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Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory.
The local H-bond stretching frequency is 528 cm�1 compared to a normal mode stretching frequency of
just 143 cm�1. The adiabatic connection scheme between local and normal vibrational modes reveals that
the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH
bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas
the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-
bond strength.

� 2012 Published by Elsevier B.V.
1. Introduction

The water dimer (1) gains its stability from H-bonding between
the monomers [1,2]. Because H-bonding in 1 is considered as pro-
totypical and affects many of the properties of liquid water, it has
been numerously investigated utilizing both experimental and
computational means [1,2]. In a recent investigation, Freindorf,
Kraka, and Cremer (FKC) [3] investigated H-bonding with the help
of local vibrational modes as they were first defined by Konkoli and
Cremer [4]. They determined the relative strength of 65 different
H-bonds via the local mode stretching force constants. An impor-
tant result of their work is that the local mode H-bond stretching
frequencies appear in the region 300–600 cm�1, i.e. significantly
above those values, which have been determined so far for H-bond
stretching frequencies [5–7]. This in itself is not necessarily a con-
tradiction because FKC considered harmonic rather than anhar-
monically corrected vibrational frequencies, where the latter
being better comparable with measured vibrational frequencies.
H-bonding is known to lead to large anharmonic corrections [8],
which may directly or indirectly cause the large difference be-
tween harmonic and anharmonic vibrational frequencies.

In this Letter, we will determine normal and local vibrational
modes for the H-bond stretching of the water dimer, discuss how
anharmonicity effects change their relationship, and draw conclu-
sions with regard to the energetic implications of H-bonding. In
addition, we characterize all 12 normal vibrational modes of 1 in
terms of local vibrational modes to be able to derive typical OH and
O� � �H vibrational frequencies and force constants. Our investigation
is based on high level ab initio calculations of the CCSD(T)-type
to obtain sets of reliable normal and local vibrational frequencies
for 1.
Elsevier B.V.

er).
2. Computational methods

By solving the Euler–Lagrange equations, one can derive the
eigenvalue problem of vibrational spectroscopy and express it in
the following matrix form [9]

FqD ¼ G�1DK ð1Þ

where Fq is the force constant matrix expressed in internal coordi-
nates qn;D collects the vibrational eigenvectors dl in form of col-
umn vectors (l ¼ 1; . . . ;Nvib with Nvib ¼ 3N � L; N: number of
atoms; L: number of translations and rotations), G is the Wilson
G-matrix [9] and K is a diagonal matrix containing the vibrational
eigenvalues kl ¼ 4p2c2x2

l where xl represents the (harmonic)
vibrational frequency of mode dl.

Konkoli and Cremer have defined local vibrational modes by
solving mass-decoupled Euler–Lagrange equations [4]. A local
mode an obtained in this way is associated with an internal coordi-
nate qn leading the mode. Mode vector an takes the form [4]:

an ¼
K�1dyn

dnK�1dyn
ð2Þ

where the (diagonal) force constant matrix K is given according to
[3,4,10]:

K ¼ DyFqD ð3Þ

Note that dn is now a row vector of matrix D. The local mode force
constant ka;n is given by Eq. (4):

ka;n ¼ aynKan ¼ ðdnK�1dynÞ
�1 ð4Þ

Local mode force constants, contrary to normal mode force con-
stants, have the advantage of being independent of the choice of
the coordinates, which are used to describe the molecule in ques-
tion. This relates them to the compliance constants Ci of Decius

http://dx.doi.org/10.1016/j.cplett.2012.10.047
mailto:dieter.cremer@gmail.com
http://dx.doi.org/10.1016/j.cplett.2012.10.047
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett


244 R. Kalescky et al. / Chemical Physics Letters 554 (2012) 243–247
[11] defined via the inverse force constant matrix both being ex-
pressed in terms of internal coordinate q:

Cq ¼ ðFqÞ�1 ¼ DK�1Dy ð5Þ

which leads to

ka;n ¼ 1=ðCqÞnn ¼ 1=Cn ð6Þ

i.e., the compliance constants of Decius [11] can be simply derived
from the local mode force constants of Konkoli and Cremer [4].

One can re-write the Wilson Eq. (1) with the help of the compli-
ance matrix as:

GðCqÞ�1D ¼ DK

GR ¼ CqRK
ð7Þ

where a new eigenvector matrix R ¼ ðCqÞ�1D is introduced. By
partitioning matrices Cq and G into diagonal (Cq

d and Gd) and off-
diagonal (Cq

o and Go) parts and introducing the scaling factor k
(0 6 k 6 1), Eq. (7) becomes

ðGd þ kGoÞRk ¼ ðCq
d þ kCq

oÞRkKk ð8Þ

[10] where R and K depend on k. Eq. (8) is the basis for an adiabatic
connection scheme, which relates local vibrational modes to normal
vibrational modes in terms of their eigenvalues (frequencies) and
eigenvectors (mode vectors) [10]. In this way, each normal mode
frequency xl can be expressed by a local mode frequency xa and
a coupling frequency xc , i.e. xl ¼ xa þxc . The zero-point energy
(ZPE) is split up in two parts where one results from the local mode
frequencies and one from the coupling frequencies [10].

Equilibrium geometry, harmonic vibrational frequencies, and
harmonic infrared intensities of the water dimer (see Figure 1)
were calculated at the CCSD(T) level of theory [12] correcting for
basis set superposition errors and using Dunning’s aug-cc-pVDZ,
aug-cc-pVTZ, and aug-cc-pVQZ basis sets. These calculations were
the basis for extrapolating results to the complete basis set (CBS)
limit. Employing CCSD(T)/aug-cc-VTZ, anharmonic corrections for
frequencies and intensities were determined utilizing vibrational
perturbation theory (VPT) at second order.[13,14] Independently,
harmonic CBS frequencies were scaled using group scaling factors
for covalent stretching (0.953), covalent bending (0.962), and
non-covalent modes (0.873 and 0.705) as determined in this Letter.
Local vibrational frequencies were calculated from normal
vibrational frequencies [4]. Experimental local mode frequencies
are calculated according to the procedure given by Cremer and
co-workers [15]. The adiabatic connection scheme of Eq. (8) was
used to relate local to normal mode frequencies and to determine
coupling frequencies, which provide a cumulative measure for the
strength of coupling between local modes. The normal vibrational
modes are characterized in terms of local vibrational modes using
the CNM (characterizing normal modes) approach by Konkoli and
Cremer [16]. All coupled cluster calculations were carried out with
the program CFOUR [17].
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Figure 1. CCSD(T)/CBS geometry of the water dimer. Bond lengths in Å and angles
in degrees. The numbering of atoms is used throughout of this Letter.
3. Results and discussion

In Figure 1, the CCSD(T)/CBS geometry of 1 is given, which com-
pares well with the results of previous investigations [18]. The
CCSD(T)/CBS H-bond binding energy is �5.0 kcal/mol correspond-
ing to an enthalpy and free energy value at 298 K of �3.4 and
2.7 kcal/mol. Min and co-workers obtained binding energies of
�5.01 ± 0.01 kcal/mol depending on what basis sets were used
for the CBS limit calculation [18], which is in line with an earlier
result of Klopper and co-workers [19]. Hence, the CCSD(T)/CBS re-
sults obtained in this Letter can be considered to be accurate. Note-
worthy is that 1 is unstable under normal conditions due to a strong
decrease of the entropy, which is in line with experimental measure-
ments. For example, Curtiss and co-workers [20] studied dimers 1 at
373 K and found DG(373) = 3.3 kcal/mol. At this temperature the
mole fraction of 1 in water vapor is 0.011 [20]. All spectroscopic
measurements of 1 have been carried out at reduced temperatures
between 5 K and maximally 80 K under low pressure [21–25]. We
obtain for 20 K and 3 Pa a free binding energy DGð20Þ of 2.0 kcal/
mol thus confirming the stability of 1 under these conditions.

In Table 1, calculated harmonic and anharmonically corrected
CCSD(T) vibrational frequencies are compared with the experimen-
tal frequencies of 1 [21–25]. The anharmonically corrected
CCSD(T)/CBS frequencies compare well with the known experi-
mental frequencies and have an average deviation of just
15.1 cm�1 where the largest deviations are found for the low fre-
quencies, which are more difficult to measure [21–23]. Using
group scaling an average deviation of just 7.1 cm�1 is achieved
(see Table 1). Results are in line with other high-accuracy calcula-
tions of the frequencies of 1 [14].

In Table 2, each normal mode is decomposed into local vibra-
tional modes. The corresponding local mode frequencies are given
in Table 3 together with the corresponding coupling frequencies,
which are taken from the adiabatic connection scheme of Figure 2a
and b. The coupling of the local modes depends on the closeness of
their frequencies, the degree of alignment of the mode vector, and
the mass ratios of the atoms involved in a local mode. For example,
the degeneracy of the stretching frequencies of the O4H5 and the
O4H6 bonds (xa = 3694 cm�1) leads to large coupling and the for-
mation of an asymmetric (A00;xl ¼ 3763 cm�1;xc ¼ 69 cm�1Þ and
a symmetric normal mode (A0;xl ¼ 3669 cm�1;xc ¼ �25 cm�1Þ. A
typical mass-effect is found for the bending mode H2O1H3. If this
is local it has a 63 cm�1 lower frequency (1590 cm�1, Table 3) than
H5O4H6 bending (1653 cm�1; enhanced by anharmonicity effects
to 93 cm�1, i.e. 1511 vs. 1604 cm�1, Table 3), which is due to the
weakening of the O1H3 donor bond. In the normal mode, the mass
effect of the second water molecule comes in and pushes the fre-
quency xaðH2O1H3Þ up by 89 cm�1 (anharmonically corrected by
113 cm�1) causing in this way a diabatic avoided crossing with
the H5O4H6 bending mode at k ¼ 0:98 and x ¼ 1619 cm�1 (see
Figure 2), The mode character is exchanged at the avoided crossing
so that x8 rather than x7 becomes the H2O1H3 bending mode (the
softer bend is on top of the stiffer bend; Table 2).

In a similar way, the changes in the frequency of the local H-
bond stretching mode are effected. The effective mass of O4 in-
creases in the normal mode due to the fact that O4 is bonded to
H5 and H6, which leads to a lowering of the H3� � �O4 stretching fre-
quency. This causes an adiabatic avoided crossing at k ¼ 0:75
(300 cm�1) with the O1H3O4 bending mode accompanied by a
switch in the mode character. The lower normal mode, d4, is
now the H-bond stretching mode, however with a strong admix-
ture of O1H3O4 bending character. Additional avoided crossings
between the vibrational eigenstates of modes d4 and d3 as well
as d1 lead to the admixture of H3O4H5 and H3O4H6 bending char-
acter and a large harmonic coupling frequency xc of 340 cm�1.



Table 1
Harmonic normal mode frequencies xl (in cm�1) of the water dimer calculated using CCSD(T) and the aug-cc-pVXZ basis sets (X = D, T, and Q). These frequencies were used to
calculate a CBS frequency for each mode. CCSD(T)/aug-cc-pVTZ anharmonic corrections (Anh. Corr.) were applied to get anharmonic CBS frequencies, xCBS;Anh: . In the last row the
mean deviation (m.d.) of calculated from measured frequencies is given.

# Sym. xl xl xl xl Anh. xlðCBS; xl xl

(VDZ) (VTZ) (VQZ) (CBS) Corr. Anh.) (Scaled) (Exp.)

1 A00 130.7 134.9 131.3 129.2 �44.2 85.0 91 88 [21]
2 A00 148.4 148.0 149.0 149.6 �22.8 126.8 105 103 [21]
3 A0 146.7 151.9 154.6 156.1 �33.6 122.6 110 108 [21]
4 A0 184.9 190.7 189.2 188.3 �40.6 147.7 133 143 [22]
5 A0 357.3 372.3 358.2 349.8 �55.5 294.3 305 311 [23]
6 A00 634.6 649.5 625.1 610.6 �126.1 484.5 533 523 [23]
7 A0 1640.9 1643.3 1655.7 1663.0 �43.4 1619.6 1600 1599 [23]
8 A0 1659.7 1667.8 1674.3 1678.2 �53.8 1624.3 1615 1616 [23]
9 A0 3713.5 3756.4 3755.2 3754.3 �140.0 3614.3 3578 3601 [24]

10 A0 3784.1 3829.6 3836.4 3840.2 �171.7 3668.5 3660 3660 [24]
11 A0 3878.1 3911.2 3921.0 3926.8 �179.9 3746.9 3742 3735 [24]
12 A00 3897.9 3930.1 3941.9 3948.7 �186.0 3762.7 3763 3745 [25]
m.d. 78.7 96.1 96.7 96.9 15.1 7.1

Table 2
Characterization of the normal modes xlðCBSÞ of 1 in terms of the local mode
contributions xaðCBSÞ.

l Characterization of modes xlðCBSÞ in terms of modes xaðCBSÞ

1 48.6% (H5–O4–H3 + H6–O4–H3), 35.1% H5–O4–H3–O1, 16.2% H2–O1–
H3–O4

2 40.4% H2–O1–H3–O4, 38.4% (H5–O4–H3 + H6–O4–H3), 21.1% H5–O4–
H3–O1

3 37.7% O1–H3–H4, 30.6% (H5–O4–H3 + H6–O4–H3), 28.3% H3–O4
4 58.5% H3–O4, 20.1% O1–H3–H4, 19.8% (H5–O4–H3 + H6–O4–H3)
5 58.5% O1–H3–H4, 22.8% (H5–O4–H3 + H6–O4–H3), 17.4% H2–O1–H3
6 44.6% H2–O1–H3–O4, 38.5% H5–O4–H3–O1, 17.0% (H5–O4–H3 + H6–

O4–H3)
7 94.0% H5–O4–H6
8 91.3% H2–O1–H3
9 85.2% O1–H3, 12.6% O1–H2

10 98.8% (O4–H5 + O4–H6)
11 86.9% O1–H2, 12.8% O1–H3
12 100.0% (O4–H5 + O4–H6)
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Although the H-bond stretching character of mode d4 still domi-
nates (59%, Table 2), it is problematic to draw from the frequency
thus obtained any conclusions on the strength of the H-bond in 1.

In addition to the local mode coupling, there is also a large
anharmonicity effect of 108 cm�1 (from 528 to 420 cm�1, see Ta-
ble 3) for the local H-bond stretching mode. This effect is large
compared to the 41 cm�1 anharmonicity correction of normal mode
4, however it is still small in comparison to the 173–179 cm�1
Table 3
Local mode frequencies xa , local force constant ka , coupling frequencies xc , and zero-poin

Type xa(CBS) Harm. xa(CBS) Anharm. xa(Exp.)
(cm�1) (cm�1) (cm�1)

xa(H6–O4–H3) 235.8 179.3 168.3
xa(H5–O4–H3) 235.8 179.3 168.3
xa(H5–O4–H3–O1) 322.8 237 231.2
xa(H3–O4) 528.5 420.3 390.4
xa(O1–H3–H4) 372.9 305.6 287.5
xa(H2–O1–H3–O4) 328.3 255.2 236.1
xa(H5–O4–H6) 1653 1604.4 1583.5
xa(H2–O1–H3) 1589.6 1511.1 1503.6
xa(O1–H3) 3764.9 3620 3606.9
xa(O4–H6) 3872.6 3693.7 3679.7
xa(O1–H2) 3884.1 3710.6 3698.5
xa(O4–H5) 3872.6 3693.7 3679.7

29.54 27.75 27.50
ZPE (kcal/mol)b 29.16 27.59 27.59

a Bending force constants are given in (mdyn Å)/rad2.
b ZPE values (second row) are given as the sum of the contribution of the local mode fr

(first row, columns 6–8).
anharmonicity corrections for the local O1H2 and O4H5 stretching
frequencies or the 145 cm�1 obtained for the local OH donor
stretching frequency. As a result of the admixture of bending char-
acter the anharmonic character of H-bond stretching is reduced. We
can confirm that the anharmonicity of the O1H3 donor stretching
frequency changes, however it is reduced rather than increased
when compared with the O1H2 and O4H5 (O4H6) stretching.
4. Conclusions

In this Letter, we have shown that the large difference between
the local and normal H-bond stretching frequency (i.e. that fre-
quency being associated with H-bond stretching) of 1 results from
three different effects: (i) mass coupling due to the increase of the
mass of the O4(H5H6) and the H3(O1H2) unit not contained in a
local mode; (ii) a larger anharmonicity of the local mode
(108 cm�1 compared to 41 cm�1 in the normal mode), and (iii)
strong coupling with OH� � �O and H� � �OH bending modes. Our anal-
ysis reveals that the frequency measured at 143 cm�1 is associated
with a mode that contains according to CCSD(T) calculations 58%
H-bond stretching character and 40% bending character, where
the latter contributions are in line with a large coupling frequency
of 272.6 cm�1. This leads to the important conclusion that a direct
interpretation of H-bond stretching frequencies as descriptors of
the strength of the H-bond is misleading because mass and cou-
pling effects as well as the anharmonicity of the H-bond stretching
t-energies (ZPE) of 1.

ka(Exp.) xc(CBS) Harm. xc(CBS) Anharm. xc(Exp.)
(mdyn Å�1)a (cm�1) (cm�1) (cm�1)

0.012 �106.6 �94.3 �83.3
0.012 �86.2 �56.7 �45.7
0.000 �166.7 �110.2 �104.4
0.085 �340.2 �272.6 �242.7
0.020 �23.1 �11.3 6.8
0.000 282.3 229.3 248.4
0.635 10.0 15.2 36.1
0.575 88.6 113.2 120.7
7.267 �10.6 �5.7 7.4
7.563 �32.4 �25.2 �11.2
7.641 42.7 36.3 48.4
7.563 76.1 69.0 83.0

�0.38 �0.16 0.09

equencies (first row, columns 2–4) and the contribution of the coupling frequencies
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Figure 2. Adiabatic connection scheme relating experimental local mode frequencies (left) with experimental normal mode frequencies (right) of the water dimer. (a) Range
from 1500 to 3800 cm�1. (b) Range from 50 to 500 cm�1. The adiabatic connection schemes for calculated harmonic frequencies are similar.
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mode will be different for each H-bonded complex. This holds also
for the normal mode frequency of the OH donor bond although
anharmonicity and coupling effects are smaller in this case. A reli-
able account of the H-bond strength can only be provided by the lo-
cal mode force constant ka ¼ 0:085 mdyn=Å (Table 3), which reveals
that H-bonding is substantially stronger in 1 than suggested by a
frequency value of 143�1. This has been demonstrated by FKC [3].
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