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(Received 9 April 2003; accepted 14 April 2003)

By expanding the Foldy–Wouthuysen representation of the Dirac equation near the free-
particle solution it is shown that the Hamiltonian of the zeroth-order regular approximation
(ZORA) leads to an infinite summation of the leading relativistic corrections to the free-
particle, non-relativistic energy. The analysis of the perturbation expansion of the ZORA
Hamiltonian reveals that the ZORA Hamiltonian recovers all terms of the Breit–Pauli theory
to second order. This result is general and applies not only to hydrogen-like atomic ions (as
was demonstrated before) but also to a wide variety of physical problems. ZORA is analogous
to the random phase approximation in many-body theory in the sense that both methods
include an infinite-order summation of the asymptotically non-vanishing terms. This
highlights the difference between ZORA and the Douglas–Kroll method, with the latter
being analogous to finite-order many-body perturbation theory. On the basis of this analysis
the performance of ZORA when calculating various molecular properties is discussed.

1. Introduction

The zeroth-order regular approximation (ZORA)
[1–4] to the full relativistic Hamiltonian [5] is currently
a widely used approach in relativistic quantum chem-
istry [6]. The concept of the regular approximation is
based on an expansion of the full four-component
relativistic Hamiltonian with respect to a potential-
dependent perturbation parameter [3, 4]. Already at the
zeroth order this expansion contains relativistic correc-
tions to the non-relativistic energy. At variance with the
standard Breit–Pauli approach [7], the ZORA
Hamiltonian is bounded from below [8] and can be
used in quasi-variational calculations. In actual atomic
and molecular calculations, the ZORA method (and
related methods [9–11]) provides an excellent description
of valence and sub-valence electrons in heavy elements
[3, 4, 6, 8].
However, little is known about the reasons of such an

outstanding performance of ZORA (and related meth-
ods) in atomic and molecular calculations. The now-
standard way of deriving the regularly approximated
relativistic Hamiltonians is the expansion [3, 4, 8, 9, 12]
of the full four-component relativistic Hamiltonian with
respect to the parameter E=ð2mc2 � VÞ, which is small
for a singular potential V such as the Coulomb
potential. While for the expansion this guarantees a
good convergence property, quite little is revealed about
the zeroth-order approximation itself.

The relationship between ZORA and other quasi-
variational approximate relativistic theories such as the
Douglas–Kroll method [13–15] also remains unclear. In
the latter approach, the exact Foldy–Wouthuysen
transformation [16] is factorized into a product of two
terms, a free-particle transformation which is known in
closed algebraic form and a field-dependent part which
is not known in a closed form but is expanded up to a
certain order in terms of the potential field [13–15, 17].
Although the Douglas–Kroll method has been criticized
in the literature from a purely theoretical point of view
[17], it has proven successful in actual atomic and
molecular calculations [18]. The use of a perturbation
expansion in the derivation of the Douglas–Kroll
method provides a solid foundation for the method
and enables one to make a judgement on the method’s
applicability to various problems in quantum physics.
The perturbational treatment was also applied to the

derivation of ZORA [19, 20], whereby it has been shown
that the ZORA Hamiltonian is the lowest-order
approximation to an alternative (two-parametric) direct
perturbational expansion of the Dirac equation. While it
is commonly believed that the ZORA Hamiltonian
contains partial infinite summations of terms of
increasingly high order in 1=c2 [17], the nature of these
higher-order terms remains unsolved. For one example
of hydrogen-like atomic ions, it was demonstrated
numerically [20] that the ZORA Hamiltonian recovers
all terms of the Breit–Pauli Hamiltonian. However, it
still remains unclear whether this feature of ZORA
holds only for hydrogen-like ions or for other physical
problems (such as the harmonic oscillator, etc.) too.
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The primary goal of the present work is to analyse the
physical nature of the terms contained in the zeroth-
order regular Hamiltonian and to connect ZORA to
other approximate approaches in relativistic quantum
theory. In doing so, we proceed with the study of the
exact relativistic Hamiltonian for electronic states near
the free-particle solution and consider the expansion of
the exact electronic Hamiltonian with respect to the
potential field. The use of such an expansion for the
analysis of ZORA is inspired by the asymptotic
behaviour of the ZORA Hamiltonian which converts
to the free-particle non-relativistic Hamiltonian for
vanishing potential [12]. In section 2 the derivation of
the regular approximation is briefly surveyed, the
expansion of the relativistic electronic Hamiltonian
near the free-particle solution is presented and the
ZORA Hamiltonian is traced back to its origin.

2. Analysis of the ZORA Hamiltonian

2.1. The standard derivation of the ZORA Hamiltonian
The first step in deriving the regular approximation is

decoupling of the electronic and positronic solutions of
the Dirac equation by means of a unitary transforma-
tion known as a Foldy–Wouthuysen (FW) transforma-
tion [16]. The application of the FW transformation to
the Dirac Hamiltonian is described in many publications
(see, e.g. [9, 17, 21]) and textbooks (see, e.g. [7]) and is
not repeated here for reasons of brevity. The resulting
equation can be cast into the form of equation (1) [9],

ĤH
FW

CL ¼ E 1þ X̂X
y
X̂X

� �
CL , ð1Þ

where CL is the large component of the Dirac
wavefunction

CD ¼
CL

CS

� �
,

the Hamiltonian is given in equation (2) [9, 21]

ĤH
FW

¼ V þ cðr � pÞX̂X þ X̂X
y
cðr � pÞ þ X̂X

y�
V � 2mc2

�
X̂X

ð2Þ

and X̂X is the operator which connects the large and small
components of CD via equation (3) [9, 21]

CS ¼ X̂XCL: ð3Þ

The operator X̂X satisfies condition (4) [9, 21].

cðr � pÞ ¼ 2mc2X̂X þ
�
X̂X ,V

�
þ X̂Xcðr � pÞX̂X : ð4Þ

In equations (2) and (4), r is the vector of the Pauli
matrices r ¼ ðrx, ry, rzÞ [22], p ¼ �i �hhr is the momen-
tum operator, m is the rest mass of the electron and c is
the velocity of light.

Assuming that the exact solution to the Dirac
equation is known, the operator X̂X can be represented
as in equation (5) [9],

X̂X ¼
c

2mc2�V þE
ðr � pÞ, ð5Þ

and equation (1) can be re-written in the form of
equation (6),

V þðr � pÞ
c2

2mc2�V þE
þ

c2E

ð2mc2�V þEÞ2

	 

ðr � pÞ

� �
CL

¼ E 1þðr � pÞ
c2

ð2mc2�V þEÞ2
ðr � pÞ

� �
CL , ð6Þ

where E is the Dirac eigen energy corresponding to the
known solution.
Expanding equation (6) with respect to the parameter

E=ð2mc2 � VÞ leads [9] in the zeroth order to the ZORA
Hamiltonian in equation (7).

ĤH
ZORA

¼ V þ
1

2m
ðr � pÞ

1

1þ ðV=2mc2Þ
ðr � pÞ: ð7Þ

2.2. Expansion of equation (1) near the free-particle
solution

Let us assume that the potential V in equations (1)
and (6) is weak (�2mc2 	 V 	 2mc2) and can be
considered as a perturbation. Multiplying V in equation
(6) by a perturbation parameter �, expanding the
wavefunction CL, the energy E, the Hamiltonian ĤH

FW

and the wavefunction metric 1þ X̂X
y
X̂X in powers of the

parameter � as in equations (8)–(11),

CL ¼Cð0Þ
L þ �Cð1Þ

L þ �2Cð2Þ
L þ . . . , ð8Þ

E ¼ Eð0Þ þ �Eð1Þ þ �2Eð2Þ þ . . . , ð9Þ

ĤH
FW

¼�Vþðr �pÞ

	
c2

2mc2��VþE

þ
c2E

ð2mc2��VþEÞ2



ðr �pÞ

¼ ðr �pÞ
2c2ðEð0Þ þmc2Þ

ðEð0Þ þ2mc2Þ2
ðr �pÞ

þ�

�
Vþðr �pÞ



c2ððEð0Þ þ2mc2ÞV�2Eð0ÞðEð1Þ �VÞÞ

ðEð0Þ þ2mc2Þ3
ðr �pÞ

�
þ�2ðr �pÞ



2c2ðEð0ÞðEð1Þ �VÞðEð1Þ �2VÞ�mc2ðEð1Þ2�V2ÞÞ

ðEð0Þ þ2mc2Þ4

"

�
2c2Eð0ÞEð2Þ

ðEð0Þ þ2mc2Þ3



ðr �pÞþ . . . , ð10Þ
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1þ X̂X
y
X̂X ¼ 1þ ðr � pÞ

c2

ð2mc2� �V þEÞ2
ðr � pÞ

¼ 1þ ðr � pÞ
c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

� �ðr � pÞ
2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞ

þ �2ðr � pÞ
c2ð3ðEð1Þ �VÞ2� 2Eð2ÞðEð0Þ þ 2mc2ÞÞ

ðEð0Þ þ 2mc2Þ4


 ðr � pÞ þ . . .

ð11Þ
and collecting the terms of the same order in �, the
following equations can be obtained. In the zeroth
order, one has equation (12), which is the free-particle
Dirac equation upon applying the free-particle FW
transformation.

ðr � pÞ
2c2ðEð0Þ þmc2Þ

ðEð0Þ þ 2mc2Þ2
ðr � pÞCð0Þ

L

¼ Eð0Þ 1þ ðr � pÞ
c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

� �
Cð0Þ

L : ð12Þ

In first order, equation (13) emerges.

ðr � pÞ
2c2ðEð0Þ þmc2Þ

ðEð0Þ þ 2mc2Þ2
ðr � pÞCð1Þ

L

þ

�
V þ ðr � pÞ

c2ððEð0Þ þ 2mc2ÞV � 2Eð0ÞðEð1Þ �VÞÞ

ðEð0Þ þ 2mc2Þ3


 ðr � pÞ

�
Cð0Þ

L

¼ Eð1Þ 1þ ðr � pÞ
c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

� �
Cð0Þ

L

�Eð0Þðr � pÞ
2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞCð0Þ

L

þEð0Þ 1þ ðr � pÞ
c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

� �
Cð1Þ

L : ð13Þ

In second order of �, one obtains equation (14).

ðr � pÞ
2c2ðEð0Þ þmc2Þ

ðEð0Þ þ 2mc2Þ2
ðr � pÞCð2Þ

L

þ

�
V þ ðr � pÞ

c2ððEð0Þ þ 2mc2ÞV � 2Eð0ÞðEð1Þ �VÞÞ

ðEð0Þ þ 2mc2Þ3


 ðr � pÞ

�
Cð1Þ

L þ ðr � pÞ




	
2c2ðEð0ÞðEð1Þ �VÞðEð1Þ � 2VÞ �mc2ðEð1Þ2�V2ÞÞ

ðEð0Þ þ 2mc2Þ4

�
2c2Eð0ÞEð2Þ

ðEð0Þ þ 2mc2Þ3



ðr � pÞCð0Þ

L

¼ Eð0Þ

�
1þ ðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

�
Cð2Þ

L

þEð1Þ

�
1þ ðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

�
Cð1Þ

L

þEð2Þ

�
1þ ðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

�
Cð0Þ

L

�Eð0Þðr � pÞ
2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞCð1Þ

L

�Eð1Þðr � pÞ
2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞCð0Þ

L

þEð0Þðr � pÞ
c2ð3ðEð1Þ �VÞ2� 2Eð2ÞðEð0Þ þ 2mc2ÞÞ

ðEð0Þ þ 2mc2Þ4


 ðr � pÞCð0Þ
L : ð14Þ

Assuming that Eð0Þ 	 mc2, Eð1Þ 	 mc2 and Eð2Þ 	 mc2

and taking the non-relativistic limit of equations
(12)–(14), one can derive equations (15)–(17),

T̂T �Eð0Þ
� �

Cð0Þ
L ¼ 0 , ð15Þ

T̂T �Eð0Þ
� �

Cð1Þ
L ¼ Eð1Þ �V �

1

4m2c2
ŴW0

� �
Cð0Þ

L , ð16Þ

T̂T �Eð0Þ
� �

Cð2Þ
L ¼ Eð1Þ �V �

1

4m2c2
ŴW0

� �
Cð1Þ

L

þ Eð2Þ �
1

8m3c4
ŴW1

� �
Cð0Þ

L , ð17Þ

..

.

where T̂T ¼ ðr � pÞ2=ð2mÞ is the non-relativistic kinetic
energy operator and ŴWk is given in equation (18)

ŴWk ¼ ðr � pÞVkþ1ðr � pÞ: ð18Þ

Equation (15) is obviously the non-relativistic free-
particle Schrödinger equation and equation (16) yields
the lowest-order relativistic and potential energy correc-
tion to it, etc.
Taking summation of equations (15)–(17) and

regrouping terms, equation (19) can be derived.

T̂TþVþ
1

4m2c2
ŴW0þ

1

8m3c4
ŴW1þ . . .

� �� �

ðCð0Þ

L þCð1Þ
L þCð2Þ

L þ . . .Þ

¼ Vþ
1

2m
ðr �pÞ 1þ

V

2mc2
þ

V

2mc2

� �2
þ . . .

 !
ðr �pÞ

 !
CL

¼ Vþ
1

2m
ðr �pÞ

1

1� V
2mc2

ðr �pÞ

 !
CL

¼ ðEð0Þ þEð1Þ þEð2Þ þ . . .ÞðCð0Þ
L þCð1Þ

L þCð2Þ
L þ . . .Þ ¼ECL:

ð19Þ
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The third line of equation (19) is obviously the ZORA
Hamiltonian. Note that all summations in equation (19)
stretch up to infinite order. Thus, the ZORA
Hamiltonian includes the leading relativistic corrections
to the free-particle non-relativistic Hamiltonian up to an
infinite order.
With the help of equations (15)–(17), the expectation

values of the operators c2ŴWk=ð2mc
2Þ
kþ2 can be identified

as the perturbative relativistic corrections of the ðkþ 1Þth
order to the non-relativistic energy. Indeed, multiplying
equations (15)–(17) with Cð0Þy

L from the left, integrating
andusingthehermiticitypropertyof T̂T andŴWkoneobtains
in the non-relativistic limit equations (20) and (21)

Eð1Þ ¼ Cð0Þ
L jV jCð0Þ

L

D E
þ Cð0Þ

L

����� ŴW0

4m2c2

�����Cð0Þ
L

* +
, ð20Þ

Eð2Þ ¼ Cð0Þ
L

����� ŴW1

8m3c4

�����Cð0Þ
L

* +
, ð21Þ

..

.

For complete expressions of the first- and second-order
corrections see Appendix A.
The use of infinite summations in equation (19) makes

the interpretation proposed applicable not only to
situations where the potential is weak but also to
bound states in a strong potential field. In such a case,
the wavefunction expansion with respect to the potential
field cannot be truncated at finite order [17]. However,
infinite summations with regard to both the wavefunc-
tion expansion and the Hamiltonian expansion leads to
theoretically consistent descriptions.

2.3. Evaluation of hŴWki

Let us consider the expectation values hCjŴWkjCi ¼

hCjðr � pÞVkþ1ðr � pÞjCi where C is an arbitrary wave-
function. The wavefunction C can be decomposed in
terms of the eigenfunctions Ck of the free-particle
Schrödinger equation. Note that Ck are identical to C

ð0Þ
L

from the previous subsection. For the purpose of
normalizing Ck, it is assumed that the particle is
constrained to move in a box of large but finite volume.
Functions Ck form a complete set of functions, i.e.

any arbitrary function defined on the same set of
variables can be expanded in terms of these functions.
Because the free-particle Hamiltonian commutes with
the linear momentum operator, the functions ðr � pÞCk

are simultaneously eigenfunctions of the free-particle
Hamiltonian and form a complete set of functions too.
Consequently, a function Vðr � pÞC can be decomposed
as in equation (22)

Vðr � pÞC¼
X
k

ckðr � pÞCk: ð22Þ

Multiplying equation (22) by ðr � pÞCy

k from the left and
integrating one finds the coefficients ck,

ck ¼ ð2mEkÞ
�1
hCkjðr � pÞVðr � pÞjCi, ð23Þ

where Ek are the corresponding eigen energies of the
non-relativistic free-particle Hamiltonian. Let us use
equations (22) and (23) in the evaluation of the
expectation value of operator ŴW1 according to equation
(24)

1

8m3c4
hCjŴW1jCi ¼

1

8m3c4
hCjðr � pÞVVðr � pÞjCi

¼
1

8m3c4

X
k

hCjðr � pÞVðr � pÞjCkihCkjðr � pÞVðr � pÞjCi

2mEk

¼
X
k

C
ðr � pÞVðr � pÞ

4m2c2

����
����Ck

� �
1

Ek
Ck

ðr � pÞVðr � pÞ

4m2c2

����
����C

� �
:

ð24Þ

Expressions for the higher-order terms such as
½16m4c6��1hCijŴW2jCii, etc., can be derived in a similar
way. Equation (24) can formally be cast into the
canonical second-order expression in the Rayleigh–
Schrödinger perturbation theory by adding a trivial
solution to the set of eigenfunctions of the free-particle
Hamiltonian. Then, the denominator in equation (24)
can formally be written as Ek � E0, where E0 is zero.
Although such a procedure is purely formal, it helps to
recognize the expectation value of the ZORA
Hamiltonian as the result of a summation of the
perturbation series up to infinite order. The term
½4m2c2��1hCjŴW0jCi then plays the role of the first-
order perturbation correction.
Before starting the analysis of the lowest-order

relativistic correction ½4m2c2��1hCjŴW0jCi let us consider
an interesting corollary to the result obtained. When the
wavefunction C is expanded in terms of a set of
functions j�i as in equation (B1) in Appendix B,
equation (24) yields equation (25) for the matrix
representation in terms of the set of functions j�i (see
Appendix B).

W0
1 ¼ W0

0T
�1W0

0: ð25Þ

In equation (25), W0
0 is the matrix of the operator

½4m2c2��1ðr � pÞVðr � pÞ, T is the matrix of the kinetic
energy operator and W0

1 is the matrix of the operator
ŴW

0

1 ¼ ½8m3c4��1ðr � pÞV2ðr � pÞ. In third order, one
has equation (26) for the matrix of the third-order
operator ŴW

0

2 ¼ ½16m4c6��1 ðr � pÞV3ðr � pÞ in terms of the
basis set j�i.

W0
2 ¼ W0

0T
�1W0

0T
�1W0

0: ð26Þ
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Thus, as follows from the first line in equation (19), the
ZORA Hamiltonian matrix can be represented as in
equation (27),

HZORA
¼ TþVþW0 , ð27Þ

where W0 is given by equation (28)

W0
¼ W0

0þW0
0T

�1W0
0þW0

0T
�1W0

0T
�1W0

0þ � � �

¼ W0
0þW0

0T
�1W0: ð28Þ

Equation (28) was obtained in [10, 11] in a completely
different way where the use of a spectral resolution of
the identity with the help of a kinetically balanced basis
set [23] was made. However, the analysis presented
above demonstrates that equation (28) represents in fact
a perturbation expansion in terms of the free-particle
solutions of the non-relativistic equation summed to all
orders in the potential V. This perturbation expansion
takes only the leading relativistic corrections such as
those given in equations (16) and (17), and (20) and (21)
into account.

2.4. Anatomy of the lowest-order correction
Let us now estimate the lowest-order relativistic

correction represented by the expectation value of the
operator ŴW

0

0 ¼ ½4m2c2��1 ðr � pÞVðr � pÞ. Using the Dirac
relationship (29) [5]

ðr � aÞðr � bÞ ¼ a � bþ ir � ða
 bÞ ð29Þ

the expectation value of ŴW
0

0 can be represented as in
equation (30).

hCjŴW
0

0jCi¼
1

4m2c2
hCjpV �pjCiþ

i

4m2c2
hCjr � ðpV
pÞjCi:

ð30Þ

The second term in equation (30) is the well-known
spin–orbit term and the first term on the right-hand side
with the help of equation (31)

pV � pC¼
1

2
p2VCþ

1

2
Vp2C�

1

2

�
p2V

�
C ð31Þ

can be written according to equation (32)

1

4m2c2
hCjpV � pjCi ¼

1

8m2c2
hCjp2V þVp2jCi

�
1

8m2c2
hCj

�
p2V

�
jCi

¼
1

4mc2
hCj½T̂T ,V �þjCi

�
1

8m2c2
hCj p2V

� �
jCi: ð32Þ

In equation (32) the last term on the right-hand side is the
Darwin term [7] and the first term is an anticommutator
of the non-relativistic kinetic energy operator and the
potential. Assuming that C is an eigenfunction of the
non-relativistic Hamiltonian with the corresponding
eigenvalue E, the expectation value of the anticommu-
tator on the right-hand side of equation (32) can be
estimated as in equation (33):

hCj½T̂T ,V �þjCi ¼ hCjĤH
2
� T̂T

2
�V2jCi

¼ E2� hCjT̂T
2
jCi � hCjV2jCi

¼ 2tv�
�
hCjT̂T

2
jCi � t2

�
�
�
hCjV2jCi � v2

�
¼ 2tv�
t2�
v2: ð33Þ

In equation (33), t and v are the expectation values of
the non-relativistic kinetic energy and the potential
energy, respectively. Now let us note that the two
differences, 
t2 and 
v2, are equal, that is 
t2 ¼ 
v2

for a solution of the Schrödinger equation (see
Appendix C). Thus, equation (33) can be rewritten
according to equation (34),

hCj½T̂T ,V �þjCi ¼ 2tv� 2
t2 ¼ 2tv� 2
�
hCjT̂T

2
jCi � t2

�
¼ tv� 2hCjT̂T

2
jCi

¼ tv� C
p4

2m2

����
����C

� �
, ð34Þ

where the use of the non-relativistic virial theorem
(v ¼ �2t) was made. Substituting equation (34) into
equation (32) and using equation (30), one obtains
equation (35)

hCjŴW
0

0jCi ¼
tv

4mc2
�

1

8m3c2
hCjp4jCi �

1

8m2c2
C
�
p2V

��� ��C� �
þ

i

4m2c2
hCjr � ðpV 
 pÞjCi, ð35Þ

which is valid for any non-relativistic wavefunctionC. If
t and v are small quantities, which is true for valence and
sub-valence electrons in atoms and molecules, the first
term in equation (35) can be neglected and the well-
known result [7] of the Pauli perturbation theory is
recovered. For large energies, for example for deep
energy levels in the atomic core region, the first term in
equation (35) is non-negligible. For attractive Coulomb
potential, this term makes a large negative contribution
which is comparable in magnitude with the mass–
velocity and Darwin terms in equation (35).

3. Conclusions

By expanding the Dirac equation [5] transformed to
a Foldy–Wouthuysen representation [16] near the
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free-particle solution, it has been demonstrated that the
ZORA Hamiltonian [1– 4] is a result of an infinite
summation of the leading relativistic corrections to the
free-particle non-relativistic energy. This conclusion
helps to draw an analogy between the zeroth-order
regular approximation and the random-phase approx-
imation (RPA) [24] in quantum many-body theory.
Indeed, the two approaches, ZORA and RPA, take
infinite-order summation of those terms in the complete
perturbation expansion, which are non-vanishing under
certain assumptions—non-relativistic limit in the case of
ZORA and weak particle–particle interaction limit in
the case of RPA. This is at variance with the finite-order
perturbation theory, such as the Douglas–Kroll method
[13–15] in relativistic theory or the Møller–Plesset
method [25] in many-body theory, where all terms up
to a certain (finite) order are taken from the complete
perturbation series.
The first-order perturbation correction taken into

account in the ZORA Hamiltonian, the term
½4m2c2��1hCjðr � pÞVðr � pÞjCi, contains all relativistic
corrections from the one-electron Breit–Pauli
Hamiltonian. This result is general and holds not only
for hydrogen-like atomic systems, as has been demon-
strated numerically by Snijders and Sadlej [20], but also
for any quantum system.
The above conclusions shed light on the remarkable

performance of ZORA and ZORA-related methods in
atomic and molecular calculations. For the valence and
sub-valence electrons, the ZORA Hamiltonian provides
the closest match with the exact relativistic Hamiltonian
for electronic states. This feature guarantees that all
atomic and molecular properties, which depend on the
valence electrons, are reproduced nearly exactly with the
use of the ZORA Hamiltonian. In particular, this should
translate to molecular geometries and binding energies
obtained with ZORA. The current literature offers a
multitude of examples illustrating the excellent perfor-
mance of ZORA (and ZORA-related methods) in the
calculation of molecular structure and molecular stabil-
ity [6, 10, 11]. First-order response properties, such as
charge distributions, dipole moments, and higher
moments, etc., are reproduced reliably with the help of
ZORA (and ZORA-related methods) [6, 26]. Second-
order properties such as electric dipole polarizabilities or
NMR chemical shifts belong also to the group of
properties described accurately with the help of ZORA.
It should be mentioned that the chemical shifts of heavy
and superheavy atoms are dominated by the paramag-
netic contribution, which in turn is dominated by the
valence and sub-valence electrons. Quite recently, the
excellent performance of ZORA in the calculation of
NMR chemical shifts was documented in the literature
[27]. The analysis presented in the present paper offers a

theoretical basis for these observations. Since our
analysis does not refer to a specific atomic or molecular
system, the conclusions inferred are valid for a wide
variety of physical problems including, for example, the
relativistic quantum oscillator or the relativistic rigid
rotator, for which ZORA should provide an extremely
good description in the low-energy limit.

This work was supported by the Swedish Research
Council (Vetenskapsrådet).

Appendix A: Complete expressions for the relativistic

corrections to the free-particle equation

Multiplying equation (13) from the left with Cð0Þy
L ,

integrating and using the complex conjugate of equation
(12) one arrives at equation (A1) for the first-order
correction to the free-particle energy.

Eð1Þ ¼ Cð0Þ
L Vj jCð0Þ

L

D E
þ Cð0Þ

L

c2ŴW0

ðEð0Þ þ 2mc2Þ2

�����
�����Cð0Þ

L

* +
: ðA1Þ

The correction of the second order is obtained from
equation (14). Upon multiplication from the left with
Cð0Þy

L and integration and using the complex conjugate
of equation (12) one obtains equation (A2):*
Cð0Þ

L

�����V þðr � pÞ
c2ððEð0Þ þ 2mc2ÞV � 2Eð0ÞðEð1Þ �VÞÞ

ðEð0Þ þ 2mc2Þ3


ðr � pÞ

�����Cð1Þ
L

+
þ

*
Cð0Þ

L

�����ðr � pÞ




"
2c2ðEð0ÞðEð1Þ �VÞðEð1Þ � 2VÞ�mc2ðEð1Þ2�V2ÞÞ

ðEð0Þ þ 2mc2Þ4

�
2c2Eð0ÞEð2Þ

ðEð0Þ þ 2mc2Þ3

#
ðr � pÞ

�����Cð0Þ
L

+

¼Eð1Þ Cð0Þ
L 1þðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

����
����Cð1Þ

L

� �

þEð2Þ Cð0Þ
L 1þðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

����
����Cð0Þ

L

� �

�Eð0Þ Cð0Þ
L ðr � pÞ

2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞ

����
����Cð1Þ

L

� �

�Eð1Þ Cð0Þ
L ðr � pÞ

2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞ

����
����Cð0Þ

L

� �

þEð0Þ

�
Cð0Þ

L

����ðr � pÞ
c2ð3ðEð1Þ �VÞ2� 2Eð2ÞðEð0Þ þ 2mc2ÞÞ

ðEð0Þ þ 2mc2Þ4


ðr � pÞjCð0Þ
L

�
: ðA2Þ
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For the purpose of transforming equation (A2) into a
more convenient form, equation (A3) is used, which is
obtained from equation (13) by taking its complex
conjugate, multiplying with Cð1Þ

L from the right and
integrating:

*
Cð1Þ

L

�����ðr � pÞ2c
2ðEð0Þ þmc2Þ

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

�Eð0Þ
�
1þðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

������Cð1Þ
L

+

¼Eð1Þ Cð0Þ
L 1þðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

����
����Cð1Þ

L

� �

�Eð0Þ Cð0Þ
L ðr � pÞ

2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞ

����
����Cð1Þ

L

� �

� Cð0Þ
L

�����V þðr � pÞ
c2ððEð0Þ þ 2mc2ÞV � 2Eð0ÞðEð1Þ �VÞÞ

ðEð0Þ þ 2mc2Þ3

*


ðr � pÞ
������Cð1Þ

L

+
: ðA3Þ

Thus, equation (A2) transforms to equation (A4),

*
Cð0Þ

L

�����ðr � pÞ




"
2c2ðEð0ÞðEð1Þ �VÞðEð1Þ � 2VÞ �mc2ðEð1Þ2�V2ÞÞ

ðEð0Þ þ 2mc2Þ4

�
2c2Eð0ÞEð2Þ

ðEð0Þ þ 2mc2Þ3

#
ðr � pÞ

�����Cð0Þ
L

+

¼ Eð2Þ �Eð1Þ Cð0Þ
L ðr � pÞ

2c2ðEð1Þ �VÞ

ðEð0Þ þ 2mc2Þ3
ðr � pÞ

����
����Cð0Þ

L

� �

þEð0Þ

*
Cð0Þ

L

�����ðr � pÞ
c2ð3ðEð1Þ �VÞ2� 2Eð2ÞðEð0Þ þ 2mc2ÞÞ

ðEð0Þ þ 2mc2Þ4


 ðr � pÞ

�����Cð0Þ
L

+
þ

*
Cð1Þ

L

�����ðr � pÞ
2c2ðEð0Þ þmc2Þ

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

�Eð0Þ
�
1þ ðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

������Cð1Þ
L

+
, ðA4Þ

which after some algebra, transforms to equation (A5)
for the second-order correction to the free-particle

relativistic energy.

Eð2Þ ¼

*
Cð0Þ

L

����� c
2ðŴW1� 2E

ð1ÞŴW0Þ

ðEð0Þ þ 2mc2Þ3

�����Cð0Þ
L

+

þEð1Þ2 Cð0Þ
L ðr � pÞ

c2

ðEð0Þ þ 2mc2Þ3
ðr � pÞ

����
����Cð0Þ

L

� �

�

*
Cð1Þ

L

�����ðr � pÞ
2c2ðEð0Þ þmc2Þ

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

�Eð0Þ
�
1þ ðr � pÞ

c2

ðEð0Þ þ 2mc2Þ2
ðr � pÞ

������Cð1Þ
L

+
:

ðA5Þ

In the non-relativistic limit, i.e. Eð0Þ 	 mc2, Eð1Þ 	 mc2,
Eð2Þ 	 mc2, equations (A1) and (A5) lead to equations
(20) and (21).

Appendix B: Basis set expansion

Let us expand an arbitrary one-electron wavefunction
Ci in terms a set of functions j�i according to equation
(B1)

Ci ¼ j�iCi, ðB1Þ

where j�i is a row vector of functions and Ci is a column
vector of expansion coefficients. The expansion coeffi-
cients satisfy the relationship (B2),

C
y

i SCi ¼ I, ðB2Þ

(I: identity matrix), which implies equation (B3),

C
y

i

�1
¼ SCi, ðB3aÞ

Ci
�1

¼ C
y

i S, ðB3bÞ

CiC
y

i ¼ S�1, ðB3cÞ

where S is the overlap matrix, S�� ¼ h��j��i. Then, the
energy eigenvalues Ek in equation (24) can be written as
in equation (B4)

Ek ¼ hCkjT̂T jCki ¼ C
y

kTCk ðB4Þ

and the inverse value of Ek can be written as in equation
(B5),

Ek
�1 ¼ hCkjT̂T jCki

�1
¼ Ck

�1T�1
C

y

k

�1
¼ C

y

kST�1SCk,

ðB5Þ

where the use of equation (B3) was made. Substituting
equation (B5) into equation (24) and using equation
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(B1) one has equation (B6),

1

8m3c4
hCijŴW1jCii ¼

X
k

C
y

i W
0
0CkC

y

kST�1SCkC
y

kW
0
0Ci

¼ C
y

i ðW
0
0T

�1W0
0ÞCi, ðB6Þ

which leads to equation (25) in the text. In equations
(B4), (B5) and (B6), W0

0 and T are the matrices of the
operator ½4m2c2��1ðr � pÞVðr � pÞ and the kinetic energy
operator, respectively. W0

0 is the matrix of the operator

ŴW
0

1 ¼ ½8m3c4��1ðr � pÞV2ðr � pÞ.

Appendix C: Proof that hCjT̂T
2
jCi � t2 ¼ hCjV2jCi � v2

Let us assume that C is a solution to the Schrödinger
equation (C1)

�
T̂T þV

�
C¼ EC: ðC1Þ

Then, multiplying equation (C1) with CyT̂T from the left
and integrating one has equation (C2),

hCjT̂T
2
þ T̂TV jCi ¼ ðtþ vÞt, ðC2Þ

where t and v are the expectation values of the kinetic
energy operator and the potential energy, respectively.
Analogously, multiplying equation (C1) with CyV from
the left and integrating one has equation (C3),

hCjVT̂T þV2jCi ¼ ðtþ vÞv: ðC3Þ

Subtracting equation (C3) from equation (C2) one
arrives at equation (C4).�

hCjT̂T
2
jCi � t2

�
�

�
hCjV2jCi � v2

�
¼ C

�
V, T̂T

���� ���CD E
:

ðC4Þ

The expectation value of the commutator on the right-
hand side of equation (C4) is zero, which follows from
the hermiticity property of the kinetic and potential
energy operators and from their real definiteness. Thus,
equation (C4) proves the statement that hCjT̂T

2
jCi � t2 ¼

hCjV2jCi � v2.
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