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(Received 10 March 2013; accepted 9 June 2013; published online 2 July 2013)

A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC)
method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy
atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-
component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron
atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is mod-
eled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys.
Rev. B 62, 7809 (2000)]. The use of the screened nucleus potential for the two-electron SO inter-
action leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac
Fock-Coulomb values are on the average far below the deviations observed for other effective one-
electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides
HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC
method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811776]

I. INTRODUCTION

The normalized elimination of the small component
(NESC) method, originally developed by Dyall1, 2 is a first
principles 2-component approach where the electron and the
positron states are decoupled via elimination of the small
component of the relativistic wavefunction. NESC is regarded
as a Dirac-exact relativistic method in view of the fact that, for
one-electron atoms, it is fully equivalent to the 4-component
Dirac equation.3 In a series of previous publications, we de-
veloped and implemented a new algorithm for NESC,4 which
makes it possible to routinely carry out scalar-relativistic cal-
culations for large molecules with heavy atoms. In addition,
we worked out the methodology for calculating first order re-
sponse properties,5 such as the atomic forces needed for the
calculation of the equilibrium geometry of a molecule, the
electric dipole moment of a molecule,6 EPR hyperfine struc-
ture constants,7 contact densities for the calculation of Möss-
bauer isomer shifts,8 or electric field gradients for nuclear
quadrupole coupling constants.9 In follow-up work, we de-
veloped the methodology for NESC second order response
properties,10 which is needed for the analytic calculation of
vibrational frequencies,6, 10 static electric polarizabilities, or
infrared intensities.6 We demonstrated the usefulness of the
NESC method when calculating free energy differences of
organic tweezers complexes with different metal ions, espe-
cially mercury ions,11 or determining the size of the gold nu-
cleus in different isotopomers with the help of its quadrupole
anomaly.12 In this work, we will extend our previous scalar
relativistic investigations to include the spin-orbit interaction
into the NESC method in a form that allows this method to
be used for the calculation of large molecular systems and for
obtaining their first and second order response properties via
the analytic derivatives formalism.

Spin-orbit coupling (SOC) is a relativistic effect,13–20

which results in the splitting of the orbital energy levels (es-
pecially the p-levels of heavy atoms) according to the jj-
coupling scheme, changes molecular spectra by making spin
symmetry-forbidden transitions possible, has an impact on
molecular reactions by enabling intersystem crossings, and is
relevant for the calculation of dissociation energies and reac-
tion energies in general when heavy atoms with atomic num-
ber Z > 36 are involved.21 The calculation of SOC with NESC
requires a two-component formulation (2cNESC) as it was
originally developed by Dyall.1, 13

Typically, the SOC operator is split into a one- and a two-
electron part. At the lowest level of relativistic approximation,
both parts are contained in the Breit-Pauli operator, which has
been implemented by Werner and co-workers for its use with
correlated wavefunctions22 (see also Ref. 23). For heavy ele-
ments, SOC is dominated by the one-electron terms. The two-
electron SO terms often reduce the former terms by about 5%
for elements with a filled 5d shell and by about 10% in the
case of elements with a filled 6d shell (see below), which is
an indication of their overall screening effect. These contri-
butions are not negligible; however, in most cases they vary
parallel with the one-electron SO terms.24 There are only a
few cases known where the two-electron contributions take
unusual values and a genuine SOC operator with explicit one
and two-electron part is required.25, 26

In view of the much smaller two-electron contributions
and the significantly larger costs to calculate them,27 sev-
eral simplification schemes have been suggested, which aim
to estimate the magnitude of the two-electron part once
the one-electron SO part has been calculated accurately,
i.e., SOC is calculated with an effective one-electron SOC
operator. To be mentioned in this connection are the
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mean-field SOC operator of Hess et al.,28 the related atomic
mean field integral (AMFI) approach, which was developed
in form of an efficient computer code by Schimmelpfennig,29

or the screened-nuclear-spin-orbit (SNSO) approach of
Boettger,30 in which the two-electron contributions to SOC
are considered by appropriate screening of the nuclear po-
tential, i.e., the use of effective nuclear charges. The SNSO
approach was formulated within the Douglas-Kroll-Hess
quasirelativistic approximation of relativistic effects31–33 and
since it presented a significant simplification of the calcula-
tion of SOC effects, it was adopted by several authors in the
following years in the same or a slightly modified way.34–36

The 2cNESC method presented here includes the effec-
tive one-electron SOC operator of Boettger and is based on
the general Hartree-Fock (GHF) formalism37, 38 for many-
electron systems. We will speak of a 2cNESC method
when one-electron systems have to be calculated and a
2cNESC(SNSO) method when many-electron systems are de-
scribed. In this connection, we mention that methods closely
related to NESC have been developed and terms such as
XQR (exact quasi-relativistic), IOTC (infinite order two-
component),39 or X2C (exact two-component) have been
coined. The recent review article by Peng and Reiher19 de-
fines these terms. There seems to be a tendency to exclusively
use the term X2C in the sense of an one-step exact decou-
pling transformation 2-component approach provided certain
requirements are fulfilled. Unfortunately, other authors used
X2C in connection with spin-free Dirac-exact methods, which
leads to some confusion. To avoid any confusion, we use
the term Dirac-exact 2-component NESC (2cNESC) for the
method described in this work.

With the 2cNESC method, we will investigate SO split-
tings in a series of atoms and molecules. In Sec. II, we present
the basic theory for 2cNESC(SNSO)/GHF. In Sec. III, com-
putational details of our SOC investigation are described and
in Sec. IV, results for a series of atoms and molecules are
analyzed and discussed. Finally, Sec. V summarizes the con-
clusions of our SOC investigation.

II. DETAILS OF A TWO-COMPONENT NESC METHOD

The NESC method1, 4 provides the exact electronic solu-
tions of the full 4-component Dirac equation by solving a set
of coupled 2-component equations. Starting from the modi-
fied Dirac equation1, 13 (1) in matrix form,(

V T
T W − T

)(
A− A+
B− B+

)

=
(

S 0
0 (2mc2)

−1T

)(
A− A+
B− B+

)(
E− 0
0 E+

)
, (1)

where S, T, and V represent the overlap, the kinetic, and the
potential energy matrices, W is the matrix of the operator
(σ · p)V (r)(σ · p)/4m2c2, and the A± and B± are the large
and the pseudo-large components of the electronic (+ sub-
script) and positronic (− subscript) states with energies E+
and E−, respectively, Dyall1 has derived a set of Eqs. (2),

L̃A+ = S̃A+E+, (2a)

L̃ = U†T + TU − U† (T − W) U + V, (2b)

S̃ = S + 1

2mc2
U†TU, (2c)

where the NESC one-electron Hamiltonian L̃ and the rela-
tivistic wavefunction metric S̃ are defined using the elimina-
tion of the small component (ESC) operator Û , which con-
nects the large and the pseudo-large components of the rela-
tivistic electronic wavefunction via Eq. (3):

B+ = UA+. (3)

The ESC matrix U can be obtained by iterating Eq. (4),

U = T−1
(
SS̃−1L̃ − V

)
, (4)

together with Eqs. (2b) and (2c).2, 4 Alternatively, the ESC
matrix can be deduced from the electronic solutions of the
modified Dirac equation (1) by using Eq. (5),1, 4

U = BA−1 = BA† (
AA†)−1

. (5)

The one-step method of solving the NESC equations was
originally proposed by Dyall1 and later used by Zou et al.4

in practical calculations using NESC.
The NESC method is typically employed in its spin-free

(sf) form, which is achieved by separating the sf and spin-
dependent parts of the W matrix as in Eq. (6),

W = Wsf + iσ · WSO. (6)

The separation is achieved by the use of the Dirac identity
(σ · A)(σ · B) = A · B + iσ · A × B and the spin-free and the
spin-orbit (SO) parts of the W matrix are defined as in Eq. (7):

Wsf
μ̄ν̄ = −〈μ̄| 1

4m2c2
∇ × V (r)∇|ν̄〉, (7a)

WSO
μ̄ν̄ = −〈μ̄| 1

4m2c2
∇ × V (r)∇|ν̄〉. (7b)

In these equations, a spinor basis set χ̄ is used which
comprises basis functions for both directions of spin, α and
β. The sf-NESC formalism is obtained by neglecting the SO
part of the W matrix.4 In the sf-formalism, a spin-independent
basis set χ can be used, which results in reducing the dimen-
sion of all the matrices in Eqs. (1) and (2) by a factor of two.
Although it may seem impractical to solve Eqs. (1) and (2)
in the spin-dependent form, these equations should be solved
for one-electron potential (e.g., electron-nuclear attraction po-
tential) only, which, even for a very large system comprising
several thousands of basis functions, takes only a fraction of
the time required to solve the self-consistent field equations.4

The one-electron NESC Hamiltonian L̃ obtained by solv-
ing Eqs. (1), (2), and (5) or Eq. (4) has to be renormalized for
multi-electron systems according to13, 40

HNESC
1e = G†L̃G. (8)

A renormalization matrix that possesses the correct transfor-
mation properties and avoids the so-called picture change er-
ror is given in Eq. (9),41

G = S−1/2
(
S1/2S̃−1S1/2

)1/2
S1/2. (9)
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In the sf case, the use of the renormalized one-electron Hamil-
tonian HNESC

1e in connection with the non-relativistic many-
electron formalism represents a very accurate approximation
to the exact Foldy-Wouthuysen formalism as it neglects only
a tiny fraction of the relativistic two-electron terms.13, 40

When the SO terms are taken into the account, the use
of the bare nuclear potential in Eq. (7b) typically leads to a
serious overestimation of the SO splittings in many-electron
atoms and molecules. The effect of missing two-electron SO
contributions can be sufficiently accurately modeled by the
SNSO approximation of Boettger.30 (For recent work with the
SNSO approach, see Peng and Reiher.19) Within this approx-
imation, the SO terms of the one-electron NESC Hamiltonian
are scaled by using basis-function-dependent scaling factors
to simulate the effect of the missing two-electron SO terms:(

HNESC
1e,SNSO

)
μ̄ν̄

= (
HNESC

1e,SO

)
μ̄ν̄

−
√

Q(lμ̄)

Zμ̄

(
HNESC

1e,SO

)
μ̄ν̄

√
Q(lν̄)

Zν̄

. (10)

In Eq. (10), Zμ̄ is the charge of the nucleus at which the spinor
basis function μ̄ is centered and Q(lμ̄) is a screening factor
that depends on the orbital angular momentum of the func-
tion μ̄, Q(l) = 0, 2, 10, 28, · · · for l = 0, 1, 2, 3, · · · . For
the virtual spinors with Q(lμ̄) ≥ Zμ̄, this SNSO often leads
to qualitatively incorrect SO splittings resulting from the fact
that the number of screened electrons is overestimated. Based
on comparisons with the 4cDirac/HF SO splittings, we sug-
gest a modified Q′(l) parameter calculated by

Q′(l) =
{

Q(l) (Z > Q(l))

Q(l′) (Z ≤ Q(l))
, (11)

where l′ is the maximum l value which makes Z > Q(l′). Cal-
culations on atoms with Z ranging from 1 to 120 with l ≤ 6
(i-type basis functions) show that this modification leads to an
agreement of the SO splittings within 0.02 hartree, for spinors
with j ≥ 7/2.

The accuracy of the original SNSO method can be im-
proved by using slightly adjusted parameters for the p-, d-,
and f-type basis functions. Using Q(d) = 11.0, Q(f) = 28.84,
and Q(p) = 2.34 Erf(34500/αp), where αp is the Gaussian ex-
ponential parameter of the p-type basis function, the relative
deviation of the calculated SO splittings from the reference
4cDirac/HF values is reduced by a factor of two. The original
SNSO screening factors imply that, for electrons in p-type or-
bitals, the nuclear charge is completely screened by the deep-
est core 1s electrons. The proposed dependence of the Q(p)
screening factor on the exponential parameter of the basis
function makes it possible to model penetration of these elec-
trons into the K-shell and, just with the use of a one-parameter
function (the error function), to improve the SO splittings for
p-spinors considerably. The parameters for the new screening
factors were obtained by fitting the calculated SO splittings to
the reference 4cDirac/HF values for noble gas atoms Xe and
Rn. In the following, the results obtained using the modified
SNSO scheme will be labeled 2cNESC(mSNSO).

We tested also another approximate SO calculation based
on a suggestion by Li et al.42 who approximated the two-

component relativistic one-electron Hamiltonian by

Hhigh ≈ Hhigh

sf + (
Hlow − Hlow

sf

)
, (12)

where a high level method is used for the scalar relativis-
tic part (sf denotes spin-free) and a low level approach for
the SO calculations. We used in this connection NESC and
IORA (Infinite Order Regular Approximation);43, 44 however,
results obtained in this way were inferior to those obtained
with 2cNESC(mSNSO) and therefore we will discuss here
only the latter.

The renormalized 2cNESC(SNSO) or 2cNESC(mSNSO)
effective one-electron operator obtained by the procedure de-
scribed above can be conveniently used in connection with
the GHF or general Kohn-Sham (GKS) formalism for ob-
taining the total energy and spinor energies of many-electron
systems.37, 38, 45 In Secs. III and IV, the accuracy of the
2cNESC(SNSO) and 2cNESC(mSNSO) procedures will be
investigated by the calculation of a representative set of atoms
and molecules.

III. COMPUTATIONAL TECHNIQUES

The algorithms described above have been programmed
within the COLOGNE2012 program package.46 This implied
the inclusion of the GHF routine, the programming of the
W-integrals, and the set up of the 2cNESC algorithm. The
2cNESC and 2cNESC(SNSO) calculations were carried out
with a variety of uncontracted basis sets (compare with Ta-
ble I). The calculations of the atoms were carried out with an
uncontracted 32s30p20d15f basis where the exponents were
generated by the formula47, 48

exp(−3.84 + 0.72 × (i − 1)), i = 1, 2, . . . , Nl (13)

with Nl = 32 for s-, 30 for p-, 20 for d-, and 15 for f-type
functions. For reference calculations of the 4cDirac/HF-type,
the relativistic program DIRAC was used.49

2cNESC(SNSO) calculations of molecules HX and
HgX2 were performed with the uncontracted cc-pVTZ ba-
sis set of Dunning50, 51 in the case of Z < 18 and Dyall’s
uncontracted TZ basis set augmented with diffuse and po-
larization functions52–55 for heavier atoms. The bond lengths
of HX molecules were chosen to be either the experimen-
tal (where available) or reliable quantum chemical re values:
0.917 (HF56), 1.275 (HCl56), 1.414 (HBr56), 1.609 (HI56),
1.738 (HAt57), and 1.949 Å(HUus58), respectively. The bond
lengths of the HgX2 molecules were taken from Kim et al.:

TABLE I. Uncontracted basis functions used in the molecular calculations.

Element Functions Ref.

H 5s2p1d 50
F 10s5p2d1f 50
Cl 15s9p2d1f 51
Br 24s17p11d1f 52 and 53
I 29s22p16d1f 52 and 53
Hg 30s24p15d11f1g 53 and 54
At 31s27p18d12f 52 and 53
Uus 31s30p21d13f 53 and 55
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TABLE II. Spinor splittings (in hartree) for H-like ions with point charge nuclei.

|2cNESC |2cNESC
SO Splitting 2cNESC -4cDirac| 2cNESC -4cDirac|

Z = 120 (Ubn) Z = 118 (Uuo)
2p3/2 − 2p1/2 708.2299530 <10−8 637.1702111 <10−8

3p3/2 − 3p1/2 210.3266297 <10−8 189.4477837 <10−8

4p3/2 − 4p1/2 86.0450533 <10−8 77.6695049 <10−8

5p3/2 − 5p1/2 42.9111586 <10−8 38.8334672 <10−8

6p3/2 − 6p1/2 24.6161441 <10−8 22.4492488 <10−8

7p3/2 − 7p1/2 15.5620277 <10−8 14.7098735 <10−8

3d5/2 − 3d3/2 39.3198991 <10−8 36.5777309 <10−8

4d5/2 − 4d3/2 16.8647478 <10−8 15.6801476 <10−8

5d5/2 − 5d3/2 8.6506004 <10−8 8.0481371 <10−8

6d5/2 − 6d3/2 4.9897741 <10−8 4.6707595 <10−8

4f7/2 − 4f5/2 7.5402554 <10−8 7.0463923 <10−8

5f7/2 − 5f5/2 3.8568158 <10−8 3.6068049 <10−8

Z = 112 (Cn) Z = 102 (No)
2p3/2 − 2p1/2 467.2952021 <10−8 281.1810867 <10−8

3p3/2 − 3p1/2 139.2516691 <10−8 83.8991042 <10−8

4p3/2 − 4p1/2 57.3994720 <10−8 34.7968676 <10−8

5p3/2 − 5p1/2 28.8569679 <10−8 17.5014191 <10−8

6p3/2 − 6p1/2 16.8355283 <10−8 9.8622180 <10−8

3d5/2 − 3d3/2 29.2580490 <10−8 19.6858258 <10−8

4d5/2 − 4d3/2 12.5234974 <10−8 8.4060985 <10−8

5d5/2 − 5d3/2 6.4397317 <10−8 4.3179656 <10−8

6d5/2 − 6d3/2 3.8007357 <10−8

4f7/2 − 4f5/2 5.7067868 <10−8 3.9063215 <10−8

5f7/2 − 5f5/2 2.9269327 <10−8 2.0086972 <10−8

1.914 (HgF2), 2.258 (HgCl2), 2.381 (HgBr2), and 2.568 Å
(HgI2).59

All calculations were carried out with a finite nucleus
model possessing a Gaussian charge distribution.13, 60 Further-
more, a velocity of light c = 137.035999070(98)61 was used
throughout the article.

IV. RESULTS AND DISCUSSION

The 2cNESC/GHF method was tested for one-electron
atoms by comparing their energies with 4cDirac/HF results
(see Table II). For all test calculations (only some of which
are given in Table II), deviations are 10−8 hartree or smaller
thus verifying that 2cNESC is a Dirac-exact method.

FIG. 1. Deviations (in percentage) of the 2cNESC(SNSO)/GHF spinor en-
ergy splittings from exact 4cDirac/HF splittings given in the case Z = 120.

Calculated 2cNESC(SNSO) spinor energy splittings
of a series of elements are summarized in Table III
and for molecules in Table IV. An analysis of the
2cNESC(SNSO) splittings for Z = 120 is provided in Fig-
ure 1. 2cNESC(SNSO) results for HgX2(1�+

g ) molecules are
analyzed in Table V and Figure 2, where the variation in the

FIG. 2. Spinor diagram of HgX2(1�+
g ) (X = F, Cl, Br, I) according to

2cNESC(SNSO)/GHF/cc-pVTZ calculations. Only the atomic 5d3/2 and
5d5/2 spinors and their ω counterparts for the HgX2 molecule are shown.
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TABLE III. SO splittings (in hartree) of neutral atoms by 4cDirac/HF, 2cNESC(SNSO)/GHF, and 2cNESC(mSNSO)/GHF with finite nucleus model. For
atoms with Z > 109, mass number = 2.556Z is used. Relative deviations (in %) from the 4cDirac/HF values are given in parentheses.

SO splitting 4cDirac 2cNESC(SNSO) 2cNESC(mSNSO) 4cDirac 2cNESC(SNSO) 2cNESC(mSNSO)

Z = 120 (Ubn) Z = 118 (Uuo)
2p3/2 − 2p1/2 602.97483 598.35781(−0.8) 599.91195(−0.5) 543.15790 539.40129(−0.7) 540.40481(−0.5)
3p3/2 − 3p1/2 148.45720 147.48688(−0.7) 148.04828(−0.3) 133.39014 132.61457(−0.6) 133.00921(−0.3)
4p3/2 − 4p1/2 43.62587 43.38598(−0.5) 43.56142(−0.1) 38.99718 38.81046(−0.5) 38.93476(−0.2)
5p3/2 − 5p1/2 13.05427 12.99054(−0.5) 13.04410(−0.1) 11.52191 11.47393(−0.4) 11.51147(−0.1)
6p3/2 − 6p1/2 3.36826 3.35165(−0.5) 3.36646(−0.1) 2.86073 2.84876(−0.4) 2.85882(−0.1)
7p3/2 − 7p1/2 0.61261 0.60923(−0.6) 0.61235(0.0) 0.43383 0.43164(−0.5) 0.43351(−0.1)
3d5/2 − 3d3/2 22.65558 23.02624(1.6) 22.80864(0.7) 20.96930 21.30386(1.6) 21.09940(0.6)
4d5/2 − 4d3/2 6.44391 6.57909(2.1) 6.51685(1.1) 5.91399 6.03671(2.1) 5.97875(1.1)
5d5/2 − 5d3/2 1.76703 1.80947(2.4) 1.79220(1.4) 1.59221 1.63035(2.4) 1.61456(1.4)
6d5/2 − 6d3/2 0.32862 0.33842(3.0) 0.33500(1.9) 0.27096 0.27922(3.0) 0.27634(2.0)
4f7/2 − 4f5/2 1.90405 1.94659(2.2) 1.92853(1.3) 1.74004 1.77740(2.1) 1.76058(1.2)
5f7/2 − 5f5/2 0.41754 0.43310(3.7) 0.42905(2.8) 0.36769 0.38151(3.8) 0.37787(2.8)

Z = 112 (Cn) Z = 102 (No)
2p3/2 − 2p1/2 398.63108 396.63663(−0.5) 396.67894(−0.5) 238.58099 237.97709(−0.3) 237.54685(−0.4)
3p3/2 − 3p1/2 96.99132 96.61370(−0.4) 96.70685(−0.3) 56.91847 56.84539(−0.1) 56.77311(−0.3)
4p3/2 − 4p1/2 27.86138 27.78141(−0.3) 27.81337(−0.2) 15.76109 15.75796(0.0) 15.73978(−0.1)
5p3/2 − 5p1/2 7.89105 7.87363(−0.2) 7.88295(−0.1) 4.10567 4.10807(0.1) 4.10322(−0.1)
6p3/2 − 6p1/2 1.70756 1.70398(−0.2) 1.70625(−0.1) 0.67831 0.67850(0.0) 0.67785(−0.1)
3d5/2 − 3d3/2 16.48462 16.72960(1.5) 16.56080(0.5) 10.68904 10.83206(1.3) 10.71186(0.2)
4d5/2 − 4d3/2 4.52386 4.61540(2.0) 4.56884(1.0) 2.77987 2.83500(2.0) 2.80357(0.9)
5d5/2 − 5d3/2 1.14552 1.17300(2.4) 1.16107(1.4) 0.62446 0.63991(2.5) 0.63277(1.3)
6d5/2 − 6d3/2 0.12064 0.11698(−3.0) 0.12376(2.6)
4f7/2 − 4f5/2 1.30923 1.33418(1.9) 1.32072(0.9) 0.77202 0.78421(1.6) 0.77526(0.4)
5f7/2 − 5f5/2 0.24131 0.25092(4.0) 0.24836(2.9) 0.09731 0.10216(5.0) 0.10099(3.8)

Z = 86 (Rn) Z = 80 (Hg)
2p3/2 − 2p1/2 101.22751 101.27248(0.0) 100.90485(−0.3) 71.69802 71.79846(0.1) 71.49993(−0.3)
3p3/2 − 3p1/2 23.16398 23.21241(0.2) 23.13400(−0.1) 16.09378 16.14595(0.3) 16.08193(−0.1)
4p3/2 − 4p1/2 5.89896 5.91891(0.3) 5.89912(0.0) 3.93551 3.95371(0.5) 3.93805(0.1)
5p3/2 − 5p1/2 1.23312 1.23896(0.5) 1.23472(0.1) 0.69595 0.70046(0.6) 0.69757(0.2)
6p3/2 − 6p1/2 0.15636 0.15719(0.5) 0.15669(0.2)
3d5/2 − 3d3/2 4.80788 4.86365(1.2) 4.79884(−0.2) 3.41664 3.45377(1.1) 3.40392(−0.4)
4d5/2 − 4d3/2 1.10938 1.13176(2.0) 1.11671(0.7) 0.74416 0.75933(2.0) 0.74839(0.6)
5d5/2 − 5d3/2 0.17311 0.17823(3.0) 0.17583(1.6) 0.07542 0.07822(3.7) 0.07701(2.1)
4f7/2 − 4f5/2 0.26558 0.26943(1.5) 0.26552(0.0) 0.16116 0.16382(1.7) 0.16117(0.0)

Z = 54 (Xe) Z = 48 (Cd)
2p3/2 − 2p1/2 11.97520 12.04279(0.6) 11.96205(−0.1) 7.10727 7.15478(0.7) 7.10055(−0.1)
3p3/2 − 3p1/2 2.33470 2.35579(0.9) 2.34022(0.2) 1.30908 1.32300(1.1) 1.31309(0.3)
4p3/2 − 4p1/2 0.46971 0.47468(1.1) 0.47148(0.4) 0.22465 0.22752(1.3) 0.22574(0.5)
5p3/2 − 5p1/2 0.05277 0.05345(1.3) 0.05310(0.6)
3d5/2 − 3d3/2 0.48627 0.49156(1.1) 0.48036(−1.2) 0.26269 0.26536(1.0) 0.25838(−1.6)
4d5/2 − 4d3/2 0.07757 0.07932(2.3) 0.07752(−0.1) 0.02935 0.03024(3.0) 0.02942(0.2)

spinor energies of molecules HgX2(1�+
g ) for X = F, Cl, Br, I

is displayed.
In Figure 1, the calculated 2cNESC(SNSO)/GHF spinor

energy splittings for Z = 120 are compared with the cor-
responding exact Dirac/HF values by giving the deviations
from the latter in percentage. The one-electron SO contri-
butions (given in red) exaggerate calculated np-splittings on
the average by 2%, nd-splittings by 10%, and nf-splittings by
33% where deviations become somewhat larger with increas-
ing principal quantum number n. This exaggeration is largely
corrected by the screened nucleus two-electron contributions
so that final 2cNESC(SNSO) values differ by just 2% from
the Dirac values. After the SNSO correction, deviations are

1% for np-splittings and increase to 3% for the nf-splittings
where again deviations are somewhat larger for larger n.

The trends observed for Z = 120 are also valid for other
elements. In Table III, the results obtained for noble gas ele-
ments xenon (Xe, Z = 54), radon (Rn, Z = 86), ununoctium
(Uuo, Z = 118); group IIb elements cadmium (Cd, Z = 48),
mercury (Hg, Z = 80), copernicium (Cn, Z = 112); the ac-
tinide nobelium (No, Z = 102), and finally unbinilium (Ubn,
Z = 120) are listed, which are representative closed shell sys-
tems of periods 5, 6, 7, and 8. Deviations are largest (up to 4
hartree) when Z is large and core spinor energies with n = 2
are considered, which possess splittings up to 603 hartree
(Z = 120 and 2p3/2 − 2p1/2). For valence spinors, deviations
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TABLE IV. SO splittings (in cm−1) of the valence npπ orbitals of HX
and 5dπ , δ orbitals of HgX2 by 4cDirac/HF, 2cNESC(SNSO)/GHF and
2cNESC(mSNSO)/GHF with finite nucleus model (for Uus (Z = 117), a mass
number of 2.556Z is used). Relative deviations (in %) from the 4cDirac/HF
values are given in parentheses.

Mol. Splitting Dirac 2cNESC(SNSO) 2cNESC(mSNSO)

HF 2pπ3/2 − 2pπ1/2 381 389(2.1) 371( − 2.6)
HCl 3pπ3/2 − 3pπ1/2 758 779(2.8) 762(0.5)
HBr 4pπ3/2 − 4pπ1/2 2994 3056(2.1) 3025(1.0)
HI 5pπ3/2 − 5pπ1/2 5942 6016(1.2) 5979(0.6)
HAt 6pπ3/2 − 6pπ1/2 15 513 15 574(0.4) 15 538(0.2)
HUus 7pπ3/2 − 7pπ1/2 23 955 23 968(0.1) 23 978(0.1)
HgF2 5dπ3/2 − 5dπ1/2 5362 5362( − 0.4) 5357( − 0.5)

5dδ5/2 − 5dδ3/2 18 769 19 316(2.9) 19 076(1.6)
HgCl2 5dπ3/2 − 5dπ1/2 16 266 16 821(3.4) 16 579(1.9)

5dδ5/2 − 5dδ3/2 17 613 18 214(3.4) 17 955(1.9)
HgBr2 5dπ3/2 − 5dπ1/2 16 095 16 660(3.5) 16 415(2.0)

5dδ5/2 − 5dδ3/2 17 446 18 056(3.5) 17 794(2.0)
HgI2 5dπ3/2 − 5dπ1/2 15 196 15 750(3.6) 15 506(2.0)

5dδ5/2 − 5dδ3/2 17 286 17 900(3.6) 17 637(2.0)

are just a few millihartrees. Since in these cases the splittings
are just 1/3 to 2/3 of a hartree the relative deviations (given
in %) appear to be large. For none of the elements consid-
ered, the relative deviation of the 2cNESC(SNSO) splittings
exceeds 5% and, on average, the deviations are smaller than
2%. We note that, for each element investigated, a linear re-
lationship between the 2cNESC(SNSO) and 4cDirac values
can be established, which can help to reproduce the exact SO
splittings from NESC data.

The observations made for the 2cNESC(SNSO) results in
the case of the atoms are in line with those for the molecules
although the SO splittings become somewhat smaller as a re-
sult of spinor-spinor interactions. In Table IV, calculated SO

splittings in cm−1 are given for hydrogen halides HX (va-
lence shell npπ splittings) with X = F, Cl, Br, I, At, Uus
(ununseptium, Z = 117) and mercury(II) halides HgX2 (mer-
cury 5dπ and 5dδ splittings) with X = F, Cl, Br, I. For HX
molecules, the splittings range from 381 to 23 955 cm−1

with the 2cNESC(SNSO)/GHF values always being some-
what larger (up to 60 cm−1) indicating that the NESC values
slightly exaggerate the splittings because of the approximate
two-electron contributions to the SOC. However, the devia-
tions when given in percentage are similar to those found for
the atoms.

In the case of molecules HgX2, absolute 5dδ5/2 − 5dδ3/2

and 5dπ3/2 − 5dπ1/2 splittings obtained with 2cNESC
(SNSO)/GHF are also too large where deviations can increase
to 600 cm−1, which is still below 4% of the Dirac splittings
for the heaviest homologues in the series (see Table IV). The
use of the mSNSO parametrization reduces the relative devi-
ations by approximately a factor of two. Generally, the over-
all magnitude and the relative precision of the calculated SO
splittings for the HgX2 molecules is of the same order of mag-
nitude as for the bare Hg atom. This is to be expected as the
5dδ5/2 and 5dπ3/2 spinors can be traced back to the atomic
5d5/2 spinors and the 5dδ3/2 and 5dπ1/2 to the atomic 5d3/2

spinors (see Table 7.2 in Ref. 13). We note that here and in the
following, we distinguish between different ω-spinors with
the same symmetry by labeling them according to the dom-
inant spin-free orbital.

The valence spinors of HgX2 are analyzed in Table V
by decomposing them in terms of the corresponding spin-free
atomic orbitals of the Hg and X atoms. The spin-free atomic
orbitals are labeled by the projection of the orbital angular
momentum on the molecular axis (σ -, π -, or δ-type). As fol-
lows from Table V, the spinor with the highest projection of
the total angular momentum on the molecular axis, ω = 5/2,
is a pure δ-type 5d atomic orbital of Hg as it does not mix

TABLE V. Spinor population analysis for the HgX2 molecules based on the results of 2cNESC(SNSO) calculations.

Mol. Spinor Energy (a.u.) Contribution (%)

HgF2 1/2 −0.78610 Hg5dσ (36) + Hg5dπ (39) + F2sσ (2) + F2pσ (18) + F2pπ (5)
1/2 −0.72898 Hg5dσ (20) + Hg5dπ (43) + F2sσ (1) + F2pσ (23) + F2pπ (12)
3/2 −0.75917 Hg5dπ (38) + Hg5dδ (55) + F2pπ (7)
3/2 −0.70455 Hg5dπ (39) + Hg5dδ (44) + F2pπ (17)
5/2 −0.67116 Hg5dδ (100)

HgCl2 1/2 −0.76920 Hg5dσ (30) + Hg5dπ (60) + Cl3sσ (3) + Cl3pσ (4) + Cl3pπ (2)
1/2 −0.69823 Hg5dσ (45) + Hg5dπ (35) + Cl3sσ (4) + Cl3pσ (13) + Cl3pπ (2)
3/2 −0.75963 Hg5dπ (29) + Hg5dδ (70) + Cl3pπ (1)
3/2 −0.69256 Hg5dπ (66) + Hg5dδ (30) + Cl3pπ (4)
5/2 −0.67664 Hg5dδ (100)

HgBr2 1/2 −0.76350 Hg5dσ (30) + Hg5dπ (62) + Br4sσ (3) + Br4pσ (3) + Br4pπ (1)
1/2 −0.69109 Hg5dσ (49) + Hg5dπ (34) + Br4sσ (4) + Br4pσ (10) + Br4pπ (2)
3/2 −0.75683 Hg5dπ (27) + Hg5dδ (72) + Br4pπ (1)
3/2 −0.68759 Hg5dπ (69) + Hg5dδ (28) + Br4pπ (3)
5/2 −0.67456 Hg5dδ (100)

HgI2 1/2 −0.75269 Hg5dσ (24) + Hg5dπ (68) + I5sσ (6) + I5pσ (1) + I5pπ (1)
1/2 −0.67813 Hg5dσ (55) + Hg5dπ (29) + I5sσ (8) + I5pσ (6) + I5pπ (1)
3/2 −0.75242 Hg5dπ (25) + Hg5dδ (74)
3/2 −0.68093 Hg5dπ (72) + Hg5dδ (26) + I5pπ (1)
5/2 −0.67086 Hg5dδ (100)
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with any other spin-free orbitals. Consequently, the energy of
the 5dδ5/2 spinor remains nearly constant within the HgX2 se-
ries. The ω = 3/2 spinors in HgX2 comprise δ and π spin-free
atomic orbitals, with the former making a dominating contri-
bution to the lower energy spinor (henceforth labeled 5dδ3/2)
and the latter dominating the higher energy spinor (5dπ3/2).
Mixing of the spin-free orbitals in the ω = 3/2 spinors results
in a lowering of the energy of the 5dδ3/2 spinor and a rising of
the energy of the 5dπ3/2 one. The ω = 1/2 spinors comprise
π and σ spin-free atomic orbitals of Hg and X; however, their
relative contribution to the higher and the lower energy spinor
vary along the series X = F, Cl, Br, I. For X = Cl, Br, and I,
the lower energy ω = 1/2 spinor is dominated by the π -type
spin-free atomic orbitals and the higher energy spinor by the
σ -type orbitals. For X = F, the increased participation of the
ligand orbitals in the chemical bond results in an inversion of
the ordering of the ω = 1/2 spinors so that 5dσ 1/2 becomes
the lowest energy molecular spinor.

Figure 2 shows the energies of the valence spinors of
molecules HgX2, which are classified according to the anal-
ysis given above. It is apparent from the diagram that the
splitting of the molecular spinors corresponds to the strong
SOC limit being perturbed by the interactions with the lig-
ands. The influence of the ligand field increases from I to
F thus leading to a greater scatter of the molecular spinors
and, for HgF2, even resulting in a change of the character of
the lowest energy spinor (from π to σ ) shown in Figure 2.
Hence, the 5dπ3/2 − 5dπ1/2 energy difference in Table IV
abruptly decreases in magnitude for HgF2 as compared to the
heavier HgX2 homologues. From the 5dπ3/2 − 5dπ1/2 and
5dδ5/2 − 5dδ3/2 spinor splittings in Table IV, it can be con-
cluded that 2cNESC(SNSO) and 2cNESC(mSNSO) are ca-
pable of describing the ligand field effect on the spinor ener-
gies with a sufficiently high accuracy. For instance, the 5dδ5/2

− 5dπ3/2 splittings calculated for HgX2 with 2cNESC(SNSO)
or 2cNESC(mSNSO) (not reported in Table IV) deviate from
the reference 4cDirac/HF values by just 0.5 – 0.1 %.

The effect of SOC on the atomization energies of
molecules HX and HgX2 is illustrated by the data in Table VI
where total and atomization energies obtained with the
2cNESC(mSNSO)/GHF method are compared with the cor-
responding spin-free NESC/UHF results. The atomization en-
ergy of molecules HX is reduced due to quenching of the
atomic SOC effect upon H–X bond formation. The magnitude
of the reduction varies between 0.46 kcal/mol for F and 19.31
kcal/mol for Uus, thus underlining the importance of the SOC
effect for bonding when involving heavy elements. Compared
to HX, the presence of a heavy central atom in HgX2 slightly
stabilizes the bonding as can be judged from the analysis of
the overall SOC effect on the atomization energy. The lat-
ter can be determined from the difference ��ESO

at = �ESO
at

− �ESF
at (calculated for HgX2) by subtracting the SOC of

HX, i.e., ��ESO
at (HgX2) − 2 ∗ ��ESO

at (HX). Although this
stabilization is weak and varies just from 0.85 kcal/mol for
HgF2 to 1.51 kcal/mol for HgI2, it may nevertheless lead
to a slight SOC-caused shortening of the equilibrium bond
length. According to 2cNESC(mSNSO)/PBE0 calculations,
which will be published in more detail elsewhere, SOC causes
a shortening of the Hg–F bond in HgF2 from 1.915 to 1.912 Å.

TABLE VI. Total energy E (in a.u.) and atomization energy �Eat (in
kcal/mol) of molecules HX and HgX2 (X = F, Cl, Br, I, At, and Uus) obtained
at the 2cNESC(mSNSO)/GHF (SO) and the spin-free NESC/UHF (SF) lev-
els of theory. The total energy of the H atom is −0.4998163 a.u. and those of
the Hg atom are −19639.8986633 a.u. (SO) and −19620.1625575 a.u. (SF).
For the geometries used, see text.

Mol. E(molecule) (a.u.) E(X) (a.u.) �Eat (kcal/mol)

SO − 100.1442402 − 99.4931781 94.91
HF

SF − 100.1442363 − 99.4924413 95.37
SO − 461.5198133 − 460.9018977 74.11

HCl
SF − 461.5193975 − 460.8984868 75.99
SO − 2605.1717492 − 2604.5757704 60.34

HBr
SF − 2605.1046016 − 2604.5025381 64.16
SO − 7114.4638098 − 7113.8926542 44.77

HI
SF − 7113.3400713 − 7112.7571824 52.13
SO − 22 898.7973892 − 22898.2525965 28.22

HAt
SF − 22 868.0286211 − 22867.4577339 44.60
SO − 53 440.0056758 − 53439.4820413 14.95

HUus
SF − 53 031.7314499 − 53031.1770363 34.26
SO − 19 838.9791412 − 99.4931781 59.06

HgF2
SF − 19 819.2416782 − 99.4924413 59.13
SO − 20 561.8138405 − 460.9018977 69.89

HgCl2
SF − 20 542.0753633 − 460.8984868 72.68
SO − 24 849.1398133 − 2604.5757704 56.23

HgBr2
SF − 24 829.2676121 − 2604.5025381 62.74
SO − 33 867.7432420 − 7113.8926542 37.19

HgI2
SF − 33 845.7572404 − 7112.7571824 50.40

The observed strengthening of the Hg–X bonds can be ex-
plained by a lowering of the ground state energy of HgX2

due to the second-order SOC contribution. The effect of the
second-order SOC increases with increasing nuclear charge Z
of ligand X due to (a) an overall increase of the magnitude
of the SOC effect for larger Z and (b) a decrease of the elec-
tronegativity of X, which results in a greater electron popula-
tion of the Hg valence orbitals (spinors).

V. CONCLUSIONS

In this work, we have extended the NESC algorithm de-
veloped previously4 to a two-component approach that can be
used for the calculation of the SOC effect. The new approach,
abbreviated as 2cNESC(SNSO) (or 2cNESC(mSNSO), if ad-
justed SNSO parameters are used), is based on an effective
one-electron SOC operator that employs the screened-nucleus
potential of Boettger30 in an improved version for higher an-
gular momentum quantum numbers and with slightly adjusted
parameters, which makes it possible to obtain reliable SO
splittings for atoms and molecules with Z values up to 120
with an accuracy that almost matches exact 4cDirac calcu-
lations as reflected by an average deviation of less than 2%.
2cNESC(mSNSO) can easily compete with AMFI and other
two-component methods based on an effective one-electron
SOC operator.

It is noteworthy that relativistic methods provide a
deeper, more consistent insight into bonding patterns of
molecules containing heavy atoms than can be achieved with
the use of spin-free relativistic or non-relativistic methods.
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This is demonstrated for the series of HgX2, X = F, Cl, Br, I,
molecules, for which the interplay between the SOC and lig-
and field effects leads to changing the character of low-lying
valence spinor from predominantly σ -type to π -type.
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