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Abstract Local vibrational modes can be directly derived
from normal vibrational modes using the method of Konkoli
and Cremer (Int J Quant Chem 67:29, 1998). This implies the
calculation of the harmonic force constant matrix Fq (expressed
in internal coordinates q) from the corresponding Cartesian
force constant matrix fx with the help of the transformation
matrix U0WB†(BWB†)−1 (B: Wilson’s B-matrix). It is proven
that the local vibrational modes are independent of the choice of
the matrixW. However, the choiceW0M−1 (M: mass matrix)
has numerical advantages with regard to the choice W0I (I:
identity matrix), where the latter is frequently used in spectros-
copy. The local vibrational modes can be related to the normal
vibrational modes in the form of an adiabatic connection
scheme (ACS) after rewriting the Wilson equation with the
help of the compliance matrix. The ACSs of benzene and
naphthalene based on experimental vibrational frequencies are
discussed as nontrivial examples. It is demonstrated that the
local-mode stretching force constants provide a quantitative
measure for the C–H and C–C bond strength.

Keywords Normal vibrational modes . Local vibrational
modes .Adiabaticconnectionscheme .Localmodeanalysis .
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Introduction

Vibrational force constants are nonobservable quantities. They
are given by the second derivatives of the molecular energy
with regard to the coordinates of a molecule and measure the
curvature of the associated potential energy surface (PES).

Since the PES is a concept based on the Born–Oppenheimer
approximation, force constants are conceptual quantities. They
relate features of the PES to the vibrational frequencies mea-
sured by vibrational spectroscopy [1–4]. However, this rela-
tionship is complicated by (i) the dependency of the frequencies
on the atomic masses via the kinetic energy of the vibrating
molecule and (ii) the description of the PES close to the
equilibrium position of a molecule (harmonic, cubic, etc.).
The harmonic description of the PES is most commonly used,
and the structural features of a molecule are analyzed with the
help of its harmonic vibrational force constants.

The force constants depend on the set of coordinates
chosen to describe a molecule. These can be Cartesian,
internal, or normal coordinates [1–3]. Alternatively, we
can use curvilinear coordinates [5–7] such as the deforma-
tion and puckering coordinates of Cremer and coworkers
[8–10]. The calculation of Cartesian force constants is
straightforward and leads to the force constant matrix f x.
The latter can be used as a suitable reference because it
depends on neither the choice of internal coordinates nor
any coordinate redundancies. However, Cartesian force con-
stants have the disadvantage that chemists can only com-
prehend molecular structure and chemical bonding in terms
of internal coordinates q rather than Cartesian coordinates x.
In the early days of vibrational spectroscopy, it became
obvious that internal force constants depend on the internal
coordinates chosen to describe a molecule, their redundant
or nonredundant character, and the coupling between vibra-
tional modes [1]. It was pointed out that the transformation
from a well-defined set of Cartesian force constants to
internal coordinate force constants is not unique and can,
in principle, lead to an infinite number of different trans-
formations [11–13]. However, this problem could be solved
by proving that, independent of the transformation matrix,
the same internal coordinate force constant matrix Fq is
obtained. This matrix is independent of mass provided the
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geometry of the molecule in question corresponds to a true
stationary point (minimum) on the PES [11–13]. Hence, the
question of how to derive molecular force constants that do
not depend on the choice of internal coordinates for describ-
ing the molecular geometry remains.

This problem hampers vibrational spectroscopy and the
determination of internal coordinate force constants from
measured vibrational frequencies, which are, contrary to the
force constants, measurable quantities. One has provided
arguments and transformation procedures to obtain a reason-
able presentation of molecular force constants. One has also
tried to use force constants obtained in different ways to
describe chemical bonding, angle strain, conformational flex-
ibility and other features of the electronic structure of mole-
cules, often without considering the fact that force constants,
when expressed in terms of the internal coordinates of a
molecule, are not well-defined quantities. These attempts were
driven by the understanding that the properties of molecular
vibrations reflect features of molecular structure and stability
in a unique way [14, 15]. A vibration causes small displace-
ments of the atomic positions in a molecule and, in this way,
probes molecular bonding without significantly changing the
electronic structure of a molecule. The properties of the mo-
lecular vibrations, such as vibrational frequencies and force
constants, are defined for infinitesimal displacements and are
therefore ideal for discussing the electronic structure and
bonding of a molecule in a dynamic fashion without changing
any structural features (e.g., during bond dissociation). Since
vibrational frequencies always depend on the masses of the
atoms moving, vibrational force constants would be ideal
descriptors of molecular bonding provided they could be
defined in a unique way in terms of internal coordinates.

In 1963, Decius [16] showed that the inverse of matrix Fq

leads to the compliance matrix Γq0(Fq)−1 and, by this, to a
set of compliance constants that are the diagonal elements of
Γq, which describe local features of the molecule and do not
depend on the choice of internal coordinates [17–19].
Although Decius was able to relate the compliance matrix
to an expansion of the PES function in terms of generalized
displacement forces, the physical meaning of the compli-
ance constants, especially the relationship between diagonal
and off-diagonal elements of the compliance matrix,
remained unclear. In this work, we will show that the com-
pliance matrix of Decius provides the missing link between
normal-mode force constants and the local force constants
of Konkoli and Cremer [20]. We will derive the conditions
for the transformation of the Cartesian force constant matrix
fx via the internal force constant matrix Fq and compliance
matrix Γq into a unique set of local-mode force constants,
which are ideally suited for the electronic structure analysis
of a molecule. This derivation will be suitable for any
stationary point on the PES and will be valid for any
transformation of fx into Fq and Gq.

In addition, we will show how local vibrational
modes can be related to normal vibrational modes in
the form of an adiabatic connection scheme. This will
be demonstrated for benzene and naphthalene as two
nontrivial examples where we will base the ACSs on
experimental frequencies to exclude any discussion of
the quantum chemical approach used. The local-mode
force constants obtained for benzene and naphthalene
will be the basis for a bond order relationship to ana-
lyze the electronic structure of the two molecules.

The basic problem of determining the force constant
matrix Fq

The dynamics of the N nuclei of a vibrating molecule can be
determined by solving the Euler–Lagrange equations. In this
way, the basic secular equation of vibrational spectroscopy
is obtained [1–4]:

f xL ¼ MLΛ ð1Þ

Here, matrix M is the mass matrix, the eigenvalue matrix
Λ contains on its diagonal the values 4p2c2w2

μ; wherewμ are
the vibrational frequencies, and matrix L contains 3N mode
vectors lμ; among which a subset with Σ mode vectors
corresponds to translations and rotations of the molecule, as
reflected by values of wμ that are equal to zero. For the
following, we eliminate the Σ external motions of the mol-
ecule so that matrix L adopts the dimension 3N×Nvib and
the diagonal eigenvalue matrix Λ becomes Nvib-dimension-
al (Nvib ¼ 3N $Σ). Expressing Eq. 1 in internal rather than
Cartesian coordinates, the Wilson GF formalism is obtained
[1, 2, 4]:

Fq D ¼ G$1 DΛ: ð2Þ

In Eq. 2, Wilson’s G represents the kinetic energy part,
and the eigenvector matrix D (containing as columns the
normal-mode vectors dμ, μ01, ...,Nvib) is defined by

D ¼ BL; ð3Þ

where matrix B is a rectangular (Nvib×3N) matrix contain-
ing the first derivatives of the internal coordinates with
regard to the Cartesian coordinates. Matrix Fq is calculated
according to

Fq ¼ Uyf xU; ð4Þ

where the (3N×Nvib)-dimensional rectangular matrix U is
the pseudoinverse matrix of B,

BU ¼ I: ð5Þ
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The unit matrix I is of dimension Nvib×Nvib, and can be
written

B
B0

! "
U U 0

# $
¼ BU BU0

B0U B0U0

! "

¼ INvib 0Nvib;Σ

0Σ;Nvib IΣ

! " ; ð6Þ

where B0 represents the B matrix of the Σ rotation and
translation modes, which was introduced by Woodward [2].

Since B is a rectangular matrix, the solution of Eq. 5
is not unique. (We note that a unique solution for a
square, invertible matrix R implies the existence of a
matrix S that fulfills RS0SR0I.) The general solution
is [11–13]

U ¼ WBy BWBy
% &$1

ð7Þ

where W is an arbitrary nonsingular 3N×3N square matrix.
Although Eq. 5 is fulfilled by any matrixW, reverse multipli-
cation does not lead in general to a unit matrix of dimension
3N×3N because

U U0ð Þ B
B0

! "
¼ UBþ U0B0 ¼ I3N: ð8Þ

By deriving under the conditions through which Eq. 1
can be transformed into Eq. 2, we can determine the trans-
formation matrix U in Eq. 4:

Uyf xI3NL ¼ UyMI3NLΛ
Uyf xðUBþ U0B0ÞL ¼ UyMðUBþ U0B0ÞLΛ

FqDþ UyfxU0B0L ¼ UyMUDΛþ UyMU0B0LΛ

;

ð9Þ
where Eq. 3 is used. Winnewisser and Watson [13] proved
that the following equation is fulfilled:

f xU0 ¼ 03N ;Σ ; ð10Þ

which implies that the second term on the l.h.s. of Eq. 12
vanishes. Woodward [2] showed that

UyMU ¼ G$1 ð11Þ

provided

UyMU0 ¼ 0Nvib;Σ : ð12Þ

Hence, Eq. 12 becomes identical to Eq. 2. However, Eq.
15 is not fulfilled in general by an arbitrary U defined by Eq.
10. One group of solutions of Eq. 10 is given by W0sM−1,
where s is an arbitrary nonzero scalar value. For reasons of
simplicity, we set s01 and obtainW0M−1. This implies that

U ¼ C ¼ M$1ByG$1; ð13Þ

which is also obtained when applying the Eckart conditions
[21]. Since G0BM−1B†, it holds that BC0I.

Another frequently used choice is W0I3N [11–13],
leading to

U ¼ Z ¼ By BBy
% &$1

: ð14Þ

It has been proven that both choices of W (W0M−1 and
W0I) lead to identical matrices Fq (i.e., the transformation
from matrix fx to matrix Fq is independent ofW), and that the
elements of matrix Fq are independent of the atomic masses
[13]. This implies that, for a given set of 3N−Σ0Npara internal
coordinates describing the molecule in question, there is only
one matrix Fq and one compliance matrix Γq.

Setting U0C fulfills Eq. 12 because

CyMU0 ¼ G$1BM$1MU0

¼ G$1BU0 ¼ 0Nvib;Σ
; ð15Þ

where BU0 ¼ 0Nvib;Σ from Eq. 6 is used. However, U0Z does
not satisfy Eq. 15. Although the same matrix Fq is obtained, the
kinetic energy part is not described correctly, and the frequency
calculation is erroneous. Of course, we can circumvent this
dilemma by using U0C for the potential energy part and U0
Z for the kinetic energy part only. Note that this is, strictly
speaking, not justified, soU0C is the only proper pseudoinverse
of B, which can transform Eq. 1 into Eq. 2. This is of relevance
when relating normal-mode to local-mode force constants, as we
will see in the next section. For this purpose, we derive an
important relationship between matrix C and matrix D.

Starting from FqD0U†fxL, as given by Eq. 12, we obtain

ByFqD ¼ ByUyfxL ¼ ðI3N $ By0U
y
0 ÞfxL

¼ f xL$ By0U
y
0 f

xL
: ð16Þ

The last term on the r.h.s. of Eq. 19 vanishes because of Eq.
13. By combining Eqs. 1 and 2 with Eq. 19, we can write

f xL ¼ ByðFqDÞ
MLΛ ¼ ByðG$1DΛÞ

L ¼ M$1ByG$1D ¼ CD

: ð17Þ

The relationship L0CD is needed in the following.

Obtaining local vibrational modes

We could assume that the local-mode vectors dμ are unit
vectors, each of which depend on just one internal coordi-
nate, and that the force constant matrix Fq is diagonal, thus
indicating that there is no electronic coupling between the
vibrational modes. Nevertheless, there would still be mass
coupling between the vibrational eigenvectors because the
G matrix is nondiagonal. This shows that local vibrational
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modes can only be obtained by suppressing mass coupling
[20].

The local vibrational mode associated with the internal
coordinate qn describing the molecular fragment ϕn is
obtained by setting all masses except those of the atoms of
fragment ϕn equal to zero, which is straightforward when
expressing the vibrational problem in terms of Cartesian coor-
dinates. In this way, the Euler–Lagrange equations lead to a
local vibration of ϕn. However, this solution is not useful
because chemists analyze molecular structure and dynamics
in terms of internal rather than Cartesian coordinates. The
assumption mi00 (i ∈ ϕm) implies that the generalized mo-
mentum pm is also equal to zero (the subscript i refers to
Cartesian coordinates, and subscripts m and n refer to internal
coordinates). Hence, the Euler–Lagrange equations for a local
mode of ϕn expressed in internal coordinates read [20]

pn ¼
@L q; qð Þ
@qn

6¼ 0 ð18Þ

pm ¼ @L q; qð Þ
@qm

¼ 0 ð19Þ

d
dt

pn ¼
@V ðqÞ
@qn

6¼ 0 ð20Þ

d
dt pm ¼ @V ðqÞ

@qm
¼ 0

for m 6¼ n

ð21Þ

where L0T − V is the Lagrangian (T and V are the kinetic and
potential energy, respectively). It has been shown that the
mass constraints correspond to carrying out a local vibration
triggered by a displacement of internal coordinate qn (i.e., the
mode is led by qn; this is the leading parameter principle [20])
under the requirement that all internal coordinates qm are
relaxed. This led to the term “adibatic (relaxed) internal coor-
dinate modes” (AICoMs), which will be replaced here with
the simpler term “local vibrational modes.” The local modes
obtained in this way take the form [20]

an ¼
K$1dyn
dnK$1dyn

; ð22Þ

where an is the local-mode vector associated with internal coor-
dinate qn, and dn, contrary to dμ , is a row vector of matrix D.
MatrixK is the diagonal matrix of force constants kQ, expressed
in normal coordinates Qμ

FQ ¼ K ¼ LyfxL: ð23Þ

The local modes are characterized by force constants ka,n
(the subscript “a” refers to adiabatic) [20], where

ka;n ¼ aynKan ¼ ðdnK$1dynÞ
$1
; ð24Þ

and vibrational frequencies wa,n, where

4p2c2ðwa;nÞ2 ¼ ka;nGnn; ð25Þ

in which Gnn is a diagonal element of the G matrix and
corresponds to the reduced mass of the local mode an [20].
The local modes of Konkoli and Cremer lead to vibrational
frequencies that are close to the frequencies measured in the
few cases where, because of the experimental situation,
normal-mode properties could be measured that approxi-
mate those of local modes [15, 22–24].

The internal constant matrix Fq can be related to the local-
mode force constant matrix ka (with the elements ka,n on the
diagonal and n ¼ 1; & & & ;Npara ¼ Nvib ), where we consider
the two choices of the pseudoinverse matrix U discussed in
the previous section: (i) U0C and (ii) U0Z. In the first case,
we obtain

Fq ¼ CyfxC ð26Þ

and

C ¼ LD$1 ð27Þ

as a consequence of L0CD (the inverse of D exists because
of Npara ¼ Nvib), which makes it possible to write

Fq ¼ D$1
# $y

Lyf xLD$1 ð28aÞ

¼ D$1# $y
KD$1; ð28bÞ

where matrix K is defined in Eq. 26. The inverse of matrix
Fq is the compliance matrix of Decius [16]:

Fqð Þ$1 ¼ Γq ¼ DK$1Dy: ð29Þ

Hence, the compliance constants are given by

Γqð Þnn ¼ dnK$1dyn ; ð30Þ

which, if compared with Eq. 27, leads to

ka;nðU ¼ CÞ ¼ ka;n ¼ 1=ðΓqÞnn ¼ 1=Γ n: ð31Þ

In other words, the reciprocals of the compliance constants
of Decius [16] are the local-mode force constants of Konkoli
and Cremer [20]. This proves that the choice U0C connects
local and normal vibrational modes in a well-defined way,
and the compliance constants of Decius present the missing
link between them.
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In the second case, the transformation is carried out
according to

Fq ¼ ZyfxZ ¼ ðByBÞ
$1
BfxByðBByÞ

$1
: ð32Þ

Because of

CyfxC ¼ ðByBÞ
$1
BfxByðBByÞ

$1
; ð33Þ

the proof given in Eqs. 29–35 also holds for the choice U0Z

Table 1 Comparison of local-mode force constants and compliance constants calculated with different choices ofU at the B3LYP/6-31G(d,p) level of theorya

Molecule Fragment rn αn ka,n Γn
U0C

1/Γn
U0C

ka,n
U0Z

Γn
U0Z

Δ(ka,n)

1 C–H 1.092 5.367309 0.186313 5.367309 5.367309 0.186313 0.000000

H–C–H 109.5 0.667215 1.498767 0.667215 0.667215 1.498767 0.000000

2 C–Hi 1.093 5.300379 0.188666 5.300379 5.300377 0.188666 0.000002

C–Ho 1.101 4.949980 0.202021 4.949980 4.949971 0.202021 0.000009

C–O 1.418 4.891419 0.204440 4.891419 4.891420 0.204440 −0.000001

O–H 0.965 8.149843 0.122702 8.149843 8.149847 0.122702 −0.000004

H–C–H 107.7 0.721482 1.386037 0.721482 0.721479 1.386042 0.000003

Hi–C–O 106.9 0.983985 1.016275 0.983985 0.983959 1.016302 0.000026

Ho–C–O 112.8 0.985189 1.015033 0.985189 0.985202 1.015020 −0.000013

H–O–C 107.7 0.759139 1.317283 0.759139 1.317224 0.759172 −0.000033

3 C–H 1.086 5.560108 0.179853 5.560108 5.560106 0.179853 0.000002

C–C 1.396 6.598466 0.151550 6.598466 6.598463 0.151550 0.000003

H–C–C 120.0 0.944305 1.058980 0.944305 0.944274 1.059014 0.000031

C–C–C 120.0 2.373331 0.421349 2.373331 2.373331 0.421349 0.000000

5 C–C 1.205 17.642909 0.056680 17.642909 17.642909 0.056680 0.000000

H–C 1.066 6.469399 0.154574 6.469399 6.469399 0.154574 0.000000

H–C–C 180.0 0.192791 5.186951 0.192791 0.192796 5.186839 −0.000005

aMolecules 1, 2, 3, and 5 are shown in Fig. 1. Diatomic fragments A–B denote bond lengths rn (given in Å), whereas triatomic fragments A–B–C
denote bond angles αn (given in degrees). Stretching force constants are given in mdyn/Å and the corresponding compliance constants in Å/mdyn.
Bending force constants are given in (mdyn Å)/rad2 , and the corresponding compliance constants in rad2 /(mdyn Å). Δ(ka,n)01/Γn(C)-1/Γn(Z)

Table 2 Comparison of experimentally based local-mode force constants and compliance constants calculated with different choices of Ua

Molecule Fragment ka,n
U0C

Γn
U0C

1/Γn
U0C

ka,n
U0Z

Γn
U0Z

Δ(ka,n)

1 C–H 4.896515 0.204227 4.896515 4.896515 0.204227 0.000000

H–C–H 0.623086 1.604916 0.623086 0.623086 1.604916 0.000000

2 C–Hi 4.888890 0.204545 4.888890 4.888888 0.204546 0.000002

C–Ho 4.598815 0.217447 4.598815 4.598806 0.217448 0.000009

C–O 4.608809 0.216976 4.608809 4.608809 0.216976 0.000000

O–H 7.547767 0.132490 7.547767 7.547771 0.132489 −0.000004

H–C–H 0.686460 1.456749 0.686460 0.686457 1.456755 0.000003

Hi–C–O 0.926452 1.079387 0.926452 0.926426 1.079417 0.000026

Ho–C–O 0.945946 1.057143 0.945946 0.945958 1.057129 −0.000012

H–O–C 0.716321 1.396021 0.716321 0.716355 1.395955 −0.000034

3 C–H 5.113117 0.195575 5.113117 5.113115 0.195575 0.000002

C–C 6.211729 0.160986 6.211729 6.211726 0.160986 0.000003

H–C–C 0.894018 1.118546 0.894018 0.893986 1.118586 0.000032

C–C–C 2.279047 0.438780 2.279047 2.279047 0.438780 0.000000

aMolecules 1, 2, and 3 are shown in Fig. 1. Diatomic fragments A–B denote bond lengths rn (given in Å), whereas triatomic fragments A–B–C
denote bond angles αn (given in degrees). Stretching force constants are given in mdyn/Å and the corresponding compliance constants in Å /mdyn.
Bending force constants are given in (mdyn Å)/rad2 and the corresponding compliance constants in rad2 /(mdyn Å). Δ(ka,n)01/Γn(C)-1/Γn(Z).
Calculation of experimental local modes was performed according to Cremer and coworkers [14]
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corresponding to W0I. Hence, the local-mode force con-
stants and their relationship to normal-mode force constants
is independent of the transformation of Cartesian to internal
coordinate force constants. As in the case of the normal
modes, incorrect local-mode frequencies are obtained for
W0I, so we must use U0C and W0M−1 to obtain both
force constants and frequencies with the same matrix U.

In Tables 1 and 2, local-mode force constants and com-
pliance constants of some typical organic molecules (Fig. 1)
are compared; the values in the first table are based on
B3LYP/6–31G(d,p) calculations [25, 26]) and those in the
second table on experimental frequencies [27, 28] combined
with DFT normal modes [14]. The local-mode force con-
stants are calculated for W0M−1 or I with the program of
Konkoli and Cremer [20], and the compliance constants
with a program based on Eq. 34 and written for this work.
In each case, local-mode force constants are compared
with the reciprocals of the compliance constants Γn. In
total, 40 different molecules were investigated, among
which only the results for methane, methanol, benzene,

and acetylene (molecules 1, 2, 3, and 5 in Fig. 1) are
shown in Tables 1 and 2.

For all cases investigated, Eq. 34 is exactly fullfilled (i.e.,
the local-mode force constants are the reciprocals of the
compliance constants with an uncertainty of <10−8). It is
also true that the force constants ka do not depend on
whether W0M−1 or I. However, in this case, there are small
differences between the two sets, on the order of 10−5 force
constant units or less (see Table 1). Analysis of the devia-
tions reveals that these deviations have two different causes.
First, they are a result of the DFT (density functional theory)
approach used, which implies numerical integrations and, in
the SCF (self-consistent field) and geometry optimization,
finite convergence criteria. In the DFT calculations, an ul-
trafine grid and tight convergence criteria were used, which
of course do not exclude the possibility that better agree-
ment would have been obtained with even higher numerical
accuracy. However, the very small differences between the ka
and 1/g values obtained for U0C indicate a second reason for
the deviations between Γ(C) and Γ(Z). For U0Z, the local
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Fig. 1 Molecules investigated
in this work

Fig. 2 Adiabatic connection
scheme of benzene (3) based on
experimental frequencies. For
the numbering of local-mode
frequencies, local-mode param-
eters, normal-mode symmetries,
and normal-mode frequencies,
see Table 3
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force constants are sensitive to residual contaminations
from translational and rotational modes resulting from
the fact that the geometry optimization does not lead to
the exact minimum of a molecule because of numerical
difficulties. This also argues against the use of U0Z
when calculating force constants (apart from the fact that
the calculation of the frequencies becomes inconsistent,
as discussed above).

Similar observations can be made for the experimentally
based local-mode force constants [14] derived with eitherU0C

or U0Z (see Table 2), because the DFT normal modes were
used for their determination. Upon taking the reciprocals of the
compliance constants, identity (35) is again confirmed.

Transforming local modes into normal modes

This task can be accomplished by solving the Wilson equa-
tion once for local and once for normal vibrational modes.
To do this, two problems must be solved: (i) the force

Fig. 3a–b Adiabatic connection scheme of naphthalene (4) based on experimental frequencies. a Upper and b lower frequency ranges. For the
numbering of local-mode frequencies, local-mode parameters, normal-mode symmetries, and normal-mode frequencies, see Table 3
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constant matrix must be related to local vibrational modes;
(ii) it must be possible to split the force constant matrix and
the G matrix into diagonal and nondiagonal parts. In this
case, the diagonal parts should lead to the local-mode
results, whereas including the off-diagonal parts should give
the normal-mode quantities.

If matrix A contains the local-mode vectors a, a
transformed force constant matrix based on local vibra-
tional rather than normal vibrational modes can be
obtained via

AyKA ¼ Fa; ð34Þ

where the superscript “a” indicates adiabatic (local)
modes, and A is given by

A ¼ K$1Dy DK$1Dy
% &

d

h i$1
ð35Þ

(subscript “d” refers to diagonal terms of the matrix
product).To fulfill the second requirement, the Wilson
equation given in Eq. 2 is rewritten by multiplying it by
matrix G and replacing the force constant matrix Fq

with the compliance matrix Γq:

GðΓqÞ$1D ¼ DΛ
¼ ΓqðΓqÞ$1DΛ

ð36Þ

Table 3 Measured normal-mode frequencies wμ and the corresponding local-mode force constants ka, local-mode frequencies wa, and coupling
frequencies wcoup of benzene (3)

a

μ Sym. wμ (cm−1) Param. type Param. # ka (mdyn Å−1) ωa (cm
−1) ωcoup (cm

−1) Bond order n

30 B1u 3068 C1–H7 7 5.113 3055 13 1.010

29 E1u 3063 C4–H10 10 5.113 3055 8 1.010

28 E1u 3063 C3–H9 9 5.113 3055 8 1.010

27 A1g 3062 C6–H12 12 5.113 3055 7 1.010

26 E2g 3047 C2–H8 8 5.113 3055 −8 1.010

25 E2g 3047 C5–H11 11 5.113 3055 −8 1.010

24 E2g 1596 C1–C2 1 6.242 1329 267 1.468

23 E2g 1596 C2–C3 2 6.242 1329 267 1.468

22 E1u 1486 C3–C4 3 6.242 1329 157 1.468

21 E1u 1486 C4–C5 4 6.242 1329 157 1.468

20 A2g 1326 H12–C6–C1 18 0.893 1263 63

19 B2u 1310 C6–C1 6 6.242 1329 −19 1.468

18 E2g 1178 H7–C1–C2 13 0.893 1263 −85

17 E2g 1178 H8–C2–C3 14 0.893 1263 −85

16 B2u 1150 H9–C3–C4 15 0.893 1263 −113

15 E1u 1038 H10–C4–C5 16 0.893 1263 −225

14 E1u 1038 H11–C5–C6 17 0.893 1263 −225

13 B1u 1010 C5–C6 5 6.242 1329 −319 1.468

12 B2g 995 C1–C2–C3 19 2.258 905 90

11 A1g 992 H9–C3–C4–H10 26 0.186 948 44

10 E2u 975 H11–C5–C6–H12 27 0.186 948 27

9 E2u 975 H7–C1–C2–H8 25 0.186 948 27

8 E1g 849 H7–C1–C2–C3 28 0.268 778 71

7 E1g 849 H9–C3–C4–C5 29 0.268 778 71

6 B2g 703 C1–C2–C3–C4 22 0.354 585 118

5 A2u 673 H11–C5–C6–C1 30 0.268 778 −105

4 E2g 606 C3–C4–C5 20 2.259 905 −299

3 E2g 606 C5–C6–C1 21 2.258 905 −299

2 E2u 410 C3–C4–C5–C6 23 0.354 585 −175

1 E2u 410 C5–C6–C1–C2 24 0.354 585 −175

ZPE (kcal mol-1): 61.2 62.2 −1.0

a Bending and torsion force constants are given in (mdynÅ)/rad2 . ZPE denotes the zero-point energy calculated from normal-mode frequencies. It has to
be identical to the sum of the local-mode frequency contribution and the coupling frequency contribution. For the numbering of atoms, see Fig. 1
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Table 4 Measured normal-mode frequencies wμ and the corresponding local-mode force constants ka, local-mode frequencies wa, and coupling
frequencies wcoup of naphthalene (4)

a

μ Sym. wμ (cm−1) Param. type Param. # ka (mdyn Å−1) wa (cm
−1) wcoup (cm

−1) Bond order n

48 Ag 3065 C2–H12 13 5.089 3048 17 1.009

47 B2u 3060 C3–H13 14 5.089 3048 12 1.009

46 B1u 3058 C6–H16 17 5.089 3048 10 1.009

45 B3g 3047 C7–H17 18 5.089 3048 −1 1.009

44 Ag 3036 C1–H11 12 5.047 3036 1 1.007

43 B2u 3035 C4–H14 15 5.047 3036 −1 1.007

42 B1u 3031 C5–H15 16 5.047 3036 −5 1.007

41 B3g 3027 C8–H18 19 5.047 3036 −9 1.007

40 B3g 1624 C1–C2 2 6.909 1398 226 1.603

39 B1u 1601 C3–C4 4 6.909 1398 203 1.603

38 Ag 1577 C5–C6 7 6.909 1398 179 1.603

37 B2u 1515 C7–C8 9 6.909 1398 117 1.603

35 B3g 1460 C9–C1–H11 20 0.249 1298 162

36 Ag 1460 C3–C4–H14 23 0.249 1298 162

34 B1u 1389 C10–C5–H15 24 0.249 1298 91

33 Ag 1376 C7–C8–H18 27 0.249 1297 79

32 B2u 1361 C1–C2–H12 21 0.248 1298 63

31 B1u 1269 C2–C3–H13 22 0.248 1297 −28

30 B3g 1239 C5–C6–H16 25 0.248 1297 −58

29 B2u 1212 C6–C7–H17 26 0.248 1297 −85

28 Ag 1158 C2–C3 3 5.614 1260 −102 1.339

27 B2u 1145 C6–C7 8 5.614 1260 −115 1.339

26 B3g 1138 C1–C9 5 5.595 1258 −120 1.335

25 B1u 1125 C4–C10 6 5.595 1258 −133 1.335

24 Ag 1025 C5–C10 10 5.595 1258 −233 1.335

23 B2u 1008 C8–C9 11 5.595 1258 −250 1.335

22 B2g 980 H12–C2–C1–C3 29 0.298 839 141

21 Au 970 H13–C3–C2–C4 30 0.298 839 131

20 B3u 958 H16–C6–C5–C7 33 0.298 839 119

19 B1g 943 H17–C7–C6–C8 34 0.298 839 104

18 B3g 935 C9–C1–C2 37 2.353 925 10

17 B2g 876 H11–C1–C9–C2 28 0.293 833 43

16 Au 841 H14–C4–C3–C10 31 0.293 833 8

15 B1u 788 C10–C5–C6 40 2.353 925 −137

14 B3u 783 H15–C5–C10–C6 32 0.293 833 −50

13 B2g 770 C1–C2–C3–C4 45 0.327 568 203

12 Ag 758 C9–C10 1 5.368 1232 −474 1.288

11 B1g 717 H18–C8–C7–C9 35 0.293 833 −116

10 Au 618 C10–C9–C1 36 2.439 917 −299

9 B2u 618 C5–C6–C7–C8 48 0.327 568 51

8 Ag 512 C9–C10–C5 39 2.439 917 −405

7 B3g 506 C5–C6–C7 41 2.230 900 −394

6 B3u 476 C9–C1–C2–C3 44 0.325 566 −90

5 B2g 461 C10–C5–C6–C7 47 0.325 566 −105

4 B1g 386 C10–C9–C1–C2 43 0.340 566 −180

3 B1u 359 C1–C2–C3 38 2.230 900 −541

2 Au 195 C9–C10–C5–C6 46 0.340 566 −371

1 B3u 176 C8–C9–C10–C4 42 0.378 371 −195

ZPE (kcal mol-1): 89.6 93.0 −3.4

a Bending and torsion force constants are given in (mdyn Å)/rad2 . ZPE denotes the zero-point energy calculated from normal-mode frequencies. It has to
be identical to the sum of the local-mode frequency contribution and the coupling frequency contribution. For the numbering of atoms, see Fig. 1
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Upon defining a new normal-mode eigenvector matrix
R0(Γq)−1D, the Wilson equation adopts the form

GR ¼ ΓqRΛ; ð37Þ

which leads to the same eigenvalues as the Wilson equation
itself:

RyGR ¼ D½ðΓqÞ$1(yΓqðΓqÞ$1D ¼ DyFqD ¼ Λ: ð38Þ

We then split the matrices G and Γq in Eq. 41 into
diagonal and off-diagonal parts, where the latter are
switched on slowly using a scaling parameter l increasing
from l00 (local vibrational modes) to l01 (normal vibra-
tional modes):

ðGd þ lGoÞRl ¼ ðΓq
d þ lΓq

oÞRlΛl: ð39Þ

This results in an adiabatic connection scheme (ACS) that
leads from local to normal modes. By definition, an ACSmust
haveNvib ¼ 3N $Σ local modes to match the normal modes.
To achieve this, Nvib internal coordinates must be selected that
lead the local vibrational modes according to the leading
parameter principle of Konkoli and Cremer [20]. For a given
molecule, there may be multiple options for internal coordi-
nates. In this situation, the following procedure may help. (i)
For the molecule in question, the normal vibrational modesdμ
are calculated. (ii) Each of the Nvib normal vibrational modes
dμ is decomposed into local vibrational modes an, where
different sets of internal coordinates q are tested. (iii) The set
q that leads to the largest overlap between the normal and
local vibrational modes is chosen for the ACS.

For an acyclic N-atom molecule, such a set is normal-
ly given by N − 1 bond lengths, N − 2 bond angles, and
N − 3 bond dihedral angles, whereas in the case of an N-
membered ring, N ring bonds, N − 3 bond angles, and N
− 3 bond dihedral angles should be used (a bond dihe-
dral angle is defined by four atoms which form a string
of bonds that are directly connected to each other).
Regardless of how the set of Nvib is chosen, the form
and the properties of a local mode associated with inter-
nal coordinate qn is independent of the choice of all
other internal coordinates [20].

Adiabatic connection schemes for benzene
and napthalene

Figures 2 and 3 show the ACSs of benzene and naphthalene,
based on experimental frequencies [29, 30]. For benzene,
six C–H bond lengths, six C–C bond lengths, three C–C–C
bond angles, six H–C–C bond angles, three H–C–C–H bond
dihedral angles, three C–C–C–C bond dihedral angles, and
three H–C–C–C bond dihedral angles gave the best match
between normal and local vibrational modes in the ACS.

This is reflected by the fact that the absolute values of the
coupling frequencies wcoup, which are defined as

wcoup ¼ wμ $ wa; ð40Þ

sum to a minimum value.
The local vibrational frequencies obtained in this way must

fulfill the zero-point energy (ZPE) condition of themolecule (i.e.,
the ZPE of the molecule must be exactly reproduced by the
contributions from local and coupling frequencies). For benzene,
the experimental frequencies lead to ZPE061.2 kcal mol-1

(Table 3). This value is equal to the sum ZPEa+ZPEcoup, which
is 62.2 – 1.0061.2 kcal mol-1 (Table 3).

The ACS of benzene reveals that the six local C–H
stretching frequencies at 3055 cm−1 can be split into one
A1g, one B1u, two E1u, and two E2g normal modes. All
coupling frequencies are smaller than 15 cm−1, which is a
direct reflection of the fact that mass coupling between the
local C–H stretching modes is small because the C–H
bonds are separated by one C–C bond and form angles of
60°. An angle of 90° would suppress all couplings, whereas
an angle of 0 or 180° would lead to the strongest coupling
(Table 4).

There is considerably stronger coupling between the C–C
stretching modes at 1329 cm−1, which can be split into
modes between 1010 and 1596 cm−1 according to coupling
frequencies of 267 and −319 cm−1. Hence, it is impossible
to gauge the C–C bond strength using the normal-mode C–
C stretching frequencies (e.g., by averaging). This is, how-
ever, easily achieved by utilizing local-mode properties. In
this connection, the local-mode frequencies are less suitable
because they always depend on the masses of the atoms
involved. It is better to use the local-mode stretching force
constants ka, as given in Table 3. These should be compared
with suitable references such as the local-mode C–C stretch-
ing force constants of ethane, ethylene, or acetylene, which
are given in Table 5. These reveal that the C–C bonds in
benzene (ka05.124 mdyn/Å , Table 3) are similar to the C–C
bond in ethylene (ka05.104 mdyn/Å , Table 5).

The comparison of local-mode ka values soon becomes te-
dious given the number of bonds to be compared, so it is easier to
derive a C–C bond order from local-mode ka values, as was
previously shown by Kraka and Cremer [31]. For this purpose,
the C–Cbonds of ethane and ethylene are assigned bond orders n
of 1 and 2, in line with conventional chemical concepts. Using
exclusively experimental normal-mode frequencies and the
local-mode frequencies and force constants derived from them,
the following bond order–force constant relationship for C–C
bonds is derived:

nðCCÞ ¼ 0:30071kaðCCÞ0:86567: ð41Þ

In this way, C–C bond orders for acetylene of 3.286 and for
benzene of 1.468 result, in line with general expectations.
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Table 5 Measured normal-mode frequencies wμ and the corresponding local-mode force constants ka, local-mode frequencies wa, and coupling
frequencies wcoup of ethane (7), ethylene (6), and acetylene (5)a

μ Sym. wμ (cm−1) Param. type Param. # ka (mdyn Å−1)a wa (cm
−1) wcoup (cm

−1)

Ethane

18 Eu 2985 C2–H7 13 4.785 2955 30

17 Eu 2985 C1–H4 14 4.785 2955 30

16 Eg 2969 C2–H8 15 4.785 2955 14

15 Eg 2969 C1–H3 16 4.785 2955 14

14 A2u 2954 C1–H5 17 4.785 2955 −1
13 A1u 2896 C2–H6 18 4.785 2955 −59

12 Eu 1469 H7–C2–H8 9 0.654 1433 36

11 Eu 1469 H4–C1–H5 10 0.654 1433 36

10 Eg 1468 H6–C2–H7 11 0.654 1433 35

9 Eg 1468 H3–C1–H4 12 0.654 1433 35

8 A1g 1388 H5–C1–C2 3 0.734 1123 265

7 A2u 1379 H6–C2–C1 4 0.734 1123 256

6 Eg 1190 H7–C2–C1 5 0.734 1123 67

5 Eg 1190 H4–C1–C2 6 0.734 1123 67

4 A1g 995 H8–C2–C1 7 0.734 1123 −128

3 Eu 822 H3–C1–C2 8 0.734 1123 −301

2 Eu 822 C1–C2 2 4.007 1065 −243
1 A1u 289 H3–C1–C2–H6 1 0.069 511 −222

ZPE (kcal mol-1): 45.3 45.4 −0.1

Ethylene

12 B2u 3106 H3–C2 9 5.104 3052 54

11 B3g 3103 H4–C1 10 5.104 3052 51

10 Ag 3026 H5–C2 11 5.104 3052 −26

9 B1u 2989 H6–C1 12 5.104 3052 −63

8 Ag 1623 C2–C1 8 8.924 1589 34

7 B1u 1444 H5–C2–C1 4 0.750 1170 275

6 Ag 1342 H6–C1–C2 5 0.750 1170 173

5 B3g 1236 H4–C1–C2 6 0.750 1170 67

4 Au 1023 H5–C2–C1–H4 7 0.222 1170 −147

3 B2g 949 H6–C1–C2–H5 3 0.186 977 −28

2 B3u 943 H4–C1–C2–H3 1 0.186 976 −33

1 B2u 826 H3–C2–C1 2 0.750 976 −150

ZPE (kcal mol-1): 30.9 30.6 0.3

Acetylene

7 Σg 3374 H7–C1 6 5.902 3414 −40

6 Σu 3289 H8–C2 7 5.902 3414 −125

5 Σg 1974 C2–C1 5 15.836 2217 −243
3,4 Πu 730 H3–C1–C2 1 0.208 702 28

1,2 Πg 612 H4–C2–C1 3 0.208 702 −90

ZPE (kcal mol-1): 16.2 16.9 −0.7

a Bending and torsion force constants are given in (mdynÅ )/rad2 . ZPE denotes the zero-point energy calculated from normal-mode frequencies. It has to
be identical to the sum of the local-mode frequency contribution and the coupling frequency contribution. For the numbering of atoms, see Fig. 1
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Bonding should be stronger in acetylene than expected from
ethane and ethylene because all of the repulsive C–H eclipsing
interactions are removed. For benzene, one expects a bond
order close to 1.5, which is confirmed by the local-mode force
constants. In this connection, it should be mentioned that the
C–C bond dissociation energies (BDEs) provide little guid-
ance about the strength of the C–C bonds, because the frag-
ments resulting fromC–C bond cleavage undergo geometrical
relaxation and strong electron density reorganization effects,
which lower the BDE values significantly. Since these frag-
ment stabilization effects are different for each C–C bond, and
their magnitudes are not known, BDEs provide a poor mea-
sure of the bond strength.

The C-H bond order is more difficult to derive, although it is
possible to do so due to the fact that local-mode XH stretching
force constants have a similar dependence on the effective bond
length, as discussed by Kraka and co-workers [15]. These
authors showed that, in line with Badger’s pioneering work
[32], X–H stretching force constants can all be represented by
one power relationship provided that all atoms X belong to the
same period in the periodic table. Freindorf and coworkers [33]
derived this power relationship for X–H bonds (X: atom of the
second period) using F–H (bond order n01.0) andF & & &H & & & F$
(n00.5). Since the F–H bond is stronger than a C–H bond, it is
necessary to rescale this relationship so that the C–H bond in
methane adopts an n value of 1.0.We derived the relationship for
C–H bonds by utilizing the experimental frequencies of F–H
(4151.6 cm−1) [34], F & & &H & & & F$ (583, 1286, 1331 cm−1) [35],
and methane [29].

nðCHÞ ¼ 0:5243kaðCHÞ0:29198; ð42Þ

with a shift valueΔn of 0.166 to obtain a bond order of 1.000 for
C–H in methane. According to the bond order relationship given
in Eq. 46, the C–H bonds in ethylene and benzene have bond
orders of 1.010, in line with their similar nature. The acetylene
C–H bond has a bond order of 1.046 and is much stronger.
Actually, the ratio of the BDE values of CH in acetylene and
methane (133.32 and 105.0 kcal mol-1 [36]) suggest a bond order
of 1.270 for the former, which is far too large and a result of the
unreliability of the BDE as a bond strength descriptor. The
stabilization energy associated with the change in a methyl
radical from a pyramidal form (adopted in ethane or the methyl
portion of H3C–H) with sp

3 hybridization to a planar form with
sp2 hybridization is much larger than that seen for an ethynyl
radical, which essentially retains its structure and hybridization.

The ACS of naphthalene confirms that the molecule
possesses two types of C–H bonds: those in the peri posi-
tions (α hydrogens: H11, H14, H15, H18) have smaller ka
values (5.047 mdyn/Å, Table 4) than those in the β positions
(H12, H13, H16, H17; k a 05.089 mdyn/Å). The
corresponding bond orders of 1.009 and 1.007 indicate that
the peri-exchange repulsion effects weaken the peri-C–H

bonds. There are four different C–C bonds with C–C
stretching frequencies of 1398 (C1–C2, etc.), 1260 (C2–
C3, etc.), 1258 (C4–C10, etc.), and 1232 cm−1 (C9–C10,
see Figs. 1 and 3). The corresponding bond orders (based on
the C–C stretching force constants ka) are 1.603, 1.339,
1.335, and 1.288, respectively. This suggests that the pe-
ripheral ten-π-electron delocalization is slightly preferred
over the six-π-electron delocalization in the benzene rings,
which share a common π-electron pair.

The ACS of benzene and naphthalene shown in Figs. 2 and 3
contain a wealth of information that is not hampered by the
deficiencies of the method and/or basis set used, the harmonic
approximation, or the way of including anharmonicity correc-
tions. Since experimental information is used throughout this
work, the only possible deficiencies of the diagrams may arise
from shortcomings in the experimental measurements. In future
work, we will demonstrate that by introducing curvilinear coor-
dinates, a unique set of Nvib coordinates can be specified, which
significantly simplifies the determination and analysis of the
local modes of ring molecules so that their properties can be
directly related to electronic structural features.

Conclusions

In this work, we have demonstrated that, starting from a set
of Nvib normal vibrational modes, we can determine a set of
Nvib unique local vibrational modes, where the two sets are
related by an ACS. Based on this work, the following
conclusions can be drawn.

1) As a result of the fact that matrix B is rectangular, there
are an infinite number of pseudoinverse matrices
U0WB†(BWB†)−1 which can convert the Cartesian force
constant matrix into an internal coordinate force constant
matrix. The local vibrational modes are not affected by
the choice of the matrixW [13]. It is proven that there is
always just one set of local-mode force constants.

2) However, it was also shown that the choice W0M−1

has some numerical advantages over the choice W0I.
3) The local-mode force constants ka are identical to the recip-

rocal of the compliance constants of Decius. This was
proven by deriving the relationship C0LD−1. Although
LD−1 does not comply with the general formula U0
WB†(BWB†)−1, we showed that LD−1 provides a valid
transformation of the force constant matrix f x.

4) Local and normal vibrational modes can be related to
each other by rewriting the Wilson equation with the
help of the compliance matrix Γq, partitioning compli-
ance and the G matrix into diagonal and off-diagonal
parts, and successively switching on the latter with the
aid of the scaling parameter 1. This yields an ACS
between local and normal vibrational modes that can
be used to quantitatively determine mass-coupling
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between local vibrational modes. This was done for the
local C–H and C–C stretching modes of benzene.

5) The change in local-mode frequency in an ACS is mea-
sured by the coupling frequency wcoup, which accounts
for all mass couplings of a given local mode an with all
other Nvib − 1 local modes. The sum of all |wcoup| is a
minimum if the set of local vibrational modes is unique.

6) The local vibrational modes of Konkoli and Cremer are
independent of the choice of internal coordinates.
However, to derive an ACS,Nvib internal coordinates must
be determined independent of the point group symmetry of
a molecule. Some general rules for selecting the set of Nvib

internal coordinates q for acyclic and cyclic molecules
were discussed. An appropriate set of internal coordinates

will be found if the sum
PNvib

n jwn;coupj is a minimum.
7) The strengths of the C–H and C–C bonds in benzene and

napthalene were explored with the aid of a power relation-
ship between the bond order n and the local-mode force
constants ka derived from experimental frequencies. To do
this, it was assumed that the reference molecules ethane and
ethylene have bond orders of 1 and 2. For the C–H bond, a
general power relationship for X–H was derived from the
experimental frequencies of F–H and F & & &H & & & F$ (bond
orders of 1 and 0.5). A shift value was used in connection
with this relationship to obtain a bond order of 1 for the C–H
bonds in methane.

8) The local-mode-based description of the electronic
structure of napthalene nicely shows the degree of π-
electron delocalization. It reveals that the central C–C
bond in napthalene is the weakest, with only 29 % π-
character. The peri-positioned C–H bonds are weaker
than the other C–H bonds of napthalene.

The existence of just one set of local-mode force constants for
a given set of internal coordinates guarantees a conceptually
consistent analysis of the electronic structure and chemical bond-
ing in molecules with the help of local-mode force constants
derived from normal vibrational modes [14, 15, 31, 37, 38].
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