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Unrestricted density functional theory (UDFT) is, in addition to its application to high spin
multiplet systems, an e� cient method for describing singlet biradical states. In this connection,
spin contamination of the UDFT description as measured by the expectation values of ŜS2 is of
interest, but is di� cult to assess since the calculation of hŜS2i as the expectation value of a two-
particle operator is not possible within the single-determinant approach of DFT. A new way
of determining hŜS2i from the UDFT (UHF or any other) spin magnetization density (SMD)
ms…r† ˆ »¬…r† »­ …r† is described and applied to the stretched H2 molecule and the singlet
state of the para-didehydrobenzene biradical for a number of diŒerent functionals. Although
hŜS2i as calculated from the Kohn± Sham determinant is found to diŒer signi® cantly from the
corresponding value obtained with the help of the SMD in the case of singlet biradicals, the
former result is a diagnostic value and can be used to assess spin contamination of the UDFT
description on a qualitative basis.

1. Introduction

Density functional theory (DFT) [1] is nowadays used

widely in quantum chemistry, and as a low cost method

with relatively high reliability it has largely replaced

wavefunction methods such as Mù ller± Plesset second-

order (MP2) perturbation theory or Hartree± Fock

(HF) theory [2]. There is a tendency for many applied

quantum chemists to use DFT methods in a similar way

to wavefunction methods. In this spirit, unrestricted

DFT (UDFT) is applied widely for the description of

open-shell systems to exploit the higher ¯ exibility of the

Kohn± Sham (KS) single-determinant wavefunction and

to get a better account of spin polarization eŒects.

UDFT calculations lead to reasonable results at low

computational cost in many cases. However, the ques-

tion of spin contamination in the UDFT singlet state is a

matter of controversy. As for UHF and UMP [3], the

calculation of hŜS2i from the UDFT KS determinant

leads to a value diŒerent from the ideal value

S…S ‡ 1† ˆ 0. One could argue that this is irrelevant

and should be ignored or one could consider the

UDFT result to be basically wrong because of spin con-

tamination as indicated by the hŜS2i value. In the latter

case, it would be logical to improve the UDFT result by

using the sum formula [4] or by employing spin projec-

tion methods [5, 6] and to replace UDFT by PUDFT in

the same way as UHF is replaced by PUHF or UMP by

PUMP (often called PMP) [3].

Given the usefulness of UDFT for singlet biradicals

on the one hand and the controversy regarding the spin

contamination of UDFT states on the other hand, it is

of interest to develop methods to analyse the spin sym-

metry of a state described by UDFT. In wavefunction

theory, one can enforce the correct spin symmetry of the

many-particle wavefunction by proper construction, as

for spin restricted open-shell methods [7]. Alternatively,

if the calculation has been done spin unrestricted, i.e.

with arbitrary spin symmetry allowed for the wavefunc-

tion [8], one can subsequently use the diŒerence

hŜS2i S…S ‡ 1† as a measure of spin contamination of

the wavefunction by contributions with a higher spin

multiplicity. For DFT, only the KS reference wavefunc-

tion is available, which is related to a ® ctitious reference

system of non-interacting particles. Accordingly, it is

not possible to calculate correctly two-particle quantities

such as hŜS2i even if the correct KS reference wavefunc-

tion would be known. A value of hŜS2iUDFT;F diŒering

from S…S ‡ 1† does not necessarily indicate that the cor-

responding many-particle state is spin contaminated,

and that one has to cure this problem by constructing

the KS wavefunction with correct spin symmetry as

done for spin restricted open-shell DFT (RODFT) [9].

The spin symmetry problem within DFT has been

discussed by a number of authors. Pople et al. [10]

argued that the appropriate KS formalism for multiplet
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systems should be unrestricted rather than the open-

shell restricted one, and that spin contaminations of

the KS reference wavefunction should be ignored.

Wang et al. [11] used the LoÈ wdin formula [12] to appro-

priately calculate hŜS2i for UDFT. They found that the

hŜS2i value calculated from the KS orbitals, while for-

mally not correct, still is reasonably accurate and con-
tains relevant information.

Previous investigations were focused on high spin

open-shell states such as doublet radicals or triplet bir-

adicals, [5, 6, 10, 11] but did not consider singlet biradi-
cals. If the exact XC functional were known, then these

singlet systems would be described correctly with closed-

shell RDFT, and biradical character would be described

by the XC energy functional. However, the available

approximations for the XC energy functional fail to

re¯ ect the strong static correlation eŒects present in
these systems and, therefore lead to a qualitatively

incorrect description. The RDFT solution is in addition

externally unstable and the minimum energy of an S

biradical corresponds to an UDFT solution with

broken symmetry, where UDFT gives in general a con-

siderably better description of the system than RDFT
does. The UDFT solution has a hŜS2iUDFT;F value greater

than S…S ‡ 1† ˆ 0 and, depending on the XC functional

used and the electronic system considered, adopts values

between 0 and 1. In the same way as for high spin open-

shell cases, one might argue that in view of the unsolved
problem of calculating the correct hŜS2iUDFT the

hŜS2iUDFT;F value is not reliable and thus not necessarily

an indication of spin contamination of the corre-

sponding many-body state. On the other hand, it is

likely that a single-determinant description of a multi-

reference problem such as an S biradical suŒers from
basic problems and, because of this, that reliable char-

acterization of the UDFT solution is desirable.

An alternative and probably more reliable account of

spin contamination can be found by investigating one of

the key quantities of spin resolved DFT, namely the spin
magnetization density (SMD) ms…r† ˆ »¬…r† »­ …r†.
(We use the term spin magnetization density in view of

the fact that (a) this term is frequently used in solid state

physics and (b) the alternative term spin density is often

used in connection with the spin resolved densities »¬…r†
and »­ …r†.) For a pure S state, as for any pure multiplet
state with ŜSz ˆ 0, the SMD ms…r† must vanish every-

where. As this is not the case for the UDFT solution,

the state described must be a superposition of contribu-

tions with diŒerent spin multiplicity. The question arises

whether ms…r† can be used not only to indicate spin
contamination but also to predict a more reliable

value of the expectation values of ŜS2, which will be

denoted as hŜS2iUDFT;ms
. By comparing hŜS2iUDFT;F and

hŜS2iUDFT;ms
one can decide on the relevance of the

former value as a means of diagnosing spin contamina-

tion.

In this work, we derive a method for calculating

hŜS2iUDFT;ms
, which is based on comparing the SMDs

from the UDFT description of the singlet (S) biradical
and the UDFT description for the corresponding triplet

(T) biradical. The SMD approach for calculating the

expectation value of ŜS2 is not restricted to DFT but

can be applied also to any quantum chemical method

that provides an SMD. Accordingly, we can test the

reliability and usefulness of the SMD method at the
UHF level of theory utilizing the fact that hŜS2iUHF;F
calculated from the UHF wavefunction represents a reli-

able reference. The test is performed for the stretched

hydrogen molecule, which represents the archetype of an

S biradical. Then, the SMD method is applied to the
DFT description of stretched H2 and to the S biradical

state of para-didehydrobenzene employing a number of

diŒerent XC functionals. para-Didehydrobenzene is the

subject of the present research on enediyne antitumour

drugs [13, 14] and, therefore it is chosen as a representa-
tive of an important class of organic biradicals with

similar electronic and structural features. Finally, we

will draw conclusions on the diagnostic value of

hŜS2iUDFT;F as calculated from the KS reference wave-

function.

2. The SMD method for calculating ŜS2

In wavefunction theory, the value of hŜS2i can be cal-

culated either as an expectation value, which requires

the calculation of matrix elements involving T and
higher excitations,

hŜS2i ˆ hCjŜS2jCi=hCjCi; …1†

or alternatively as a response property from the ground-

state energy E¶ of the perturbed Hamiltonian ĤH¶ ˆ
ĤH ‡ ¶ŜS2 [3]:

hŜS2i ˆ dE…¶†
d¶

­­­­
¶ˆ0

: …2†

hŜS2i values calculated with either equation (1) or (2) are

identical for HF and MCSCF, but not for MPn or CC

methods since the latter do not ful® l the Hellmann±
Feynman theorem. At the DFT level, the calculation

of hŜS2i as an expectation value requires knowledge of

the two-particle density according to the LoÈ wdin for-

mula, which can be given only in an approximate way

[10, 11]. Conversely, calculation of hŜS2i as a response

property would lead to some basic problems in DFT,
one of which has to do with the fact that it involves the

use of virtual KS orbitals for modelling excited KS

determinants.
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We follow in this work a third approach to the calcu-

lation of hŜS2i, which is based on an appropriate hŜS2i
reference value of a suitable reference state and a com-

parison of the SMDs ms…r† of these states. Clearly, this

limits the application of the new approach, but on the
other hand provides a reasonable description of spin

contamination of precisely those electron systems in

which we are primarily interested.

In ® gure 1, the SMD ms…r† of the H2 molecule

stretched to R ˆ 1:4 and calculated at the UHF level

with a cc-pVTZ basis [15] is shown in the form of a
contour line diagram, where solid contour lines denote

a surplus of ¬ and dashed contour lines a surplus ­ spin

density. Clearly, the surplus of ¬ spin density is located

at the ® rst while a surplus of ­ spin density is located at

the second H atom (see ® gure 1), thus indicating that at
the UHF level the S state is contaminated by a T state

with Sz ˆ 0.

Since the UHF description of the stretched H2 mol-

ecule is contaminated by just the T state, we now predict

the weight of the T component and, accordingly,
hŜS2iUHF by comparison of the SMD of the broken-

symmetry state (® gure 1(a)) and the SMD of the corre-

sponding T state (® gure 1(b)) also calculated at UHF.

As shown in ® gure 1, the SMD of the T state is every-

where positive and ® nite in the centre of the molecule

(for the UHF description of the S state it is zero at this

location). The SMDs for the S and T states can be used
for a determination of spin contamination of the UHF

description of the S state provided that the following

holds.

(1) The T state appearing as a contamination in the

UHF description can be represented by the

directly calculated UHF T state. Of course, this

assumption can hold only approximately since

the T contamination and the UHF T state will
diŒer. The T contamination is a direct result of

balancing the mixing of the S ground state and a

doubly excited S state within a single-

determinant description, and therefore it must

diŒer from the T state for which the wavefunc-
tion is optimized at the UHF level. This diŒer-

ence will cause errors in the SMD calculation of

hŜS2iUHF;ms
that can be assessed directly by com-

paring hŜS2iUHF;ms
and hŜS2iUHF;F of the stretched

H2 molecule.

(2) In the general case, the UHF description of a T

biradical will also be contaminated. One could

think of using the spin restricted open-shell

description of the T state (ROHF, RODFT,
etc.); however, by this one would lose the advan-

tages of spin unrestricted theory, for example of

describing spin polarization correctly. Hence, one
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Figure 1. (a) SMD distribution ms…r† ˆ »¬…r† »­ …r† of the
stretched H2 molecule (R ˆ 1:4 A

¯
) in its S ground state

calculated at the UHF/cc-pVTZ level of theory and given
in the form of a contour line diagram in the plane of the
molecule. Solid lines indicate a surplus of ¬ spin, and
dashed lines, a surplus of ­ spin. The following contour
lines are used: 0; §0:0001, §0:0002, §0:0005, §0:001,
§0:002, §0:005, §0:01, §0:02, §0:05, §0:1 e a 3

0 . (b)
SMD pro® le (in e a 3

0 ) of the S ground state (dotted
line) and the ® rst T state (solid line) of the stretched H2

molecule (R ˆ 1:4 A
¯

) calculated at the UHF/cc-pVTZ
level of theory and shown as a function of distance r for
0 4 r 4 4 A

¯
where r ˆ 0 is the bond midpoint. (c)

Schematic drawing of the UHF orbitals ¿a and ¿b of
the S ground state of the stretched H2 molecule with the
de® nition of bond length R and position parameter r.



has to stick to the UHF description of the T

state. Experience shows that its contamination

is rather small as re¯ ected by hŜS2iUHF;F for T

states, which normally diŒers only slightly from

S…S ‡ 1† ˆ 2. Hence, one can neglect the contam-
ination of the T state.

(3) For S biradicals with more than two electrons,

one has to consider in addition to the T contam-

ination also contaminations from higher spin

multiplets. We assume that these higher contami-

nations can be neglected.
(4) The T and S states of a biradical possess diŒerent

geometries. It is assumed that any diŒerences in

the two geometries are so small that the SMD of

the T state calculated at the S geometry does not

diŒer much from the true SMD of the T state.
Actually, this assumption is an extension of

assumption (1), and indicates that S and T states

are calculated under the same conditions.

Clearly, assumption (1) is the most critical one, and

therefore we have chosen stretched H2 as an appropriate
example to test the validity of assumption (1). The SMD

method based on assumptions (1) to (4) can be derived

in the following way. The UHF wavefunction of the S

state is built up from the two UHF orbitals ÁS
a ˆ ¿a¬

and ÁS
b ˆ ¿b­ :

jFS
UHFi ˆ âay

¬b̂by
­ j0i; …3†

where the creation operators act on the two orbitals ¿a
and ¿b, which are sketched in ® gure 1(c). Due to

breaking of spin symmetry, these orbitals are localized

at the ® rst and second H atom, respectively. The SMD
of the S state is given by

mUHF;S
2 ˆ ¿a…r†2 ¿b…r†2: …4†

By decomposing jFS
UHFi into S and T components, one

® nds that

hŜS2iUHF ˆ hFUHFjŜS2jFUHFi

ˆ 1 h¿aj¿bi2: …5†

In the case of orthogonal orbitals ¿a and ¿b,

hŜS2iUHF ˆ 1, which corresponds to a 1:1 mixing of S

and T contributions in the UHF state (see equation
(12) below) whereas hŜS2iUHF < 1 will occur if ¿a and

¿b overlap.

The T UHF function is analogously built up of two

spin orbitals ÁT
a and ÁT

b , which in general will be inde-

pendent of the orbitals ÁS
a and ÁS

b . However, employing

assumption (1) we assume that the spin orbitals for both
the T and the S states are based on the same space

orbitals ¿a and ¿b, i.e. ÁT
a ˆ ¿a¬ and ÁT

b ˆ ¿b¬. In con-

trast to ÁS
a and ÁS

b , the spin orbitals ÁT
a and ÁT

b generally

are not orthogonal to each other, which results from the

fact that they are not the canonical orbitals for the two

electrons. The overlap hÁajÁbi is equal to h¿aj¿bi and,

according to equation (5), related to hŜS2iUHF. To

account for this overlap, one has to introduce a normal-
ization factor C into the T wavefunction, which then

takes the form

jFT
UHFi ˆ Câay

¬b̂by
­ j0i; …6†

C ˆ ‰1 h¿aj¿bi2Š 1=2

ˆ hŜS2i 1=2
UHF: …7†

The SMD for the T state is given by

mT
s …r† ˆ 1

hŜS2iUHF

f¿2
a…r† ‡ ¿2

b…r†

‰1 hŜS2iUHFŠ1=2¿a…r†¿b…r†g: …8†

Comparison of equations (4) and (8) reveals that for an
equal mixture of S and T states in the UHF description

of the S state (large R and h¿aj¿bi ˆ 0), the SMDs of S

and T states are identical in the non-bonding region:

mUHF;S
s ˆ mUHF;T

s ˆ ¿2
a. For smaller R as shown in

® gure 1(b), the two space orbitals ¿a and ¿b overlap,

the S contribution to the UHF S state is larger than
the T contribution, hŜS2iUHF < 1 and mUHF;T

s is scaled

up by a factor 1=hŜS2iUHF so that mUHF;T
s > mUHF;S

s in

all regions of the stretched H2 molecule. In the non-

bonding regions where one of the two orbitals domi-

nates, the SMDs of the UHF S and UHF T states are
proportional to each other, so that one can determine

hŜS2iUHF;ms
directly from the proportionality factor:

jmUHF
s …r†j ˆ hŜS2iUHFmT

s …r† for j¿a…r†j ¾ j¿b…r†j or

j¿b…r†j ¾ j¿a…r†j: …9†

Hence, one can apply the SMD method if it is possible

to identify a suitable region in the molecule where the

electron population of one of the open-shell orbitals

contributes predominantly to the SMD. In such a
region, the relative spin polarization

±…r† ˆ …»¬…r† »­ …r††=»…r† …10†

of the S-UDFT state is equal or close to 1. Accordingly,

it is reasonable to ® t mUHF;S
s to the ansatz

mUHF;S
s ˆ fmUHF;T

s …11†

employing a least-square criterion. The factor f should

lead to a reasonable estimate for hŜS2iUHF;ms
according to

equation (9).
Utilizing hŜS2iUHF;ms

, the percentage of S and T char-

acter in the UHF description can be derived from

hŜS2iS
UHF ˆ xhŜS2iS ‡ …1 x†hŜS2iT: …12†
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When this approach is applied to systems with more

than two electrons, one must make an additional

assumption, viz. that

(5) the core of doubly occupied orbitals is not spin

polarized or, alternatively, that its spin polariza-

tion in the S and T states is comparable.

This assumption is closely connected to assumptions (2)
and (3) above, which play no role in a two-electron

system. Experience shows that assumption (5) is not

correct; however, diŒerences resulting from spin polar-

ization eŒects are in general rather small.

The SMD method in its ultimate formulation makes
use of the SMDs of the S and T states and considers the

orbitals ¿a and ¿b only as intermediate quantities. This

means that the SMD can be applied to any spin unre-

stricted method such as UMP, UHF-CC or, in particu-

lar, UDFT. In the following, we will discuss results

obtained with the SMD method at the UHF and
UDFT levels of theory, trying to answer questions

raised in section 1.

3. Application of the SMD method for calculating ŜS2

All calculations were carried out using standard

theory and Dunning’ s cc-pVTZ basis set [15]. Seven

diŒerent functionals representing three basically dif-

ferent approaches in DFT were tested at the UDFT

level: 1, the SVWN functional, which is a typical repre-
sentative of the LSD approach since it combines the

Slater exchange functional [16] with the Vosko± Wilk±

Nusair correlation function [17]; 2, BP86, 3, BPW91

and 4, BLYP represent functionals using the generalized

gradient approximation (GGA); the Becke88 exchange

functional [18] based on Slater exchange and corrections
involving the gradient of the density is combined with

Perdew’ s gradient corrected correlation functional P86

[19]; the Perdew± Wang-1991 gradient corrected correla-

tion functional [20] or the LYP correlation functional of

Lee et al. [21]; 5, B3PW91 and 6, B3LYP are Becke’s
three-parameter hybrid functionals with the ® tting

parameters A ˆ 0:80, B ˆ 0:72 and C ˆ 0:81; while 7,

mPW1PW91, is the one-parameter hybrid functional

of Barone and Adamo [23] based on the modi® ed

Perdew± Wang exchange functional mPW1 and the
Perdew± Wang 91 correlation functional. mPW1PW91

represents a member of the new class of one-parameter

hybrid functionals which have been optimized further to

extend the applicability of DFT [24]. The single par-

ameter of mPW1PW91, which mixes HF and DFT

exchange, is 0.25 as determined by lowest order
GoÈ rling± Levy perturbaton theory [23]. All calculations

were carried out with the quantum chemical programs

Cologne 99 [25] and Gaussian 98 [27].

For the calculation of hŜS2iUHF;ms
and hŜS2iUDFT;ms

,

equation (11) was used after selecting an appropriate

region to compare the SMDs of the S and T states as

calculated with UHF or UDFT. In the case of heavy

atoms, we ® nd a shell structure (see below) close to the

nucleus, which is probably due to diŒerences in the ¬
and ­ KS core orbitals (see assumption (5)). Therefore,
we restrict the ® t procedure to the region 0.5± 3 AÊ away

from a reference nucleus in the non-bonding region of

the molecule to make sure that equation (9) is ful® lled.

In the case of the H2 molecule, this region is along the
bond axis while for the para-didehydrobenzene biradical

the direction along the outer bisector of the C3C4C5

(see later in ® gure 4) bond angle was chosen. In ® gure

2(a), calculated hŜS2iUHF;ms
and hŜS2iUDFT;ms

values are

given as a function of the internuclear distance R of

the stretched H2 molecule (solid lines). They are com-
pared with the corresponding hŜS2iUHF;F and hŜS2iUDFT;F
values obtained from the UHF or KS wavefunctions.

The RHF description of the H2 molecule becomes

unstable for bond lengths R 5 1:2 A
¯

(® gure 2(a)).

With increasing R, the UHF solution becomes increas-

ingly more stable than the RHF solution, while spin
contamination of the UHF wavefunction increases

from 0 to 1 for R ˆ 1:2 ! 1. Generally, the possible

gain in total energy due to the restricted± unrestricted

transition …measurable, e.g. by the energy diŒerence

E…U† E…R†† for a given method, is larger the lower
the correlation energy the restricted version of this

method covers. RHF does not cover any Coulomb cor-

relation at all, and therefore it is less stable and the

corresponding UHF state is more spin contaminated

for any bond length R > 1:2 A
¯

than any of the DFT

methods investigated (® gure 2(a)). RDFT-BPW91
becomes unstable for R 5 1:52 A

¯
and RDFT-SVWN

for R 5 1:78 A
¯

. This re¯ ects the fact that (a) DFT

methods cover a considerable amount of dynamic cor-

relation eŒects; and (b) LSD methods such as SVWN

systematically overestimate dynamic electron correla-
tion eŒects in distinction to gradient corrected methods

such as BPW91, which accounts for the smaller

instability of RDFT-SVWN as compared to RDFT-

BPW91. DFT methods fail to describe static electron

correlation eŒects; however, this is partly compensated

by an overestimation of dynamic correlation eŒects.
Figure 2(a) and in particular (b), in which the diŒer-

ence hŜS2ims
hŜS2iF is given as a function of hŜS2iF, reveal

the extent to which hŜS2i© and hŜS2imS
agree for the dif-

ferent methods. Obviously, the two values for hŜS2i diŒer

strongly for small spin contaminations (hŜS2iF 4 0:5)
suggesting hŜS2ims

/ hŜS2i1=2
F rather than direct propor-

tionality for hŜS2iF ! 0. This indicates that assumption

(1) becomes less justi® ed the more the two orbitals ¿¬

and ¿­ overlap. On the other hand, one ® nds that the
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two values for hŜS2i agree well for UHF provided

hŜS2i© > 0:5.

For the UDFT methods, the diŒerence hŜS2ims
hŜS2iF

is up to 50% larger than the corresponding UHF diŒer-

ence, which indicates that, besides the systematic errors

because of orbital overlap, there is a systematic increase

in diŒerences, suggesting that hŜS2iUDFT;F is inaccurate in

this region. However, deviations are smaller than 0.1 for

hŜS2iF > 0:6 and decrease to less than 0.02 with

increasing hŜS2iF, which means that hŜS2iUDFT;F
gives a

reasonable approximation for the amount of spin con-

tamination under these conditions.

The geometrical parameters of para-didehydroben-

zene calculated at the UDFT/cc-pVTZ level of theory

are listed in table 1. They indicate a regular distortion of

the benzene hexagon such that the internal ring angles

C6C1C2 and C3C4C5 are widened while the remaining

four angles are narrowed. This is the result of rehybri-

dization of the C orbitals from typical sp2 (as in ben-
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(b)

Figure 2. (a) hŜS2i for the stretched H2 molecule as calculated
from the KS determinant and from the SMD given as a
function of the bond distance R at the UHF/cc-pVTZ,
UBPW91/cc-pVTZ, and USVWN/cc-pVTZ levels of
theory. The experimental equilibrium bond length Re is
indicated. Calculated equilibrium bond lengths are:
0.7344 AÊ (HF/cc-pVTZ); 0.7481 AÊ (BPW91/cc-pVTZ),
0.7641 AÊ (SVWN/cc-pVTZ). (b) DiŒerence ¢hŜS2i ˆ
hŜS2iUDFT;ms

hŜS2iUDFT;F calculated at the UHF/cc-
pVTZ, UBPW91/cc-pVTZ, and USVWN/cc-pVTZ levels
of theory for the stretched H2 molecule.

(a)

(b)

Figure 3. SMD distribution ms…r† ˆ »¬…r† »­ …r† for (a) the
S ground state and (b) ® rst T state of para-didehydroben-
zene calculated at the UBP86/cc-pVTZ level of theory and
given in the form of a contour line diagram in the plane of
the molecule. Both calculations were done at the geometry
of the S ground state. Solid lines indicate a surplus of ¬
spin, and dashed lines a surplus of ­ spin. The following
contour lines are used: (a) 0, §0.0001, §0.0002, §0.0005,
§0.001, §0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0:2 e a 3

0 , and
(b) 0, §0.0001, §0.0002, §0.0005, §0.001, §0.002,
§0.005, §0.01, §0.02, §0.05, §0:1 e a 3

0 .



zene) toward sp hybrid orbitals at the single electron

centres C1 and C4. The orbital containing the single

electron can adopt more pp character and negative

charge is shifted from the outside to the inside of the

ring, which is of advantage for a through-bond coupling

mechanism [27] involving the ¼¤(CC) orbitals of bonds

C2C3 and C5C6 or the corresponding in-plane p¤
ip(CC)

orbitals. The geometries for the S and T state of the

biradical are similar and, accordingly, justify the

assumption that for a comparison of the SMDs of the

two states the S geometry can be used. Figure 3(a; b)

gives the SMDs for the T and S states of para-didehy-

drobenzene determined at UDFT-BP86/cc-pVTZ. The

SMD distributions for the other DFT methods and for

UHF look similar. The similarities with the SMDs for

the stretched H2 molecule (® gure 1) are obvious. For

example, there are again two atoms (C1 and C4) with

a surplus of either ¬ spin or ­ spin density, as found in

the case of the UDFT description of the stretched H2

molecule. Also, there is a typical spin polarization pat-

tern of the SMD for the S (and to some extent also for

the T) state, which is best explained with the intra-

atomic Hund rule: if at C4 there is a surplus of ¬ den-

sity, then C3 and C5 will be the locations of a surplus of

­ density, the adjoint H atoms the locations of a surplus

of ¬ density, etc.

Figure 4 depicts the SMD pro® les for the two states

calculated at UDFT-BP86/cc-pVTZ along the line con-

necting the centre of the ring and the position of nucleus

C4. Close to the C4 nucleus, at r r…C4† ˆ 0:08 A
¯

,

there is a minimum in the SMD of both S and T

(appearing as a cusp on the logarithmic scale of ® gure

4), followed by a maximum of the SMD at

r r…C4† ˆ 0:34 A
¯

. The maximum of the SMD can be

related to the maximum probability of ® nding the single
electron at C4, which should be closer to the C nucleus

than the electron pair of a CH bond (normally 0.7 AÊ
away from the C nucleus). The minimum re¯ ects spin

polarization of the core electrons, and can be considered
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Table 1. Geometrical parameters of the S and T states of the para-didehydrobenzene biradical
calculated at UDFT/cc-pVTZ.

a

Functional R(C1C2) R(C2C3) R(C1C4) ¬(C1C2C3) ¬(C3C4C5)

S state

SVWN 1.345 1.437 2.676 117.5 125.1

BP86 1.368 1.437 2.692 117.3 125.4

BPW91 1.368 1.432 2.686 117.3 125.4

BLYP 1.368 1.443 2.701 117.4 125.3

B3PW91 1.366 1.414 2.658 117.1 125.8

B3LYP 1.366 1.419 2.664 117.1 125.8

MPW1PW91 1.365 1.410 2.654 117.1 125.8

T state

SVWN 1.365 1.398 2.602 116.2 127.7

BP86 1.381 1.413 2.638 116.4 127.3

BPW91 1.379 1.411 2.636 116.4 127.3

BLYP 1.382 1.416 2.646 116.4 127.2

B3PW91 1.372 1.401 2.622 116.4 127.1

B3LYP 1.373 1.404 2.628 116.4 127.1

MPW1PW91 1.370 1.399 2.619 116.4 127.1

a
Distances in A

¯
and bond angles ¬ in deg.

Figure 4. SMD pro® le (in e a 3
0 ) of the S ground state (dotted

line) and the ® rst T state (solid line) of para-didehydro-
benzene calculated at the UBP86/cc-pVTZ level of theory

and shown as a function of distance r for 0 4 r 4 4 A
¯

along the bisection of the bond angle C3C4C5, where
r ˆ 0 corresponds to the centre of the molecule. The
inset schematically shows the UDFT orbitals ¿a and ¿b
used for the calculation of hŜS2iF.



as part of a shell structure at the C nucleus which is
strongly perturbed on the other side of the C4 nucleus

inside the ring, since rehybridization of the single elec-

tron orbital and through-bond interactions (see above)

lead to a shift of spin density from the outside to the

inside of the ring.

The similarity between the SMD pro® les of the S and

T states in the particular case of the BP86 functional

(® gure 4) and for all functionals investigated in this

work makes it possible to determine hŜS2ims
according

to equations (9) and (11). Table 1 summarizes

hŜS2iUDFT;ms
and hŜS2iUDFT;F values for para-didehydro-

benzene as obtained for the seven diŒerent XC func-

tionals employed in this work. As for the stretched H2

molecule, the hŜS2iUDFT;ms
values tend to be higher than

the corresponding hŜS2iUDFT;F values, with the deviation

increasing as hŜS2iUDFT;F decreases. For hybrid func-

tionals, the SMDs indicate an almost equal mixing of

S and T states and an hŜS2iUDFT value close to 1. DiŒer-
ences ¢hŜS2i ˆ hŜS2iUDFT;ms

hŜS2iUDFT;F are small, in

line with the observation made for stretched H2 at
large distances R.

The more electron correlation eŒects are covered by a

particular unrestricted method, the smaller is spin con-

tamination. This is con® rmed by the functionals inves-

tigated in this work. SVWN covers the largest amount

of correlation eŒects and, accordingly, it leads to the

smallest degree of spin contamination as re¯ ected by

the hŜS2iUDFT;ms
values of table 2. At the same time, the

diŒerence ¢hŜS2i is the largest obtained for all func-

tionals. Again, this is in line with the observations

made for stretched H2. With increasing electron correla-

tion, the through-bond coupling mechanism between the

single electrons increases (re¯ ected in shorter CC bonds,

table 1), rehybridizaion at C1 and C4 becomes stronger,

and orbital overlap between ¿a and ¿b also increases.

The KS determinant is less suited to calculating

hŜS2iUDFT. Altogether, while hŜS2iUFDT;ms
diŒers from

hŜS2iUDFT;F quantitatively it gives a qualitatively correct

account of the spin contamination in the UDFT state.

The similarities in the behaviour of hŜS2iF and hŜS2ims

indicate that assumptions (3) and (5) above are
sensible.

4. Conclusion

The SMDs calculated for the S and the T states of a
biradical can be used to determine hŜS2ims

for UDFT.

The method works well provided orbitals ¿a and ¿b do

not overlap strongly, which can mostly be guaranteed by

selecting a molecular region in which either ¿a or ¿b
dominates. Results show that hŜS2iUDFT;F obtained

from the KS determinant diŒers from hŜS2iUFDT;ms
; how-

ever, deviations are small enough for us to attribute
signi® cant diagnostic value to the former.
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