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Configuration interaction (CI) theory has dominated the first 50 years of quantum 
chemistry before it was replaced by many-body perturbation theory and coupled 
cluster theory. However, even today it plays an important role in the education 
of everybody who wants to enter the realm of quantum chemistry. Apart from 
this, full CI is the method of choice for getting exact energies for a given basis 
set. The development of CI theory from the early days of quantum chemistry up 
to our time is described with special emphasis on the size-extensivity problem, 
which after its discovery has reduced the use of CI methods considerably. It led 
to the development of the quadratic CI (QCI) approach as a special form of size-
extensive Cl. Intimately linked with QCI is the scientific dispute between QCI 
developers and their opponents, who argued that the QCI approach in its original 
form does not lead to a set of size-extensive CI methods. This dispute was settled 
when it was shown that QCI in its original form can be converted into a generally 
defined series of size-extensive methods, which however have to be viewed as a 
series of simplified coupled cluster methods rather than a series of size-extensive 
CI methods. © 2013 John Wiley & Sons, Ltd. 
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INTRODUCTION AND BASIC TERMS 

C onfiguration interaction (CI) theory was the 
first post-HF (Hartree-Fock) [also called post-

SCF (self-consistent field)] method used in the early 
days of quantum chemistry to correct the mean-field 
approach (MFA) of HF for a better description of 
electron-electron interactions. In the early literature, 
one used the term superposition of configurations, 
which as an acronym would be misleading nowadays 
because it denotes spin orbit coupling. Therefore, we 
will avoid the latter term in this article. 

A number of review articles have focused on 
CI theory. A state-of-the-art account was given by 
Shavitt1 in 1977 in Methods of Electronic Structure 
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Theory edited by Schaefer. In the same book, Roos 
and Siegbahn2 and Meyer3 reported on related devel-
opments in CI theory thus complementing Shavitt's 
review. In 1998, Carsky4 summarized in an excellent 
review developments during 70 years of CI theory 
and 1 year later Sherill and Schaefer gave a detailed 
account on highly correlated CI theory. 5 

Since CI theory has played such a fundamental 
role in the development, understanding, and applica-
tion of electron correlation methods, it is discussed in 
literally all textbooks on quantum chemistry of which 
only the book by Szabo and Ostlund6 is mentioned 
here. In the following, some basic terms will be intro-
duced that facilitate the reading of this review. 

HF theory simplifies the description of the in-
teractions of N electrons by considering just one 
electron interacting with the mean field of the N -
1 remaining electrons thus reducing the many-body 
(many-electron) problem to an effective one-body 
(one-electron) problem. This is the essence of the 
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MFA, which implies a drastic simplification of the 
description of electron-electron interactions. The HF 
space orbitals ¢i or spin orbitals lj!i (subscripts i, j, k, 
1, ... denote orbitals with occupation numbers ni = 
2, 1, or 0 in the case of space orbitals or ni = 1 or 0 in 
the case of spin orbitals) are calculated variationally 
as a linear combination of M basis functions x11 : 

M 

¢i = L C11iX11 with fL = 1, 2, ... , M (1) 
f1 

where the expansion coefficients c11i are variationally 
optimized. Hence, the HF energy E(HF) based on 
these orbitals is an upper bound to the exact energy 
E(exact). The difference between the exact, nonrela-
tivistic Schrodinger energy (obtained for a clamped 
nuclei situation, i.e., with the Born-Oppenheimer ap-
proximation) and the HF limit energy (obtained for a 
complete basis set) is called correlation energy7 : 

l'lE(corr) = E(exact)- E(HF, limit) (2) 

It accounts for the energy lowering due to a corre-
lated movement of the electrons in a many-electron 
molecule thus reducing the destabilizing electron in-
teractions and correcting in this way the MFA of HF. 
Since HF is carried out with a finite set of M basis 
functions, the correlation energy depends on the size 
of the basis set. It also depends on how the HF method 
is improved. This can be done in a methodologically 
simple way by employing CI theory. 1 

A set of occupation numbers (nt, n2, n3, .. . , nM) 
is called an electron configuration. When using space 
orbitals and describing a closed shell molecule in its 
ground state, m = N/2 orbitals with the lowest ener-
gies are doubly occupied. For example, in the case of a 
VDZ (valence double-zeta) basis set description of the 
water molecule (N = 10, M = 13), the ground state 
( GS) configuration is given by the occupation vector 
(2222200000000) because there are five doubly oc-
cupied (ni = 2) molecular (space) orbitals (MOs) and 
eight virtual orbitals with na = 0 (subscripts i and 
a denote occupied and virtual orbitals, respectively). 
The corresponding wavefunction is the HF Slater de-
terminant I <Po) derived from the space orbitals, which 
are expanded by the functions of the VDZ basis set. It 
has to be noted that the ket vector I ) is used to denote 
the quantum state described by the wavefunction in 
question. 

Although the virtual orbitals of a HF calculation 
have no direct physical meaning (they are by-products 
of a HF calculation), they can be used in two differ-
ent ways: (i) They approximate the Dyson orbitals 
(constructed from Feynman-Dyson amplitudes) and 
their orbital energies the exact electron affinities. In 
this way, the virtual HF orbitals gain some physi-
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cal meaning from the electron attachment process.8 

(ii) The nodal properties of the virtual HF orbitals 
(with increasing orbital energies, the number of nodal 
surfaces of the virtual orbitals increases) can be ex-
ploited to improve the HF description of the electron 
interaction. For this purpose, excited configurations 
are generated by moving electrons from occupied to 
virtual orbitals (denoted by subscripts a, b, c, etc.; 
for orbitals with unspecified electron occupation sub-
scripts p, q, r, s, etc., are used). In the case of the wa-
ter molecule, doubly (D) excited configurations are 
for example: (2222011000000), (2222020000000), 
or (2222002000000). The virtual orbitals possess ad-
ditional nodal surfaces, which separate two electrons, 
and therefore a better description of the correlated 
movements of the electrons is achieved. Depending 
on the nodal properties of originally and newly oc-
cupied orbital, one speaks of in-out (ns --+ ks with 
k > n, etc.), angular (a --+ n*), or left-right (a --+ 
a*) excitations, which describe in-out, angular, and 
left-right electron correlation, respectively. The corre-
sponding Slater determinants are written in the short 
form l<t>fl), which indicates that the occupied orbitals 
¢i and ¢i as well as the virtual orbitals ¢a and ¢b 
are involved in the excitation process. In this way, a 
CID (CI with all D excitations) wavefunction can be 
generated: 

a>b 
l\llcw) = coi<I>o) + l..:cfll<t>fl) (3) 

i>j 

where co is the coefficient of the HF reference, which 
can be one or close to one depending on what normal-
ization is used. The cfl are the mixing(= interaction) 
coefficients of the excited configurations. Hence, the 
CID wavefunction is expressed as a linear combina-
tion of the HF Slater determinant and all possible 
D-excited Slater determinants, which can be gener-
ated for a set of 13 MOs and 10 electrons. The CID 
weighting coefficients cfl are determined by a varia-
tional approach during which the HF orbitals are kept 
frozen. The resulting CID energy is lower than the HF 
energy, however still an upper bound to E(exact). The 
difference l'lE(corr, CID) = E(CID) - E(HF) is the 
CID correlation energy, which accounts for electron 
pair correlation effects of the in-out, angular, and left-
right type. 

In the following, we will express the CI method-
ology in terms of spin orbitals 1jJ i because this is some-
what simpler than working with space orbitals ¢i· 
In general, the functions of a CI expansion such as 
Eq. (3) are chosen to be eigenfunctions of the spin 
operators Sz and S2 , which commute with the Hamil-
tonian operator H. For molecules with a degenerate 
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or quasi-degenerate GS, linear combinations of a few 
Slater determinants rather than single Slater determi-
nants are eigenfunctions of the spin operators, and 
therefore these spin-adapted configurations are used, 
which are called configuration state functions (CSFs). 
For the purpose of simplifying the notation, we keep 
the symbol l<t>ff{) to denote a CSF, which in the 
simplest case is identical to one Slater determinant. 

A full CI (FCI) expansion for an N-electron 
system contains all possible P-excitations (P = 
S, D, T, Q, ... , X), where IS) = I<I>f) denotes 
singly(S)-excited CSFs, ID) = l<t>ffl D-excited CSFs, 
IT) = I <t>ffkl triply(T)-excited CSFs, I Q) = I <t>ffkjd) 
quadruply(Q)-excited CSFs, and IX) all X-fold ex-
cited CSFs. 

I\I!FcJ) = I<I>o) + L cpl<l>p) (4) 
all P 

It is convenient to choose the CSFs l<t>p) to be or-
thonormal so that the metric S becomes the identity 
matrix I, and the FCI eigenvalue problem takes the 
simple form 

He= ESc= Ec (5) 

where the elements of the hermitian matrix H are 
given by 

(6) 

and the expansion coefficients cp are collected in the 
vector c. The FCI energy of the GS, E(FCI), is defined 
for the basis set of size M used to obtain the HF 
reference function I<I>o) as the lowest eigenvalue of 
the diagonal eigenvalue matrix E. 

The HF energy represents a minimum with re-
gard to the mixing of occupied and virtual spin or-
bitals, Therefore, S-excited CSFs do not interact with 
the HF GS wavefunction, which is expressed in the 
Brillouin theorem9: 

(7) 

However, as soon as pair correlation or higher n-
electron correlation effects are included into the CI 
expansion, the HF orbitals are no longer optimal. For 
example, in-out pair correlation requires more dif-
fuse orbitals. By accounting for some of these orbital 
improvements, the S excitations make a significant 
contribution in a CISD (CI with all S and D exci-
tations) or any more sophisticated CI wavefunction. 
The calculation of the matrix elements HpQ follows 
the Slater rules. 10•11 One important consequence of 
the Slater rules is that CSFs differing by more than 
two spin orbitals do not interact because the Hamil-
tonian contains just one- and two-particle operators. 

Often the orbitals occupied in the HF reference 
function are called internal orbitals. Those orbitals 
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that substitute the internal orbitals in the CI expan-
sion are called external orbitals, where it is generally 
assumed that the external orbitals are orthogonal to 
the internal orbitals. As internal orbitals, one can use 
HF canonical orbitals, natural orbitals, Brueckner or-
bitals, localized orbitals, etc. External orbitals can be 
the virtual orbitals of a HF calculations or any type 
of improved virtual orbitals. 

The number of CSF terms in the FCI wavefunc-
tion for a system with N electrons, i.e., the size of the 
FCI space d(N,S,M), can be calculated using Weyl's 
formula 1•12•13 

d 25 + 1 ( M + 1 ) ( M + 1 ) 
( N, S' M) = M + 1 Nj2 - S Nj2 + S + 1 

(8) 

where S is the total spin of the N electron system, 
25 + 1 gives its multiplicity, and the symmetry of the 
system is not considered. Hence for the GS of wa-
ter calculated with a VDZ basis set (M = 13 ), the 
dimension of the FCI problem expressed in CSFs is 
429,429 and increases to 30,046,752 when a valence 
triple-zeta basis set (M = 19) is used. The number of 
Slater determinants is larger by a factor of 3-4, but 
symmetry can be exploited to reduce this number. In 
addition, one can carry out a frozen core (only the or-
bitals of the valence shell are used for the generation 
of CSFs) and/or a deleted virtual orbital calculation 
(a certain number of high-lying virtual orbitals are 
excluded from the formation of CSF, i.e., they cannot 
be occupied by electrons) thus reducing the computa-
tional load. 

Because of the large computational costs, a FCI 
calculation can only be carried out for relatively small 
electronic systems. Accordingly, one has used simpler 
CI expansions that truncate the number of excita-
tions at a given level thus leading to truncated CI 
expansions of the CID, CISD, CI with all S, D, and 
T excitations (CISDT), or CI with all S, D, T, and Q 
excitations (CISDTQ) type. If M basis functions (lead-
ing to M orbitals) are used, these methods formally 
scale with O(M6 ) (CID and CISD), O(M8 ) (CISDT), 
and O(M10 ) (CISDTQ) where however for large ra-
tios of MIN the computational costs can be reduced 
to O(M4 ) for CISD and even O(M6 ) for CISDTQ. 

Truncated CI in the form of CISD was once 
the method of choice, which had to do with its vari-
ational character and the upper bound property of 
the CI energy. For almost 50 years, CI was the most 
often used post-SCF method. In the mid-1970s, first 
Moller-Plesset perturbation theory, 14•15 then coupled 
cluster theory, 16•17 and finally density functional the-
ory (DFT) 18 replaced CI theory as a basic tool of 
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a quantum chemist. The reasons for the decreasing 
application of CI methods will be discussed in the 
following. 

THE EARLY DAYS OF CI THEORY 
The first CI calculation was carried out by Hylleraas l9 

in 1928 for the helium atom in its ground state. 19 He 
investigated what one would call today the radial (in-
out) correlation of electrons by exciting one or both 
of the helium electrons into higher lying ns atomic 
orbitals (AOs) thus generating a CI expansion, which 
led to a significantly lower energy than obtained by 
the HF approach. Hylleraas also checked the angular 
correlation and found it to be less important where he 
was misled by the fact that he could not readjust the 
in-out excitations when including the angular excita-
tions. In view of his pioneering work on the helium 
atom, Hylleraas can be called the father of the CI the-
ory (as he may also be called the father of the R12 
methods in view of his second paper on the helium 
ground state, in which he explicitly introduced the 
interelectronic distance r12 into the wavefunction20 ). 

Despite the fact that CI dates back to the very 
beginning of quantum chemistry, the lack of compu-
tational power and the stagnancy in many parts of 
science during World War II delayed developments 
until the 1950s. In 1950, S. F. Boys published a, by 
today's standards, relatively small CI study of the 
ground state of the beryllium atom,21 which led to an 
energy clearly below the HF limit (i.e., the HF energy 
obtained with an infinitely large basis set) and which 
in terms of computational cost, was less costly 
numerical HF limit calculation. Boys concluded in his 
paper that CI is the only feasible method for calcu-
lating, analyzing, and predicting the electronic struc-
ture of atoms and molecules. In the 1950s, Boys and 
his students at Cambridge (among them I. Shavitt) 
pushed forward the algorithms and computational 
techniques to carry out CI calculations. 

In 1952, Taylor and Parr22 published CI calcu-
lations on the helium atom with four configurations 
that accounted for 88% of the correlation energy and 
underlined the importance of angular electron corre-
lation (excitations from 1s to np AOs) thus correcting 
Hylleraas' original CI description of the He atom. 

ADVANTAGES OF NATURAL SPIN 
ORBITALS 
In 1955, Lowdin23 introduced the natural spin or-
bitals (NSOs), which helped to analyze and under-
stand the wavefunction of a CI calculation. NSOs 
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are obtained by diagonalizing the one-electron den-
sity matrix of the CI wavefunction. They are orbitals 
with fractional occupation numbers ni (0 _:::: n1 _:::: 1.0). 
Lowdin could prove that by using NSOs the CI expan-
sion of most rapid convergence was obtained, which 
seemed to be of little value since the NSOs have to 
be determined first by a CI calculation. However, the 
essence of this finding was already in the same year 
demonstrated by Shull and Lowdin.24 These authors 
recalculated the He atom with a three-orbital basis 
set including all S- and D-substituted configurations 
(in total six configurations, which corresponds for the 
two-electron system of He to a FCI calculation), de-
termined the NSOs, and then repeated the calculation 
by using instead of AOs the calculated NSOs. In this 
way, it was shown that the number of configurations 
could be reduced from six to three. 

Bender and Davidson25 introduced in 1966 the 
iterative natural orbital (INO) method, in which the 
advantage of using NSOs for CI calculations was ex-
ploited without having to calculate first the CI density 
matrix. They started from approximate NSOs calcu-
lated for a less-than-complete initial set of configura-
tions. The analysis of the occupation numbers of these 
NSOs made it possible to eliminate configurations 
which turned out to be unimportant. New 
rations were then added, and the procedure repeated 
for an improved CI calculation. When successive iter-
ations (mostly four or five) did not yield any change 
in the CI expansion, the INO-CI result was obtained. 
In this way, these authors could obtain 89% of the 
correlation energy of LiH by using in the end just 45 
configurations, which included only 35 of the origi-
nal 50 configurations in the initial CI guess. The same 
authors26 could describe diatomic hydrides of the first 
row with more than 3000 configurations, recovering 
about 75% of the correlation energy, which had been 
unthinkable before that time. 

An alternative approach for exploiting the ad-
vantages of NSO was suggested in 1966 by Edmin-
ston and Krauss27 in the form of the pseudonatural 
orbital CI (PNO-CI; later also called pair-natural or-
bital CI). Shull and Lowdin24 had shown that for a 
two-electron system such as He the use of NSOs re-
duces the length of the CI expansion from p(p + 1) 
configurations to just p. Edminston and Krauss ex-
ploited this by describing in a many-electron system 
two electrons located in the same region of space and 
experiencing the mean field of all other N - 2 elec-
trons by a set of approximate NSOs obtained in a 
small CI calculation. Then, the actual CI calculation 
was carried out with the PNOs of all electron pairs. 
Edminston and Krauss investigated in this way just 
some three-electron systems (Hei, H 3)27 ; however, 
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their ideas could be easily generalized if one was pre-
pared to accept that the external orbitals expressed in 
terms of PNOs are no longer orthogonal for differ-
ent pairs and therefore an overlap matrix had to be 
calculated. 

It soon turned out that the additional calcula-
tions caused by a PNO-CI are less time consuming 
than was originally believed. In an N-electron sys-
tem, there are N(N- 1)/2 pairs, which can be singlet 
or triplet coupled. Each of these pairs is described by 
a set of PNOs where the PNOs are properly located 
in space. Accordingly, they are superior to HF vir-
tual orbitals as external orbitals in a CI calculation, 
which gives a PNO-CI method a significant advan-
tage. Meyer developed the first variational PNO-CI 
method, which was used for a number of accurate 
CI calculations of the properties of various first row 
hydrides. 28·29 

The PNO-CI approach made an important con-
tribution to the development of more efficient CI 
methods. However, soon it became clear that the use 
of NSOs only pays out for relatively small CI ex-
pansions whereas it is less useful when one considers 
millions of configurations. NSOs are used nowadays 
more indirectly when setting up a basis set for a CI 
calculation. Almlof and Taylor30·31 performed CISD 
calculations on atoms, determined the corresponding 
atomic natural orbitals (ANOs), and used their form 
to set up generally contracted Gaussian basis sets. 
The corresponding ANO basis sets facilitate the cal-
culation of the correlation energy in a CI expansion 
because they improve the convergence to the basis set 
limit. 

BOTTLENECKS OF THE CI 
CALCULATION 
A prerequisite for any CI method is the efficient cal-
culation of the matrix elements HPQ of Eq. ( 6). First 
steps in this direction were already made by Nesbet32 
(a student of Boys) in 1955 when he showed how the 
calculation of the matrix elements could be simpli-
fied by focusing just on the few spin orbitals differing 
in the reference and excited determinant. A big step 
forward in the calculation of a CI expansion and the 
corresponding CI energy was made when the Boys 
group in Cambridge, UK, programmed each part of 
a CI calculation for the EDSAC (Electronic Delay 
Storage Automatic Calculator) electronic computer 
and presented in 1956 results for small molecules 
with more than just two electrons. 33 The program-
ming work of the Boys group triggered the develop-
ment of quantum chemical program packages such 
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as POLYATOM,34 IBMOL,35 MOLE,36 and Pople's 
Gaussian70,37 where the latter stood at the beginning 
of a development that changed the world of quan-
tum chemistry to what it is today: no more tedious 
and extremely lengthy hand computations on tiny 
molecules, but extremely intensive high-performance 
computing including trillions of calculational steps 
on large molecules such as steroids, proteins, or man-
made polymers. 

Important steps in this direction were again 
made by Nesbet as documented in two publications 
during the 1960s. 38·39 In the first, he showed that a 
monstrous O(M8) calculational bottleneck inherent 
to CI and all post-HF calculations could be avoided 
by a much less costly computational procedure. The 
bottleneck results from the enormous number of two-
electron integrals (approximately M4/8) that have to 
be calculated for a HF description of an electronic 
system with M basis functions. The solution of the 
HF-SCF problem requires the calculation of electron 
interaction integrals expressed in terms of basis func-
tions whereas post-HF methods need the very 
same electron interaction integrals expressed in terms 
of spin orbitals. This implies a transformation accord-
ing to Eq. (9): 

(ijlkl) = L L L L.>ii-'CjvCkACiu (!tvi.A.a) (9) 
1-' A u 

which corresponds to an O(M8) calculational load. 
Nesbet38 made a first step to reduce this load by 
carrying out the transformation in two steps, which 
required an intermediate array for storing the semi-
transformed integrals. Later, Nesbet's idea was per-
fected by Bender40 who showed that by carrying 
out the transformation in four steps the calculational 
costs are reduced from O(M8) to O(M5) thus circum-
venting one of the bottlenecks of a CI calculation. 

The other bottleneck of CI calculations resulted 
from the diagonalization of the large matrix H of 
Eq. (5) where often only the lowest eigenvalue is re-
quired to obtain the GS energy of an electronic system. 
Nesbet39 was the first to realize that this simplifies 
the diagonalization procedure considerably, and he 
worked out an algorithm to obtain just that lowest 
eigenvalue and the associated eigenvector rather than 
all eigenvalues of a large CI matrix. Shavitt and co-
workers41 generalized the Nesbet method to also cal-
culate higher lying eigenvalues. In 1975, Davidson42 
published the most general solution to the problem by 
proposing an algorithm that was based on the Lancoz 
tridiagonalization scheme, 43 combined with features 
of previous solutions to the problem. The Davidson 
method (which is still used today) converged much 
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faster, had moderate storage requirements, worked 
for nearly degenerate eigenvalues, and could also be 
applied to higher eigenvalues without calculating all 
lower eigenvalues.42 

DIRECT CI AND GUGA CI 
A revolution in CI was the introduction of the di-
rect CI method by Roos in 1972.44 When using con-
ventional CI methodology, one constructed first each 
matrix element HpQ from one- and two-electron inte-
grals each multiplied by coupling coefficients, which 
reflect the occupation and spin-coupling of the spin 
orbitals in the interacting CSFs l<t>p) and I<I>Q). 

M M 

HpQ = L L 

M M M M 

+ (10) 
k 

The matrix elements were derived by hand and in-
dividually coded into a computer program. In this 
way, an expansion of just 10,000 configurations led 
to a total of 5 x 107 matrix elements, which required 
still millions of HPQ values if just 10% of them was 
nonzero. These had to be stored on external storage 
devices before they were read back to solve the CI 
eigenvalue problem. Roos44 avoided the tedious con-
struction of elements HPQ and their storing by directly 
working with the one- and two-electron integrals 

M M 

CTp = 
Q 

M M M M 

+ LLLLLBijklPQ(ijlkl)cQ (11) 
Q k 

which leads to 

cr p = He p = E p c p (12) 

Accordingly, the major task of the direct CI calcu-
lation (direct because the eigenvalues and eigenvec-
tors are calculated directly from the molecular inte-
grals) is to determine the coupling coefficients 
and BijklPQ. This problem could be facilitated by us-
ing the graphical unitary group approach (GUGA) 
or, alternatively, perturbation theory. 1 

GUGA is based on the unitary group approach 
(UGA), which has its roots in nuclear physics. Already 
in 1950, Gel'fand and Tsetlin45•46 had demonstrated 
how the unitary group U(M) (set of all M-dimensional 
unitary matrices, for which multiplication, unity ele-
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ment, and inverse are defined) can be used to construct 
an orthonormal basis and to evaluate the matrix ele-
ments of the generators of this basis. The importance 
of this discovery was recognized for the nuclear and 
the many-electron problem by Moshinsky47 and dis-
cussed by various authors as for example Matsen and 
Pauncz.48 In 1974, it was Paldus13•49 who achieved 
a considerable simplification of UGA in connection 
with its application to CI (and perturbation theory) 
calculations of many-electron systems. He demon-
strated that the calculation of the Hamiltonian matrix 
elements of a CI expansion could be carried out with 
the help of matrix representatives of the generators 
EPQ of the Gel'fand-Tsetlin formulas. 13•50 In this ap-
proach, individual CSFs were represented by a Paldus 
tableaux. 

The significance of Paldus' work on UGA was 
not directly recognized by the CI community, and 
therefore it needed a more transparent approach to 
make UGA attractive as a powerful tool for gener-
ating the huge number of matrix elements in the CI 
calculation of nontrivial molecules. In 1977, Shavitt51 

developed a compact digital representation of excited 
state configurations in terms of Gel'fand states, which 
he called the distinct row table (DRT). 51- 53 In ad-
dition, Shavitt introduced a graphical complement 
of UGA (GUGA). With the help of GUGA and the 
Shavitt graphs as they are called today, it was pos-
sible to represent the DRT in a pictorial way thus 
yielding a detailed insight into the structure of the CI 
Hamiltonian matrix. 

Brooks and Schaefer54 soon presented the first 
implementation of the GUGA-CI method, which al-
ready included the possibility for multireference CI 
(MR-CI) calculations. When discussing the possibil-
ity of GUGA-CI, the authors pointed out that even 
with a minicomputer CI expansions with 25,000 con-
figurations would soon become accessible. In a sec-
ond paper, 1 year later, Brooks and co-workers55 

replaced the previously preferred integral-driven ap-
proach (i.e., for each molecular integral all productive 
loops of a Shavitt graph are constructed and all upper 
and lower walks (configurations) are determined; the 
next integral on the integral list is processed in the 
same way) by a loop-driven algorithm, in which that 
loop, which can be generated in the easiest way from 
the previous one, is executed first. The generation of 
closely related groups of loops and the corresponding 
blocks of integrals needed for the execution of these 
loops led to significant time savings. 

By connecting Shavitt's GUGA-CI and Roos' di-
rect CI, the coupling coefficients of the later method 
could be effectively evaluated and used for the calcula-
tion of the vector cr p needed for determination of the 
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corresponding eigenvalue and eigenvector. In two im-
portant publications, Siegbahn56·57 showed that the 
coupling coefficients involving external orbitals adopt 
a simple structure so that all coupling coefficients can 
be expressed in terms of equations that involve the 
relatively small internal space.58 

FACILITATING THE SOLUTION OF 
THE CI PROBLEM WITH THE HELP OF 
PERTURBATION THEORY 
The direct CI method can be further improved by 
using perturbation theory. Already at an early stage of 
the CI development, perturbation theory was used for 
a prescreening of individual CSFs and their selection 
according to their weight in the CI expansion or their 
contribution to the energy. This can be done in a 
preliminary calculation by using first-order Rayleigh-
Schrodinger perturbation theory according to1 

c p = --.,----------,---
(<I>oiHI<I>o)- (<t>piHI<t>p) 

(13) 

or for the energy contribution 

(14) 

If one or both parameters are below a preset thresh-
old, the corresponding CSF is eliminated. More so-
phisticated ways of preselecting the CSFs of a CI 
expansion have been described in various review 
articles. 1·4 

Perturbation theory59 can also be used for the 
calculation of the coefficients of the CI expansion (for 
convergence problems in the perturbation series, see 
Ref 15): 

[

p-1 
c(p)- (Eo - E0)-1 """E(p-r)c(p-r) 

p - p 0 L..- p 
r=O 

"""H c(P- 11 + c(P- 11 E0 ] - L,.- PQ Q p p 
Q 

(15) 

where 

(16) 

0 A E0 = (<I>oiHoi<I>o) (17) 

0 A 

Ep = (<I>pll-loi<I>o) (18) 
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and 

(J (Pl - """ IJ c(p-1) p - L,.- LIPQ Q 

Q 
(19) 

In this way, the coefficients of the CI expansion are 
calculated iteratively with the help of Eq. (15), i.e. 
Eq. (15) connects the direct CI method (the u vec-
tor, Eq. (19), appears on the right side of Eq. (15) 
and is expressed via Eq. (11)) with the diagonaliza-
tion methods for large matrices as required by the CI 
eigenvalue problem. 

CALCULATION OF MOLECULAR 
PROPERTIES BY CI 
A quantum chemical method will be considered to 
be ready for routine use if first- and second-order re-
sponse properties can be routinely calculated. This 
is greatly aided by the derivation and programming 
of analytical first and second energy derivatives. In 
1980, two back-to-back papers reported the analyt-
ical derivation of the CI gradient. Brooks and co-
workers55 based their derivation on the loop-driven 
GUGA CI, which provided a calculationally feasi-
ble way for obtaining the two-particle density ma-
trix and expressing the CI-gradient in terms of the 
latter, the one-particle density matrix, the derivatives 
of the molecular integrals, and the Lagrangian ma-
trix needed in connection with the changes in the HF 
orbitals. 

The approach of Krishnan and co-workers60 fo-
cused on the CISD gradient, for which an explicit 
analytical expression in terms of integral derivatives, 
the first-order changes of the HF orbitals, and the CI 
expansion coefficients were derived. The analytical 
calculation of the CI gradient reduced the computa-
tional costs of the previously numerical calculations 
significantly, so that routine calculations of molecu-
lar geometries, dipole moments, and other first order 
response properties became possible at the CISD level 
of theory. 

The Schaefer group was actively involved in the 
development of first and second derivatives for the 
CI and MR -CI energies and summarized their expe-
rience in 1994 in a monograph61 that contains all 
formulas for determining the analytic energy gradient 
and Hessian matrix. These are needed in connection 
with the calculation of the molecular forces (to carry 
out geometry optimizations) or for the calculation of 
molecular vibrational frequencies, which in turn are 
needed for the characterization of stationary points 
of the potential energy surface, the determination 
of the zero-point energy and other thermochemical 
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corrections or for the analysis of vibrational spec-
tra. Another summary on this topic was given by 
Shepard. 62 

THE SIZE-EXTENSIVITY PROBLEM 
The size extensivity of a given quantum chemical 
method guarantees that the energy calculated for an 
electronic system with this method scales linearly with 
the number N of electrons. In thermodynamics, a 
property is called extensive if it is additive for indepen-
dent, noninteracting subsystems whereas an intensive 
property does not depend on the size of the system 
considered (e.g., the temperature is the same for a 
system and all its subsystems). Since the energy of an 
electronic system is an extensive property, quantum 
chemical methods must describe it in this way. 

The term size consistency63•64 is used in the case 
of chemical reactions, for example, when the sub-
systems are separated to infinitely large distance in 
the course of a bond-breaking reaction (dissociation) 
leading to two fragments of a molecule. In so far, 
the property of size consistency can be considered as 
a special case of size extensivity. However, size con-
sistency is often also considered to imply the correct 
description of the dissociation products. On this ba-
sis, restricted HF (RHF) is size extensive, however not 
size consistent because it fails to describe homolytic 
dissociation (yielding two radicals for single bond dis-
sociation) correctly whereas unrestricted HF (UHF) is 
both size extensive and size consistent. 

It was Pople63 who pointed out that CID and 
CISD are not size consistent (and also not size exten-
sive). For a reaction AB --+ A + B, described with 
the CID method, the products are calculated sepa-
rately so that the sum of product energies effectively 
contains disconnected Q excitations and is much bet-
ter described than the reactant AB, for which just 
D excitations are used. In this way, an endothermic 
(exothermic) reaction energy is underestimated (over-
estimated). The property of size consistency can be 
checked in the following way: 

If two noninteracting systems A and B are cal-
culated as a supersystem {A · · · B, 10} (e.g., with a 
distance of 10 A between A and B), then the sum of 
the energies E(A) + E(B) must fulfill the following 
condition: 

E(A- · · B, 10) = E(A) + E(B) (20) 

within numerical accuracy. This condition is fulfilled 
by any truncated coupled cluster (CC) method; how-
ever, truncated CI methods do not fulfill the con-
dition due to the lack of size consistency although 
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size-consistency errors become rapidly smaller with 
increasing length of the CI expansion. Only FCI ful-
fills the requirements of size extensivity and size con-
sistency. 

The deficiencies of truncated CI have been 
traced back to product terms in the CI projection 
equations where both parts of a product scale with 
N and accordingly the product with N2 . These terms 
correspond to unlinked diagrams in the diagrammatic 
representation of the theory. The appearance of un-
linked diagrams is in itself not problematic as long 
as the unlinked diagrams are canceled out by other 
unlinked diagrams in the projection equations. This 
is the case for truncated CC methods, which fulfill the 
linked diagram theorem, 65 whereas the truncated CI 
methods fail to do so. 

There have been numerous methods to rem-
edy the size-extensivity problem of truncated CI. Best 
known is the Langhoff-Davidson correction, 66 that is 
based on the energy of a CID calculation. 

t:,E(LD) = [E(CJD)- E(HF)](1- c6) 

= t:,E(CID, corr)(1- c6) (21) 

where t:,E(LD) gives the size-extensivity correction, 
E(CID) - E(HF) is the CID correlation energy 
t:,E( CID, carr), and co is the coefficient of the HF 
reference in the CI expansion. It is common to ap-
ply the same formula also for CISD calculations or to 
use improvements of it in form of the renormalized 
Davidson (RD) correction67 

1- c2 
t:,E(RD) = t:,E(CID, corr)--2 -0 (22) 

co 

the Davidson-Silver correction,67 the Pople 
correction, 64 or a more elaborate form by Duch 
and Diercksen. 68 Using fourth-order many-body 
perturbation theory (MBPT), Barlett and Shavitt69 

showed that the Langhoff-Davidson correction66 

accounts for the correlation effects of unlinked 
quadruple excitations, which is a major part of the 
size-extensivity error of CID and CISD. 

Another way of correcting for the size-
consistency error of truncated CI has been worked out 
by Ahlrichs and co-workers70 who related the CISD 
approach to the coupled electron pair approximation 
CEPA -1 and developed the coupled pair functional 
(CPF) approach. CPF is based on a correct descrip-
tion of separated electron pairs and uses invariance 
requirements with regard to unitary transformations 
of equivalent orbitals of identical subsystems. It in-
troduces products of S and/or D excited terms, which 
cancel out some of the higher unlinked excitation 
terms of a truncated CI expansion. 
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Size-extensivity and size-consistency corrections 
can be useful. They are best documented forD excited 
configurations, whereas there is a lack of correction 
possibilities for S and T excited configurations (note 
that when correcting CISD energies, one assumes that 
the S excitations make only a minor contribution 
to size-extensivity error, which is not always justi-
fied). Also, there is no generally applicable way of 
correcting size-extensivity errors for other properties 
than the energy. Size-extensivity problems of the trun-
cated CI can be partly cured when choosing a MR-CI 
method. 

Duch and Diercksen68 have pointed out that 
quantum mechanics is a holistic theory and accord-
ingly does not provide a well-defined way of describ-
ing subsystems. In view of this fact, they consider 
size extensivity as not the most important property 
of a quantum chemical method. If the lack of size 
consistency is approximately corrected, the method is 
considered still valuable as long as it can describe the 
dissociation channels of a chemical system correctly. 

MODERN USE OF CI METHODS 
CISD calculations improved by the Langhoff-
Davidson or other similar, approximate corrections 
have been used in the 1970s and 1980s, however 
were soon replaced by the more economic (nonvari-
ational) MBPT and more accurate CC methods. Yet, 
this did not stop the development of new CI meth-
ods. Harrison and Handy71 found on the basis of FCI 
calculations that CISD recovers 95-96% of the total 
correlation energy determined with a specific basis set. 
The addition ofT excitations ( CISDT) approximately 
accounts for an additional 1% of the total correla-
tion energy, whereas the addition of all quadruples 
(CISDTQ) recovers more than 99%. 

Various attempts were made to include T and 
Q excitations in an approximate or indirect way. 72 

Sherill and Schaefer73 were the first to solve the 
O(M10 ) problem of CISDTQ in an efficient way by 
choosing the natural spin orbitals of a CISD calcula-
tion and using them to identify those classes ofT- and 
Q-substituted configurations, which deemed most im-
portant in view of the natural orbital populations. 
Their results for a cc-p VTZ basis set description of 
water show impressively how the number of Slater 
determinants increases from CISD to CISDT and 
CISDTQ: 15,939; 938,679; 28,085,271.73 In 2006, 
Bunge and Carbo-Dorca74 carried out a CISDTQ 
calculation of the ground state of the Ne atom us-
ing a 12s12plld10f10g9h8i7k615m4n3o3q3r (!) ba-
sis set and applying a selected divide-and-conquer 
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algorithm. The dimension of the CSF space was 
1.4 x 109 and involved more than a trillion dis-
tinct Slater determinants. Hence, teraflops comput-
ing makes these computation possible and provides 
a possibility for these highly correlated configuration 
interaction calculations. 75 

CI methods have retained their importance for 
quantum chemistry in form of FCI and MR-CI ap-
proaches. FCI is an approach that guarantees that 
all errors are removed from the N-electron space so 
that the accuracy of the one-electron basis set can 
be assessed. This was first emphasized already in 
1981 by Saxe et al?6 who solved the first 1 million-
dimensional FCI eigenvalue problem. In the 1980s, 
new methods for solving the FCI problem were de-
veloped where especially the work by Knowles and 
Handy,77 Siegbahn,78 and Olsen and co-workers79 
has to be mentioned. Bauschlicher and Taylor80 car-
ried out FCI benchmark calculations having matrix 
dimensions up to 28 millions. Knowles and Handy81 
reported FCI calculations with 210 million Slater 
determinants. An impressive breakthrough was ac-
complished when Olsen et al. 82 presented the FCI 
description of the Mg atom, which for 10 active 
electrons and 30 active orbitals required the solu-
tion of a 1 billion-dimensional eigenvalue problem 
(1,016,018,176 Slater determinants). 

In the past decade, FCI benchmark calculations 
with more than 10 billion determinants have been 
carried out, for example, for the N2 molecule83 , the 
CN anion,84 or different states of the diatomics BN 
and AlN.85 One of the largest FCI calculation done 
so far seems to be the investigation of c2 based on 
65 billion Slater determinants. 86 

Most of the FCI methods developed in the past 
three decades are based on the use of Slater deter-
minants rather than CSFs because the coupling co-
efficients for Slater determinants can only be 0 or 
±1. There is however still the need for using CFSs 
because of the troubling input-output bottleneck of 
the FCI eigenvalue problem. Tens to hundreds of ter-
abytes of disk space are needed to store the expen-
sive parts for the iterative calculation of the direct CI 
vector cr. This number can be significantly reduced 
when using CSFs because the FCI matrix contains 
in this case a lower number of nonzero elements. 
Further progress can be expected by exploiting the 
sparse nature of the FCI expansion vector (sparse 
FCI) with the aim of avoiding extensive disk read-
ing/writing operations. The basic idea of these ap-
proaches is to avoid the treatment of unimportant de-
terminants in the expansion vector c when performing 
the linear transformation cr =He (see, e.g., Rolik and 
co-workers87). 
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The huge FCI calculations done in recent years 
are of course a result of the adaptation of the FCI 
algorithm to parallel computer architectures and the 
extensive use of powerful supercomputers. Further 
progress can be expected with the advent of petaflops 
computing. 

COMPARISON OF THE 
CONFIGURATION INTERACTION 
AND COUPLED CLUSTER METHODS 
CI and CC theory are closely related to each other 
in so far as the FCI and full-coupled cluster (FCC) 
approach both lead to the exact wavefunction and 
the exact energy for an N-electron system described 
with a given basis set of finite size (i.e., the term exact 
refers to the one-particle basis used): 

l\11) = CI<I>o) = exp(T)I<I>o) (23) 

where C and Tare the CI and CC excitation opera-
tors, respectively, defined in the following way: 

n 

C= 1+ LCP (24) 
p 

(25) 

with 

(26) 
i,a 

'ti<I>o) = (27) 

ti<I>o) = (28) 

All 't contributions are connected and lead to the rep-
resentation of n-electron correlation effects, i.e., the 
correlation of n electrons at the same time. Already 
for three electrons, there is a small probability of a 
simultaneous correlated movement and accordingly 
the connected three-electron correlation energies are 
small. However in view of the fact that there is a large 
number of such connected three-electron correlations, 
the total of all T3 correlation contributions can rep-
resent an important part of the molecular correla-
tion energy, especially if molecules with electron-rich 
or strongly electronegative atoms, multiple bonds, or 
electron delocalization are investigated. There is an 
even lower probability that connected four-electron 
correlations take place. Their total contribution to 
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the electron correlation energy is normally less than 
1%. 

In view of the exponential form of the CC wave 
function, there are also a large number of nonlinear 
cluster terms16•17•88 

l\llcc) = exp(T)I<I>o) 

= (1 + T + T2 j2 + T3 j3! + .. ·)I<I>o) (29) 

which lead to disconnected, but still linked contribu-
tions to the exact wavefunction involving products of 
the cluster operators such as T1 t, T1 T2, 1212. Con-
sidering that S excitations lead to an improvement of 
orbitals under the impact of dynamic electron cor-
relation, these contributions correspond to indepen-
dent orbital rotations, an orbital rotation taking place 
at the same time with pair correlation, independent 
pair-pair correlations, etc. 

The CI excitation operators Cp contain effects of 
the connected cluster operator Tp plus all nontrivial 
partitions of Tp in products of disconnected cluster 
operators: 

A A 1A2 AA 1A2A 1A4 
C4 = 14 + 2 T2 + Tt T3 + 2 71 T2 + 4 ! T1 

(30) 

(31) 

(32) 

(33) 

Hence, a pattern of the different electron correlation 
effects emerges out of the cluster decomposition of the 
electronic wavefunction. It is easy to foresee which 
correlation effects are more important than others. 
For example, pair-pair correlation effects represented 
by 1/2 Tf are more important than the connected 
four-electron correlation effects associated with T4. 

The advantages and disadvantages of CI and 
CC theory become obvious when truncating the CI or 
CC expansion. In view of the discussion given above, 
these can be summarized as follows: 

1. Truncated CI is variational and yields an up-
per bound to the true energy. Truncated CC is 
not variational, which could be considered as 
a disadvantage. However, practice has shown 
that the variational property of a wavefunc-
tion is less important than the size extensivity 
of calculated energies and other properties. 

Volume 3, September/October 2013 © 2013 John Wiley & Sons, Ltd. 491 



Advanced Review 

2. Truncated CI describes dynamic (short-range) 
electron correlation and for truncation at the 
T and Q level still a significant amount of non-
dynamic (long-range) electron correlation, for 
example, caused by a (quasi)degeneracy of 
electronic states. Truncated CC methods ac-
count for dynamic and also some nondynamic 
electron correlation effects, however, fail in 
the case of degeneracy of the reference I <Po). 
Truncated CC has the advantage of incorpo-
rating important disconnected correlation ef-
fects at a much lower level than CI as will be 
shown in the following. 

3. Truncated CI can be extended to a MR ver-
sion without serious conceptual problems. 
This however is much more difficult in the 
case of CC theory although a huge amount of 
work has been done in this direction. 17•89 

4. Truncated CI suffers form the fact that it is 
no longer size extensive, whereas truncated 
CC is. For example, the CCD method would 
lead to the following wavefunction: 

l\llccn) = exp('t)I<I>o) 

(34) 

which indicates that for both reactant and 
products the disconnected pair-pair (de-
scribed by Tf ), pair-pair-pair correlation ef-
fects (described by T{), etc. are all included 
thus fulfilling the condition given by Eq. (20) 
in the way that the same correlation effects 
are assessed for reactant and products. This 
property of truncated CC is most important 
for the studies of molecules and chemical re-
actions and makes therefore CC theory su-
perior to CI theory. CISD energies, which 
are corrected with the help of the Langhoff-
Davidson correction66 or other correction 
schemes, are denoted as CISD+Q energies, 
E(CISD + Q). 

t:,E(CISD+ Q) = E(CISD) + (1- c6)t:,E(CJSD) 

(35) 

Since these corrections do not leads to pre-
cise size extensivity, Pople and co-workers90 

developed a more systematic improvement of 
truncated CI methods, which will be discussed 
in the following. 
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THE QUADRATIC CONFIGURATION 
INTERACTION APPROACH: 
MOTIVATION AND CRITICISM 
J. Pople was not only a brilliant quantum chemist, 
but also he was perfectly capable of selling new meth-
ods of the Pople-group to the community of quantum 
chemists in an effective way. He had two successful 
approaches in this connection. The first was via an ef-
ficient advertisement strategy at international confer-
ences and the second by making new methods readily 
available via the Gaussian program package.37•91 

Pople and co-workers90 derived QCI methods 
from the corresponding CI methods with the objec-
tive of fulfilling two conditions: (i) size extensivity 
and (ii) correctness for two electrons where CISD 
represents the FCI solution. Therefore, the first QCI 
method started from CISD and included all S and 
D excitations (QCISD), was formulated for a UHF 
reference (to guarantee size consistency for dissoci-
ation reactions), and was described as the first size-
extensive (size-consistent) CI approach, which per-
formed in most cases as well as CCSD, however was 
faster and easier to apply (especially because it became 
soon available via the Gaussian program package). 90 

In the first paper from 1987, the relation of QCISD 
to CCSD theory was discussed and its corrections for 
T substitutions via a perturbative approach was out-
lined, thus leading to QCISD(T), the QCI analogue of 
CCSD(T). 92 Both QCI procedures were tested by ap-
plication to some small electronic systems for which 
FCI results were available. 

In the following years, Pople and/or his co-
workers rapidly published several QCI applications 
for calculationally challenging electronic systems such 
as ozone,93 the excitation and ionization energies of 
transition metal atoms,94•95 fluorine peroxide,96 and 
the bond dissociation energies (BDEs) of a variety of 
small molecules.97 These studies illustrated the use-
fulness of the QCI approach. Especially, with the 
study of BDEs a long-term project of the Pople group 
was started, which closely connected QCI and the Gn 
(Gaussian) theory. The Gn studies led to a series of 
subsequent publications on thermochemical data, in 
which QCI played an essential role and thus guaran-
teed the visibility and use of QCI. For three genera-
tions of Gn methods, QCISD(T) was the basic tool for 
determining high-order correlation effects. Finally, in 
2007, CCSD(T) 92 replaced QCISD(T) as a method of 
choice for high-order correlation corrections in G4. 98 

Additional proof for the usefulness of QCI was 
provided by the Cremer group. Gauss and Cremer 
developed in the years 1988 and 1989 the analyti-
cal energy gradients of QCISD99 and QCISD(T) 100•101 
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where these developments were based on their previ-
ous work on the gradients for third- and fourth-order 
Moller-Plesset (MP3=MBPT3 and MP4=MBPT4) 
perturbation theory. 102·103 (Note that we use in this 
review the terms MP and MBPT synonymously.) 
Cremer and co-workers demonstrated the useful-
ness of QCI when calculating QCI response prop-
erties (electron density distributions, atomic charges, 
dipole moments, quadrupole moments) for 20 small 
molecules104 or the electric field gradients and nu-
clear quadrupole coupling constants of isonitriles. 105 
These authors emphasized that QCI could be used for 
getting suitable reference values when testing the ac-
curacy and reliability of MPn results for low values 
of order n. 

At various conferences in the late 1980s, criti-
cism was raised with regard to the usefulness of the 
QCI approach of Pople and co-workers. These con-
cerns were first summarized in a 1989 publication of 
Paldus and co-workers106 and triggered a scientific 
dispute in form of several back-and-forth Comments 
and Replies.107- 109 Paldus and co-workers pointed 
out that QCISD, when analyzing its cluster contri-
butions in terms of low-order perturbation theory, is 
very close to CPMET( C) (coupled pair many-electron-
theory) 110 or CCSD-1 111 and therefore should be con-
sidered as a CC method. Pople and co-workers 107 
confirmed this but replied that the second of their 
two conditions (correctness for a two-electron sys-
tem) was not fulfilled by either CPMET(C) or CCSD-
1 and that the latter methods differed from QCISD 
by an additional 1/2 term. 

A more serious concern raised by Paldus and 
co-workers106 was the fact that QCISDT, when con-
structed in the same way as QCISD, was no longer 
size extensive (size consistent). Again, Pople and co-
workers107 agreed with regard to this point, how-
ever pointing out that they never had claimed that 
it would be. Their development90 focused on QCISD 
and QCISD(T), and both methods were size extensive. 

There was additional controversy with regard to 
the reliability of QCISD as compared to CCSD and 
the use of the term quadratic CI for a method that 
was essentially a CC method. Pople and co-workers 
argued that, because of the omission of certain cluster 
terms in the CCSD equations, QCISD was not neces-
sarily the less reliable method. They showed also that 
the QCISD equations could be derived from the FCI 
equations thus stressing that the name of their method 
was a reasonable descriptive of the derivation of QCI 
from FCI.107 

Another round of Replies108•109 did not lead to 
any substantial change in the arguments. It is note-
worthy in this connection that Paldus and co-workers 
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thanked not less than 19 well-known colleagues for 
valuable comments and suggestions for their Reply. 
This indicated that more criticisms on QCI were 
about to be published. 

Scuseria and Schaefer112 published in 1989 an 
article, in which they demonstrated that the compu-
tational costs for both CCSD and QCISD are pro-
portional to O(M6) and that the terms to be deleted 
in CCSD to obtain QCISD scale as O(M5). If suit-
able intermediate arrays are formulated, the algebraic 
equations of both approaches lead to similar calcula-
tionalloads. In a 1989 feature article on CC theory, 
Bartlett88 mentioned QCI shortly and stated that QCI 
is an approximate CC method and that the choice 
of the term quadratic CI is unfortunate because QCI 
contrary to CI is not based on an eigenvalue equation, 
nor is it variational, nor does it include all quadratic 
terms at the QCISD level. In an article from 1995, 
Bartlett and co-workers 113 reported a serious fail-
ure of QCISD and QCISD(T) as compared to CCSD 
and CCSD(T), respectively, when calculating spectro-
scopic and electric properties of BeO in its GS. The 
authors traced back the failure of QCI to the S exci-
tation cluster operator Ii, as several terms involving 
't are neglected in the QCISD approach contrary to 
CCSD. 

He and Cremer114·115 compared CC and QCI 
methods in terms of sixth, seventh, eighth, and 
infinite-order MP perturbation theory. They deter-
mined how many of the S, D, T, Q, P (pentuple), 
H (hextuple) excitations are accounted for by a given 
QCI or CC method. Figures 1-3 summarize their re-
sults in terms of sixth order MP (MP6) theory.11 6·117 
The analysis revealed that CCSD and QCISD are 
equivalent in the truncated space of S, D, Q, H, · · · X 
excitations, where X is any even excitation generated 
by the cluster operator Since these excitations 
describe orbital relaxation and electron pair correla-
tion effects, which are the most important correla-
tion effects for relatively small closed-shell molecules 
with just single bonds, it became understandable that 
QCISD and CCSD perform equally well in these 
cases. 

However for larger molecules and for molecules 
with distinct T effects, CCSD outperforms QCISD 
because of the following three reasons: (i) QCISD 
rapidly falls back behind CCSD at higher values of 
n with regard to the total number of energy contri-
butions covered (Figures 1 and 2). (ii) Part of the T, 
P (pentuple), ... Y contributions (Y is any odd order 
excitation) generated by the cluster operators T1 72 are 
delayed at the QCI level by one order of perturbation 
theory since they have to be introduced by S excita-
tion coupling. (iii) Another part of the T, P, ... Y 
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FIGURE 1 I Number of energy contributions pnl(ABC . . ·) 
accounted for by QCI, CC, and MPn (n = 4, 5, 6, 7, 8, ... ) methods, 
where A B, C. ... denote 5, D, T. Q, ... contributions, respectively. 
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FIGURE 2 I Total number of MPn (n = 6) energy contributions 
pnl(ABQ (Total: black) and number of MPn (n = 6) energy 
contributions pnl(ABQ containing T effects (T: blue) as accounted for 
by QCI and CC methods. Some of these terms are only contained 
partly: (Total) in red; (T) in pink. In each case, the number of terms is 
given at the top of the bar (all terms) or the base of the bar (partly 
contained terms). Note that MP6 is the reference defining the total 
number of pnl(ABQ contributions (36) as well as the total number ofT 
contributions (25}. Reproduced with permission from Ref. 118 
(Copyright 1994, Springer) and Ref. 119 (Copyright 1997, Springer). 
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FIGURE 3 I Number of MPn (n = 6) energy contributions of the 
TTA. TAT, and TTT (A= S, D, Q, P) coupling type as accounted for by 
QCI and CC methods. The first entry (black) gives the total number, 
whereas the second entry (red) gives the number of terms only partly 
contained. Note that MP6 is the reference defining the total number of 
TT coupling contributions (11 ). 

contributions accounted for by CCSD is not con-
tained in QCISD at all.114,115 

A noniterative improvement of QCISD by T 
excitations is more important for QCISD than for 
CCSD. However, QCISD(T) exaggerates T effects 
since it does not contain any of the TT coupling terms 
(see Figure 3 ), which normally reduce the influence 
of connected three-electron correlation effects. As for 
the total number of energy contributions, QCISD(T) 
falls back behind CCSD at higher orders of perturba-
tion theory (Figure 1). CCSD(T) is clearly the better 
method because it contains, at least partly, two of the 
TT coupling effects at sixth order. QCISD(T) easily 
tends to an exaggeration ofT effects. 

The difference between QCI and CC is consid-
erably decreased at the CCSD(TQ) and QCISD(TQ) 
level of theory if one considers in particular MP6 
correlation effects (Figure 2). However, if one con-
siders the total number of energy contributions cov-
ered for larger n, then QCISD(TQ) is even inferior to 
CCSD(T) and CCSD (Figure 1). He and Cremer115 
concluded that the superior performance of the CC 
methods should become obvious for any molecular 
system for which T effects play an important role. 

ENFORCING SIZE EXTENSIVITY FOR 
THE QUADRATIC CONFIGURATION 
INTERACTION APPROACH 
Pople never derived a QCISDT method, as a mat-
ter of fact he emphasized that it was never his 
objective to generalize QCISD to higher excitation 
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levels. 107 However in 1990, he and his group did 
publish a QCISD(TQ) method in connection with his 
work on fifth-order M0ller-Plesset perturbation the-
ory (MP5). 120 

In view of the controversial discussion of the 
question whether the QCI approach could in gen-
eral lead to size-extensive CI methods, the Cremer 
group118,119,121-123 analyzed truncated CI methods 
and, under consideration of the procedure Pople and 
co-workers had used for QCISD,90 converted them 
into size-extensive methods. They demonstrated that 
QCI is not an independent method because QCID 
and QCISDTQ are identical with the correspond-
ing CC methods CCD and CCSDTQ, respectively, 
whereas size-extensive QCISDT is neither identical 
with CCSDT nor with a QCISDT method derived ac-
cording to Pople's concept of converting CI into size-
extensive QCI.118 Their derivation of size-extensive 
CI (ECI) methods provides an insight into the ba-
sic equations of the various methods and is shortly 
sketched here. 

In the following, CI and CC excitation operators 
are not distinguished by using different symbols (e.g., 
C and T). Instead, a distinction is made by denoting 
CI amplitudes by cf/k.::· and CC (QCI, ECI) amplitudes 
by af/k.::·. The operators b+ and b are creation and 
annihilation operators. 

The CID projection equations can be written as 
- A CJD (<I>oiHT21<I>o) = Ecorr (36) 

ab - (1 ) abECID (<I>ij I H + L2 <Po = Cij corr ' (37) 

in which H denotes the normal-order Hamiltonian 

H = H- E(HF) = fk + V (38) 

= + 
rs rstu 

(39) 

ECID corresponds to the CID correlation energy corr 

EciD = E(CID)- E(HF). (40) corr 

In Eq (37), cab ECID corresponds to a discon-• z 1 corr 
nected term that leads to unlinked diagrams. Hence, 
the CID method is not size extensive. The simplest 
matrix element that contains the same unlinked dia-
grams is (<t>fl1HTi/21<I>o). By inserting this term on 
the left side of Eq. (37), size-extensive CID (denoted 
as ECID) is obtained: 

(41) 

Configuration interaction and quadratic configuration interaction 

(<Pab1H(1 + T + = aabEECID (42) 11 2 l 2 0 11 corr 

Equations (41) and (42) are nothing else than the 
CCD equations. Hence, converting CID into size-
extensive QCID by adding a quadratic cluster term 
directly leads to CCD, which was first noted by Pople 
and co-workers. 90 An independent QCID method 
does not exist. 

The CISD projection equations are given by Eqs. 
(43)-(45): 

- A CISD (<I>oiH721<I>o) = Ecorr (43) 

- A A aECISD (44) (<I>fiH(Tt + 12)1<I>o) = Ci corr 

(<I>ab1H(1 + 1; + T)I<I>) = cabECISD (45) i j 1 2 0 11 corr 

The unlinked diagrams result now from cf and 
cabECISD in Eqs. (44) and (45). They can be can-z 1 corr 

celed by adding ( <I>f I HT1 12 I <Po) D (subscript D de-
notes the disconnected part) on the left of Eq. ( 44) and 
(<t>fl1HTi/2)1<I>o) on the left of Eq. (45). In this way, 
the ECISD (size-extensive CISD) projection equations 
are obtained. 

- A ECISD (<I>oiH721<I>o) = Ecorr (46) 

- A A A A a ECI SD (<I>fiH(Tt + 12 + Tt12)1<I>o) = ai Ecorr (47) 

(<t>ff1H(1 + t1 + t <Po) 

= aabEECISD 
z 1 carr (48) 

ECISD is identical to QCISD; however contrary to 
QCID, QCISD is not identical to the corresponding 
CC method, CCSD. 118 

The CISDT projection equations are given by 
Eqs. (49)-(52) 

- A CISDT (<I>oiHT2I<I>o) = Ecorr (49) 

- A A A a CISDT 
(<I>fiH(Ii + T2 + 73)1<I>o) = Ci Ecorr (50) 

b - A A A a b CIS DT (<I>fj IH(1 + 7i + T2 + 73)1<I>o) = Cij Ecorr (51) 

b - A A A abc CISDT (52) (<I>fjtiH(Tt + 12 + T3)I<I>o) = Cijk Ecorr · 

From Eqs. (50) and (51), the ECISDT projection equa-
tions for S and D excitations are obtained in the 
same way as the corresponding ECISD equations. 
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The T projection equation contains two disconnected 
terms: (<t>fftl Hii I <Po) and cf/'k The latter term 
can be cancelled by applying T2 T3 on the left side 
of Eq. (52). However by canceling cf/'k one 
gets the new disconnected term ( <t>fft I 't ( HT3 )c I <I> o) = 

s b A - A Ls ( <I>fjk 1121<I>s) (<I>s I ( HT3)cl <Po), where the subscript c 

denotes a restriction to connected terms. This requires 
the inclusion of further terms for which the single ex-
citations multiplied by T2 and the double excitations 
multiplied by 1i are used thus leading to the extra A A A A2 A2 A A 
terms Tt T2, 1/2 Tt T2 , 1/2 T1, and Tt T3. In this way, 
all disconnected terms are cancelled in Eq. (52) and 
size extensivity is enforced.118 This leads to 

(<I> IHT I<I> ) = EECISDT 0 2 0 carr (53) 

(<t>f1H(T1 + t2 + t + t1 T2li<I>o) 
= aa EECISDT 

z corr (54) 

b - A A A 1 A2 
(<t>fi IH(1 + T1 + 12 + T3 + 212 )I<I>o) 

= aabEECISDT 
z J carr (55) 

b - A A A 1 A2 
(<I>fitiH(Tt + T2 + T3 + 2 T1 

A A A A 1 A A2 A A 1 A2 
+T1T2 + T1T3 + 2TtT2 + 12T3 + 212 )I<I>o) 

= (aabc + (<I>abclj; j: ))EECISDT 
11k 11k 1 2 carr (56) 

or, alternatively, to 

(<I>fiH(Ii + T2 + t + T1 'tli<I>o)c = 0 (57) 

b -A A AA AA AA 
(<I>fit1H(72 + T3 + Tt 12 + T1 T3 + T2 T3 

1A2 1AA2 
+212 +2T172li<I>o)c=0 (59) 

i.e., when constraining to connected terms. 
Clearly, ECISDT (size-extensive CISDT) is not 

identical to the QCISDT method constructed in the 
same way as QCISD. 90 Since ECISDT is also not iden-
tical to CCSDT, it is intermediate between QCISDT 
and CCSDT, but closer to the latter than the former 
method. ECISDT and CCSDT are both size-extensive 
whereas QCISDT is not. 118 

wires.wiley.com/wcms 

The CISDTQ projection equations are given by 
Eqs. (60) to (64): 

(<I> IHT I<I> ) = ECISDTQ 0 2 0 carr (60) 

- A A A CISDTQ (<I>fiH(Tt + T2 + T3)1<I>o) = cf Ecarr (61) 

ab - A A A A _ ab CI SDTQ 
(<I>ii IH(1 + Tt + T2 + T3 + nJI<I>o)- cii Ecarr 

(62) 

abc - A A A A _ abc CI SDTQ 
(<I>iik IH(Tt + T2 + T3 + nJI<I>o)- ciik Ecarr 

(63) 

(<I>abcdlfl(T + T + j; )I<I> ) = cabcdECISDTQ 11kl 2 3 4 0 11kl carr · 

(64) 

Extending these equations by terms, which cancel the 
unlinked diagrams, the ECISDTQ projection equa-
tions are obtained, which turn out to be identical with 
the CCSDTQ equations: 

ECCSDTQ =(<I> IH(T + y;2)1<I> ) carr 0 2 2 1 0 (65) 

= aa ECCSDTQ 
z corr (66) 

= (aab + (<l>abl t2I<P ))ECCSDTQ 
11 11 2 1 0 carr (67) 

b - A A A A 1 A2 A A A A 
(<I>fit1H(T1 + 12 + T3 + n + 2 'ft + T1 T2 + T1 T3 

AA 1A2 AA 1A3 1A2A 
+ T1 n + 2 12 + 12 T3 + 3! 'ft + 2 T1 12 

1Ar 1Ar 1AA 2 AAA 1A 3 + 2 T1 T3 + 2 'ft n + 2 TtT2 + TtT2T3 + 3! T2 

1A4 1A3A 1A3A 1A2A2 
+ 4! T1 + 3! T1 T2 + 3! T1 T3 + 4 T1 12 

1 A5 1 A6 
+ 5! T1 + 6! T1 )I<I>o) 

= (aabc + (<I>abclj; j: + _.!._ t3I<P ))ECCSDTQ (68) 
11 k 11 k 1 2 3! 1 0 carr 
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bd-A A A 1A2 AA AA 
(ctJfitJ IH(T2 + T3 + n + 2 'ft + T1 n + T1 T3 

AA 1A2 AA AA 1A2 
+7in+ 2r2 

1A3 1Ar 1Ar 1Ar 1AA2 +3 ! 'ft + 2 r1 n + 2 r1 T3 + 2 r1 n + 2 T1T2 

AAA 1A3 11:4 1A3A 1A3A 
+ 7i n T3 + 3 ! 72 + 4 ! 1 + 3 ! T1 n + 3 ! 'ft T3 

1A2A2 1A5 1A4A 1A6 +- 'ft 72 +-'ft +-'ft n +-'ft )lctJo) 4 5! 4! 6! 
abed abed 1 A 2 A A 1 A 2 A 

= (aiikl + (¢iikl 1272 + T1T3 + 2T1 n 

+_.!._ 1;41¢ ))ECCSDTQ 4! 1 0 eorr (69) 

This derivation underlines two important facts: 

• A size-extensive truncated CI (ECI) method, 
which contains P-fold substitutions (P = S, 
D, T, Q, ... ) cannot be achieved by just con-
sidering quadratic correction terms in the two 
highest projection equations. 

• Size-extensive ECI methods do not form a 
hierarchy of independent CC methods, and, 
therefore, the concept of improving truncated 
CI to size-extensive CI is not a generally use-
ful concept. The same holds for the quadratic 
CI approach in the sense as it was originally 
derived. 90 

Cremer and He118 used the ECI projection equa-
tions to develop a hierarchy of size-extensive CI meth-
ods for a reference wavefunction constructed from 
HF orbitals. Since these methods are also based on 
the addition of quadratic terms to the CI projection 
equations where however the addition is done in such 
a way that all disconnected terms are canceled and 
just connected terms remain in the new QCI pro-
jection equations, the term QCic (c: connected) was 
coined. 118 Formally, the QCic equations can be de-
rived directly from the corresponding CI equations. 
For this purpose, the projection equations of a trun-
cated CI method that includes up top-fold excitations 
are written as follows: 

(ctJpiH(1 + Ii + t + · · · + YnllctJo) 

= CpE;;_r (p = 1, 2, ... , n) 

or, alternatively, as 
- A A A CI 

(¢s1H(7i + T2 + T3)1¢o) = CsEeorr 

(70) 

(71) 

(72) 

Configuration interaction and quadratic configuration interaction 

(73) 

min[p+2,n] 
- ""' A CI (clJpiH( L,.- 7;)1¢o) = CpEeorr (n?:,p?:,3) 

i=p-2 

(74) 

where s, d, and p are S, D, and general excitation 
indices. 

As shown above, it suffices to add Ii 72 and 
Ti/2 to the Sand D projection Eqs. (72) and (73), 
respectively, to eliminate all disconnected terms from 
these equations. For any excitation index p higher 
than d, just the disconnected terms (¢pi HTp-2lclJo) 
and appear in the corresponding projection 
equations. Introduction of - HTp-2 and parts of the 
term H't Tp, namely (H't Tp)c and Tp(H't)c, on 
the left side of Eq. (74) leads to a cancellation of all 
disconnected terms and to the QCic equations in their 
general form118 : 

QCI - A 

Eeorr e = (ctJoiHnlctJo) (75) 

_ A A A A 1 - A2 
(¢d1H(1 + T1 + n + T3 + nJ + 2(HT2 )clctJo) = 0 

(77) 

min[p+2,n] 

(ctJpiH( L Ii) + (H'tTp)clctJo) 
i=p-1 

= 0 (n ?:, p ?:, 3) (78) 

These projection equations lead to a hierarchy of 
QCic methods that are all size extensive. 

On the basis of this approach, Cremer and He121 

developed size-extensive QCISDTc: 
QCISDT- - A 

Ecorr - (¢o1HT21¢o) (79) 

(80) 

b - A A A 1 A2 
(ctJfi IH(1 + 7i + T2 + T3 + 2 T2 )lctJo)c = 0 (81) 

(82) 
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The authors demonstrated that QCISDTc leads to 
results comparable to those obtained with CCSDT, 
which has to do with the fact that up to fifth-order 
perturbation theory just the TQ coupling term of 
MPS is missing. 121 Although QCISDTc and CCSDT 
both scale with O(M8 ) (actually O(N3(M - N)5)), 
the former method offers time saving because of its 
faster convergence in the QCic iterations. He and co-
workers122 showed in a follow-up publication that 
QCISDTc is clearly superior to QCISD(T), and they 
traced performance advantages back to a better de-
scription of TT coupling terms contained in the for-
mer, however not in the latter method. 

In 2000, He and co-workers123 extended the 
size-extensive QCic methods by developing QCIS-
DTQc: 

EQCISDT =(<I> IHT I<I> ) corr 0 2 0 (83) 

(<I>flfl(Ti + T2 + t + T1 Ili<I>o)c = 0 (84) 

b - A A A A 1 A2 

(<t>fi IH(1 + Ti + 12 + T3 + 14 + 2 72 )I<I>o)c = 0 

(85) 

bd-A A AA 

(<t>fiki IH(T3 + 14 + T2 14)1<I>o)c = 0 (87) 

These authors also developed QCISDTQc(6) as a 
size-extensive Q excitation method that is exact at 
sixth-order perturbation theory, leads to results which 
are better than those from CCSD(T), QCISDTc, or 
CCSDT calculations and close to CCSDTQ and FCI 
results. QCISDTQc( 6) is the cheapest of all Q ex-
citation containing methods accounting for infinite 
order correlation effects introduced by the 14 clus-
ter operator. He and co-workers123 also showed the 
importance of connected four-electron correlation ef-
fects, which especially in the case of multireference 
electronic systems containing electronegative atoms 
are needed to closely approximate FCI reference en-
ergies. 

CONCLUSIONS AND OUTLOOK 
The research on CI theory was for many decades one 
of the major driving forces for the development of 
accurate and routinely applicable quantum chemi-
cal methods. If the early pioneers of the CI theory 
had known about all the obstacles and the enormous 
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mathematical problems of carrying out for example 
a FCI calculation for just a 10-electron atom with a 
larger basis set, they probably would have stopped 
their efforts, which would have been a tremendous 
loss to quantum chemistry as a whole. Many of the 
heroic attempts to improve the performance of CI 
triggered activities aimed at the development of alter-
native methods, deepened the understanding of the 
quantum chemical methodology, and provided an in-
sight into calculational outcomes. 

Today, the continuous value of CI theory results 
from two basic facts: (i) Single reference CI discussed 
in this article can be easily extended to MR-CI (at 
least conceptually), which is the method of choice in 
many cases. This is more difficult for multireference 
CC theory. 89 (ii) There is a continuous interest in FCI 
calculations because of the need of reliable reference 
values. Also new developments such as the connec-
tion of FCI with quantum Monte Carlo124 calcula-
tions have opened new avenues for FCI applications. 
However, one should not forget that a system with 12 
electrons in 20 orbitals or 10 electrons in 30 orbitals 
already leads to a billion Slater determinants so that 
FCI reference calculations are rather limited. 

Truncated CI is used today mostly to demon-
strate the shortcomings of CI. There is however an 
interest in using truncated CI in connection with rel-
ativistic theory, for example, when calculating spin 
orbit coupling effects. 125 The situation is somewhat 
different for highly correlated CI methods such as 
CISDTQ, which leads to energies close to FCI ener-
gies and therefore is an interesting reference method. 
In view of the costs of a CISDTQ calculation, the use 
of this and similar CI methods is also rather limited. 

The QCI approach is certainly closer to CC 
rather than CI theory. This may be disputable for the 
original QCISD method of Pople and co-workers. 90 

However, this statement is definitely true if this ap-
proach is converted into a general, size-extensive 
(size-consistent) QCic method as done by Cremer and 
co-workers. 118•121-123 The original QCISD approach 
does not lead to a set of independent methods because 
converting truncated CI into Pople-type QCI meth-
ods only leads to QCISD, whereas QCID = CCD90 

and QCISDT, QCISDTQ, etc. are not size extensive 
(however, ECISDT, ECISDTQ, QCISDTc, and QCIS-
DTQc are size extensive).11 8 

With CCSD(T) becoming the gold standard 
for quantum chemical calculations, 126 the use of 
QCISD(T) has dramatically decreased. QCISD(T) 
does not lead to significant cost advantages, has de-
ficiencies with regard TT coupling effects, and fails 
if systems with multireference character are investi-
gated. This is also documented by the fact that the 
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G4-theory of Curtiss98 is based on CCSD(T) rather 
than QCISD(T). 

Clearly, the scientific dispute between Pople and 
his group on the one side and a large number of well-
known colleagues headed by Paldus on the other side 
has been fruitful, especially with regard to realizing 
more clearly the problems of truncated CI methods, 
the importance of size extensivity, and the advantages 
of CC theory. Some of the scientific dispute on the 
usefulness of the QCI approach has reached into our 
days because the Gaussian series of programs started 
by Pople37 is still heavily used today, and one of 
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the approximate CC methods offered in the Gaus-
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