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The electron correlation e� ects covered by density functional theory (DFT) can be assessed
qualitatively by comparing DFT densities »(r) with suitable reference densities obtained with
wavefunction theory (WFT) methods that cover typical electron correlation e� ects. The analy-
sis of di� erence densities »(DFT)¡»(WFT) reveals that LDA and GGA exchange (X) func-
tionals mimic non-dynamic correlation e� ects in an unspeci®ed way. It is shown that these
long range correlation e� ects are caused by the self-interaction error (SIE) of standard X
functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange,
for the bonding region a delocalized exchange hole, and does not cover any correlation e� ects.
Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or
MP2 densities. The correlation functional changes X-only DFT densities in a manner observed
when higher order coupling e� ects between lower order N-electron correlation e� ects are
included. Hybrid functionals lead to changes in the density similar to those caused by SIC-
DFT, which simply re¯ects the fact that hybrid functionals have been developed to cover part
of the SIE and its long range correlation e� ects in a balanced manner. In the case of spin-
unrestricted DFT (UDFT), non-dynamic electron correlation e� ects enter the calculation both
via the X functional and via the wavefunction, which may cause a double-counting of correla-
tion e� ects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT
(PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems pro-
vided certain conditions are ful®lled. More reliable, however, is a combination of DFT and
WFT methods, which makes the routine description of multireference systems possible. The
development of such methods implies a separation of dynamic and non-dynamic correlation
e� ects. Strategies for accomplishing this goal are discussed in general and tested in practice for
CAS (complete active space)-DFT.

1. Introduction
The primary goals of quantum chemical investiga-

tions are (a) the accurate prediction of molecular prop-
erties such as structure, stability, reactivity, etc. and (b)
the rationalization and interpretation of (calculated or
measured) molecular properties in terms of simple
models and concepts [1±4]. These goals have been
actively pursued ever since quantum chemical methods
could be routinely applied with the help of powerful
computers. Wavefunction theory (WFT) was for many
decades the leading discipline in quantum chemistry. In
particular, in the 1970s and 1980s research in quantum
chemistry was driven by expectations that by a steady
improvement of correlation corrected ab initio methods
and the availability of faster supercomputers pending
chemical problems could soon be solved just by calcula-

tion rather than experiment. By the end of the 1980s the

most important methods for calculating atomic and

molecular energies with high precision had been devel-

oped. However, it became clear that it would be impos-
sible to attack basic problems in chemistry (such as

complex reaction mechanisms in the polluted atmos-

phere, drug±receptor interactions in the human body

or the folding of a protein) in the near future with the

help of correlation-corrected WFT methods and next
generation supercomputers. Clearly, it was necessary

to sacri®ce the precision of the available WFT methods

to investigate pending chemical problems. However,

quantum chemists did not want to revert back to semi-

empirical methods, which had their peak time in the

1970s.
In this situation, in the late 1980s, density functional

theory (DFT) [5±24] was introduced into the repertoire

of standard quantum chemical methods available to the
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widespread usership of quantum chemical methods and

quantum chemical programs. This was triggered by im-

portant developments in DFT methodology, which

facilitated the use of DFT in quantum chemistry. New

density functionals leading to increased accuracy were
introduced, the applicability of DFT was increased, and

a better understanding of its advantages and disadvan-

tages was gained. This work was connected with the

names of Parr, Becke, Perdew, and many others. From

a practical point of view even more important was the
integration of DFT program codes into standard

quantum chemical packages in a manner that allowed

the reproducibility of DFT results: an aspect that had

been questioned by many potential users of DFT in the
decades before. Leading in this respect was the work by

Pople and his group in the USA and, independently, the

work by Handy and his coworkers in the UK. In this

way, DFT became available in the 1990s as a routine
method for a growing clientele of quantum chemical

technology.

Actually, the roots of DFT reach as far back in his-

tory as those of WFT. DFT-based methods had their

origin in the quantum mechanical work of the 1920s, in
particular that of Thomas [25] and Fermi [26], who

showed with the help of a functional derived for the

homogeneous electron gas (HEG) that the kinetic

energy of atoms or molecules can be calculated approxi-
mately by just utilizing the electron density rather than

the molecular wavefunction. Following Thomas and

Fermi, Dirac [27] demonstrated that the exchange

energy of the electrons can be expressed as a functional

of the density. Within the Thomas±Fermi±Dirac model
the molecular energy can be determined because

nucleus±electron attraction and the classical Coulomb

repulsion of non-interacting electrons can be expressed

anyway as functionals of the density.

In the early 1950s, Slater [28] pioneered the idea of
blending WFT with DFT by replacing the Fock

exchange term of HF theory by Dirac’s exchange func-

tional. A theoretical basis for DFT was laid by Hohen-

berg and Kohn in the mid-1960s [5]. Kohn and Sham [6]

proved that Slater’s ad hoc procedure can be justi®ed
theoretically. Provided that the correct functional of

the electron density is known for the electron±electron

interaction term (exchange and correlation where also a

part of the kinetic energy is included that corrects the
kinetic energy of non-interacting electrons for correla-

tion e� ects), it is in principle possible to determine the

SchroÈ dinger energy of a molecule using self-consistent

®eld (SCF) technology. This established Kohn±Sham
(KS) DFT, by which it is possible to calculate the

energy of atoms and molecules within an iterative SCF

scheme [6].

Kohn’s work plus that of Levy, Perdew, Parr, Becke,
Pople, Handy, and others led to the DFT methods as
they are available today. This feature article does not
aim to summarize these developments in detail because
they are discussed in literally dozens of monographs
and review articles over recent years [7±24]. Instead,
DFT is approached here from the basis of WFT, to
assess its applicability to molecular problems requiring a
detailed account of electron correlation. DFT is a corre-
lation corrected method; however, it is by no means
clear which electron correlation e� ects are covered by
the various exchange±correlation (XC) functionals
presently in use.

In this work, we shall summarize recent attempts to
assess dynamic and non-dynamic correlation e� ects
covered by KS-DFT when applying standard XC
functionals [28±40]. For this purpose, electron density
distributions and other molecular properties are ana-
lysed, where experience and knowledge of the coverage
of electron correlation e� ects by correlation corrected
ab initio methods [41±51] are used to specify correlation
e� ects covered by DFT [52±59]. In particular, we shall
focus on the following questions. (a) What does electron
correlation actually mean at the DFT level? (b) What
correlation e� ects are covered by the X, what by the C
functional? (c) Are there considerable di� erences in the
coverage of electron correlation e� ects when comparing
di� erent LDA, GGA or hybrid functionals? (d) What
role does the self-interaction error play in connection
with electron correlation? Do self-interaction corrected
DFT methods provide a better account of correlation
e� ects? (e) Does standard DFT include any non-
dynamic correlation e� ects and, if so, in which way?
(f) How can multireference systems be described by stan-
dard DFT methods? Does spin-unrestricted DFT cover
any non-dynamic electron correlation e� ects? (g) What
are the problems of combining WFT and DFT methods
for the purpose of describing multireference systems in
an accurate way?

Clearly, a more detailed knowledge about the correla-
tion e� ects covered by DFT helps to predict the per-
formance and reliability of DFT when applied to
molecular systems. Therefore, answers to questions
(a)±(g) will also lead to an assessment of the accuracy
of standard DFT methods.

This feature article is organized in the following way.
In } 2 and } 3, short overviews over commonly used XC
functionals [28±40] and the correlation e� ects these
functionals have to cover are given. Section 4 sum-
marizes some of the advantages and disadvantages of
DFT. In } 5, dynamic electron correlation e� ects
described by exchange and correlation functional are
discussed comparing electron di� erence densities
obtained by WFT and DFT methods. In particular,
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the role of hybrid functionals in connection with the
self-interaction error will be considered. Section 6 is
devoted to the question of whether nondynamic electron
correlation errors can be introduced into DFT. In this
connection, the usefulness of normal spin-unrestricted
DFT (UDFT), permuted-orbital UDFT, and broken-
symmetry UDFT for describing multireference systems
is analysed. The explicit coverage of nondynamic corre-
lation e� ects is possible by extending standard DFT, as
is shown in } 7. Finally, conclusions and outlook are
given in } 8.

2. Overview of commonly used exchange±correlation
functionals

In the formulation of Levy [60], DFT is based on the
functional

F‰»Š ˆ min
C!»

hCjT̂T ‡ V̂V eejCi; …1†

where the minimization is carried out over all properly
antisymmetric trial wavefunctions C that integrate to
the density ». The ground-state energy for an external
potential v is then found by a search over all » that
integrate to the total number of electrons N as

E‰vŠ ˆ min
»!N

F‰»Š ‡
…

d3r »…r†v…r†: …2†

The form of the functional F‰»Š is unknown. To trans-
form equation (1) into a practical calculational scheme,
one decomposes F‰»Š into one term that covers the
major part of the total energy and can be evaluated
exactly and another term that represents the many-
body problem of interacting electrons. Within KS-
DFT [6] one partitions F‰»Š into the KS energy FKS‰»Š
and the exchange±correlation energy EXC‰»Š:

F‰»Š ˆ FKS ‰»Š ‡ EXC‰»Š; …3†

FKS‰»Š ˆ min
F!»

hFjT̂T jFi ‡ 1
2

…
d3r

…
d3r 0 »…r†»…r 0†

jr ¡ r 0j ; …4†

where the F are antisymmetric trial functions that can

be built up from a set of orthonormal one-particle orbi-

tals Á1; Á2; etc. The ®rst term in equation (4) is related to
the kinetic energy of the non-interacting electrons, while

the second term is related to the Hartree repulsion
energy EJ of non-interacting electrons. For standard

KS-DFT, F is a single-determinant trial wavefunction.
The exact XC functional should cover all non-dynamic

and dynamic correlation contributions; however, the
approximate XC functionals available today are consid-

ered to describe only dynamic correlation e� ects.

Three di� erent generations of XC functionals [28±40]

are used nowadays in standard DFT methods. Typical

representatives of the ®rst generation are the SVWN or

the SVWN5 functional [28, 32], which were employed

®rst within the local density approximation (LDA).

They combine the Slater exchange functional [28] with

the Vosko±Wilk±Nusair (VWN) correlation functional

[32]. SVWN is based on the HEG, and covers local

exchange and local correlation e� ects (tables 1 and 2).

The correlation e� ects for the HEG were ®rst deter-

mined by using the random phase approximation

(RPA); later, a better description was achieved by a

quantum Monte Carlo (QMC) treatment, which was

then the basis of the VWN5 functional [32].

The second generation of density functionals is based

on the `generalized gradient approximation’ (GGA).

Typical members are the functionals BP86 [29, 33, 34],

BPW91 [29, 30], and BLYP [29, 35]. All three use the

Becke88 exchange functional [29] based on Slater

exchange [28], and corrections involving the reduced

gradient of the density, r»=»4=3, thus adding non-local

exchange e� ects. P86 is Perdew’s gradient-corrected cor-

relation functional [33, 34], PW91 is the Perdew±Wang-

1991 gradient-corrected correlation functional [30] and

LYP is the correlation functional of Lee et al. [35],

which is a modi®cation of the Colle and Salvetti correla-

tion energy formula [40].
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Table 1. Overview over currently used exchange functionals.a

Acronym Author Year Comment Ref

S Slater 1951 Local exchange from the HEG [28]
B Becke 1988 Local exchange as Slater

Non-local correction term with one empirical parameter, which by construction

(adjustment to exact HF exchange) corrects the asymptotical behaviour of "X(r)

[29]

PW91 Perdew, Wang 1991 Local exchange as Slater

Non-local correction term based on the exchange hole in a weakly inhomogenous

electron gas and some rigorous relations for "X(r)

[30]

mPW91 Barone 1998 Local exchange as Slater

Non-local exchange based on PW91, readjusting some parameters to improve the

performance in the low-density limit; adjustment is done with a ®t to noble-gas dimers

[31]

a HEG, homogeneous electron gas; "X(r), exchange energy per electron.



The third generation of functionals is based on a
mixing of HF and DFT exchange to obtain a more
realistic account of the XC energy, as was ®rst suggested
by Becke [36, 39]. The hybrid functionals B3P86,
B3PW91, and B3LYP all use the Becke exchange func-
tional [29] in combination with one of the correlation
functionals. Three parameters based on empirical cali-
bration procedures determine a suitable admixture of
HF, local and non-local exchange for the X functional
and local and non-local correlation of the C functional.
In table 3, the composition of these functionals is given
explicitly.

The B1LYP functional uses just one parameter to
de®ne the composition of the X and C parts [37, 38].
This is also true for the one-parameter functional
mPW1PW91 of Barone and Adamo [31], which is
based on the modi®ed Perdew±Wang exchange func-
tional mPW91 [30] and the Perdew±Wang 91 correlation
functional [30]. The one-parameter hybrid functionals
were developed to extend the applicability of DFT [37].

When using the exchange and correlation functionals
listed in tables 1, 2 and 3, or any other related func-
tional, one has to remember that they were originally
designed to describe all electron correlation e� ects in

an electron system, but not to give an accurate account
of exchange and correlation e� ects separately. Never-
theless, we will discuss correlation energies separately
in the following to obtain a better understanding of
electron correlation as it is covered by DFT. For this
purpose, we shall review the di� erent types of electron
correlation e� ects that are described by WFT and DFT
methods.

3. Electron correlation in WFT and DFT
The largest and most important part of electron cor-

relation is the exchange correlation (Fermi correlation)
of two electrons with identical spin. HF theory correctly
accounts for exchange correlation via antisymmetry of
the HF wavefunction, because antisymmetry implies
that the amplitude of the wavefunction vanishes for
the case when two electrons with the same spin are at
the same position. The electron pair density of any anti-
symmetric wavefunction gives a zero probability of
®nding a second electron with the same spin at the posi-
tion of the ®rst electron. The result of Fermi correlation
can be illustrated and investigated with the help of the
Fermi hole, which was ®rst discussed by Wigner and
Seitz in 1934 [61], and later in 1951 examined by Slater

1902 D. Cremer

Table 3. Overview over currently used hybrid functionals.

Exchange Correlation

Local DFT Non-local DFT Local DFT Non-local DFT

HF
Functional % % Name % Name % Name % Name Ref

B3P86 20 8 S 72 B 19 VWN 81 P86 [36]

P3PW91 20 8 S 72 B 19 PW91 81 PW91 [36]
B3LYP 20 8 S 72 B 19 VWN 81 (LYP-VWN) [36]

B1LYP 25 0 S 75 B 0 LYP 100 LYP [37,38]

mPW1PW91 25 0 S 75 mPW 0 PW91 100 PW91 [31]
BH&HP 50 50 S 0 Ð 0 LYP 100 LYP [39]

Table 2. Overview over correlation functionals in use today.a

Acronym Author Year Comment Ref

VWN Vosko, Wilk, Nusair 1980 Local correlation: RPA for the HEG (i.e. just double excitations) [32]

VWN5 Vosko, Wilk, Nusair 1980 Local correlation: QMC treatment of the HEG (i.e. all excitations) [32]
PL Perdew 1981 Local correlation: QMC for the HEG (i.e. all excitations) [33]

P86 Perdew 1981, 1986 Local correlation: QMC for the HEG (i.e. all excitations)

Non-local correlation: Coulomb hole for the weakly inhomogeneous
electron gas

[33,34]

PW91 Perdew, Wang 1991 Local correlation: QMC for the HEG (i.e. all excitations)

Non-local correlation: Coulomb hole for the weakly inhomogeneous
electron gas

[30]

LYP Lee, Yang, Parr 1988 Local and non-local correlation derived by a ®t to the He density (i.e.

no separation between local and non-local parts)

[35]

a HEG, homogeneous electron gas, RPA, random phase approximation; QMC, quantum Monte Carlo method.



for the HEG [28]. Investigation of various atoms
revealed that the Fermi hole for di� erent atoms is
remarkably unchanged, apart from a certain degree of
contraction depending on the e� ective nuclear charge of
the atom in question [62]. (As for the properties of the
Fermi hole and its mathematical expression in terms of
the pair density, see standard text books [7, 12, 24].)

The exchange±correlation energy as calculated with
the HF method is given in table 4 for the CO molecule
(all calculations [52] with the 6-311+G(3df ) basis [63]
at experimental geometry [64]). Comparison with the
Coulomb correlation energy obtained for example at
the CCSD(T) level of theory [65] suggests that Fermi
correlation corresponds to more than 95% of the total
correlation energy. Hence, the success of HF theory
results from the simple fact that it covers correctly the
larger part of the correlation energy, although in the
common quantum chemical terminology HF is consid-
ered as an uncorrelated method because of its failure to
cover Coulomb correlation. Nevertheless, it is didacti-
cally useful to speak of HF and all HF-based WFT
approaches as exchange±correlated methods.

DFT includes exchange±correlation via the X func-
tional; however, because of the approximate nature of
the known X functionals (see tables 1 and 4), exchange is
not covered exactly. Exchange functionals of the ®rst
generation, such as the S functional [28], underestimate

exchange e� ects substantially (table 4), while Becke
exchange [29] or the Perdew±Wang exchange [30] exag-
gerates slightly the magnitude of the exchange energy
relative to the corresponding HF value. For the hybrid
functionals, exchange e� ects are tuned down (table 4) by
the admixture of both Slater and HF exchange, however
not to reproduce exact exchange energies but to provide a
better total correlation energy.

Fermi correlation applies only to electrons with the
same spin whereas dynamic Coulomb electron correla-
tion occurs for every pair of electrons. It is non-speci®c
and in this sense a universal correlation e� ect, which
always is present in many-electron systems (N 5 2).
Coulson and Neilson [66] described dynamic electron
correlation with the help of the Coulomb hole:
Around each electron, there is a region of space, in
which another electron is less likely to be found relative
to the HF description. However, the probability of
®nding another electron exactly at the position of the
®rst electron is ®nite (provided the spins of the two
electrons are di� erent) rather than zero as found in the
case of the Fermi hole. Coulson and Neilson [66] found
that in the case of the He ground state the average
radius of the Coulomb hole is about 0.56 AÊ and that
0.05 e is displaced by the Coulomb hole. The Coulomb
correlation energy is about 42 mEh for the electron pair
of the He(1S) atom, but it decreases to about 1 mEh for
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Table 4. Electron interaction energies of CO(1§) obtained with di� erent
functionals.a

Molecule EJ EX EC EX C Eee

HF 76.247 63 713.328 96 0 713.328 96 62.918 67

S 75.898 98 711.963 03 0 711.963 03 63.935 95
B 76.235 97 713.381 70 0 713.381 70 62.854 27
PW91 76.205 17 713.349 78 0 713.349 78 62.855 39
mPW 76.222 22 713.378 39 0 713.378 39 62.843 83

SVWN 76.228 40 712.001 91 71.223 23 713.225 13 63.003 27
SVWN5 76.197 87 711.998 46 70.948 38 712.946 84 63.251 03
BPL 76.524 34 713.417 99 70.943 97 714.361 96 62.162 38
BP86 76.374 44 713.396 69 70.495 25 713.891 94 62.482 50
PW91PW91 76.395 75 713.368 95 70.485 25 713.854 20 62.541 55
BPW91 76.424 50 713.401 20 70.485 72 713.886 92 62.537 58
BLYP 76.387 49 713.398 27 70.485 32 713.883 59 62.503 90
mPW91PW91 76.411 97 713.397 73 70.485 47 713.883 20 62.528 77

B3LYP 76.391 77 713.269 98 70.625 66 713.895 64 62.496 13
B3PW91 76.413 38 713.272 14 70.573 63 713.845 77 62.567 61
B3P86 76.411 97 713.273 09 70.862 15 714.135 24 62.276 73

MP2 76.247 63 713.328 96 70.426 79 713.755 75 62.491 88
MP3 76.247 63 713.328 96 70.423 79 713.752 75 62.494 88
MP4(SDQ) 76.247 63 713.328 96 70.432 91 713.761 87 62.485 76
MP4(SDTQ) 76.247 63 713.328 96 70.454 61 713.783 57 62.464 06
CCSD 76.247 63 713.328 96 70.430 28 713.759 24 62.488 39
CCSD(T) 76.247 63 713.328 96 70.448 70 713.777 66 62.469 97

a All energies are given in Eh. All calculations with the 6-311+G(3df) basis set
[63] at the experimental geometry [64].



two electrons with the same spin, as in the He(3S) state.
Coulomb correlation enlarges somewhat the size of the
Fermi hole, but both Fermi and Coulomb correlations
are short range phenomena, as indicated by the dimen-
sions of the corresponding correlation holes.

The absolute value of the correlation energy as
obtained with the VWN [32] or PL functional [33] is
more than twice the magnitude of the CCSD(T) correla-
tion energy (table 4). The LYP [35] or PW91 functional
[30] leads to correlation energies comparable in magni-
tude with those obtained with WFT methods. Hybrid
functionals, on the other hand, yield correlation energies
considerably more negative than those obtained at the
CCSD(T) level of theory. This is justi®ed in view of the
di� erences in the de®nitions of the total correlation
energy at the DFT and WFT levels of theory.

(1) While the exact HF exchange is calculated from
the HF Slater determinant constructed from energy-
optimized HF orbitals, the exact KS exchange energy
is based on the Slater determinant formed from the
KS orbitals. The KS orbitals are determined in such a
way that they should reproduce the electron density of
the real electron system, which means that they re¯ect
the electron correlation e� ects of the molecule. In this
sense, the KS exchange energy calculated with the help
of the KS orbitals is in¯uenced by the electron correla-
tion in the system, even though it is calculated from the
wavefunction of a non-interacting reference system.
Accordingly, the DFT exchange energy cannot be
equal to the HF exchange energy: orbitals calculated
under the in¯uence of electron correlation are more
di� use, so that the absolute value of the calculated
exchange energy becomes smaller than the corre-
sponding HF value even if the same functionals would
be used.

(2) The correlation energy is de®ned as the di� er-
ence between the exact energy of the interacting many-
electron system and the energy of a suitable reference
system, where both WFT and KS-DFT use the energy of
a single-determinant wavefunction as reference. This
reference function is optimized with respect to the
total energy for HF, while in KS theory the reference
function is optimized to provide the best density distri-
bution »(r). Consequently, the reference energy is more
positive for KS than for HF, and thus the exact KS
correlation energy becomes larger (by its absolute
value) than the exact correlation energy in WFT. This
is the reason why the DFT correlation energies listed in
table 4 are all more negative than the WFT correlation
energies.

(3) The DFT exchange±correlation energy covers also
that part of the kinetic energy of the electrons that
results from the correlated movement of the electrons.
The DFT kinetic energy itself is just calculated for the

non-interacting electrons. As correlation leads to an
increase in the kinetic energy of the electrons of a mol-
ecule, the total correlation energy contains a kinetic
energy correction due to electron correlation. (In the
case of the HEG, the kinetic energy is increased.)

(4) Correlation and exchange functionals were devel-
oped in most cases to complement each other in the
sense of determining the exact (best) electron density
of a many-electron system rather than to lead to exact
exchange or correlation energies. Other XC functionals
were calibrated to provide accurate density-dependent
molecular properties such as energy, geometry, etc.,
rather than to obtain exact X and C energies.

In view of considerations (1)±(4), a comparison of
absolute WFT and DFT exchange and correlation ener-
gies is not meaningful. It is more useful to discuss trends
in these energies in connection with calculated density
distributions where, for the latter, WFT densities may be
used as a suitable reference.

Standard KS-DFT is considered to cover just
dynamic electron correlation, but not non-dynamic
(static) Coulomb correlation. The latter is known to
result from near-degeneracy e� ects, i.e. strong inter-
actions of ground and excited states, which are close
in energy. Hence, non-dynamic electron correlation is
(contrary to dynamic correlation) system-speci®c. It
leads to a substantial extension of the Coulomb correla-
tion hole, indicating that non-dynamic correlation is a
long range e� ect that clearly dominates the properties of
the Coulomb hole. The straightforward procedure to
cover non-dynamic electron correlation is to include
all con®guration state functions (CSFs) with similar
energy into a self-consistent ®eld calculation optimizing
both the orbitals and the coe� cients of the CSFs, as
in the full optimized reaction space (FORS) method of
Ruedenberg [67] of the equivalent (complete active
space) CAS-SCF approach [68]. A basic problem of
these approaches is that with the coverage of non-
dynamic electron correlation an uncontrollable
amount of dynamic electron correlation is introduced
by the method. Hence, any improvement in standard
KS-DFT to cover also non-dynamic electron correlation
has to consider the basic features of the correlation
hole resulting from system-speci®c, near-degeneracy
correlation e� ects.

4. Advantages and disadvantages of DFT
The many-electron problem is simpli®ed considerably

when the variational principle is applied to the one-
electron density distribution »(r) rather than the many-
electron wavefunction. Because of this simpli®cation,
advantages (A1±A6) result, which constitute the major
reasons for the enormously increased use of DFT
methods during the last decade [7±24].
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(A1) In DFT the many-particle Hamiltonian is sim-
pli®ed in a way that its conceptual use becomes much
easier. Energy parts that can be calculated exactly are
written down explicitly, while all parts of the energy that
are di� cult to calculate are contracted in the XC
functional.

(A2) Despite the fact that KS-DFT is based on a
single-determinant description of the many-particle
system, it will describe both single-reference and multi-
reference systems correctly, provided the exact XC-func-
tional is available.

(A3) The simplicity of DFT facilitates its extension
when a more complete theory is needed (calculation of
speci®c molecular properties, relativistic DFT, etc.).

(A4) For an adequate description of the XC func-
tional it is su� cient to focus on the correct assessment
of the exchange±correlation hole. The analysis of a
simple many-particle system should provide a better
understanding of the electron XC hole. Any improved
insight into how to model the XC hole exactly leads to
further developments in DFT and advances our knowl-
edge of the electronic structure of molecules.

(A5) As long as the XC functional does not depend on
the number N of electrons in a given electronic system,
DFT is size-extensive [69, 70].

(A6) Within KS-DFT, basis functions are used to
calculate KS orbitals. However, DFT as a theory
based on the electron density is less sensitive to basis
set truncation errors than WFT. VTZ+P and
VQZ+P basis sets (in the language of Dunning: cc-
pVTZ and cc-pVQZ basis sets [71]) are close to the
basis set limit, which for correlation-corrected WFT
methods is reached only at the cc-pV6Z basis set
[72, 73]. A direct consequence of the decreased sensi-
tivity of KS-DFT to basis set truncation errors is that
basis set superposition errors play a much smaller role in
DFT than in WFT.

The simplicity of DFT also implies disadvantages
(D1±D10), which have hampered its acceptance by
quantum chemists for a long time.

(D1) In contrast to WFT methods, DFT does not
o� er a systematic way of improving the Hamiltonian,
and in particular the XC potential, so that a correct
description of all many-electron interactions in a mol-
ecule cannot be achieved in a stepwise, well de®ned
manner.

(D2) DFT is a correlation-corrected method; how-
ever, it is not clear which electron correlation e� ects
are exactly covered by a given DFT method. This
makes it di� cult to predict the reliability of DFT results
for a particular electronic system.

(D3) Because of the approximate nature of the density
functionals in use nowadays, DFT is far from covering
system-speci®c electron correlation e� ects as they occur

in atoms and molecules with multi-reference character.
The common understanding is that DFT covers just
exchange and Coulomb correlation e� ects of the short
range (dynamic) type.

(D4) As a consequence of D1, density functionals
have been developed (e.g. the hybrid functionals) that
are no longer based on ®rst principles. Their composi-
tion was determined with the help of experimental data,
thus converting DFT to a semiempirical method.
Although clearly, LDA or GGA methods such as
BLYP or PW91 are ab initio (non-empirical) methods
[74], this is no longer true for hybrid functional
methods.

(D5) In HF theory, the Coulomb interaction of an
electron in a given orbital with itself is exactly cancelled
out by an analogous interaction in the exchange term.
Because of the approximate nature of the XC func-
tional, DFT su� ers from the self-interaction error
(SIE) of the electrons (see, e.g. standard texts and
reviews on DFT [7, 18, 20, 24, 32]). Methods to cure
this error have been suggested [75±85], but turn out to
complicate DFT in an undesirable way.

(D6) The conceptual understanding of WFT results is
based strongly on the use of orbitals (HF orbitals, nat-
ural orbitals, etc. [86]). KS orbitals di� er considerably
from HF orbitals, although it has been argued that the
former cover important properties of the latter [87±89].
Strictly speaking, one has to consider orbitals just as
mathematical tools in a density theory, and therefore
it has been pointed out [53, 54, 90] that KS orbitals,
depending on the DFT method used, are physically
not meaningful intermediates of the calculation, and
that the conceptual understanding of DFT results has
to start from the calculated density. Despite the progress
in understanding the density distribution of a molecule
(e.g. by virial partitioning as pioneered by Bader [91]),
there are no simple density-based models and concepts
that quickly help to understand the results of a DFT
calculation.

Although it would be beyond the scope of this article
to list all those cases in which KS-DFT reveals typical
de®ciencies because of the approximate nature of the
density functionals in use, some characteristic failures
of DFT should be mentioned.

(D7) A typical error of LDA descriptions is the exag-
geration of bond strength [8±14]. This can be largely
corrected for by using GGA and hybrid functionals,
but nevertheless it can still represent a problem in
bond forming/breaking processes.

(D8) It has been found that DFT underestimates in
many cases the barrier of a chemical reaction, in par-
ticular low barriers of exothermic reactions [85, 92, 93].
Both D5 (SIE) and D7 (exaggeration of bond strength)
can play a role in this connection. Connected with
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de®ciencies in describing transition states is often the
appearance of spurious minima on a potential energy
surface (PES) obtained by a DFT description [94].

(D9) Dispersion interactions in van der Waals com-
plexes depend on ¯uctuations of the density in the tails
of the monomers forming the complex, i.e. they depend
strongly on a correct description of electron correlation
in the van der Waals region. Most functionals in use are
not able to describe these ¯uctuations correctly, which
leads to the failure of KS-DFT in the case of van der
Waals complexes held together predominantly by dis-
persion forces [95±99]. Better results are obtained for
van der Waals complexes dominated by electrostatic
forces (interactions between permanent or induced mul-
tipole moments).

(D10) Directly connected with D9 are failures of DFT
in describing H bonding. While intermolecular H-bonds
are described reasonably at the KS-DFT level with an
appropriate basis set (mainly because H-bonding results
from both covalent and electrostatic interactions) [100±
102], intramolecular H-bonding often is not correctly
covered by DFT [103].

In the following, we focus in particular on points D2
and D3 concerning the correlation e� ects covered by
standard KS-DFT. A better understanding of these
aspects is a prerequisite for increasing the predictability
of DFT results (i.e. using DFT in a manner similar as
WFT methods are used) and for obtaining a starting
point for a more systematic improvement of DFT.

In WFT, a systematic improvement in the quantum
chemical description of a many-particle system is
accomplished by extending the single-particle, single-
determinant description of HF stepwise. First, dynamic
electron correlation e� ects are introduced, for which a
well tested repertoire of WFT methods is available (for
example, Mùller±Plesset perturbation theory at nth
order (MPn) [44, 104] or coupled cluster (CC) theory
[2, 3, 105±108]). If needed, non-dynamic electron corre-
lation can be added using multideterminant, multirefer-
ence (MR) descriptions such as MR-CI [109] or MR-CC
theory [110]. In WFT, there is the possibility of speci-
fying those many-particle corrections introduced via the
type of excitation (single (S), double (D), triple (T),
quadruple (Q), etc.) covered by the method in question
[44]. For example, MP2 is known to describe electron
pair correlation in a somewhat exaggerated way, MP3
corrects pair correlation e� ects at MP2 by a coupling
between D excitations, and MP4 introduces orbital
relaxation e� ects (via the S excitations), three-electron
correlation e� ects (via T excitations), and disconnected
four-electron correlation e� ects via Q excitations.
Higher order correlation e� ects as they are introduced
at ®fth-order (MP5) and sixth-order MP (MP6) theories
are also described in the literature [45]. MP theory pro-

vides a platform for analysing electron correlation
e� ects [46, 47] covered by more advanced methods,
such as CCSD [111] or CCSD(T) [65]. For example,
the former method contains all in®nite order e� ects in
the SD space, which means that for 2 4 n 4 1 all MPn
energy terms built up by just S and D are automatically
covered, as well as many (disconnected) higher order
contributions [48]. Similarly, CCSD(T) covers (up to
MP8) 77% of the terms of the SDT space of the more
complete CCSDT method [49]. Hence, the systematic
extension of MP and CC theories provides a ®rm basis
for an understanding of the stepwise improvement of
these methods.

5. Coverage of dynamic electron correlation by DFT
Despite the fact that generally the absolute value of

the DFT correlation energy is larger than the corre-
sponding values obtained by WFT methods, the changes
in the density distribution caused by the correlation
functional are not necessarily larger. The KS reference
system has to reproduce the one-electron density distri-
bution of the real system as much as possible, and there-
fore the in¯uence of the DFT correlation functional on
the density should be lower than that of electron cor-
relation corrections introduced in WFT. Because of
the simultaneous treatment of exchange and Coulomb
correlation e� ects in the XC functional, the X func-
tional can mimic electron correlation e� ects identi®ed
by WFT methods as Coulomb rather than exchange
correlation e� ects. Accordingly, it is important to
analyse the di� erences in the density distribution
caused by HF and DFT exchange, and to see which
correlation e� ects are already simulated by a particular
choice of an X functional. Such an investigation was
carried out by Cremer and coworkers [52], and in
the following the major conclusions of this work are
summarized.

Cremer and coworkers approached the problem of
identifying correlation e� ects covered by the DFT XC
functional by ®rst establishing a list of reference densi-
ties covering well known correlation e� ects. A number
of molecules with typical bonding situations between
®rst row heavy atoms (HÐH, H3CÐCH3, H2CÐÐ

CH2, HCÐÐÐCH, H2NÐNH2, HNÐÐNH, NÐÐÐN, OÐÐ

O, HOÐOH, FÐF, CH3ÐOH, H2CÐÐO, CÐÐÐO)
was investigated for this purpose. Out of this group
of test molecules we shall refer in particular to
results obtained for carbon monoxide in its ground
state, CO(1§+) (basis: 6-311+G(3df) [63]; experimental
geometry [64]) because its calculated electron density
distribution depends sensitively on the correlation
e� ects covered by a given method [43, 112±114].
The exact electron density and other molecular
properties of CO re¯ect a delicate balance between with-
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drawal of s-type electron density from the C to the O
atom (due to the di� erence in electronegativities) and
partial back-donation of p electron density from the O
to the C atom, thus lending the molecule some triple-
bond character. HF exaggerates the transfer of s
charge towards the O atom and underestimates p-back
donation [52].

Electron pair correlation as introduced at the MP2
level of theory via the D excitations leads to an import-
ant redistribution of the electron density, which can be
made visible when plotting the di� erence electron
density distribution ¢»(MP2, HF) ˆ »(MP2) ¡ »(HF)
(®gure 1(a)) [41, 42]. (a) Left±right correlation causes a
substantial charge transfer in the p space from the O to
the C atom. (b) Angular correlation supports the ®rst
e� ect by shifting negative charge from the region of
the s bond close to the O to the p region at C. (c) In±
out correlation shifts part of the charge in the outer
valence region closer to the nucleus (inner valence
region), in particular at O, while another part is
moved into the van der Waals region, by which the s
electron lone pairs at C and O become more di� use.

Although the pair correlation e� ects introduced at
MP2 correct the density and other properties of the
CO molecule in the right direction, their values are over-
corrected because too much negative charge is trans-
ferred from the O to the C atom. MP3, in turn,
corrects the exaggeration of pair correlation e� ects at
the MP2 level by coupling pair correlation e� ects. The
MP3 electron density changes partially back (p donation
from C to O) to the HF density, i.e. again there is too
little charge at the C atom (too much at the O atom).
This is corrected a second time at the MP4 level, which
introduces orbital relaxation e� ects, three-electron cor-
relation, and pair±pair correlation e� ects. Again, there
is a transfer of negative charge from the O to the C atom
similar to as it occurs at the MP2 level; however, this
time the accumulation of charge in the p space of C is
not so strong. In total, the stepwise introduction of elec-
tron correlation e� ects at the MPn level leads to oscilla-
tions in the density distribution and other molecular
properties of CO, where oscillations decay slowly with
increasing order n of MPn theory.

The correlation e� ects covered at the CCSD level
include in®nite-order orbital relaxation and pair correla-
tion e� ects, which means that both an exaggeration or
underestimation of pair correlation e� ects is avoided.
The di� erence density distributions ¢»(CCSD,MPn) ˆ
»(CCSD)¡»(MPn) shown in ®gure 1(b) (n ˆ 2), (c)
(n ˆ 3) and (d) (n ˆ 4: MP4(SDQ)) con®rm this. The
CCSD electron density distribution leads to lower p
density at the C atom than that found at both the
MP2 and the MP4(SDQ) levels of theory, but it leads
to more p density at C than found at the MP3 level. The

partial inclusion of three-electron correlation at either
the MP4(SDTQ) or the CCSD(T) level of theory
increases (decreases) the p density at the C (O) atom
(®gure 1(e)), where again this e� ect is exaggerated by
the MP method. Figure 1( f ) reveals that by including
a large part of in®nite-order three-electron correlation
e� ects at the CCSD(T) level of theory (CCSD(T) covers
more than 70% of the in®nite-order e� ects in the T
space, in particular DT and TT coupling e� ects,
which help to avoid an exaggeration of three-electron
correlation as it occurs at the MP4 level [48,49]),
the exaggeration of the p density at the C atom
caused by MP4 is reduced. CCSD(T) yields a reliable
description of both electron density and the molecular
properties of CO, and therefore, the CCSD(T) results
represent an ideal reference for the analysis of the
DFT results.

5.1. What correlation e� ects are covered by DFT
exchange functionals?

In ®gure 2 the electron density distribution calculated
with the commonly used BLYP functional [29, 35] is
compared with the corresponding density obtained
from HF, MP and CC calculations. The di� erence elec-
tron density distribution ¢»(BLYP,HF) ˆ »(BLYP) ¡
»(HF) (®gure 2(a)) reveals changes in the charge distri-
bution of CO that agree qualitatively with those
obtained for ¢»(MP2,HF) (®gure 1(a)), i.e. charge is
transferred from the p space at O and the s(CO)
region to the p(C) space. Also negative charge is shifted
from the s lone pair regions either towards the nucleus
or out into the van der Waals regions.

A direct comparison with »(r) calculated with MP2,
MP3, MP4, CCSD or CCSD(T) (®gure 2(b±f )) con®rms
that the BLYP functional generates an electron density
distribution similar to that of MP2, MP4 or CCSD(T),
but di� erent from that of HF, MP3 or CCSD. A
detailed analysis reveals that the BLYP density is actu-
ally closer to the MP4 density than either the MP2 or
CCSD(T) density distributions [52]. This observation is
made also for other molecules, and suggests that the
BLYP functional covers in addition to pair and pair±
pair electron correlation e� ects also considerable three-
electron correlation e� ects.

The di� erence electron density distribution
¢»(BLYP, MP4) ˆ »(BLYP) ¡ »(MP4) (®gure 2(d ))
indicates some typical deviations of the BLYP density
from the MP4 density. (a) In the case of the BLYP
density there is more negative charge in the van der
Waals regions, a reminder of a well known de®ciency
of this functional, namely, to fail when describing van
der Waals complexes stabilized just by dispersion forces
[95±99]. The analysis of the BLYP density suggests that
probably it is less due to a failure of covering dispersion
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Figure 1. Contour line diagrams of the di� erence electron density distribution ¢»…r† ˆ »…method I† ¡ »…method II† of CO calcu-
lated with the 6-311+G(3df) basis at re…CO† ˆ 1:128 AÊ . Solid (dashed) contour lines are in regions of positive (negative)
di� erence densities. The positions of the C and the O nuclei are indicated. The contour line levels have to be multiplied by the
scaling factor 0.01 and are given in e a0

¡ 3. (a) MP2-HF; (b) CCSD-MP2; (c) CCSD-MP3; (d) CCSD-MP4(SDQ); (e) CCSD(T)-
CCSD; and ( f ) CCSD(T)-MP4.
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Figure 2. Contour line diagrams of the di� erence electron density distribution ¢»…r† ˆ »…method I† ¡ »…method II† of CO calcu-
lated with the 6-311+G(3df) basis at re…CO† ˆ 1:128 AÊ . Solid (dashed) contour lines are in regions of positive (negative)
di� erence densities. The positions of the C and the O nuclei are indicated. The contour line levels have to be multiplied by the
scaling factor 0.01 and are given in e a0

¡ 3. (a) BLYP-HF; (b) BLYP-MP2; (c) BLYP-MP3; (d) BLYP-MP4; (e) BLYP-CCSD;
and ( f ) BLYP-CCSD(T).



interactions correctly (pair and three-electron correla-
tions are actually covered), and more due to an exag-
geration of exchange repulsion caused by the relatively
high electron density in the van der Waals regions. (b)
The BLYP functional also concentrates more electron
density to the inner shell and core region when com-
pared with the MP4 density. The closer analysis carried
out by Cremer and coworkers [52] revealed that the
density distribution close to the nuclei is actually more
complex in the BLYP representation than is obvious
from the contour line diagrams of ®gure 2. There is a
shell structure of the di� erence electron densities
¢»(BLYP,WFT) ˆ »(BLYP) ¡ »(WFT) (®gure 3) char-
acterized by a strong increase in the BLYP density close
to the nucleus surrounded by a shell of charge depletion
and a second shell of (considerably less) density concen-
tration in the inner valence region. This shell structure is
an artefact of the B-exchange functional, as the pro®le
plots of ®gure 3 show clearly.

There is a singularity in the Laplacian of the electron
density caused by the cusp it possesses at the position
of the nucleus. The singularity in the Laplacian of the
density implies also a singularity in the exchange or
correlation potential. The gradient corrections to the X
functional increase the absolute value of the X energy
and the corresponding contribution to the exchange

potential is therefore attractive [115]. Consequently, the
e� ective nuclear charge and the e� ective electronega-
tivity of the atom in question are increased. The stron-
gest in¯uence of this extra potential is to be seen for the
core orbitals, which are contracted compared with
LDA, leading to an increase in charge density immedi-
ately at the nucleus and a decrease in the surrounding
region. This generates a shell structure in the X-only
density distribution (®gure 3), the origin of which is
mathematical rather than physical.

The shell structure of the B-only density observed in
the nuclear region is an artefact typical of gradient cor-
rected XC functionals. This has to be considered when
calculating molecular properties such as nuclear mag-
netic shieldings [116] or NMR spin±spin coupling con-
stants [117], which depend on a correct account of the
electron density close to the nucleus.

Analysis of the BLYP density of CO and other mol-
ecules reveals that in general they resemble the corre-
sponding MP4 densities, but does not indicate whether
this is due to the exchange or the correlation functionals.
Cremer and coworkers [52] answered this question by
(a) comparing exchange-only densities directly with
WFT densities and (b) investigating the changes
caused by the correlation functionals separately. Four
conclusions could be drawn from this investigation. (1)
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Figure 3. Pro®le diagrams of the di� erence electron density distribution ¢»…r† ˆ »(B-only) ¡ »(method II) (method II: HF, MP2,
MP3, MP4, CCSD, CCSD(T)) of CO calculated with the 6-311+G(3df) basis at re(CO) ˆ 1:128 AÊ and taken along the CO
axis. The positions of the C and the O nuclei are indicated.



The XC density is dominated by the exchange part, to
which the correlation part adds only minor corrections.
(2) The replacement of HF exchange by DFT exchange
leads to similar density changes as those observed when
including dynamic electron correlation e� ects at the
MP2, MP4 or CCSD(T) levels of theory (see ®gures 1
and 2). (3) GGA exchange functionals such as the B or
PW91 functional lead to a density distribution that is
close to MP4 density, i.e. they mimic already pair, pair±
pair, and three-electron correlation e� ects. (4) LDA
exchange functionals such as the S exchange functional
[28] di� er from this common behaviour only by the fact
that they increase the density in the bond region, in the
van der Waals region, and also in the inner valence
regions of the atoms relative to that of a GGA func-
tional. These observations are in line with the fact that
LDA functionals signi®cantly overestimate the bond
density and the bond strength.

Although it is obvious that LDA and GGA X func-
tionals simulate strong pair (and other low order diag-
onal N-electron) correlation e� ects, inspection of the
di� erence density plots does not reveal whether these
are of short range (dynamic) or long range (non-
dynamic) nature. In the ®rst case, negative charge is
separated by a large number of short range electron±
electron interactions, while in the latter case just a few
strong long range interactions (mixing in of a few low
lying CFSs into the wavefunction) lead to a similar den-
sity pattern. Before clarifying this point, we have to
consider the in¯uence of the correlation functional on
the density generated by the exchange functional. The
correlation functional should actually introduce the
short range electron correlation e� ects, and therefore
analysis of the density changes caused by the correlation
functional can lead to a better understanding of the
correlation e� ects simulated by the DFT exchange func-
tional.

5.2. What correlation e� ects are covered by DFT
correlation functionals?

The in¯uence of the correlation functional on the
DFT density was investigated by generating di� erence
electron density distributions of the type ¢»(C-only) ˆ
»…XC† ¡ »(X-only). In this way, the density changes
caused by the VWN, VWN5, PL, P86, PW91, and
LYP correlation functionals were analysed [52]. Four
of these functionals, namely VWN, VWN5, PL, and
LYP, lead to similar changes in the electron density
(®gure 4(a, b)) while the changes caused by GGA func-
tionals such as P86 or PW91 are di� erent (®gure 4(g, h)).
The in¯uence of the various correlation functionals on
the density distribution can be summarized as follows.

(i) In the case of the LDA correlation functionals, the
electron density distribution is enhanced in the atom,

bond, and (inner) non-bonding regions between the
atoms; it is reduced in the van der Waals regions. These
changes are relatively small (compared with those
caused by a replacement of the HF by the DFT
exchange potential), but are typical and independent
of the molecule investigated. In the case of the LDA
functionals VWN, VWN5, and PL they can be
explained in the following way. At the LDA level, elec-
tron correlation is described by an attractive local
potential that becomes stronger the higher the density.
Therefore the incorporation of an LDA correlation
functional will transfer negative charge from regions
with low electron density to regions with high electron
density. This e� ect depends on the local density, and
therefore is less speci®c than the charge transfer due to
the explicit inclusion of electron correlation by a WFT
correlation method. Also, it leads to an exaggeration of
correlation e� ects.

(ii) The di� erences between the various LDA correla-
tion functionals are very small. For example, the VWN5
correlation functional is based on the more complete
QMC (all excitations) rather than RPA investigation
(just D excitations) of the HEG (table 2), and therefore
covers also the higher order correlation e� ects of the
latter. VWN5 moves some minor amount of density
from the bonding and valence regions of the atoms
out into the van der Waals regions (®gure 4(e)).
Higher order correlation e� ects include more electrons
in the correlated movements of an electron ensemble
and, accordingly, lead to an expansion of the electron
density. However, these changes are tiny die to the fact
that the LDA functionals, although derived by di� erent
procedures, have a similar dependence on high densities.

(iii) Although the density changes caused by the LYP
functional are similar to those of the LDA functionals
(®gure 4(c, d)), LYP does not exaggerate bond and
valence densities as much as LDA functionals do. This
becomes obvious when comparing the LYP and VWN5
density distributions (®gure 4( f ), »(LYP) ¡ »(VWN5)):
LYP moves some of the density from the bond and
valence regions back to the van der Waals regions.
The LYP functional was derived to reproduce the
true electron density of the He atom [35, 40], and
therefore covers both local and non-local electron corre-
lation e� ects, where the latter counterbalance partially
the dependence of the local correlation e� ects on high
densities.

(iv) GGA correlation functionals (e.g. PW91; ®gure
4(g, h)) also shift density from the van der Waals region
into the outer valence region and the non-bonding regions
between the atoms. However, there are large depletion
areas in the inner valence and the bond regions (between
heavy atoms) not found for the LDA correlation densities.
Gradient corrected correlation functionals have a less
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attractive correlation potential, in particular in regions

where the reduced gradient of the density, r»=»4=3, is

small, as for example in the bond regions between the

heavy atoms (r» is small and » relatively large). How-

ever, in the non-bonding regions between the atoms (tail

regions) the reduced gradient is relatively large (r» is

large and » relatively small), thus leading to a larger

correlation density than obtained from an LDA correla-

tion functional (®gure 4(i), which shows the di� erence

density »(P86) ¡ »(PL) ˆ »(GGA) ¡ »(LDA)). At the

nuclei, the GGA contribution to the correlation poten-

tial becomes singular for the same reasons as the GGA

contribution to the exchange potential. The singularity

for the correlation potential is repulsive and partly com-

pensates for the attractive singularity of the exchange

potential. The main impact of the gradient corrections

to the correlation potential is thus that charge is trans-

ferred back from the core and bond regions into the

outer valence regions of the molecule, which slightly

reduces the e� ects of the LDA correla-tion potential,

as is shown in ®gure 4( f ) for PW91 functional.

Clearly, the DFT correlation functional corrects de®-

ciencies in the exchange functionals where corrections

are much smaller than the changes caused by the

latter. This simply re¯ects the fact that DFT exchange

correlation is much larger than DFT Coulomb correla-

tion. The in¯uence of the correlation potential on the

density distribution resembles that of higher order
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Figure 4. Contour line diagram of the electron density distribution »…r† of CO and ethene calculated for various correlation
functionals with the 6-311+G(3df) (CO) and the cc-pVTZ basis (ethene). Solid (dashed) contour lines are in regions of positive
(negative) di� erence densities. The positions of the nuclei are indicated. The contour line levels have to be multiplied by the
scaling factor 0.01 and are given in e a¡3

0 . (a) CO, VWN5 functional; (b) ethene, VWN5 functional; (c) CO, LYP functional;
(d) ethene, LYP functional; (e) CO, VWN5-VWN; ( f ) CO, LYP-VWN5; (g) CO, PW91 functional; (h) ethene, PW91 func-
tional; and (i) CO, P86-PL.



dynamic electron correlation e� ects observed for corre-
lation-corrected WFT methods [44±47]. The addition of
pair-, three-, and four-electron correlation e� ects at the
MPn level of theory leads in general to an expansion of
the orbitals and to a more di� use charge distribution,
which causes typical changes in calculated molecular
properties, as for example a lengthening of the bond
[44]. Higher order correlation e� ects are dominated by
complicated coupling mechanisms between lower order
correlation e� ects while diagonal N-electron correlation
e� ects for N > 4 play a small role. Hence, the inclusion
of higher order correlation e� ects always means a
stronger emphasis of coupling e� ects that in general
reduces trends caused by lower order correlation e� ects.
The density becomes more contracted, bond lengths are
reduced, but e� ective electronegativities, partial charges,
and bond polarities are increased. This is the reason why
(because of the presence of in®nite order e� ects) per-
fectly coupled many-body methods such as CCSD or
CCSDT lead to less extended orbitals and less di� use
charge distributions than MPn methods containing
the same N-electron correlation e� ects (but not the
complete set of possible coupling e� ects). The DFT
correlation functional seems to mimic these higher order
correlation e� ects while the lower order correlation e� ects
seem to be simulated by the DFT exchange functional.

5.3. The self-interaction error and electron correlation
e� ects

An electron interacts with other electrons in an atom
or molecule via the Coulomb potential, but it does not
interact with itself. This is clearly manifested in the
many-particle Hamiltonian, in which the electron±
electron interaction term excludes self-interaction. Con-
sequently, WFT energies such as the HF energy do not
include any self-interaction energies because the self-
interaction part of the Coulomb energy exactly cancels
out that of the exchange energy. Fermi and Amaldi
[118], analysing the Thomas±Fermi density model,
were the ®rst to recognize that this is no longer true in
the case of DFT. Their observation is valid for any
modern form of DFT using approximate density func-
tionals, as has been discussed widely [7, 18, 20, 24, 32].
Methods for curing this error have been suggested [75±
85] but turn out to complicate DFT in an undesirable
way.

If one considers the spin-density »
²
i of an electron with

spin ² …² ˆ a; b† occupying the ith spin orbital, then the
necessary requirement for a correct cancellation of self-
interaction will be given by (see, e.g. [7])

EJ‰»
²
i Š ‡ EXC‰»²

i ; 0Š ˆ 0 …5†

or, explicitly,

EJ‰»
²
i Š ‡ EX‰»²

i ; 0Š ˆ 0; …6†

EC‰»²
i ; 0Š ˆ 0; …7†

for a given value of spin ². EJ is the Coulomb repulsion
energy of non-interacting electrons (table 4). Equation
(6) is identical to the condition ful®lled by HF theory,
while equation (7) simply states that Coulomb correla-
tion has to vanish for one-electron systems. Conditions
(6) and (7) are not ful®lled for most approximate DFT
functionals, i.e. both exchange and correlation func-
tionals may su� er from a self-interaction error (SIE),
which is obtained by summing the terms on the left
side of equation (5) over all occupied orbitals.

In this work, we use the self-interaction correction
(SIC) suggested by Perdew and Zunger [75] to discuss
the consequences of the SIE for the description of elec-
tron correlation e� ects by DFT. This SIC procedure can
be carried out in a single-step SIC-DFT procedure [75,
76] to estimate the magnitude of corrections or within a
self-consistent SIC-DFT (SCF-SIC-DFT) procedure
[77±80, 119] to calculate molecular properties such as
density distributions. The Perdew±Zunger method has
the advantage of retaining the size-extensivity of DFT
[69]. On the other hand, it leads to an orbital-dependent
functional, and results are no longer invariant with
regard to rotations among the occupied orbitals.
Another problem inherent in the Perdew±Zunger
approach is that the lowest SCF energy can be obtained
only by minimizing the energy for localized orbitals [78].
Localization of the orbitals of a s±p system leads, how-
ever, to bent bonds, so that SCF-SIC-DFT densities are
no longer directly comparable with DFT or WFT den-
sities. One can circumvent this problem by localizing s
and p orbitals separately and rotating the localized orbi-
tals only within a given set. In this way, only a part of
the SIE is recovered (about 80% for ethene [119]). How-
ever, a comparison of SCF-SIC-DFT and DFT densities
becomes meaningful, in particular, when this is done in a
qualitative rather than quantitative way. In any case,
SIC-DFT and SCF-SIC-DFT lead to a considerable
increase in computational cost, which hampers its appli-
cation to larger molecules on a routine basis [119].

In table 5 some SIE energies obtained with the single-
step SIC-DFT and the SCF-SIC-DFT procedures are
listed for some commonly used functionals. LDA func-
tionals lead to large, positive X-SIE and a considerably
smaller, negative C-SIE (SIEs of those correlation func-
tionals that do not ful®l equation (7)). GGA functionals
such as BLYP or PW91PW91 reduce the SIE consider-
ably, which in the exchange part can be either positive or
negative (table 5) and which is always negative in the
correlation part. By construction, the LYP correlation
functional does not su� er from an SIE [35]. Since
the X-SIE and C-SIE cancel each other partially for
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GGA functionals, the BLYP functional, which does not
bene®t from this cancellation, leads to a larger total
SIE than, e.g. the PW91PW91 functional (table 5). It
is noteworthy that in the latter case the absolute
magnitude of the C-SIE is actually larger than that of
the X-SIE.

A single-step SIC-DFT procedure recovers a large
part of the SIE, but the additional corrections gained
in the SCF procedure are still substantial, in particular
for the X functional (table 5). The general result of SIC-
DFT relative to standard DFT is (a) a decrease in the
exchange energy (increase in its absolute value) to ful®l
equation (6) (for LDA and GGA functionals with the
exception of BLYP) and (b) a reduction of correlation
interactions (the correlation energy becomes more posi-
tive) to ful®l equation (7).

In ®gure 5 the di� erence density distribution ¢»(SIC)
ˆ »(SIC-BLYP) ¡ »(BLYP), which re¯ects the in¯uence
of the SIC on the electron density distribution, is shown
for (a) ethene, (c) CO, and (e) N2. The changes in the
density distribution caused by SIC closely resemble the
changes introduced by replacing the BLYP density by a
B3LYP density (®gure 5(b, d, f )) although changes are
smaller in the latter cases. There is always a depletion of
negative charge in the valence regions of the atoms and
an increase in density in the (s and p) bond regions and
parts of the non-bonded regions. For CO, negative
charge is transferred from the p space of the C atom
into the bond region and the outer p space of the O
atom. Both for CO and N2 the electron density increases
in the lone pair regions, but decreases in the van der
Waals regions following the lone pair regions. Similar
changes are found when comparing the corresponding
di� erence densities of other SIC-XC/XC or hybrid-XC/
XC functionals where greater changes occur when intro-
ducing SIC rather than a hybrid functional. In all cases,
the changes observed suggest a signi®cant reduction of
left±right and other pair correlation e� ects. Both SIC-
DFT and DFT with hybrid functionals seem to correct
an exaggeration of correlation e� ects mimicked by the
exchange functionals.

5.3.1. SIE of exchange functionals
The trends indicated by the di� erence density plots of

®gure 5 can be explained by analysing the impact of
exchange, Coulomb self-interactions , and self-exchange
on the electron density distribution of a molecule.
Exchange will always be small in those regions where
(a) there is only little density as in the van der Waals
regions, (b) only one electron can be expected as in
regions around the H atoms (particularly if bonded to
a more electronegative atom), and (c) electron pairing as
in the region of a single bond reduces the chance of
®nding a second electron of the same spin. In those

regions where exchange is small Coulomb repulsion
will be large, which leads to a reduction in the electron
density.

Exchange is large in the valence region of the heavy
atoms (C, N, O, etc.) and in the non-bonded regions
between the atoms. For example, in the valence region
of the C atom there can be up to 4 valence electrons of
the same spin, thus leading to large exchange inter-
actions between the electrons. In the non-bonded
regions between the atoms there is no energy principle
that requires ab spin coupling, but superposition of the
density tails of the atoms makes it possible that electrons
of the same spin are present in these regions. Relatively
large exchange guarantees that Coulomb repulsion is
low, and therefore the density increases in regions of
large exchange (relative to a density that feels just the
electrostatic Coulomb repulsion between the electrons).
Hence, exchange interactions between the electrons lead
to an increase in the electron density in the valence
regions of the heavy atoms and in the non-bonded
regions between the atoms, while there is a decrease of
the density in the H atom, and the van der Waals regions
(®gure 6(a)).

The Coulomb SIE of the electrons removes density
out of the space with large amplitudes of the orbitals

Ái into the regions with small amplitudes of orbitals Ái,
i.e. for molecules from the bond regions into the non-
bonded and van der Waals regions. HF self-exchange
has just the opposite e� ect, i.e. it transfers density
from non-bonded and van der Waals regions into the
bond regions (®gure 6(b)). At the DFT level of theory,
Coulomb self-interaction is larger than exchange self-
interaction in the bond region if approximate func-
tionals su� ering from an SIE are used. Accordingly,
density is removed arti®cially out of the bond region
and transferred to the valence region, where exchange
interactions are large, thus leading to lower Coulomb
repulsion. This is the essence of the X-SIE, which simu-
lates long range left±right correlation and other pair
correlation e� ects. It is reasonable to say that the X-
SIE mimics non-dynamic correlation e� ects, which in
WFT are introduced by the mixing in of low lying,
quasi-degenerate CSFs. Hence, the correlation e� ects
simulated by a GGA functional such as B exchange
are even stronger than the exaggerated pair correlation
e� ects obtained at the MP2 level: the latter describe
short range (dynamic) pair correlation e� ects while the
former simulate long range (non-dynamic) correlation
e� ects [99].

Since exact exchange does not cover any dynamic or
non-dynamic correlation e� ects, it is necessary to clarify
why DFT exchange introduces long range correlation
e� ects. This can be done by comparing HF and DFT
exchange holes. The HF exchange hole is localized for
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Figure 5. Contour line diagram of the electron density distribution ¢»…r† ˆ »(method I) ¡ »(method II) of ethene, N2, and CO
calculated with the cc-pVTZ basis (ethene, N2) and the 6-311+G(3df) basis (CO). Solid (dashed) contour lines are in regions of
positive (negative) di� erence densities. The positions of the C and the O nuclei are indicated. The contour line levels have to be
multiplied by the scaling factor 0.01 and are given in e a¡3

0 . (a) Ethene, SIC-BLYP; (b) ethene, B3LYP-BLYP; (c) CO, SIC-
BLYP-BLYP; (d) CO, B3LYP-BLYP; (e) N2, SIC-BLYP-BLYP; and ( f ) N2, B3LYP-BLYP.



an atom but tends to be delocalized for molecules, as

was ®rst pointed out by Slater [28, 120] and later empha-

sized in particular by Becke [121]. This can be demon-

strated for the H2 molecule, for which exchange is just

the one-electron cancellation term for Coulomb self-

interaction, and the exchange hole just the negative of

the 1sg orbital density. Hence, the X hole is delocalized

in H2 over the whole bond region and independent of

the position of the reference electron. The electron den-

sity related to the exchange hole is large close to the

nuclei (deep X hole) and smaller in the bond region

(¯at X hole). If the reference electron moves out into

the van der Waals region, the X hole will not follow,

but will stay behind in regions of larger densities, which

simply means that exchange interactions are small

in the van der Waals region and, accordingly, the elec-

tron density is reduced due to a dominance of Coulomb

interactions.

By construction the DFT X hole is localized and

depends on the position of the reference electron. If

the reference electron with spin ² is close to the left

nucleus, negative charge will be removed from this

nucleus and piled up next to the right nucleus. This is

typical of long range (non-dynamic) pair correlation

e� ects not included into exact exchange. Since the prop-

erties of the DFT exchange hole are in¯uenced by both

the e� ects of normal exchange and self-exchange, the

conclusion has to be drawn that the delocalized Fermi

hole of correct exchange changes its nature under the

impact of the SIE, which must be responsible for the

long range left±right correlation e� ects. The SIE-part

of the X hole must be strongly localized and by super-

1918 D. Cremer

Figure 6. Contour line diagram of the electron density distribution ¢»…r† ˆ »(method I) ¡ »(method II) of ethene calculated with
the cc-pVTZ basis at the experimental geometry. Solid (dashed) contour lines are in regions of positive (negative) di� erence
densities. Reference plane is the plane containing the atoms. The positions of the atoms are indicated. The contour line levels
have to be multiplied by the scaling factor 0.01 and are given in e a¡ 3

0 . (a) HF exchange; (b) HF, Coulomb self-repulsion; (c)
SIC-B-HF exchange; and (d) B-only-HF exchange.



position with a delocalized SIC-X hole must yield a
localized X hole. This is in line with the density studies,
and leads to the somewhat surprising conclusion that
approximate DFT exchange, no matter whether pre-
sented by a LDA or a GGA functional, always covers
non-dynamic (long range) pair correlation e� ects that
actually exaggerate the separation of negative charge
relative to WFT methods, which cover just dynamic
correlation e� ects.

These consideration can be related to the di� erence
densities shown in ®gure 6(c) (»(SIC-B) ¡ »(HF
exchange)) and (d ) (»(B-only) ¡ »(HF)). The SIC-B den-
sity is larger in the atomic regions. In the CC unit, the
SIC-B density resembles that to be expected from a
delocalized rather than localized exchange hole. There
is high density at the positions of the C atoms (deep X

hole) and lower density in the bond region (¯at X hole).
Hence, the peculiar density pattern resulting from the B-
only calculation and re¯ected in the di� erence density of
®gure 6(d) clearly is a result of the X-SIE, which
decreases the density in the CC bond region by long
range left±right and in±out pair correlation e� ects.

5.3.2. SIE of correlation functionals
The SIE of the LDA correlation functional VWN5

has it strongest in¯uence in the bond regions of a mol-
ecule (®gure 7(a)) where it leads to a substantial increase
in electron density. This can be explained by considering
that the C functionals describe short range correlation,
i.e. the localized Coulomb hole is surrounded at close
range by a shell of somewhat increased density. This
makes it possible that in the bond regions more density

Electron correlation e� ects in DFT 1919

Figure 7. Contour line diagram of the electron density distribution of ethene calculated with the cc-pVTZ basis at the experimental
geometry for various correlation functionals. Solid (dashed) contour lines are in regions of positive (negative) di� erence
densities. Reference plane is the plane containing the atoms. The positions of the atoms are indicated. The contour line levels
have to be multiplied by the scaling factor 0.01 and are given in e a¡3

0 . (a) VWN5-SIE functional; (b) PW91-SIE functional; (c)
SIC-VWN5 functional; and (d) SIC-PW91 functional.



is accumulated than allowed by the classical Coulomb
repulsion interactions. LDA functionals such as VWN5
represent an attractive local potential that depends on
the magnitude of the electron density. It is rather strong
in the atomic, bond and (inner) non-bonded regions
(superposition of atomic densities), but relatively weak
in the van der Waals regions (compare ®gure 4(a)). The
SIE depends on the same attractive potential and,
accordingly, it is also large for large densities. In addi-
tion, it depends on the degree of electron localization in
core, bond and lone pair orbitals so that, in contrast to
the C functional, the SIE increases the density speci®-
cally around the centroids of the localized orbitals
(®gure 7(a)).

The C-SIE leads to a signi®cant increase in bond
density and compensates in this way somewhat for the
e� ects of the X-SIE, which decreases the bond density.
The correct SIC-VWN5 functional (®gure 7(b))
decreases the density in the bond region between the
heavy atoms and in the van der Waals regions, but
increases it in the atomic and the non-bonded regions
between the atoms. For GGA correlation functionals
the corresponding changes are more complex, due to
the in¯uence of the reduced gradient. For example, for
the PW91 C-functional the density of ethene is accumu-
lated in the non-bonded regions but depleted in the CC
bond region, at the H atoms, and in the van der Waals
region (®gure 4(g, h)). The density changes caused by the
PW91-SIE partially enhance and partially oppose these
e� ects (®gure 7(c)), but changes are rather small (one
third of the changes caused by VWN5-SIE), so that
the overall pattern of the correlation density caused by
SIC-PW91 is similar to that caused by PW91 (compare
®gures 4(h) and 7(d )).

Clearly, the SIE is dominated by the exchange part for
commonly used functionals. The latter simulates corre-
lation e� ects not covered by single determinant WFT
methods, which can mean an advantage, for example
if a stretched bond has to be described. However, in
cases where a delocalized exchange hole plays an im-
portant role in the electronic structure of a molecule
(1- and 3-electron bonds [84, 122±124], transition
states involving an odd number of electrons [85, 93,
125], etc.), the SIE leads to nonsensical results, as has
been documented in the literature. Then the SIC-DFT
approach, although expensive, provides the only reason-
able answer to the problem [126]. Also, from a general
point of view, exclusion of the SIE, which actually leads
to a more correct DFT, should lead to an improvement
because for a description of the normal closed shell mol-
ecule there is no need to include long range correlation
e� ects. We shall consider this point in more detail when
discussing the changes in the density caused by hybrid
functionals.

5.4. Changes in electron correlation caused by hybrid
functionals

The similarity in the changes in molecular density

obtained by SIC-DFT and hybrid functional calcula-

tions (®gure 5) suggests that both correct (fully or par-
tially) for the SIE. Hybrid functionals incorporate 20±

25% exact exchange (table 3) and support, by this, a

more delocalized X hole that compensates for some of

the long range pair correlation e� ects invoked by the

SIE-part of exchange [36, 121]. Of course, the LDA
and GGA parts of the exchange covered by a hybrid

functional (table 3) are not fully SIE-corrected so that

the SIE of standard X functionals and the associated

long range correlation e� ects are only partially reduced

in an empirical way. This is re¯ected in the di� erence

density distributions »(B3LYP) ¡ »(SIC-BLYP) shown
in ®gure 8(a, b): B3LYP densities still indicate a con-

siderable amount of long range left±right and other

pair correlation e� ects. The changes in density caused

by the hybrid functional seem to be just a fraction

of those caused by SIC-DFT, so that the pattern of
density changes given by »(B3LYP) ¡ »(BLYP) is just

the mirror image of that found for the di� erence

»(SIC-BLYP) ¡ »(BLYP) (®gure 5(a, b)).

When comparing B3LYP densities with WFT densi-
ties, similarities in the density distribution generated by

a CCSD(T) calculation can be found (see, e.g. ®gures

5(c, d)). However, there are typical di� erences in the

atomic, bond, and van der Waals regions where hybrid

functionals predict a larger density irrespective of the
WFT method used in the comparison. This reminds

one of the typical changes found when comparing a

SIC-B density with a HF exchange density (®gure

6(c)). We may conclude that the SIE correction intro-

duced into the hybrid functional by an admixture of

exact exchange dominates the changes in the density in
the atom and heavy atom bond regions where local and

non-local correlation added by a mixing of LDA and

GGA functionals (table 3) enhance these e� ects (com-

pare with ®gure 4(a±d)).
We come to the (perhaps not unexpected) conclusion

that commonly used XC functionals cover both non-

dynamic (larger part) and dynamic (smaller part) corre-

lation e� ects, but still fail to fully include important

exchange delocalization e� ects. The hybrid function-
als reduce the exaggeration of non-dynamic electron

correlation by improving delocalization e� ects in the

exchange. This can also be viewed as giving dynamic

electron correlation a somewhat stronger impact relative

to non-dynamic correlation. Since the hybrid func-
tionals are ®tted against experimental data, both the

non-dynamic and dynamic electron correlation e� ects

are covered in a more realistic and e� ective manner.
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WFT methods that introduce higher order correlation
e� ects (e.g. CCSD(T)) cover, in addition to dynamic,
also a certain amount of non-dynamic electron correla-
tion. In this way DFT with hybrid functionals simulates
similar correlation e� ects to those of WFT methods.
The changes in density due to the use of hybrid func-
tionals also are reminiscent of the inclusion of higher
order correlation e� ects that lead to coupling between
N-electron (diagonal) correlation e� ects and contract
the electron density towards the bond regions (®gure
5(b, d)) [52]. The inclusion of more coupling e� ects
(more ionic terms) by the hybrid functionals signi®-
cantly improves calculated molecular properties, which
often reach CCSD(T) quality.

Despite the fact that hybrid functionals su� er from a
residual SIE, which, e.g. is re¯ected in the di� erence

density plots of ®gure 8(a, b), their results are mostly
better than those of SIC-DFT calculations. Correcting
hybrid functionals for their residual SIE will not necess-
arily yield any improvement in molecular properties.
Apart from special situations discussed above, SIC-
DFT does not lead to any improvement in calculated
molecular properties because the XC functionals used in
such a calculation were optimized in the presence rather
than the absence of the SIE. Several investigations
show that SIC-DFT leads, e.g. to excessively short
bond lengths and exaggerated stretching frequencies
[80, 126]. However, orbital energies, excitation energies,
and other properties can be considerably improved by
SIC-DFT [77±79]. This indicates that, despite the em-
pirical calibration of the hybrid functionals and the
physically more correct SIC-DFT treatment of electron
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Figure 8. Contour line diagram of the di� erence electron density distribution ¢»…r† ˆ »(method I) ¡ »(method II) of ethene and
CO calculated with the cc-pVTZ (ethene) and the 6-311+G(3df) basis at the experimental geometry. Solid (dashed) contour
lines are in regions of positive (negative) di� erence densities. The positions of the nuclei are indicated. The contour line levels
have to be multiplied by the scaling factor 0.01 and are given in e a¡3

0 . (a) Ethene, B3LYP ¡ SIC-BLYP; (b) CO, B3LYP ¡ SIC-
BLYP; (c) ethene, B3LYP-CCSD(T); and (d) CO, B3LYP-CCSD(T).



interactions, there is room for further improvement of
XC functionals. X Functionals based on delocalization
indicators have been developed to replace hybrid func-
tionals and to account for the SIE in a more basic way
[37, 38, 127]. This will also lead to a more balanced cover-
age of correlation e� ects, in particular with regard to
non-dynamic electron correlation.

6. Non-dynami c electron correlation e� ects and
standard DFT

The KS formalism was derived originally without
making any assumptions about the electronic character
of the atoms and molecules to be described. If the cor-
rect XC functional were known, then simple closed shell
systems, open shell systems, and even systems with
distinct multireference character would be described
correctly, because the XC functional would cover all
dynamic and non-dynamic electron correlation e� ects.
Problems results from the fact that the correct XC
functional is not known, and therefore approximate XC
functionals have to be used. The latter were developed
to cover dynamic electron correlation e� ects using the
HEG as an appropriate starting point. The discussion in
the last section shows that approximate exchange func-
tionals unintentionally mimic non-dynamic electron
correlation although in an unspeci®ed manner, which
does not necessarily guarantee an improved description
for a speci®c multireference system. Hence, single-
determinant KS theory applied with the available func-
tionals cannot be expected to perform satisfactorily
when electronic systems with distinct non-dynamic elec-
tron correlation e� ects have to be calculated.

Nevertheless, KS theory is frequently applied for
notorious multi-reference problems, mostly for the pur-
pose of testing the limits of such an approach. A fre-
quently posed question in current DFT research is how
much multireference character can be adequately cov-
ered by single-determinant KS theory for a given func-
tional and a given basis set. Answers to this question are
often sought in a trial and error procedure using suitable
reference values from experiment or WFT. However,
this is a tedious approach, and therefore we shall con-
sider here just some basic aspects of the problem. For
this purpose, we distinguish between di� erent types of
multireference system and their description by KS DFT,
following arguments ®rst given by GraÈ fenstein and
Cremer [58].

6.1. Classi®cation of electronic systems on the basis of
standard DFT

If one replaces the e� ective potential in the reference
state characterized by non-interacting electrons adia-
batically by the real electron±electron interaction with
the help of the perturbation parameter ¶, dynamic elec-

tron correlation will continuously increase from zero to

its full magnitude, and a continuum of intermediate

states will lead from the reference to the real state of

the many-electron system in question (adiabatic connec-

tion scheme (ACS) [128, 129]). In WFT, the increase in
dynamic electron correlation would be re¯ected by the

fact that the weight of the (leading) ground state deter-

minant F0 decreases while those of the excited-state

determinants F1, F2, etc., increase. In ®gure 9, this is

schematically shown by giving the weight factor w of
determinants Fi as a function of the ACS parameter ¶.

Also shown is the corresponding change in the KS

energy EKS and the exact energy E(exact), where it is

assumed that the latter is always lower when expanding
KS orbitals in an in®nite basis set for a given value of ¶.

The di� erence between E(¶ ˆ 0) and E(¶ ˆ 1) is the

dynamic correlation energy EC . Figure 9(a) describes

the situation for a typical closed shell system, the
ground state wavefunction of which can be described

by one CSF C0 (single-reference system), which is domi-

nated by determinant F0. Electronic systems of this type

(type 0 systems) are described satisfactorily by standard

DFT utilizing the available XC functionals, because the
two basic requirements of KS-DFT are ful®lled [6, 7].

(1) The reference state is a single-determinant state. This

assumption is essential for the calculation of EX. In

WFT, this corresponds to requiring that the ground
state wavefunction is given by one CSF ª0, which is

well approximated by the Slater determinant ©0, i.e.

the wavefunction reduces to a single-con®gurational,

single-determinantal form. (2) The correlation hole in

the real system is described reasonably well by the
model correlation hole from the homogeneous or

weakly inhomogeneous electron gas. This assumption

is essential for the calculation of EC. In WFT, this cor-

responds to requiring that for all ¶ > 0 the wavefunction

is dominated by F0, although excited determinants F1,

F2, etc., describing dynamic electron correlation e� ects,

appear in the wavefunction. Their weights w increase

smoothly as ¶ increases, but their values remain small

compared with the weight of F0.

Type-I systems are also single-reference systems repre-
sented by one CSF, but this CSF must be constructed

from two or more Slater determinants F0, F 0
0, etc.,

which contribute with the same weight w each, but

di� er with regard to the spin orientation of the electrons
in the open shell orbitals. The situation of a type-I

system is indicated in ®gure 9(b) for a two-determinantal

problem where the CSF C0 of the ground state is con-

structed from determinants F0 and F 0
0 with weight fac-

tors w ˆ w 0. For increasing ¶, dynamic electron

correlation is covered in WFT by adding excited state

determinants F1, F2, etc., thus reducing the weights of
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F0 and F 0
0 where the latter still dominate the ground

state wavefunction C.

Examples for type-I systems are s±p or p±p open shell

singlet (OSS) biradicals such as the 1B1 state of meth-

ylene, the singlet state of 908-rotated ethylene or that of

the face-to-edge conformation of trimethylene (®gure

10). For type-I systems, requirement (1) is not ful®lled,

and therefore conventional KS-DFT is erroneous in

principle, because the two-determinantal representation

cannot be replaced by a single-determinant description

[55, 56].

Type-II systems are multireference systems possessing

a wavefunction that has to be constructed from two or

more CSFs C0, C1, etc., each of which can be repre-

sented by a single determinant. Hence, the wave function

can be expressed by a linear combination of determi-

nants F0 (reference), F1, F2, etc. (excited states). Con-

sidering a simple case (e.g. dissociation of H2), the weight

w1 of F1 increases dramatically with increasing ¶ at a

point ¶x …¶x < 1† so that the wavefunction is no longer

dominated by F0 (®gure 9(c)). This indicates the import-

ance of non-dynamic electron correlation e� ects, also

re¯ected in the fact that, at ¶x, E(exact) drops substan-

tially below the KS energy (®gure 9(c)). Apart from the

non-dynamic electron correlation e� ects, excited state

determinants F2, F3, etc., contribute to the wavefunction

with low but signi®cant weight, thus covering dynamic

electron correlation e� ects, as indicated by a smooth

decrease in energy for ¶ ! 1.

Examples for type-II systems are (homolytically)

dissociating molecules, the 1A1 state of methylene,

the ground states of ozone or of p-didehydrobenzene

(p-benzyne, see ®gure 10), all of which are characterized

by strong non-dynamic electron correlation e� ects.
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Figure 9. Schematic representation of wavefunction and energy of (a) type 0, (b) type I, (c) type II, and (d) type III electronic
systems as described by RDFT or UDFT with approximate XC functionals or exact KS-DFT (thick lines). Numbers 0, 1, 2,
etc., denote con®guration state functions (CSFs) C0 , C1, C2, etc. The weights w of the CSFs in the true wavefunction are
schematically shown (®rst row of diagrams) in dependence of the parameter ¶ that continuously increases the electron correla-
tion energy EC from zero (¶ ˆ 0) to its true value (¶ ˆ 1). The corresponding changes in the Kohn±Sham energy KES and in the
exact energy E(exact) are schematically given in the second row of diagrams.



For type-II systems, DFT is still valid in principle but

will not work in practice, since the available approxima-
tions for the XC energy are based on condition (2).

In the case of a type-III system both conditions (1) and

(2) are no longer valid because the wavefunction can be

represented by only two or more CSFs C0, C1, etc., each
of which must be spanned by two or more Slater deter-
minants Fi, F 0

i , etc. Single-KS theory clearly fails in such

a case because neither condition (1) nor condition (2) is
ful®lled. An example of a type-III system is the Myers

biradical (a,3-didehydrotoluene , ®gure 10), which pos-

sesses a singlet ground state because of spin polarization
e� ects between the unpaired electrons. The latter can be
correctly covered only by a multi-reference description.

The transition from type-0 to type-II system is

continuous, so that for a given system with weak non-
dynamic electron correlation e� ects it is di� cult to pre-
dict whether KS theory fails or still provides reasonable

results. One can actually use the accuracy of a DFT

result to characterize a given electron system as repre-
senting a type-0 system (spin-restricted DFT (RDFT)
provides a reasonable answer) or a type-II system

(RDFT fails to provide useful results). Alternatively,

one can use WFT to distinguish between a type-0 and

a type-II system, gaining in this way an insight into
which non-dynamic electron correlation e� ects are cov-
ered by standard DFT.

Type-0 and type-II are related by the fact that (a) their

reference CSF can be approximated by F0 and (b) it is
di� cult to de®ne exactly a border between these sys-
tems. The same applies to type-I and type-III systems.

However, there is a clear border between type-0 and
type-I systems in so far as the form of the leading CSF

is di� erent, although both classes of systems are only

characterized by dynamic electron correlation e� ects.
In the following we shall discuss how the various DFT
methods presently in use handle the four classes of

electron systems.

A type-0 system that smoothly converts into a type-II
system is given by a homolytically dissociating molecule
A±A. The equilibrium geometry of the closed shell

singlet system is described well by RDFT. However,

with increasing bond length the closed shell singlet char-
acter of the electron system gradually changes into an
open shell singlet system in which the electron pair

responsible for bonding decouples while still keeping
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to be indicated).



the singlet con®guration. The multireference character
of the dissociating system increases and, by this, the
spin-restricted DFT solution becomes qualitatively
incorrect. Of course, it is not really possible to foresee
the bond length at which the RDFT description is no
longer reliable, and therefore an automated procedure
determining the reliability of the RDFT solution is
needed. This is achieved by testing the (internal and
external) stability of the spin-restricted solution [130,
131] by procedures originally designed for HF theory
[132] and later extended to DFT [133]. In case of an
external instability of the spin-restricted DFT solution
the constraint Áa ˆ Áb must be lifted to obtain a stable
spin-unrestricted DFT (UDFT) solution with lower
energy. This leads to a breaking of the spin symmetry
(and possible space symmetry). It also indicates that the
RDFT solution no longer provides a reasonable descrip-
tion because a type-0 system is no longer given and one
or both requirements (1) and (2) are not ful®lled. How-
ever, the question remains whether UDFT can represent
a reasonable solution for type-II or even type-I (type-
III) systems.

6.2. Use of unrestricted DFT for multireference
problems

Spin-unrestricted DFT, like UHF, can be applied in
di� erent ways. For high spin open shell systems (type-0
systems such as doublet radicals, triplet biradicals, etc.)
spin-unrestricted theory is used in the normal way and
does not require any particular considerations. How-
ever, there are two other ways of using spin-unrestricted
theory, namely permuted orbitals (PO)-UDFT and
broken symmetry (BS)-UDFT [55]. The di� erent appli-
cations of normal UDFT, PO-UDFT, and BS-UDFT
can be demonstrated for the case of the three lowest
states of methylene, 3B1,

1A1, and 1B1, because they
represent typical examples of a type-0, a type-II, and a
type-I system (®gure 10). (For carbenes such as vinyl
carbene (®gure 10) or allenyl carbene there are even
OSS states with type-III character.) Normal UDFT is
used for the 3B1 state of methylene (type-0 character),
PO-UDFT for the 1B1 state (type-I character), and BS-
UDFT for the 1A1 state (type-II character).

The UDFT wavefunction (abbreviated to U because
similar considerations are also valid for UHF theory
[134]) is given by the following equation as a product
of a (closed shell) core part ªcore and an open shell part
Copen:

CU ˆ AfCU
coreC

U
openg …8†

(A is the antisymmetrizer; note that CU
core will no longer

represent an exact closed shell function in the ®nal
unrestricted wavefunction due to the independent opti-

mization of the a and b spin orbitals). In the case of
methylene, CU

open is constructed from the s-type
HOMO and the p-type LUMO of the RDFT descrip-
tion of the 1A1 state (®gure 10). This, however, is done
for PO-DFT and BS-UDFT in di� erent ways.

6.2.1. Permuted orbitals (PO) UDFT
In the 1B1 OSS state of the methylene or similar type-I

systems, the electron with a (b) spin can occupy either
the s (p) or the p (s) orbital, and both possibilities
have to be covered by the wavefunction, thus leading
to a two-determinantal CSF. This does not imply any
non-dynamic electron correlation; there is just dynamic
electron correlation. The PO-UDFT wavefunction pro-
vides, under certain circumstances, a possibility of hand-
ling the multi-determinantal type-I problem at the
single-determinant KS level. For the purpose of con-
structing the PO-UDFT wavefunction, the order of the
orbitals is changed for one of the spin orientations.
Typically, the HOMO and LUMO are exchanged for
b spin orientation (®gure 11).

CPO¡U
open ˆ jÁsÁpi: …9†

As shown in ®gure 11 for methylene, the resulting initial
state is a mixture of a sp singlet and a sp triplet com-
ponent with equal weights:

CPO¡U
open ˆ 1���

2
p …jÁsÁpiT ‡ jÁsÁpiS†; …10†

jÁsÁpiS ˆ 1���
2

p …jÁsÁpi ‡ jÁpÁsi†; …11 a†

jÁsÁpiT ˆ 1���
2

p …jÁsÁpi ¡ jÁpÁsi†: …11 b†

Hence, the correct two-determinantal CSF of the OSS
state is contained in the PO-UDFT wavefunction so that
the 1B1 state of methylene should be described ade-
quately. However, the price for recovering the singlet
state within the single-determinantal PO-UDFT wave-
function is contamination by the two-determinantal
triplet component with MS ˆ 0. Superposition of singlet
and triplet components breaks the spin symmetry of the
closed shell initial state. With regard to the spatial sym-
metry, the PO-UDFT reference state will belong to a 1-
dimensional irreducible representation (1,3B1), which is
antisymmetric with respect to the symmetry plane con-
taining the molecule.

6.2.2. Broken symmetry (BS) UDFT
The 1A1 closed shell state of methylene possesses some

biradical and by this two-con®guational character,
where each CSF is represented by a single determinant
(®gure 11). Hence, a description of the 1A1 state requires
the inclusion of non-dynamic electron correlation e� ects
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that are not necessarily covered by an RDFT descrip-
tion. The BS-UDFT wavefunction has two-con®gura-
tional character, and therefore it may provide a
reasonable description of the 1A1 state. For the purpose
of setting up the BS-UDFT wavefunction, an initial
guess is constructed by mixing the s-type HOMO and
the p-type LUMO of the closed shell RDFT description
of the 1A1 state.

CBS¡U
open ˆ jÁrÁsi; …12 a†

Ár ˆ cos ³Ás ‡ sin ³Áp …12 b†

Ás ˆ cos ³Ás ¡ sin ³Áp; …12 c†

where the orbital rotation angle ³ is optimized during
the SCF iterations. The resulting orbitals Ár and Ás are
the localized counterparts of Ás and Áp, respectively
(®gure 11). Using equation (12), the open shell part

CBS¡U
open of the BS-UDFT wavefunction can be written as

CBS¡U
open ˆ cos2 ³jÁsÁsi ¡ sin2 ³jÁpÁpi

‡
���
2

p
cos ³ sin ³jÁsÁpiT: …13†

Hence, the BS-UDFT state is a mixture of the jssi
and jppi singlet states and the jspi (MS ˆ 0) triplet
state. Again, the spin symmetry is broken as in the
case of PO-UDFT. With respect to spatial symmetry,
the BS-UDFT reference state does not belong to any
irreducible representation but is part of a reducible
representation that consists of a 1A1 and a 3B1 contribu-
tion for methylene. However, the BS-UDFT reference
function is not completely asymmetric: it belongs to an
irreducible representation of a mixed spin-space sym-
metry group where all re¯ections at the mirror plane
are combined with a simultaneous ¯ip of all spins in
the system [55]. The PO-UDFT wavefunction is not
symmetric with respect to this combined symmetry
group.

The BS-UDFT wavefunction (13) has two-con®gura-
tional character similar to that of the generalized valence
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Figure 11. Schematic representation of the construction of the PO-UDFT and BS-UDFT wavefunctions in the case of (a) the 1B1

state of methylene and (b) the 1A1 state of methylene. The changes in the occupation (PO-UDFT) or the form (BS-UDFT:
HOMO-LUMO mixing) of the frontier orbitals is given schematically (see text).



bond approach for one electron pair (GVB(1)) [135].
Hence, the BS-UDFT orbitals Ár and Ás resemble the
corresponding GVB orbitals (®gure 11).

6.3. Non-dynamic electron correlation e� ects covered by
UDFT

The discussion of the various UDFT methods sug-
gests that PO-UDFT may be appropriate to describe
type-I systems (or even type-III systems) while BS-
UDFT might be able to provide reasonable results for
type-II systems. Both for type-II and type-III (but not
for type-I) systems UDFT must cover non-dynamic
correlation e� ects to lead to a useful description. The
UDFT calculation of a high spin system explicitly
includes dynamic correlation e� ects as the only type of
electron correlation (where the unspeci®ed amount of
non-dynamic correlation e� ects included by the X func-
tional is not considered here). The wavefunction con-
tains small admixtures of higher CSFs, but these are
too small to account for any signi®cant amount of
non-dynamic electron correlation. Also, there is no par-
ticular coverage of non-dynamic electron correlation
e� ects by the PO-UDFT wavefunction for a type-I bi-
radical, which of course are not needed in this case.

The form of the BS-UHF wavefunction (13) suggests
that it includes similar non-dynamic electron correlation
e� ects as GVB(1) or CASSCF(2,2). Important problems
in chemistry such as the dissociation of a single bond are
described reasonably by the latter. However, the BS-
UDFT wavefunction never takes the explicit form of
equation (13), which because of the triplet admixture
collapses to a single-determinanta l form. This means
that the non-dynamic electron correlation e� ects cov-
ered by BS-UHF must be re¯ected by the form of the
a and b spin orbitals calculated at the UDFT level of
theory.

The UHF spin orbitals are known to be more
localized than the RHF space orbitals, which becomes
obvious when comparing the UHF and RHF orbitals of
dissociating molecules such as H2 and F2. Localization
of the orbitals leads to an increase in the Coulomb self-
interactions of the electrons and, by this, also of the
exchange interactions, which exactly annihilate the
former by the self-exchange they contain. If one assumes
that for the RHF and UHF description of the same
electron system the Coulomb repulsion energy will be
about the same, the subtraction of the exchange
energy will give a smaller (more negative) electron inter-
action energy and total energy in the unrestricted case.

The same conclusion is reached when considering the
impact exchange interactions have in general on the
electron density (®gure 6(a)). Since the chance of ®nding
electrons with the same spin is greatest in the valence
regions of the heavy atoms, exchange interactions in a

molecule are strongest in these regions. A stronger
localization of the orbitals (e.g. when ethene dissociates
into two carbene molecules) implies a contraction of
the valence regions and, accordingly, stronger exchange
interactions, which in turn leads to a more negative
energy relative to the corresponding RHF energy.

Alternatively, the decrease in the UHF energy can be
considered to re¯ect the non-dynamic electron corre-
lation e� ects resulting from the implicit two-con®gura-
tional character of the BS-UHF wavefunction. Hence,
breaking of the spin and space symmetry at the BS-UHF
level is both an indication of and a compensation for the
fact that the RHF description of a multireference elec-
tronic system lacks important non-dynamic electron
correlation e� ects. These e� ects are covered by the
exchange energy, and cause an increase in the magnitude
of the latter.

The discussion in } 5 clari®ed that DFT exchange
covers non-dynamic electron correlation e� ects due to
the local character of the exchange hole, where one has
to recall that DFT exchange is not directly related to HF
exchange because it is de®ned in a di� erent way. Non-
dynamic correlation e� ects covered by an LDA or GGA
functional are unspeci®ed and will not necessarily
improve the description of a given multireference
system. In addition to these e� ects, use of the UDFT
rather than RDFT wavefunction introduces additional
non-dynamic electron correlation e� ects of the type just
described for the case of a UHF wavefunction (and
indicated by the explicit form of the BS-UDFT wave-
function (13)). It cannot be excluded that (apart from
problems such as spin contamination) the UDFT
description su� ers from a double counting of non-dynamic
correlation e� ects. A simple corollary that may be drawn
from this conclusion is that it is always better to carry
out UDFT calculations with hybrid functionals, thus
suppressing any double counting as much as possible
(B3LYP is better than BLYP in the case of a UDFT
description).

In view of these considerations, two important dif-
ferences between BS-UHF and BS-UDFT must be
stressed. (1) The causes of symmetry breaking at the
HF and DFT levels of theory are di� erent. In the
former case, it is a failure of the method (which does
not cover non-dynamic electron correlation needed for
the description of a multireference system). In the latter
case, however, the spin-restricted DFT description
would be stable for the multireference system if the
exact XC functional were available, i.e. a BS-UDFT
description would not exist. Hence, the existence of a
broken symmetry solution at the DFT level is not an
indication of shortcomings of the method, but an indi-
cation of the shortcomings of the approximate func-
tionals presently in use. Apart from this, an RDFT
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description with an LDA or GGA functional will be
always more stable than an RHF description because
the former already contains non-dynamic correlation
e� ects while the latter does not.

(2) In contrast to HF, DFT can be improved by
adjusting the XC functional. This can be done in an
empirical way, as in the case of the hybrid functionals
[36], thus leading to semiempirical DFT [74]. The choice
of reference compounds and of experimental reference
data used in the empirical calibration decides on the
dynamic and non-dynamic correlation e� ects covered
by the hybrid functional. Alternatively, one can adjust
the DFT exchange hole to the exact exchange hole using
delocalization indicators and tuning down non-dynamic
correlation e� ects in a molecule-speci®c way, which also
leads to improved coverage of electron correlation [127].

It is of advantage to quantify the amount of non-
dynamic electron correlation covered explicitly by a
BS-UDFT description, for example, in the case of a
dissociating molecule. The two-con®gurational char-
acter can be assessed directly from the rotational angle

³ driving the mixing of HOMO and LUMO in the BS-
UDFT description. Since for a given problem it may be
di� cult to determine the optimized ³ and the exact form
of equation (13), it is easier to calculate the natural
orbitals of the BS-UDFT wavefunction. The fractional
values of the natural orbital occupation numbers
(NOONs) of the mixing orbitals then provide a simple
measure of the amount of non-dynamic electron corre-
lation covered by the BS-UHF wavefunction [55].

We conclude that BS-UDFT and in particular BS-
UDFT with hybrid functionals should cover a consider-
able amount of non-dynamic electron correlation e� ects
to lead to a reasonable description of many multirefer-
ence systems. However, the price to be paid for this is
spin contamination. From a practical point of view the
question is whether spin contamination deteriorates
results at the BS-UDFT level of theory in the same
manner as it does at the UHF level. In UHF theory,
the answer to this question is based on a quantitative
assessment of spin contamination via the expectation
value hŜS2i [51, 136]. Therefore, we shall discuss the con-
sequences of spin contamination in UDFT in the next
section.

6.4. Spin contamination in spin-unrestricted DFT
There are three ways to investigate the consequences

of spin contamination when using spin-unrestricted
theory, which may also be applied at the UDFT level
of theory.

(1) Comparison of calculated molecular properties
such as the energy with the corresponding quantities
calculated at the RODFT level of theory; alternatively,

one can use for this purpose reliable WFT results or
directly experimental values.

(2) Calculation of the expectation value hŜS2i. Its devi-
ation from the ideal value S…S ‡ 1† where S denotes the
total spin of the electronic system should give the degree
of spin contamination.

(3) Comparison of the UDFT spin density distribu-
tion with the correct spin density distribution taken
from a reliable reference calculation.

In the literature, possibility 2 is mostly chosen, where
the KS orbitals are used to calculate hŜS2i. There are,
however, a number of arguments against the use of
hŜS2i as an indicator of spin contamination for the
UDFT wavefunction [53, 54]. (a) The KS wavefunction
corresponds to the situation of non-interacting elec-
trons, and this di� ers considerably from the many-
particle state represented by the KS density. Hence,
one can not expect that hŜS2i calculated from the KS
Slater determinant has any physical signi®cance. (b)
The operator ŜS2 is a two-electron operator, whereas
the KS wavefunction should reproduce correctly only
the expectation values of one-particle operators. There
is no reason why the KS Slater determinant should yield
the correct hŜS2i, and an expectation value for ŜS2 that
deviates from S…S ‡ 1† does not necessarily indicate
spin contamination. (c) At present, the correct cal-
culation of hŜS2i with the KS density is an unresolved
problem.

Wang et al. [137] investigated a number of high spin
states of atoms and small molecules (both doublet radi-
cals and T biradicals) and compared the hŜS2i values
computed from the KS Slater determinant with values
obtained by an approximate approach based on the
correct LoÈ wdin formula [138] for hŜS2i. They found
that the values from the KS Slater determinant,
though not exact, are at least reasonable for high spin
radicals and biradicals. GraÈ fenstein and Cremer [54]
used the spin (magnetization ) density distribution
ms…r† ˆ »a…r† ¡ »b…r† to determine the value of hŜS2i in
the case of singlet biradicals where the UDFT descrip-
tion is highly contaminated (up to 50% and more triplet
character). They found that spin contamination can be
underestimated by more than 20% when using KS orbi-
tals for the calculation of hŜS2i, where errors were largest
for LDA functionals but smallest for hybrid functionals.
These observations could be generalized in such a way
that, for cases with equal mixing of singlet and triplet
states in the BS-UDFT wavefunctions of singlet biradi-
cals, hŜS2i calculated from KS orbitals still possesses a
useful diagnostic value, although this is no longer the
case as soon as there is unequal mixing of these states
[54].

Presently there is no reliable way to routinely calcu-
late the correct magnitude of hŜS2i, and thus the diag-
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nostic value of the latter as obtained with the help of KS
orbitals has to be questioned in general. In this situa-
tion, arguments to disregard hŜS2i and to consider the
role of spin contamination in UDFT from a principle
point of view are most welcome. For example, Pople et
al. [139] argued that the spin-unrestricted KS formalism
is the appropriate formulation of the KS approach for
spin-resolved DFT, and that there is no motivation to
avoid or remedy an incorrect value of hŜS2i for the KS
Slater determinant by a spin-restricted KS formalism.
On the same basis, it is a contradiction in itself to use
spin-projection methods developed within wavefunction
theory in the case of UDFT [140].

6.5. The usefulness of UDFT results
BS-UDFT has been found to lead to surprisingly

accurate descriptions in many cases where both the cal-
culated value of hŜS2i and the spin magnetization density
indicate strong spin contamination. On this basis, the
problem of spin contamination may be ignored alto-
gether, as was suggested by Perdew et al. [90]. These
authors developed an alternative interpretation of
spin-unrestricted DFT that, while leaving the KS equa-
tions unchanged, avoids the symmetry-breaking prob-
lems of conventional UDFT. Their approach is based
on the total and the on-top pair density distribution
rather than spin densities »a and »b. The on-top pair
density P(r,r) gives the probability of ®nding two elec-
trons at the same position r (one electron `on top’
of another), where P(r) is approximated by using KS
orbitals [141]:

P…r; r† ˆ 1
2»

2…r†f1 ¡ ±2…r†g ˆ 2»a…r†»b…r†; …14†

where ±…r† ˆ ‰»a…r† ¡ »b…r†Š=»…r† is the relative spin
polarization. By constrained minimization of the
ground state energy with regard to total and on-top
pair densities, Perdew et al. [90] determined the KS
energy in a way that is more appropriate for approxi-
mate XC functionals than the conventional KS form-
alism. In standard DFT, the KS reference has to
reproduce the correct total density »(r) and the correct
relative spin polarization ± of the real state. Perdew et al.
abandoned the latter requirement by the condition that
the correct on-top pair density is reproduced.

There is a relationship between ±…r†, P…r; r†, and
the amount of non-dynamic correlation e� ects covered
by a UDFT calculation. A decrease in the on-top pair
density can be caused in di� erent ways. (a) Because of
the Pauli principle, two electrons located at the same
position must possess di� erent spins. If spin polarization
increases, i.e. one spin dominates the other, there will be
a reduced probability of ®nding two electrons with
opposite spin at a given position. Accordingly, the on-

top density will decrease with increasing spin polariza-

tion for a given total density. (b) Non-dynamic electron

correlation implies the long range separation of elec-

trons, which also leads to a strong decrease in P(r,r),

even in those cases where there is no spin polarization.

In view of (a) and (b), the on-top pair density contains

information on both spin polarization and non-dynamic

electron correlation e� ects. Hence, local spin polariza-

tion of the UDFT reference function may be related to

either spin polarization or non-dynamic correlation

e� ects in the real system where the former is re¯ected

by di� erences between the KS spin orbitals and the

latter by the exchange functional (see above).

As all the information needed is contained in the total

and the on-top pair density of a UDFT calculation one

can, as suggested by Perdew et al., consider both KS

orbitals and the KS spin density ms(r) as intermediate,

physically not relevant quantities and analyse UDFT

results exclusively on the basis of the calculated total

and on-top densities [90]. This line of argument is sup-

ported by GraÈ fenstein et al. [53], who showed in the

cases of singlet and triplet biradicals that the UDFT

on-top pair densities give a reasonable account of elec-

tron correlation. (i) Contrary to the spin densities ms(r),

»a(r), and »b(r), the on-top pair densities comply with

the symmetry of the molecule both in the singlet and the

triplet state. (ii) For the singlet state, symmetry breaking

at the UDFT level of theory leads to a twofold degen-

erate KS ground state, even though the real ground state

is not degenerate. Within the alternative interpretation,

these two ground states possess the same total and on-

top pair densities, and therefore they are equivalent

representations of the same KS ground state. (iii) The

on-top pair densities for singlet and triplet state are very

similar to each other in those cases where there is just a

small energy di� erence between the two states. How-

ever, the spin densities ms(r) for the two states di� er

markedly from each other.

These considerations support the usefulness of UDFT

calculations in cases where, because of non-dynamic

electron correlation e� ects, RDFT fails. In line with

this is the fact that UDFT, in contrast to RDFT, pro-

vides a reasonable description of bond dissociation [90].

However, there is no guarantee that UDFT will always

provide a reasonable answer in such a situation, because

clearly its success should depend on the amount of non-

dynamic electron correlation that has to be covered for a

given problem to get useful results. To make a better

judgement about the performance of UDFT in cases

with strong non-dynamic electron correlation, we turn

®rst to those methods that explicitly incorporate non-

dynamic electron correlation at the DFT level.
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7. Extension of DFT: explicit coverage of non-dynamic
electron correlation e� ects

An appropriate account of multi-determinanta l (type-
I systems) and/or multicon®gurational e� ects (type-II
and type-III systems) within DFT seems to imply an
extension of KS theory. It suggests itself that such an
extension will be guided partially by the experience and
knowledge obtained from WFT methods. Here, we shall
discuss brie¯y two directions for developing multideter-
minantal/multicon®gurational DFT so that (a) type-I
and (b) type-II (type-III) systems can be described reli-
ably by DFT. Clearly, an extension of DFT can pursue
di� erent strategies and always has consequences with
regard to the development of new density functionals
and the incorporation of new calculational procedures,
which cannot be discussed here in detail. Hence, we shall
pick out only methods connected closely with the work
of the present author [56±59].

7.1. Restricted open shell theory for type-I systems
The description of a type-I system such as the 1B1

state of methylene requires a two-determinantal wave-
function, as discussed in } 6. This problem can be solved
within single-determinant KS DFT by using techniques
originally worked out for the application of restricted
open shell HF (ROHF) theory in the case of low spin
systems such as OSS biradicals [142], and latterly
applied by Handy and coworkers at the MP2 level of
theory with success to describe OSS states [143]. GraÈ fen-
stein et al. [56] used this technique to develop spin-
restricted OSS DFT (ROSS-DFT). For this purpose,
the authors constructed an appropriate XC functional,
which accounts for the two-determinantal character of
the OSS state and which is based on the two following
considerations. (a) A (space and spin) symmetry-con-
strained energy minimization has to be applied in view
of the fact that for the most interesting cases the OSS
state possesses a symmetry di� ering from that of a lower
singlet state. For example, in the case of methylene the
lowest singlet state is the 1A1 state, while OSS and the
triplet state have B1 symmetry. (b) A new density func-
tional FOSS‰»Š for the OSS state is derived by using the
fact that (i) the triplet state associated with the OSS state
by spin-¯ip can be described well by DFT and that (ii) at
the HF level the triplet state is exactly 2Krs below the
OSS state where 2Krs ˆ h’r’sj’s’ri describes the
exchange of the unpaired electrons in orbitals ’r and ’s.

The small Coulomb correlations between the unpaired
electrons of the triplet state are covered in the way of
weak equal-spin corrections. In the OSS case, the same
interactions enter the energy expression as di� erent-
spin correlations, which can be handled by replacing
the triplet correlation energy EDFT

C ‰»c ‡ »r ‡ »s; »cŠ by
EDFT

C ‰»c ‡ »r; »c ‡ »sŠ where c denotes the core of

doubly occupied orbitals. In this way, the ROSS-DFT
energy functional for an OSS biradical is given by:

E ˆ 2
X

i

h’ijĥhj’ii ‡ h’rjĥhj’ri ‡ h’sjĥhj’si

‡
X

i

h’ijĴJj’ii ‡ 1
2
h’rjĴJj’ri ‡ 1

2
h’sjĴJj’si

¡ aHF

X

i

h’ijK̂Kc ‡ 1
2
…K̂Kr ‡ K̂Ks†j’ii

‡ 1
2
h’rjK̂Kc ‡ K̂Kr ‡ K̂Ksj’ri ‡ 1

2
h’sjK̂Kc ‡ K̂Kr ‡ K̂Ksj’si

‡ 2h’r’sj’s’ri ‡ EDFT
X ‰»c ‡ »r ‡ »s; »cŠ

‡ EDFT
C ‰»c ‡ »r; »c ‡ »sŠ: …15†

In equation (15), aH F is the weight factor for HF
exchange in hybrid DFT schemes (aHF ˆ 0 for pure
DFT). The functional FOSS[»] is readily obtained from
expression (15) by omitting the external potential terms,
i.e. replacing the core Hamiltonian ĥh by the kinetic
energy operator T̂T . For aHF ˆ 1 and EDFT

X ˆ EDFT
C ˆ 0,

the energy expression for ROHF in the case of an OSS
state is reproduced.

In an SCF procedure, the singly occupied orbitals ’r

and ’s are rotated in such a way that the energy is
minimized for otherwise ®xed orbitals (such a rotation
does not a� ect the total electronic structure in the high
spin case but it does in the low spin case). For a mol-
ecule of high symmetry, ’r and ’s can represent dif-
ferent 1-dimensional irreducible representations (as,
e.g. in the case of a s and a p orbital) or span the
basis for a 2-dimensional irreducible representation so
that they are transformed into each other by some of the
symmetry operations.

ROSS-DFT provides a reasonable description of OSS
states of methylene and other type-I systems, as has been
documented in the literature [56, 58]. However, ROSS-
DFT does not include any non-dynamic correlation
e� ects, and therefore its application to type-III systems
is of little use. We note that other methods closely
related to ROSS have been worked out as, e.g. the
ROKS method (restricted open shell KS theory) of
Filatov and Shaik [144]. Section 8 will discuss the per-
formance of ROSS-DFT for some selected examples.

7.2. Combination of multicon®gurational SCF and DFT
Non-dynamic electron correlation e� ects are rou-

tinely covered by a multicon®gurational wavefunc-
tion with a moderate size active space. However, the
available methods for a simultaneous inclusion of
non-dynamic and dynamic correlation e� ects, such as
CASSCF-PT2 [145], MR-CI [109] or MR-AQCC
[110], are too costly to be applied on a routine basis.
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If one could combine the advantages of a correct multi-
con®gurational description of non-dynamic electron
correlation e� ects with those of a DFT coverage of
dynamic correlation e� ects, one would have a method
suitable for all problems that cannot be described cor-
rectly by conventional KS theory. By choosing FORS
[67] or CASSCF [68] as a method for constructing
the multicon®gurational wavefunction, CAS-DFT is
obtained as a new, more generally applicable DFT
method [57, 58]. CAS-DFT should be able to handle
type-III systems and, by this, also all genuine type-I or
type-II systems.

However, there is a basic problem accompanying all
multicon®gurational descriptions that hinder a simple
addition of CASSCF and KS-DFT. As mentioned in
} 3, a multicon®gurational wavefunction will always
contain, in addition to wanted non-dynamic correlation
e� ects, dynamic electron correlation e� ects that will lead
inevitably to a double-counting of dynamic electron cor-
relation when combining CASSCF with DFT [57, 58].
Accordingly, any new development in the area of WFT-
DFT methods has been automatically confronted with
this problem, which also has been studied as part of the
problem of fractionally occupied orbitals [146±148].
Closely related with this research are attempts at
obtaining a better account of the interplay between
dynamic and non-dynamic electron correlation e� ects
for a multireference system (type-II and type-III
systems) by improving virtual orbitals [149±155], by
using a functional for non-dynamic correlation e� ects
[156, 157], by partitioning the electron±electron inter-
action operator into a short range and a long range
part [158, 159], or by partitioning the electron correla-
tion energy [160±163]. An interesting attempt to identify
dynamic and non-dynamic electron correlation e� ects
was made at the MCSCF level by using properties of
the calculated pair densities [163]. According to this
approach, the electron±electron counterbalance density
indicates the short or long range behaviour of electron
correlation, de®nes their in¯uence on the size of the
Coulomb hole, and provides a basis for separating
dynamic from non-dynamic electron correlation e� ects
covered by a given multicon®gurational wavefunction.
However, so far there is no obvious principle following
from these investigations that helps in carrying out a
self-consistent WFT-DFT calculation without any
double-counting of dynamic correlation e� ects.

For the development of a generally applicable CAS-
DFT method, one has to modify the KS approach (see
equations (3) and (4)) in two ways: (a) the search over
trial functions has to be done over all CAS wavefunc-
tions for a given size of the active space, and (b) in
equation (4), the Hartree energy EJ must be replaced
by the full electron interaction energy of the CAS trial

wavefunction. This implies that the exchange energy and
the non-dynamic electron correlation energy are covered
by a CAS-DFT analogue to FK S[»] in equation (3) and
that EXC [»] is replaced by a term that covers the
dynamic correlation energy only. Modi®cations (a)
and (b) lead to the CAS-DFT scheme:

F‰»Š ˆ FCAS-DFT
KS ‰»Š ‡ ECAS-DFT

C ‰»Š; …16†

FCAS-DFT
KS ‰»Š ˆ min

CCAS!»
hCCASjT̂T ‡ V̂V eejCCASi: …17†

One has to construct an approximation for ECAS¡DFT
C ‰»Š

of the general form

EC‰»Š ˆ
…

d3r "C…»; r»; . . .†
r

…18†

to apply CAS-DFT. However, in doing so a number of
problems arise: (a) proper choice of input quantities
(spin densities, total density, etc.); (b) avoidance of the
double-counting of dynamic electron correlation e� ects;
(c) the correct distinction between correlation e� ects
involving core orbitals and those involving active
space orbitals at the DFT level; (d) a balanced treatment
of singly and doubly occupied CAS orbitals; and (e)
appropriate choice of the DFT correlation functional
for CAS-DFT calculations.

(a) Choice of the input densities for the DFT correlation
energy functional. The use of spin densities »a and »b in
CAS-DFT will lead to similar errors in the description
of state multiplets as discussed in connection with
ROSS-DFT. Therefore, it is of advantage to replace
these densities, as in the case of UDFT, by the total
density »(r) and the on-top pair density P(r,r) as input
quantities for the correlation functional. Being a two-
particle quantity, P(r,r) can distinguish between states
with di� erent multiplicity and, in contrast to »a, »b, the
on-top density is identical for the components of a state
multiplet such as T(M ˆ ¡1†, T(M ˆ 0), and T(M ˆ 1).
Equation (19) can be used to convert existing correlation
functionals so that they depend on total density »(r) and
on-top pair density P(r,r) rather than spin densities »a(r)
and »b(r) [57]:

"on-top
C …»; P† ˆ "C

»

2
‡

�����������������
»

2

± ²2
¡P

r
;
»

2
¡

�����������������
»

2

± ²2
¡P

rÁ !

:

…19†

(b) The double-counting of dynamic electron correlation
e� ects. As most of the expressions for the DFT correla-
tion energy were derived using the HEG as starting
basis, it is possible to use standard descriptions of the
HEG to assess the amount of dynamic electron correla-
tion e� ects [164, 165]. First, a reference density »ref (r) is
determined by considering all core orbitals and active
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space orbitals to be doubly occupied, so that the magni-
tude of »ref (r) re¯ects the size of the active space. If
compared with the true density of the system in ques-
tion, »(r), the ratio »ref (r)/»(r) 5 1 will increase with the
size of the active space, as will the amount of dynamic
electron correlation already covered by the CASSCF
wavefunction. Hence, one has to scale the DFT correla-
tion energy locally by a scaling factor f (0 4 f 4 1) to
avoid this double counting. To determine f, one recalcu-
lates the correlation energy of the HEG with the density

» in a way that is comparable with CASSCF, i.e. one
allows excitations from the occupied orbitals only into
virtual orbitals up to a certain energy limit, which is
adjusted in the way that the active space has just the
reference density »ref . For the determination of the
scaling factor f, the resulting correlation energy
"HEG

C …»; »ref† is related to the value "HEG
C …»; 1† for all

virtual orbitals being included.

f …»; »ref† ˆ 1 ¡ "HEG
C …»; »ref †
"HEG

C …»; 1†
: …20†

An analytical expression worked out for the scaling
factor [165] facilitates the calculation of the correlation
energy so that its scaled value can be determined readily:

ECAS-DFT
C ˆ

…
d3r f …»; »ref†"on-top

C …»; r . . . ; P; rP; . . .†
r

:

…21†

(c) Distinction between core and active space orbitals.
The original derivation of an analytical expression for
the scaling factor f did not distinguish between core and
active space orbitals, which is equivalent to assuming
that the core part of a CASSCF description is always
the same. However, it will change if di� erent molecules
are compared within a given reaction scheme. GraÈ fen-
stein and Cremer [58] suggested a procedure to compen-
sate for this. However, a distinction between core and
active space orbitals, which is possible via the electron
density associated with them, has to be incorporated
directly into the derivation of the expression of the
scaling factor with the help of the HEG.

(d) Treatment of singly and doubly occupied CAS orbi-
tals. Another shortcoming of the use of an analytical
expression for the scaling factor is the fact that this
expression does not distinguish between singly and
doubly occupied orbitals. Because of this the scaling
procedure assumes a larger Coulomb correlation
energy for a triplet state (exchange±correlation between
the single electrons keeps Coulomb correlation relatively
small) than is actually covered by the CASSCF calcula-
tion. The CAS-DFT triplet energy is too high relative to
that of the singlet state from which it is generated via a
HOMO-LUMO excitation, thus yielding erroneous

singlet±triplet splittings. Re®ned scaling procedures
can compensate for this e� ect [166].

(e) Choice of the DFT correlation functional for CAS-
DFT. It was shown that a gradient-corrected correlation
functional is required because LDA functionals overes-
timate dynamic correlation e� ects. The LYP functional
could be considered to represent an appropriate choice,
in particular in view of its widespread successful use.
GraÈ fenstein and Cremer [57], however, suggested
reverting back to the Colle±Salvetti (CS) functional
[12], from which the LYP functional was originally
derived. The CS functional provides the advantage of
using total density and pair density directly as input
quantities, thus avoiding a conversion of the functional
as just discussed under (a). However, other gradient-
corrected correlation functionals should be equally suit-
able, where of course care has to be taken that they do
not cover spurious non-dynamic correlation e� ects.

Once problems (a)±(e) are solved, a reasonable and
computationally feasible account of both non-dynamic
and dynamic electron correlation e� ects should be given
at the CAS-DFT level of theory. The correct way to
determine the CAS-DFT energy is to solve the CAS-
DFT equations self-consistently. However, the orbitals
do not depend strongly on the DFT correlation-energy
contribution, as investigations with GVB-DFT [59] and
®rst versions of CAS-DFT revealed [57, 58]. Hence, for
energy calculations it is a reasonable approximation to
insert CCASSCF into the CAS-DFT energy functional
and to determine the CAS-DFT energy in a one-step
procedure rather than obtaining CCAS-DFT in an itera-
tive procedure leading to self consistency. However, a
generally applicable CAS-DFT method must be able to
determine optimized geometries, frequencies, etc., which
of course implies a self-consistent CAS-DFT wavefunc-
tion. First results obtained with CAS-DFT (discussed in
the next section) clearly show its potential of (i)
extending DFT methods to types-I, -II, and -III systems
in a general way and (ii) o� ering a feasible alternative to
the much more costly WFT methods such as CASPT2,
MR-CI, or MR-CC.

7.3. Performance of DFT methods covering non-
dynamic electron correlation e� ects

The performance of the various DFT methods that
cover non-dynamic electron correlation e� ects was
tested for a large number of electron systems with multi-
reference character. Here, only a few typical examples
are discussed, which illustrate the usefulness of DFT in
these cases. In table 6, relative energies, geometries, and
NOON values of the three lowest states of methylene
[55±58, 167±171] are summarized. A number of conclu-
sions can be drawn from these data.
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(1) RDFT provides a reasonable account of the
1A1-

3B1 splitting where the calculated value will be
closer to the experimental value (9.1 kcal mol¡1 [170])

if RODFT (10.5 kcal mol¡1, table 6) rather than

UDFT (11.8 kcal mol¡1) is taken for the triplet state.

The 1A1 state has only little type-II character, as con-

®rmed by the NOON values obtained by CAS-DFT;

there is only little negative charge (0.014 e, table 6) in

the b1-symmetrical p MO of the singlet closed shell state.
(2) BS-UDFT exaggerates the type-II character of 1A1

state as revealed by a population of 0.472 e of the b1-

symmetrical p MO. As a consequence, the singlet±triplet

splitting is just 5.5 kcal mol¡1. Because of the low lying

triplet state, the breaking of space and spin symmetry

leads to unreasonable results. BS-UDFT is inap-

propriate for describing non-dynamic electron correla-

tion e� ects in the singlet state. Those covered by the
semiempirical B3LYP functional within spin-restricted

theory are su� cient.

(3) The simple augmentation of a two-con®gurational

approach such as GVB by the DFT correlation func-

tional LYP leads to a reasonable account of the type-

II character of the 1A1 state but to a serious double
counting of its dynamic electron correlation e� ects,

thus exaggerating its stability.

(4) CAS-DFT largely avoids double-counting of

dynamic electron correlation. However, in the version

used the scaling back of dynamic correlation e� ects

for the triplet is too strong, thus underestimating its

stability. This emphasizes the necessity for di� eren-
tiating between singlet and triplet states in the scaling

procedure (see } 7.2).

(5) ROSS-DFT gives a reasonable account of OSS 1B1

state and therefore will be the method of choice if the

more costly CAS-DFT method cannot be used. We note

that the latter predicts a more accurate value of

¢E(1B1¡3B1) because of the similarity in the orbital

occupation.
(6) Interesting is the dramatic failure of PO-UDFT,

which predicts an energy di� erence (11.4 kcal mol¡1)

between the 1B1 state and the 3B1 state, which is just

one third of the best available WFT value
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Table 6. Energies, geometries, and NOON values for the three lowest states of
methylene.a

Method Functional E or ¢E rCH � HCH NOON(a1) NOON(b1)

3B1 State
RODFT B3LYP 739.166 68 1.077 133.9 1 1
UDFT B3LYP 739.168 74 1.077 135.0 1.000 1.000
ROHF-DFTb LYP 739.134 20 1.072 128.8 1 1
CAS(6,6)-DFT CS 739.120 67 1.102 131.0 1.000 1.000
Expt.c 1.070 134.0 1 1
1A1 State
RDFT B3LYPd 10.5 (11.8) 1.110 101.6 2 0
BS-UDFT B3LYP 5.3 1.093 114.0 1.528 0.472
GVB-DFT LYP 6.3 1.110 101.6 1.986 0.014
CAS(6,6)-DFT CS 6.9 1.138 100.0 1.909 0.088
Expt.c 9.1 1.111 101.9 N/A N/A
1B1 State
ROSS-DFT B3LYP 30.4 1.072 147.5 1 1
PO-UDFT B3LYP 11.4 1.077 138.1 1.000 1.000
ROHF-DFTb LYP 25.8 1.072 147.5 1 1
CAS(6,6)-DFT CS 35.2 1.131 134.1 1.000 1.000
CIe 33.4 1.077 141.5 N/A N/A

a Absolute energies E in Eh, relative energies ¢E in kcal mol¡1, bond lengths in AÊ , bond
angles in deg. The natural orbital occupation numbers (NOON) are given for the two
highest occupied MOs. Integer values denote NOON values ®xed by the method used;
¯oating point numbers are given when other than integer values are possible. All calcula-
tions used Dunning’s cc-pVTZ basis set [71] unless otherwise noted. The CAS-DFT calcu-
lations were carried out with the Colle±Salvetti (CS) functional. Results from [55±58].

b Geometries taken from DFT.
c Experimental geometries from [168] (1A1) and [169] (1A1: 1.075 AÊ , 133.98; and 3B1).

E…1
A1† ¡ E…3

B1† from [170], converted from T0 to Te according to [167].
d Energy di� erence in parentheses is given relative to the UDFT energy of the 3B1 state.
e E…1

B1† ¡ E…3
B1† estimated by extrapolation to large basis sets [171a]; E…1

A1† ¡ E…3
B1†

from SOCI+Q/ANO calculations [171b].



(33.4 kcal mol¡1 [171], table 6). Although the orbital

occupation of the 1B1 state is correctly given by the

PO-UDFT approach, the result is ¯awed by a large

contribution from the 3B1 state in the PO-UDFT wave-

function, thus arti®cially lowering the corresponding

energy. The PO-UDFT energy of the 1B1 state of methy-

lene has to be too low by at least twice the magnitude

of the exchange integral Krs, which is 2 7:8 ˆ
15.6 kcal mol¡1 in the case of methylene. We conclude

that even a qualitatively correct PO-UDFT description

of the 1B1 state is not possible.

One might conclude from this comparison that both

BS-UDFT and PO-UDFT are methods one should not

use for the description of type-I, type-II or type-III

systems. However, the results listed in tables 7 and 8

reveal that such a conclusion would be precipitate.

In the case of a-3-didehydrotoluene (Myers biradical,

®gure 10) it is known that because of spin polarization

between the unpaired electrons the singlet 1A0 state is the

ground state [172]. The best estimates give a singlet±

triplet splitting of about 2 kcal mol¡1 [55, 58, 173]. For

the Myers biradical, spin polarization is a long range

e� ect, and therefore it corresponds to non-dynamic elec-

tron correlation, i.e. the Myers biradical is a typical ex-

ample of type-III character, which in WFT implies a

two(multi)-determinanta l multicon®gurational descrip-

tion. On the basis of these considerations, the results

listed in table 7 can be analysed [55, 58].

(7) Although the ROSS method (implicitly) provides a

two-determinantal description, it must fail because it

covers no extra non-dynamic correlation e� ects needed

to account properly for spin polarization. Accordingly,

ROSS predicts the 1A0 state to be above rather than

below the 3A00 state (0.8 kcal mol¡1, table 7).

(8) PO-UDFT covers spin-polarization as a result of a

separate optimization of a and b spin orbitals. As the

two unpaired electrons are substantially separated, the

magnitude of the exchange integral Krs is very small, and

therefore the basic failure of PO-UDFT (see conclusion

6 above) is disguised. In other words, the singlet±triplet

splitting is rather small and any triplet contamination of

the PO-UDFT wavefunction a negligible problem. The

correct order of states and a reasonable value for the

singlet±triplet splitting is obtained (71.0 kcal mol¡1,

table 7).

(9) BS-UDFT describes for the Myers biradical a

type-II rather than a type-III state by mixing the
1A0(s2) with the 1A0(p2) state. The calculated NOON

values are 1.423 for the a0 symmetrical s orbital and

0.577 for the a00 symmetrical p-orbital while the

NOON values of the PO-UDFT description are both

1.000 as they should be. Hence, BS-UDFT describes

an excited singlet state that is 22.5 kcal mol¡1 higher in

energy than the triplet state (table 7).

(10) As both the 1A0 and the 3A00 imply the same

orbital occupation (apart from spin), the CAS-DFT cal-

culation is not a� ected by a di� erent scaling of dynamic

electron correlation for the singlet and triplet states. It

gives the singlet state 2.6 kcal mol¡1 below the triplet

state, in good accord with the best WFT results pub-

lished so far (table 7). However, GVB-DFT is ¯awed by

a double-counting of dynamic electron correlation,

which plays a larger role in the singlet state, thus exag-

gerating its stability.
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Table 7. Singlet±triplet splitting for a-3-didehydrotoluene
(Myers biradical).a

Method Functional E…3
A 00† ¢E…1

A 0†

ROSS B3LYP 7270.319 71 0.8

PO-UDFT B3LYP 7270.323 22 71.0
BS-UDFT B3LYP 7270.323 22 22.5

GVB-DFTb LYP 7270.116 65 77.4
CAS(8,8)-DFTc CS 7270.039 09 72.6
DDCI2d 72.0

a Absolute energies E in Eh, relative energies ¢E in
kcal mol¡1. All calculations were done with Dunning’s cc-
pVTZ basis set [71] unless otherwise noted. The method is
given for the description of the OSS state while for the triplet
state either RODFT or UDFT was used.

b Triplet calculated with ROHF-DFT. ROSS geometries
used. See [59].

c Reference [58]. The Colle±Salvetti (CS) functional and the
6-31G(d,p) basis set were used.

d Reference [173].

Table 8. Singlet and triplet energies for 1,4-
didehydrobenzene (p-benzyne).a

Method Functional E…3
B1u† ¢E…1

Ag†

RDFT B3LYP 7230.952 54 13.1

BS-UDFT B3LYP 7230.952 54 72.6
PO-UDFT B3LYP 7230.952 54 38.9

GVB-DFT LYP 7230.777 58 710.4
CAS(8,8)-DFTb CS 7230.709 04 72.5

Expt.c 73.5+0.5

a Absolute energies E in Eh, relative energies ¢E in
kcal mol¡1. All calculations are based on Dunning’s cc-pVTZ
basis set [71] unless otherwise noted. The method is given for
the description of the singlet state while for the triplet state
either RODFT or UDFT was used. UDFT results are from
[53].

b Reference [58]. The Colle±Salvetti (CS) functional and the
6-31G(d,p) basis set were used.

c Reference [174], converted to Te according to [53].



The results for the Myers biradical show that PO-
UDFT, despite its basic failure to describe the energy
of type-I systems such as OSS states correctly, can be
useful provided that the exchange interaction between
the unpaired electrons in the triplet state associated with
the OSS state is small. This situation occurs for singlet
biradicals with the unpaired electrons located at dif-
ferent atoms. In such a case, the advantage of PO-
UDFT to cover non-dynamic electron correlation e� ects
dominates its disadvantages of being triplet contami-
nated, thus changing the energy by the term 2Krs. How-
ever, PO-UDFT is de®nitely not suitable for a type-II
system as calculations for a third example, namely p-
benzyne (table 8, ®gure 10), reveal. p-Benzyne possesses
a singlet ground state, which has some biradical char-
acter because of mixing between the 1Ag(HOMO2)
ground state with the 1Ag(LUMO2) singlet excited
state [55]. The ®rst excited triplet states, 3B1u(HOMO1,
LUMO1), was measured to be 3.5 kcal mol¡1 above the
singlet ground state [53, 174].

(11) RDFT, which covers non-dynamic electron cor-
relation e� ects only via the empirically calibrated
B3LYP hybrid functional, underestimates the stability
of the 1Ag state and, accordingly, is not able to provide
the correct state ordering (table 8).

(12) BS-UDFT, which covers non-dynamic electron
correlation e� ects both via the approximate exchange
functional used and the two-con®gurational character
of the wavefunction, performs well in the case of p-
benzyne and gives a splitting of 2.6 kcal mol¡1. The tri-
plet contamination plays only a minor role.

(13) PO-UDFT is not able to describe the 1Ag state,
but describes an excited OSS state of p-benzyne which is
38.9 kcal mol¡1 higher in energy.

(14) Because of a stronger double counting of non-
dynamic correlation e� ects for the singlet state, GVB-
DFT strongly exaggerates the stability of the ground
state. CAS-DFT, however, provides a reliable account
of the relative energies of the two states.

The three examples provide useful guidelines for the
applicability of DFT methods in the case of multirefer-
ence systems. UDFT methods are the `poor-man’s tools’
for describing multireference e� ects, provided that
appropriate care is taken and some knowledge of the
electronic structure of the target system is available.
Calculation of hŜS2i with the help of KS orbitals provides
little information on the accuracy of the UDFT descrip-
tion. A large hŜS2i value does not necessarily imply a
large error in the relative UDFT energies. A better
way of assessing the accuracy of a given PO- or BS-
UDFT description, e.g. of a singlet state with multi-
reference character, is provided by an independent
determination of the singlet±triplet splitting. If this is
large and E(S)<E(T), the stability of the target system

and ¢E(T±S) will be underestimated because of the T
contamination of the UDFT description. The stability
of the target system, however, will be overestimated, and
the magnitude of the singlet±triplet splitting again
underestimated if E(S)>E(T) and ¢E(S±T) is large.
Reasonable results can be obtained only for relatively
small singlet±triplet splittings. Hence, in all cases of
large singlet-triplet splittings more advanced methods
such as CAS-DFT rather than UDFT must be applied.

8. Conclusions and outlook
DFT de®nes and covers electron correlation e� ects in

a way considerably di� erent from WFT. Exchange cor-
relation plays a strong role in DFT because it represents
more than 95% of all electron correlation e� ects. There-
fore, any investigation of electron correlation e� ects
covered by DFT must especially consider the role of
the exchange functional.

(1) Because of the local nature of the exchange hole of
either LDA or GGA functionals, DFT exchange covers
non-dynamic electron correlation e� ects in an unspeci-
®ed way. This is re¯ected in the calculated di� erence
densities, which suggest that Becke exchange leads to
stronger left±right and in±out correlation e� ects than
any of the MP or CC methods used in this work. Inspec-
tion of the di� erence densities does not clarify whether
these pair correlation e� ects are of short or long range
nature whereas the exaggeration of left±right correlation
beyond that normally found for MP2 actually suggests
that long range rather than short range e� ects are simu-
lated by LDA or GGA exchange. For Slater exchange,
pair correlation e� ects re¯ected by calculated di� erence
densities are even stronger, indicating that the LDA
functional covers even more non-dynamic correlation
e� ects than the GGA exchange functionals.

(2) As the GGA exchange potentials possess a singu-
larity at the nucleus, an arti®cial shell structure in the
density surrounding the nucleus in the core and inner
shell region is obtained, which should cause problems
when calculating molecular properties strongly depen-
dent on a correct description of the density distribution
in this region.

(3) Correlation functionals such as LYP change the
density distribution generally by contracting density
from the van der Waals region to the bond region.
GGA functionals di� er in so far as they are also a� ected
by a singularity at the nucleus that leads to a depletion
of negative charge from the core region, thus balancing
somewhat the opposite trends observed for the exchange
functionals. The changes in density caused by the corre-
lation functionals can be related to higher order
correlation e� ects of WFT methods that have similar
consequences with regard to the density distribution.
This indicates that the correlation functionals contain
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dynamic correlation e� ects not (or only partially) pres-
ent in low order MPn methods.

(4) Despite the di� erent nature of correlation e� ects
covered, B-only DFT densities resemble MP2, MP4 or
CCSD(T) density distributions, where the agreement
with MP4 densities is often the best. The e� ects of the
correlation functional do not change this agreement sig-
ni®cantly. This explains why DFT results obtained with
a GGA XC functional are often close to those obtained
with either MP4, MP2 or CCSD(T).

(5) Investigation of SCF-SIC-DFT densities reveals
that the long range (non-dynamic ) correlation e� ects
of commonly used exchange functionals are caused by
the self-interaction error (SIE). Correct SIC-DFT
exchange describes for the bond region of a molecule a
delocalized exchange hole, which is not related to any
dynamic or non-dynamic electron correlation e� ects. In
this way it approaches but does not reach the delocal-
ized hole of exact exchange.

(6) The SIE of correlation functionals leads to a
stronger increase of the density in the bond regions of
a molecule, thus slightly compensating for the domi-
nating X-SIE. In the case of the BLYP functional this
compensation is not given (LYP is by construction SIE-
free) so that its total SIE is larger than in the case of the
PW91PW91 functional, which has a rather small total
SIE. The changes in the electron density caused by the
PW91 correlation functional can be related to the
in¯uence of the reduced gradient. SIE corrected correla-
tion functionals possess in general less density in the
heavy atom bond regions and more in the non-bonded
regions.

(7) Use of hybrid functionals invokes a similar pattern
of changes in the molecular density as that caused by
SIC-DFT, but changes are much smaller in the former
case. The mixing-in of 20±25% HF exchange leads to a
partial correction of the SIE and by this of the long
range correlation e� ects without cancelling them com-
pletely. By construction, the hybrid functionals repre-
sent an economical way to correct partially for the
SIE. However, this is done in a well balanced way
using functionals that were calibrated including rather
than excluding the SIE. In general, SIC-DFT will not
pro-vide better results than DFT with hybrid func-
tionals. However, there are molecular problems (odd-
electron bonds and transition states) with distinctly
delocalized exchange holes that require SIC-DFT to
obtain a reasonable description.

(8) Hybrid functionals lead to electron densities that
often agree well with CCSD(T) densities. This results
from the fact that hybrid functionals suppress some of
the long range correlation e� ects, which can be viewed
as a coupling between diagonal N-electron correlation
e� ects found at higher orders of MP or CC theory.

Inclusion of the coupling e� ects is equivalent to
adding ionic terms needed for a correct description of
e� ective atomic numbers (e� ective electronegativities) ,
bond polarities, etc.

(9) Spin restricted DFT covers both dynamic and
non-dynamic correlation e� ects in an unspeci®ed way,
but this does not mean that electron systems with dis-
tinct multireference e� ects can always be described rea-
sonably. Single-determinant RDFT fails on reasons of
principle when describing type-I systems. For OSS
states, this problem can be solved approximately by
PO-UDFT, provided that the splitting between the
singlet and the corresponding triplet state is relatively
small (equivalent to a small magnitude of the term 2Krs

in the triplet state). Otherwise, ROSS-DFT or CAS-
DFT must be applied.

(10) BS-UDFT covers non-dynamic electron correla-
tion e� ects in two independent ways, namely in an
unspeci®ed way via the exchange functional and in a
more speci®c way via the form of the UDFT wavefunc-
tion, which possesses two-con®gurational character.
Hence, one cannot exclude that there will be a double
counting of dynamic electron correlation e� ects if BS-
UDFT is used. However, double counting can largely be
suppressed if hybrid functionals are used.

(11) Because of the two-con®gurational character of
BS-UDFT, the method is suitable for type-II systems.
Nevertheless, it has to be used with care, always con-
sidering the in¯uence of spin contamination on calcu-
lated energies, which is best monitored via the singlet±
triplet splitting. We note in this connection that the
expectation value hŜS2i calculated using KS orbitals is
less suitable as a diagnostic tool for the reliability of
BS-UDFT. BS-UDFT is rather useful in cases or rela-
tively small singlet±triplet splittings; for large singlet±
triplet splittings, BS-UDFT becomes highly erroneous.

(12) BS-UDFT is not suitable for type-I and type-III
systems. OSS states with type-III character can be
described reasonably by PO-UDFT provided that the
term 2Krs and accordingly also the corresponding
singlet±triplet splitting are small. Spin polarization is
covered by an independent optimization of a and b
spin orbitals.

(13) Any extensions of DFT methods to multirefer-
ence problems with the help of WFT methodology will
require the separation of dynamic and non-dynamic
Coulomb correlation e� ects. Important steps in this
direction have been made, but no rigorous principle to
be used in setting up WFT-DFT methods is available
yet.

(14) CAS-DFT is one of the WFT-DFT methods that
because of its general applicability should have consider-
able potential when describing multireference systems.
Early versions of the method are already available, but
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the handling of the basic problem (scaling back of
dynamic electron correlation e� ects) has to be im-
proved to treat di� erently sized core and active spaces
and di� erent multiplicities of multireference systems
appropriately.

This review can provide only a limited insight into the
rapidly developing ®eld of DFT methods that handle
dynamic and non-dynamic correlation e� ects in an
advanced manner. A central role in this connection is
played by the SIE of standard DFT functionals, which
was outlined and analysed here with the tools of density
analysis and correlation corrected WFT methods. Since
there are too many unsolved questions in connection
with SIC-DFT (orbital dependence, invariance with
regard to rotations between occupied orbitals, appro-
priate XC functionals to be used in connection with
SIC-DFT, convergence problems, cost of SCF-SIC-
DFT calculations, etc.), it makes little sense to invest
in SIC-DFT methods intended for routine use in the
future. However, SIC-DFT is useful in so far as it pro-
vides insight into some of the basic failures of standard
DFT methods. This insight can trigger further develop-
ments of properly SIE-corrected XC functionals, which
should replace the empirically calibrated hybrid func-
tionals in the near future. As shown in this work, the
balanced cancellation of the SIE is the key to new func-
tionals that incorporate non-dynamic correlation e� ects
in a more speci®c rather than unspeci®ed manner. This
goal is highly attractive, considering that within KS-
DFT even a multireference system can be described by
a single determinant approach, provided that an exact
functional is used. Of course, the realization of this goal
will involve many steps and cannot be achieved in a
perfect way. Therefore, developments during the next
few years will also focus on new WFT-DFT methods,
which provide reasonable descriptions of multireference
systems. The use of WFT-DFT methods will always
imply increased computational cost, and therefore
their application will be limited. In the long run, the
goal must be to develop suitable multi-purpose XC
functionals that preserve the simplicity of KS-DFT.
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