(29)

Here, the second term on the right side represents the

nuclear-nuclear part of the EFG and Xa;KL are the Cartesian

components of the internuclear distance vector RKL5RK 2RL.

The first term on the right side of Eq. (29) is given by Eq. (30),

@ENESCðQabÞ
@QK

ab

5tr
�
~P1P0V 1ðP0VÞ

†

Þ @V

@QK
ab

1tr
�

U~PU
†

1P0W1ðP0WÞ
†

Þ @W

@QK
ab

(30)

where @V=@QK
ab and @W=@QK

ab are the derivatives of the

electron-nuclear potential energy V and the relativistic correc-

tion to V obtained by differentiating the respective molecular

integrals after adding the NQI Hamiltonian (25).[51,87] The NESC

EFG formalism developed by FZC[51] uses a finite-size nucleus

model given in Eq. (22), which makes it possible to study the

dependence of the EFG on the parameters of the nuclear

charge distribution. Normally, the EFG tensor is diagonalized

to determine its principal axes a, b, and c, which are ordered

in the way that the eigenvalue relation jVaaj�jVbbj�jVccj is

fulfilled. Then, the EFG tensor can be characterized by

the principal value Vcc and the asymmetry parameter

g5ðVaa2VbbÞ=Vcc.

Using the NESC EFG formalism in connection with correlation

corrected ab initio methods, FZC[51] investigated a series of

molecules and found that the EFG values obtained are in

good agreement with measured values as well as the results

as the four-component relativistic calculations, especially. Table

4 compares the EFG principal values obtained at the NESC/HF

and the NESC/MP2 level of theory with four-component Dirac–

Coulomb HF and CCSD-T results.[88] The NESC/MP2 EFG values

Table 3. Effective contact densities (e/bohr23) of the Hg atom obtained

at the NESC level of theory.

Atom/molecule NESC/HF NESC/MP2 NESC/CCSD

Hg 2104944.971 2105047.821 2105035.382

Hg1 112.876 127.943 121.136

Hg21 278.394 305.695 293.217

HgF 98.086 81.294 76.872

HgF2 121.352 108.368 104.387

HgF4 96.586 109.453 96.264

HgCl2 108.118 94.572 91.592

Hg(CH3)2 49.001 43.610 42.184

HgðH2OÞ21
6 240.820 245.550 237.066

The absolute contact density is given for Hg(1S1=2) whereas contact

density differences q–Hg2q–mol are listed for ions and molecules.[50]
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are in an excellent agreement with the state of the art 4c-DC-

CCSD-T calculations.[88] Using the 199Hg NQM value of 0.675 6

0.012 barn,[88] the NESC/MP2 calculation yields 2414 6 43

MHz for the NQCC of Hg(CH3)2, which is in good agreement

with the NQCC of 2400 MHz obtained by PAC in frozen neat

Hg(CH3)2.[88] The convincing performance of NESC/MP2 is

partly a result of the electron correlation corrections, which

contribute up to 40% to the final EFG value (see Table 4).

Although the NESC/HF data in Table 4 does not show a pro-

nounced dependence on the nuclear charge distribution (the

pn and fn results are nearly the same), the formalism devel-

oped offers the possibility of investigating the dependence of

the EFG tensor on the nuclear size. It has been suggested by

Pyykk€o[89] that, in a series of compounds of two different iso-

topes I1 and I2 of the same element Z, the ratio of the NQCCs

may vary from compound to compound, thus revealing a

nuclear quadrupole anomaly I1 DI2

Z given by Eq. (31).

mQðI1Þ
mQðI2Þ

5
QI1

QI2

ð11I1 DI2
Z Þ (31)

Provided that closed shell molecules are considered (the

magnetic pseudo-quadrupole interaction is small in this case),

the nuclear quadrupole anomaly is caused by the dependence

of the EFG on the nuclear charge radius[89] because the charge

radii of different isotopes are generally different. Using the

NESC EFG formalism, FZC[90] investigated the nuclear quadru-

pole anomaly by expanding the EFG principal value in Eq. (26)

in a Taylor series in terms of the nuclear charge radius R,

which upon substitution into Eq. (31) leads to Eq. (32),

mQðI1Þ
mQðI2Þ

5
QI1

QI2

11
1

hVcci
@hVcci
@R

����
R 5 RI2

DR12

 !
1OðDR2

12Þ (32)

where RI2 is the charge radius of the isotope I2 and DR12 is the

variation of the charge radius between isotopes I1 and I2. Calcu-

lating the logarithmic derivative of the principal EFG value in a

series of gold compounds, FZC[90] found that the nuclear quad-

rupole anomaly 195D197
Au can reach values up to 0.2% according

to NESC/CCSD calculations. An anomaly of such a magnitude

should be reflected by measured NQCC, as the accuracy of cur-

rent techniques in microwave spectroscopy is sufficient to detect

an anomaly predicted for the 195
79 Au, 197

79 Au pair of isotopes.[90]

Magnetic hyperfine structure constants

In atoms and molecules with open electronic shells and non-

zero net electronic spin, the interaction between the unpaired

electrons and the moments of magnetic nuclei results in the

HFS of the optical and electron spin resonance (ESR) spec-

tra.[91,92] Nuclei with nonzero magnetic dipole moment lK gen-

erate a nonuniform magnetic field characterized by the

magnetic induction BðrÞ and its associated vector potential AðrÞ
according to BðrÞ5r3AðrÞ. The latter is given in Eq. (33),

A rð Þ5 1

c2

X
K

lK 3ðr2RKÞ
jr2RK j3

(33)

where lK is the magnetic moment of the nucleus K at position

RK . According to the minimal coupling principle, the electron

linear momentum couples to the electromagnetic field vector

potential via p5p1A, which leads to alteration of the electron

kinetic energy and to hyperfine splitting of the electron

energy levels described by the HFS tensor. The latter is com-

monly characterized by the isotropic HFS constant Aiso
K .

Including minimal coupling with the vector potential (33) in

the NESC equations and defining the HFS tensor via derivative

of the total energy with respect to the nuclear magnetic

moment (see Eq. (13.42) in Ref. [7]) FZC[52] derived Eq. (34)

Aiso
K 52gegK lBlKhSzi21

X
r

�
tr~Pr

T HFC
K ;z1

3

4
~Pr

WðWT21HFC
K ;z

1HFC
K ;z T21WÞÞ

(34a)

52gegK lBlKhSzi21 tr~Ps
T HFC

K ;z1
3

4
~Ps

WðWT21HFC
K ;z1HFC

K ;zT21WÞ
��

(34b)

for the isotropic HFS constant within the NESC formalism. In

Eq. (34), HFC
K;a is the matrix of the Fermi-contact operator

ĥFC
K

�
r
�
5
�

4p=3c2
�
d
�

r2RK

�
r, the constants ge, gK, lB, and lK

are the electron and nuclear g-factors as well as the Bohr and

nuclear magnetons, and the quantity hSzi is the expectation

value of the z-component of the electron spin. The matrices
~Pr

T and ~Pr
W are defined in Ref. [52] and refer to a specific elec-

tron spin r. The matrices ~Ps
T and ~Ps

W are calculated by substi-

tuting the spin-density matrix Ps5Pa2Pb into Eq. (34).[52] In ab

initio methods with electron correlation, the corresponding

response density matrices have to be used. The formalism

developed by FZC can utilize the finite distribution of the

nuclear magnetic dipole moment similar to Eq. (22a) for the

nuclear charge. This enables one to investigate the depend-

ence of the isotropic HFS constants on the nuclear magnetic

radius.

Table 4. NESC electric field gradients hVcci (a.u.) on Hg nucleus calculated at the HF and MP2 levels in comparison with four-component Dirac–Coulomb

values from Ref. [88].

Molecule 4c-DC-HF[a] NESC(pn)/HF[b] NESC(fn)/HF[c] 4c-DC-CCSD-T[d] NESC(fn)/MP2

HgCl2 212.95 212.14 212.12 29.51 29.32

HgBr2 211.82 211.11 211.09 28.63 28.54

HgI2 211.68 211.04 211.03 28.61 28.64

Hg(CH3)2 219.83 218.77 218.78 215.71 215.22

[a] Four-component Dirac–Coulomb Hartree–Fock results from Ref. [88]. [b] Point-charge nucleus (pn) is used in the calculations. [c] Finite-size nucleus

(fn) is used in the calculations. [d] Four-component Dirac–Coulomb CCSD-T results from Ref. [88].
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The NESC HFS formalism is capable of predicting the Aiso
K val-

ues, which are in good agreement with the experiment and

the results of high-level four-component relativistic calcula-

tions as is reflected by the data in Table 5. In the calculations

reported by Hauser et al.,[94] a finite nuclear charge distribu-

tion and finite distribution of the nuclear magnetic moment

were used in connection with large uncontracted basis sets of

pentuple-zeta quality. Although the magnetic and charge

nuclear radii are generally different (see e.g., Ref. [95]), the for-

mer are not available for most elements and accordingly, one

uses the same radius for both electric charge and magnetic

dipole distributions.[93]

The accuracy of the NESC HFS calculations makes it possi-

ble to estimate the nuclear magnetic radii from a comparison

of calculated and measured HFS constants. Table 6 compares

Aiso
Hg values obtained by NESC[52] and four-component DFT

calculations[96] with the corresponding experimental data. The

NESC values of Table 6 indicate the importance of electron

correlation for obtaining reliable HFS constants. Using a finite

nuclear model leads to more accurate NESC values. Relativis-

tic DFT calculations noticeably underestimate the magnitude

of Aiso
Hg and strongly depend on the nuclear model used. The

hyper sensitivity of the DFT calculations to the nuclear model

used is due to an incorrect behavior of the exchange-

correlation potential in the vicinity of the nucleus.[101] The ab

inito NESC calculations are free of such drawbacks and yield

accurate values, which can be used for refining models of the

distribution of the nuclear magnetic moment. To explore this

possibility, it is necessary to extend the existing spin-scalar

NESC analytic derivatives formalism by including spin-orbit

coupling (SOC) and using a two-component relativistic

approach.

Second Analytic Derivatives and Second-Order
Response Properties

For the calculation of second-order response properties within

the context of Dirac-exact methods, ZFC[47] derived analytic

second derivatives of the NESC energy and a similar formalism

has been developed by Cheng and Gauss[49] in the context of

spin-free X2C method. Differentiating the NESC energy gradi-

ent (12) with respect to another external perturbation parame-

ter l, leads to Eq. (35),

@2E

@l@k
5trP

@2H1e

@l@k
1

1

2
trP

@20

@l@k
ðJ2KÞ1trX

@2S

@l@k
(35a)

1tr
@P

@l
@H1e

@k
1tr

@P

@l
@0

@k
ðJ2KÞ1tr

@X
@l

@S

@k
(35b)

in which the majority of the terms are either available in the

nonrelativistic quantum chemical codes [terms 2 and 3 in

(35a)] or have been already derived in the course of obtaining

the first derivatives of the NESC energy [all terms in (35b)]. In

the latter case, the derivatives @H1e=@l are to be used in the

context of the coupled-perturbed formalism[102,103] for obtain-

ing the derivatives @P=@l of the density matrix and @X=@l of

the Lagrangian matrix.[47] The remaining term contains second

derivatives of the NESC one-electron Hamiltonian and is given

in Eq. (36) derived by ZFC.[47]

trP
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5tr~P
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1 trP
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†
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1
@G

†

@k
~L
@G

@l

� 
(36c)

All the terms in Eqs. (36b) and (36c) are available from the

NESC first analytic derivatives formalism[46,50] and the only new

Table 5. Comparison of measured isotropic HFS constants (in MHz) of

alkali metals with NESC/CCSD or four-component Dirac–Coulomb CISDpT

values[93] with experimental data

Atom Exp.[a] NESC/CCSD[b] 4c-DC-CISDpT[c]

7Li 401.7 402.0 –
23Na 885.8 880.2 888.3
39K 230.8 232.1 228.6
85Rb 1011.9 1019.1 1011.1

[a] Experimental data adopted from Ref. [93]. [b] NESC/CCSD results

from Ref. [94]. [c] Four-component Dirac–Coulomb configurational inter-

action singles and doubles with perturbative treatment of triples from

Ref. [93].

Table 6. Comparison of calculated isotropic HFS constants (in MHz) of mercury compounds with experimental data

Molecule Exp. Nuc. model[a] NESC/CCSD NESC/MP2 NESC/HF 4c-DKS/BP86[b]

HgH 6859[c]; 7198[d] pn 7463 6616 8238 6921

fn 7332 6500 8093 6244

HgF 22163[e] pn 20558 21790 23188 18927

fn 20198 21408 22782 16895

HgCN 15960[f ] pn 16135 19766 17341 15599

fn 15853 19420 17037 13967

HgAg 2723[g] pn 2962 2873 2713 3690

fn 2910 2822 2665 3285

[a] pn: point-like distribution of nuclear charge and magnetic moment; fn: finite-size distribution of nuclear charge and magnetic moment. [b] Four-

component Dirac–Kohn–Sham results from Ref. [96]. [c] Ref. [97]; measurement in neon matrix. [d] Ref. [97]; measurement in argon matrix. [e] Ref. [98];

measurement in argon matrix. [f ] Ref. [99]; measurement in argon matrix. [g] Ref. [100].
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terms are those in Eq. (36a). A careful analysis of Eqs. (35) and

(36) carried out by ZFC[47] showed that certain terms make

contributions on the order of Oðc24Þ and can be neglected

without any noticeable loss of accuracy. The remaining contri-

butions to the first terms in Eqs. (35a) and (35b) are given by

Eq. (37),

tr
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1trP
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where the contributions in Eqs. (37a) and (37b) are most

important.[47] Whenever an accurate calculation of second

derivatives is not required, such as in the case of vibrational

frequencies, the terms of Eqs. (37c) and (37d) can be

neglected.[47]

A complete application of Eq. (37) requires an accurate calcula-

tion of the second derivatives of the ESC matrix U and the

renormalization matrix G, for which ZFC developed computa-

tionally efficient algorithms.[47] When calculating the second

derivatives @2G=@l@k, ZFC proposed to utilize the relationship

GG5~S21S, which upon differentiation with respect to pertur-

bations k and l leads to Eq. (38).

G
@2G

@k@l
1
@2G

@k@l
G5

@2ð~S21
SÞ

@k@l
2
@G

@k
@G

@l
2
@G

@l
@G

@k
(38)

The latter equation can be represented in the form of a

Sylvester equation GX1XG5Q, where X5@2G=@k@l and Q is

given by the right side of Eq. (38). The Sylvester equation can

be efficiently solved by using the r-Smith iterative method or

by using a one-step method based on eigenvalue decompo-

sition technique applied to positive-semidefinite non-Hermi-

tian matrices.[47] The second derivatives @2U=@l@k, which are

necessary for obtaining the derivatives of the ~S21 matrix, are

calculated by utilizing the second-order response of the

modified matrix Dirac equation (3) as described in Refs. [47]

and [49]. The NESC analytic second-derivatives formalism

developed by ZFC[47] was tested by comparing the analyti-

cally calculated vibrational frequencies with the numerically

obtained ones and it was found that the deviations from the

numeric frequencies are of the order of 0.1 cm21 or less.[47]

In the case of molecular Hessian calculation, the simplifica-

tions introduced in Eqs. (35) and (37) lead to considerable

savings of computer resources and make the NESC vibra-

tional frequencies calculation as efficient as the correspond-

ing nonrelativistic calculation.[47]

IR spectra: Vibrational frequencies and intensities

A reliable prediction of IR spectra is needed in connection

with the identification and structure description of unknown

compounds. This task becomes especially challenging for com-

pounds containing heavy elements for which the effect of rela-

tivity on the vibrational frequencies and IR intensities must be

included. Often, accurate quantum chemical calculations repre-

sent a sole source of absolute IR intensities for large molecules

as, most commonly, only relative intensities are measured[104]

and experimental data on the absolute intensities are scarce.

The IR intensity of a normal mode di is a response property

that can be calculated from the second derivative of the total

energy of a molecule with respect to the normal coordinates

Qi and to the electric field F of the IR radiation[104] as given

in Eq. (39),

Ci5
8p3NAg

3hc

���� @2E

@F a@Qi

����
2

(39)

where NA is the Avogadro number, h the Planck constant, g

the degeneracy of normal mode di, and F a is a Cartesian

component of the electric field. It is convenient to transform

Eq. (39) from normal coordinates Qi to Cartesian coordinates

Xn of the nuclei of a molecule by using relationship (40):

ðDQÞ
†

DQ5l
†

i

�
ðDXÞ

†

DX
	

li (40)

Here, li is a mass-weighted normal vibrational mode given in

terms of Cartesian coordinates.[105] Hence, the IR intensities

can be calculated by Eq. (41),

Ci5d
†

i di5l
†

i ðD
†

DÞli (41a)

di5D li (41b)

where D is a rectangular matrix of dimension 333N of energy

derivatives with regard to nuclear Cartesian coordinates and

electric field components. Utilizing the NESC analytic second-

derivatives formalism, ZFC[53] derived Eq. (42),
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1tr
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† @V

@F a
G
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(42b)

in which the terms containing derivatives of the matrices G

and U were neglected because they make very small contribu-

tions to the IR intensity.

Using NESC in connection with DFT calculations utilizing the

PBE0 hybrid density functional,[106] ZFC[53] calculated IR spectra

for a series of compounds of heavy elements. Table 7 com-

pares the calculated geometries, vibrational frequencies, and

IR intensities with the available experimental data, some of

which have been measured in solid state samples. The vibra-

tional frequencies calculated are in good agreement with the

experimental data considering that the calculated harmonic

frequencies were not scaled to approximately include
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anharmonicity effects. In the case of UF6, measured absolute

IR intensities are available.[112] The t1u-symmetrical vibrational

modes at 184 (exp.: 186) and 629 (exp.: 624) cm21 with inten-

sities of 52 (exp.: 38) and 810 (exp.: 750) km/mol are in a good

agreement with the experimental values (see Table 7). It is

noteworthy that apart from being essential for identifying

unknown compounds via their IR spectra, the IR intensities are

also useful for deriving effective atomic charges.[116]

Static electric dipole polarizabilities

Another second-order response property important for the

characterization of the electronic structure of molecules and

intermolecular interactions is the static electric dipole polariz-

ability, henceforth just called polarizability. The polarizability

provides a measure of the distortion of the electric charge dis-

tribution in an atom or a molecule exposed to an external

electric field.[117] Knowledge of atomic and molecular polariz-

abilities is important in many areas of chemistry ranging from

electron and vibrational spectroscopy to molecular modeling,

drug design, and nanotechnology. Especially, for molecules

containing relativistic atoms, measured values of polarizabil-

ities are sparse and, therefore, their reliable prediction with

the help of relativistic quantum chemical methods is desirable.

Polarizability tensor a is defined as a second derivative of

the electronic energy with respect to external electric field F
as in Eq. (43).

a52
@2EðFÞ
@F@F jF50 (43)

As a result of rotational averaging, the scalar isotropic polar-

izability 5ðaxx1ayy1azzÞ=3 is typically obtained by measure-

ments is the gas phase.

Utilizing the NESC analytic second-derivatives formalism,

ZFC[53] derived Eq. (44) for the individual components of the

polarizability tensor,

aab52tr~P
@2~L

@F a@F b
2tr

@P

@F a
G

† @~L

@F b
G

� �
(44a)

52 tr~P
@2V

@F a@F b
2tr

@P

@F a
G

† @V

@F b
G

� �
(44b)

which takes a simple form after removing small contributions

involving the derivatives of W, U, and G matrices. As V is a lin-

ear function of the external electric field, VðrÞ5VnucðrÞ1F � r

(VnucðrÞ, the electron-nuclear attraction potential), the second

derivative of V in Eq. (44b) vanishes and one is left with

Eq. (45),

aab52tr
@P

@F a
G

† @V

@F b
G

� �
(45)

which differs from the nonrelativistic expression only by the

fact that the derivative @V=@F b has to be renormalized by

matrix G.

Polarizabilities are affected by the relativistic contraction of the

atomic s- and p-orbitals and, to a lesser extent, expansion of

the d- and f-orbitals. In molecules, the interplay of relativistic

and correlation effects necessitates the use of accurate theo-

retical calculations to analyze the trends in series of

Table 7. Comparison of NESC/PBE0 geometries (distances in Å), harmonic vibrational frequencies (cm21), and IR intensities (km/mol) with the correspond-

ing experimental values measured in the gas or the solid phase (the latter are indicated by the word solid).[a]

Mol. (sym.) Method Geometry Frequency (infrared intensity, mode symmetry)

AuH (C1v ) NESC/PBE0 Au-H: 1.530 2283.7 (14.7; r1)

Expt.[61] Au-H: 1.524 2305.0 (r1)

AuH2
2 (D1h) NESC/PBE0 Au-H: 1.652 773.8 (115.7; pu), 1685.2 (1035.8; r1

u ), 1994.9 (0; r1
g )

Expt.[107] 1636.0 (r1
u )

AuH2
4 (D4h) NESC/PBE0 Au-H: 1.631 776.4 (0; b2g), 793.9 (66.6; eu), 828.7 (42.3; a2u), 843.1 (0; b2u)

1780.6 (2318.0; eu), 2113.7 (0; b1g), 2118.1 (0; a1g)

Expt.[107] 1676.4 (eu)

AuF (C1v ) NESC/PBE0 Au-F: 1.923 556.7 (52.3; r1)

Expt.[108] Au-F: 1.918 563.7 (r1)

AuF2
2 (D1h) NESC/PBE0 Au-F: 1.963 184.4 (25.0; pu), 516.3 (0; r1

g ), 548.1 (182.7; r1
u )

AuF2
4 (D4h) NESC/PBE0 Au-F: 1.916 184.0 (0; b2u), 217.7 (0; b2g), 233.1 (25.8; a2u), 253.8 (8.7; eu)

572.0 (0; b1g), 597.1 (0; a1g), 613.4 (383.9; eu)

Expt. (solid)[109] 230 (b2g), 561 (b1g), 588 (a1g)

ThO (C1v ) NESC/PBE0 Th-O: 1.826 926.1 (245.7; r1)

Expt.[110] Th-O: 1.840 895.8 (r1)

Th2O2 (D2h) NESC/PBE0 Th-O: 2.089 155.7 (4.8; b3u), 192.7 (0; ag), 373.1 (0; b3g), 527.2 (35.2; b2u),

O-Th-O: 74.4 623.8 (297.9; b1u), 633.9 (0; ag)

Expt.[111] 619.7 (b1u)

UF6 (Oh) NESC/PBE0 U-F: 1.994 139.1 (0; t2u), 184.0 (51.7; t1u), 199.3 (0; t2g), 539.1 (0; eg)

629.4 (810.3; t1u), 681.4 (0; a1g)

Expt.[112,113] U-F: 1.996 142 (t2u), 186.2 (~38; t1u), 202 (t2g), 532.5 (eg), 624 (750; t1u)

667.1 (a1g)

OsO4 (Td) NESC/PBE0 Os-O: 1.686 352.6 (22.4; t2), 356.5 (0; e), 1031.9 (465.8; t2), 1063.9 (0; a1)

Expt.[114,115] Os-O: 1.711 322.7 (t2), 333.1 (e), 960.1 (t2), 965.2 (a1)
265HsO4 (Td) NESC/PBE0 Hs-O: 1.757 316.1 (32.9; t2), 335.2 (0; e), 1010.4 (463.2; t2), 1056.2 (0; a1)

[a] For details, see Refs. [47] and [53].
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homologous compounds. Trends in the isotropic polarizability

in molecules containing heavy atoms such as Au, Hg, Os, and

Hs (hassium, element 108) were studied by ZFC[53] by utilizing

the NESC analytic derivatives formalism (see Table 8 for some

of the results). Typically, inclusion of relativistic effects leads to

a decrease in the polarizability as a result of s-orbitals contrac-

tion that outweighs the indirect relativistic effect of an expan-

sion of the d- and f-orbitals. The relativistic corrections for the

isotropic polarizabilities lie between 20.2 and 22.0 Å3 where

the largest effect is found for HgH (a� : 5.83–7.86 5 22.03 Å3,

see Table 8). Isotropic polarizabilities are larger for anionic

species than for neutral molecules and larger for radicals as

opposed to closed-shell molecules. Also, molecules with more

electropositive atoms have larger polarizabilities than mole-

cules with more electronegative atoms.

The polarizability of osmium tetroxide calculated with the

NESC/MP2 method (8.23 Å23) deviates only slightly from the

experimental value of 8.17 Å23.[118] The NESC/MP2 value is in

better agreement with experiment than the NESC/PBE0 polar-

izability of 6.89 Å23,[53] which is too small by more than 1

Å23. In general, the NESC/MP2 method is more reliable when

calculating polarizability values, whereas DFT polarizabilities

can be only used when discussing general trends. NESC/MP2

polarizability calculations can be used to correct unreliable

experimental values. For example, the measured isotropic

polarizability of UF6 was reported to be 12.5 Å3,[119] which is

far too large in view of a NESC/MP2 value of 8.03 Å3 (Table 8).

The value of (HgCl2) was given in the literature as 11.6 Å3,[119]

whereas the calculated NESC/MP2 value is 8.60 Å3.[53]

Conclusions and Outlook

The derivation of the NESC equations published by Dyall

almost two decades ago[29] delineated a new direction of

development in the domain of relativistic quantum chemistry.

For the first time, the matrix-driven approach to the develop-

ment of exact and approximate two-component relativistic

theories was formulated in a concise way and this demarcated

a paradigm shift away from operator-driven approaches, which

were dominating the field at that time. It took about a decade

to realize the full extent of advantages offered by the matrix-

driven approach and the NESC method of Dyall triggered arti-

cle by other researchers[35–38,58,120,121] in an attempt to extend

or reformulate the method. Currently, the development of

matrix-driven quasirelativistic computational methods is an

active field of research that holds a considerable promise for

the computational modeling of molecules and chemical reac-

tions involving heavy and super-heavy elements.

In this review, we have surveyed the most recent develop-

ments in the framework of the NESC methodology, which was

extended by adding extra functionality in form of analytic

energy derivatives,[46,47] the availability of which lays down the

basis for calculating first- and second-order response properties

of molecules containing heavy atoms.[50–53] The major advantage

of the formalism presented is in its computational efficiency,

which enables one to calculate relativistically corrected proper-

ties of large and very large molecular systems. Although the

analytic derivatives formalism presented was formulated within

the scalar-relativistic approximation, recent article by FZC[122] lays

the basis for its extension to a genuine two-component form

and the calculation of SOC effects on molecular properties.

Apart from the extension of the response property formalism

by taking SOC effects into account, the development of higher

order derivatives and higher order response properties can be

foreseen for the future. Especially, the extension of the existing

NESC first- and second-analytic derivatives formalism to the cal-

culation of magnetic properties measured NMR or ESR spectros-

copy such as the magnetic shielding tensor, nuclear spin–spin

coupling constants, or the electronic g-tensor are within reach.

A routine calculation of Raman activities and curvature coupling

coefficients (derivatives of the normal vibrational modes) will

become feasible for the compounds of heavy elements after

the development and implementation of a NESC third-order

analytic derivatives formalism. Already in its current form, the

NESC method can serve as a solid basis for the computational

investigation of the properties of molecules containing relativis-

tic elements. Any future extension of the algorithms currently

available will strengthen the position of NESC as a generally

applicable Dirac-exact relativistic method.

Keywords: relativistic � quantum chemistry � analytic energy

derivatives � molecular response properties
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