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Dieter Cremer 

Theoretical Chemistry, University of Gdteborg, Kemigbden 3, S-41296 Goteborg, Sweden 
(Received: November 1, 1989; In Final Form: March 2, 1990) 

Puckering coordinates are useful for the description of nonplanar N-membered rings. They can also be applied when optimizing 
the geometry of a puckered ring molecule. For this purpose, analytical gradients have to be extended to puckering coordinates, 
which can easily be done by calculating the corresponding elements of the Wilson B matrix. Formulas for setting up analytical 
gradients in terms of puckering coordinates are given, and their use in geometry optimizations of puckered rings is discussed. 

1. Introduction 
The investigation of puckered rings with ab initio methods has 

been limited to small rings and high-symmetry forms of medi- 
um-sized rings.’ This has to do with the fact that geometry 
optimizations of puckered N-membered rings lead to a number 
of problems. For example, there is no unique way of selecting 
3N - 6 bond lengths and bond angles out of a total number of 
3N bond lengths, bond angles, and dihedral angles. There are 
always six parameters, e.g., three bond angles and three dihedral 
angles, that depend on the 3N - 6 parameters selected. If the 
starting values for the latter are not carefully determined, abnormal 
values for the dependent parameters and, thereby, a bad starting 
energy will result. A way to circumvent this problem is to choose 
linear combinations of internal coordinates. For example, it has 
been suggested to use symmetry coordinates to describe the 
out-of-plane deviations of a puckered N-membered ring.34 But 
even in this case a number of problems remain. It is difficult to 
specify low-symmetry forms of larger rings and to describe their 
relationship in terms of internal coordinates such as dihedral 
angles. A simple answer to the question of whether two conformers 
are closely related or separated by a large distance in confor- 
mational space cannot be given if just bond lengths, bond angles, 
dihedral angles, or linear combinations of bond lengths and bond 
angles are used as internal coordinates. 

Another problem has to do with the initial guess for the Hesse 
matrix H. Normally, one assumes that H is concentrated on the 
diagonal and that a set of standard force constants approximates 
the diagonal elements reasonably. Neither assumption is valid 
in the case of puckered rings. The diagonal elements of H sig- 
nificantly differ from standard force constants. Furthermore, there 
is strong coupling between internal coordinates of a puckered ring 
leading to nondiagonal elements of H considerably different from 
zero. Both the initial guess for geometry and Hesse matrix and 
the coupling between the internal coordinates can lead to con- 
vergence problems that make the geometry optimization of a 
puckered N-membered ring rather costly. 

Most of the problems described above will be avoided if the 
geometry of a puckered N-membered ring is described with the 
help of the ring-puckering coordinates first suggested by Cremer 
and Pople.2 For an N-membered ring, there are N - 3 puckering 
coordinates that describe the conformation of a nonplanar ring 
in an unique way.3-’ The puckering coordinates span the con- 
formational space of a puckered ring which is a subspace of the 
total 3N - 6 dimensional configuration space.&Io Conformational 
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changes of the ring such as pseudorotation or ring inversion can 
easily be investigated within that subspace by utilizing the 
puckering  coordinate^.^-^*^ This, however, is not possible when 
using the N dihedral angles of the ring.” 

Various extensions of the concept of the ring-puckering coor- 
dinates have been given, e.g., to describe the position of a ring 
substituent in an unique way,8J2 to calculate the standard deviation 
of experimentally determined puckering ~oord ina te s ’~J~  or to 
facilitate a comparison of puckering coordinates obtained for 
different ring 

The concept of the ring puckering coordinates is widely used 
among crystallographers. Computer programs have been de- 
veloped that calculate puckering coordinates from X-ray data.I9 
However, in ab  initio theory the advantages of the puckering 
coordiantes are still not fully exploited. This has partly to do with 
the fact that the puckering coordinates are not well-understood 
and partly with the fact that so far no generally applicable pro- 
cedure for the use of puckering coordinates in geometry opti- 
mizations has been given. Also, no generally applicable program 
that calculates Cartesian coordinates from puckering coordinates 
has been published so far. The aim of this work is to fill this gap 
and to demonstrate how puckering coordinates can be used in 
geometry optimizations with analytical gradients. 

We will proceed in the following sections by first reviewing the 
concept of the ring-puckering coordinates briefly. Then, we will 
present formulas to calculate Cartesian coordinates from puckering 
coordinates. Finally, we will show how puckering coordinates can 
be used in geometry optimizations based on analytical gradients. 

2. Conformational Space of Acyclic and Cyclic Molecules 
To assess the conformational flexibility of a molecule, very often 

it suffices to analyze the molecular energy as a function of a few 
internal coordinates, in particular the dihedral angles. For example 
the conformational behavior of n-butane can fully be described 
by developing the molecular energy as a function of the dihedral 
angle T(CCCC) (Figure 1). Changes in the energy that arise 
from a coupling of the dihedral angle T with the other internal 
parameters of n-butane can be considered as second-order effects 
that are neglected in a first approximation to the conformational 
potential of n-butane. Hence, the conformational subspace of 
n-butane possesses the dimension one.20 

(8) Cremer, D. Isr. J .  Chem. 1980, 20, 12. 
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Figure 1. Conformational parameters of the four-, five-, and six-hcavy- 
atom molecules n-butane, cyclobutane, n-pentane, and cyclopentane. The 
dimension of the conformational subspace is given for each system. 

Similarly, conformational changes of cyclobutane, the cyclic 
analogue of n-butane, can be described within a one-dimensional 
conformation subspace of the (3N - 6)-dimensional configuration 
space. The internal parameter, appropriate to describe puckering 
of a four-membered ring such as cyclobutane, is the folding angle 
fll between the planes C2ClC4 and C2C3C4 (see Figure 1). A 
change from fl  < 180 to fl  > 180 indicates inversion of the 
puckered four-membered ring. If fl  = 180°, the four-membered 
ring will be planar.21 

In the case of an acyclic five-heavy-atom system such as n- 
pentane, two dihedral angles, r(ClC2C3C4) and T ( C ~ C ~ C ~ C ~ ) ,  
suffice to determine the conformation of the molecule. Accord- 
ingly, the conformational space is two-dimensional. 

If n-pentane closes to form cyclopentane, an envelope (E) form 
or a twist (T) form may result. Puckering of the E form can be 
described by a folding angle f l , ,  puckering of the twist form by 
a twisting angle f12 (Figure 1). Again, only two parameters are 
necessary to assess the conformation of the two five-membered 
ring forms. 

One might argue that there is an infinite number of puckered 
five-membered ring forms and, therefore, an infinite number of 
parameters is needed to describe their conformation. However, 
all these ring forms can be constructed from E and T forms. E 
and T form are the two basis conformations of the five-membered 
ring. Any other conformer can be viewed as a linear combination 
of basis conformations (LCBC) within the two-dimensional 
conformational space of a five-membered ring8 

For six-heavy-atom systems such as n-hexane or cyclohexane, 
three internal parameters suffice to describe any conformer or 
any conformational change. These are identical with three di- 
hedral angles in the case of an acyclic linear six-heavy-atom 
system. For a six-membered ring, there are three basis confor- 
mations, namely, the chair (C), the boat (B), and the twist-boat 
(TB) form (see Figure 1). The puckering of each of these three 
basis conformations is determined by just one folding or twisting 
angle. Again, any other conformer of a puckered six-membered 
ring can be constructed as LCBC.8 

(20) Throughout this work only the heavy-atom framework is considered. 
(21) Alternatively, the complementary angle f - 180 - f l  may be used. 

In this way, the folding angle becomes Oo for the planar form. 

In general, the conformational subspace of an N-membered ring 
possesses the same dimension as that of the corresponding acyclic 
linear N-heavy-atom molecule, namely, N - 3. This implies that 
there exist N - 3 basis conformations both for the acyclic and the 
cyclic system and that any conformer of the N-heavy-atom 
molecule can be described in terms of the N - 3 basis confor- 
mations. 

The N - 3 internal coordinates that characterize the basis 
conformations of a puckered N-membered ring are difficult to 
obtain from folding or twisting angles. There is no general way 
of defining them for large rings with low symmetry. Also, dihedral 
angles are not useful since they cannot be reduced from N to N 
- 3 in a unique way. Therefore, a different approach has to be 
taken that is outlined in the next section. 

3. Definition of a Reference System: The Mean Plane 
A molecular property can be best described with the help of 

an appropriate reference property of a reference molecule. The 
obvious thing to do in case of a puckered N-membered ring is to 
define the corresponding planar ring as a suitable reference system. 
The geometry of the planar N-membered ring is fully determined 
by 2N - 3 internal coordinates, for example, N bond lengths and 
N - 3 bond angles. There remain just N - 3 internal coordinates 
that measure the out-of-plane deviations that lead from the planar 
reference ring to the puckered ring. 

The problem mentioned in the Introduction, namely, the dif- 
ficulty of selecting 3N - 6 internal coordinates out of the 3N bond 
lengths, bond angles, and dihedral angles of a nonplanar N- 
membered ring, is reduced to the problem of finding N - 3 con- 
formational coordinates out of N out-of-plane displacements of 
a puckered N-membered ring. This problem is solved by placing 
the planar reference ring into the x,y plane of a Cartesian co- 
ordinate system. To keep the planar ring in the x , ~  plane, a 
movement of the ring out of the plane either by translation or 
rotation has to be suppressed. 

The out-of-plane deviations of the puckered N-membered ring 
are measured by the z coordinates of the ring atoms. The z 
coordinates may indicate an overall movement of the ring or an 
internal deformation of the ring leading to a puckered form. In 
Figure 2, this is illustrated for the case of a planar five-membered 
ring. Translation of the planar reference ring along the z-axis 
is given by eq 1, wherej = 1, Nand qo is a constant that measures 

the length of the translational shift. Overall rotations of the planar 
ring either around the x or they  axis are described by eq 2 and 
3, with aj = 2 d j  - 1) /N (in Figure 2, N = 5) and q1 being a 

zj = q1 cos aj 

zj = q, sin aj 
(2) 

(3) 

constant describing the degree of overall rotation of the ring. 
Translation and overall rotations of the planar reference ring 

either around the x or the y axis are suppressed by imposing eqs 
4-6 on the out-of-plane deviations zi.* If (4)-(6) are fulfilled, 

N 

j= 1 
c z j = o  (4) 

N 2 zj cos aj = 0 ( 5 )  
j =  1 

N 

j =  1 
zj sin cyj = O (6) 

the planar ring will be forced to remain in the x,y plane. Any 
set of out-of-plane displacements zj that describes the deviation 
of a puckered ring from the planar reference ring must be of the 
form (7) or (8) to fulfill eqs 4-6 with m taking special integer 

(7) zj = qm cos (maj)  

(8) zj = qm sin (mol,) 
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Figure 2. Possible out-of-plane displacements of a planar five-membered ring. See text. 

values and qm being a constant that measures the movement 
(internal or external) of the N-membered ring. In other words, 
the mean value of the z,.coordinates of any nonplanar ring con- 
former has to vanish. This is the reason why the xy plane is called 
the mean plane.2 

Figure 2 shows that for m = 2 and N = 5 eq 7 leads to the E 
and eq 8 to the T form of the five-membered ring. For m = 3, 
the same out-of-plane distortions as for m = 2 are obtained. For 
m = 4, eqs 2 and 3 (rotation around the x or y axis) are repro- 
duced, and for m = 5 eq 1 (translation along the z axis). Hence, 
only m = 2 leads to a unique internal distortion of the five- 
membered ring that is in line with eqs 4-6: 

zj = 42 cos (2CYj) j = 1 ,  5 (9) 
I, = q2 sin (2aj) 1 = 1 ,  5 (10) 

An N-membered planar ring possesses just N unique sets of 
out-of-plane displacements that are given by eqs 7 and 8 with m 
= 0, 1,2, ..., (N - 1)/2 for N being odd and m = 0, 1,2, ..., N/2 
for N being even. For m = 0 overall translation ((7) f ads  to ( I ) ,  
and (8) describes a zero translation) and for m = 1 overall rotation 
of the planar N-membered ring ((7) leads to (2), (8) to (3)) are 
described. For m = 2, ..., ( N  - 1)/2 or m = 2, ..., N/2, the N 
- 3 genuine basis conformations of the puckered N-membered 
ring result. 

If N is odd, all basis conformations of the N-membered ring 
will appear in pairs where each pair is characterized by the value 
of m. The first basis conformation in the pair is defined by eq 
7, the second by eq 8. The two basis conformations are related 
in the same way as the two overall rotations given for m = 1 ,  i.e., 
a phase. shift of 90' transforms one form into the other. Therefore, 
one can speak of a pair of basis conformations connected by an 
internal "rotation" of the puckering mode of the ring. However, 
this internal "rotation" does not lead to an overall angular mo- 
mentum, and therefore the term pseudorotation has been coined.22 
Hence, for an odd-membered ring each m = 2, ..., (N - 1 )/2, 
defines a pseudorotational pair of basis conformations, the zj 
coordinates of which are given by eq 1 1 ,  with qm > 0 and 0 5 

( 1 1 )  
&,, 5 2 ~ .  In eq 1 1 ,  the two basis conformations connected with 
the mth pseudorotational mode of an N-membered ring are 
specified by setting 4,,, to 0 or 90' rather than using a separate 
equation for each basis conformation such as eqs 7 and 8. 

zj = q m  COS [4m + majl 

(22) Kitpatrick, J. E.; Pitzer, K. S.: Spitzer, R. J.  Am. Chem. Soc. 1947. 
64, 2483. 

Equation 1 1  leads to the out-of-plane displacements zj of any 
conformer located in the two-dimensional pseudorotational sub- 
space in of the total conformational space of the puckered N- 
membered ring. This is done by fixing the values of qm and &,. 
From the derivation given above, it becomes clear that q,,, de- 
termines the degree of puckering (maximal out-of-plane deviation) 
and &, the mode of puckering (phase shift) of any conformer in 
the mth pseudorotational subspace. Since qm is a distance and 
c$,,, an angle, {qm.&) represent a set of hypercylindrical coordi- 
nates.2 

There exist (N - 3)/2 pairs of basis conformations and, hence, 
(N - 3)/2 pseudorotational subspaces for an odd-membered ring. 

If N is even, there will be (N - 4)/2 pseudorotational pairs of 
basis conformations defined by in = 2, ..., (N - 2)/2. In addition, 
there is a single basis conformation with m = N/2. For this value 
of m, eq 7 leads to (12), while eq 8 dues not change the z, co- 
ordinates of the planar ring. Equation 12 describes the crown 

(12) 
or all-chair form of an even-membered ring. It can be viewed 
as the internal counterpart of the overall translation of the planar 
reference ring given for m = 0 (see eq 1). Hence even-membered 
rings differ from odd-membered rings insofar as they possess, 
besides (N - 4)/2 pairs of pseudorotational basis conformations, 
a single basis conformation that is specified by the degree of 
puckering qN/2. The amplitude qN/2 that can be larger or smaller 
than zero, spans a onedimensional inversion subspace of puckered 
even-membered rings? 

The out-of-plane displacements z of any puckered N-membered 
ring are determined by N - 3 puckering coordinates {q,,,,&,). It 
is useful to normalize the zj coordinates according to eq 13,2 in 

(13) 
m 

which Q defines the total puckering amplitude of the N-membered 
ring. With (13), the equations for the calculation of the z, co- 
ordinates are given by eqs 14 and 15. These coordinates fulfill 

zj = (2/N)'/' C q m  COS[&,, + maj] (Nodd) (14) 

zj = qN/2 cos fro' - 111 = 4N/2(-ly1 

fz? = Gqm2 = Qz 

(N-1)/2 

m-2 

( l  /n?qN/2(-IF1 ( N  even) (15) 
equations 4-6, which keep the planar reference ring in the mean 
plane. 
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4. Advantages of the Ring Puckering Coordinates 
There are a number of advantages that arise from the use of 

puckering coordinates in the description of puckered N-membered 
rings. 

1. The ring puckering coordinates are uniquely defined. They 
do not depend on the size or the symmetry of the N-membered 
ring.2 

2. Ring puckering coordinates can easily be calculated once 
the Cartesian coordinates of an N-membered ring are k n ~ w n . ~ J ~  

3. On the other hand, the Cartesian coordinates of any N- 
membered ring can easily be derived from its N - 3 puckering 
coordinates and additional 2N - 3 internal coordinates that de- 
scribe the planar reference ring. 
4. Use of the puckering coordinates allows calculation of the 

ring geometry in a very economic way utilizing analytical gra- 
dients. 

5 .  The puckering coordinates allow to specify the basis con- 
formations of an N-membered ring and to span the conformational 
subspace of the total 3N - 6 dimensional configuration space! 

6. The puckering coordinates are essential for a quantitative 
analysis of ring conformations and conformational changes in 
terms of basis conformations and elementary conformational 
processes. 2-7 
7. The puckering coordinates are a result of the choice of the 

reference conformation and the reference plane. A corollary of 
this choice is that the reference plane, the mean plane, is invariant 
for any conformational processes of any N-membered ring form 
described in terms of the puckering coordinates (see Appendix 
for proof). 

8. The puckering coordinates can be used for describing the 
conformational potential of a puckered ring.3*ss6 

9. With the help of the mean plane the positions of the ring 
substituents can be determined in an unique 
10. The concept of the puckering coordinates provides a basis 

to analyze coupled internal rotations in acyclic linear m0le~~les.23 
Despite these advantages, the concept of ring puckering co- 

ordinates has been c r i t i c i ~ e d . ~ ~ . ~ ~  It has been claimed that the 
puckering coordinates are not appropriate to describe confor- 
mational processes since the reference plane chosen for their 
definition is not invariant under conformational processes. If this 
would be the case, the whole concept of the puckering coordinates 
would be erroneous and useless. Therefore, we give a proof in 
the Appendix that shows that the reference plane is invariant under 
any conformational process and that claims suggesting the opposite 
are unjustified. 

While most of the advantages listed above have been docu- 
mented before, a description of a program that calculates Cartesian 
coordinates from puckering coordinates and that is the prerequisite 
for using puckering coordinates in geometry optimizations with 
analytical gradients has not been given so far. Therefore, such 
a program is described in the next section. 

5. Calculation of Cartesian Coordinates from Puckering 
Coordinates 

It is easy to calculate the Cartesian coordinates of any puckered 
N-membered ring once its N - 3 puckering coordinates, N - 3 
bond angles, and N bond lengths have been specified. The cal- 
culation comprises the following steps: l. Calculation of the z .  
coordinates. 2. Projection of N bond lengths and N - 3 bond 
angles into the plane of the planar reference ring. 3. Partitioning 
of the planar ring into three segments. 4. Calculation of the x,  
y coordinates of the segments. 5 .  Calculation of the xi, y j  co- 
ordinates of the planar ring by combining its segments. 

Step 1 implies that either eq 14 for odd-membered rings or eq 
15 for even-membered rings is used. Once the zj coordinates are 

(23) Cremer, D. J .  Chem. Phys. 1978, 69, 4456. 
(24) Jeffrey, G. A.; Sundaralingam, M. Ado. Carbohydr. Chem. Biochem. 

(25) Rao, S.; Westhof, E.; Sundaralingam, M. Acra Crystollogr. 1981, 

(26) Petit, G. H.; Dillen, J.: Geisc, H. J .  Acra Crysrallogr. 193,839,648. 

1981, 38, 417. 
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Figure 3. Calculation of the coordinates of a planar seven-membered 
ring. (a) Partitioning of the ring into three segments SI, S2, S3 by 
inscribing the triangle OPQ into the ring. (b) Calculation of the xy 
coordinates for each segment. (c) Calculation of the xy coordinates for 
the triangle OPQ. (d) Orienting segment Sp (e) Orienting segment S2 
(f) Orienting segment SI. (8) Orienting the whole ring. 

TABLE I: Partitioning of a P b r  Ring into Segments SI, Sh and 
SP 

no. of bond no. of bond 
no. of atoms in lengths r' in angles /3' in 

N SI s2 s3 SI s2 s3 SI s2 s3 
5 3 2 3 2 1 2 1 0 1  
6 3 3 3 2 2 2 1 1 1  
7 3 4 3 2 3 2 1 2 1  
8 4 3 4 3 2 3 2 1 2  
9 4 4 4 3 3 3 2 2 2  

10 4 5 4 3 4 3 2 3 2 
1 1  5 4 5 4 3 4 3 2 3 
12 5 5 5 4 4 4 3 3 3 

" N  denotes the size of the ring; the number of atoms for SI, S2,,S3 is 
N + 3, the number of bond lengths and bond angles in SI, S2, S3 IS 2 N  
- 3. 

known, the bond lengths r' and bond angles @' of the planar 
reference ring can be calculated by projecting N bond lengths r 
and N - 3 bond angles /3 of the puckered ring into the mean plane: 

(16) rijr = [r,? - ( z j  - Z , ) ~ ] I / ~  

cos Pijk' e [(zk - 21)' - (zj - zj)2 - (zk - zj)2 + 
2'iyjk cos Pijkl /2ri/rji ( 17) 

N projected bond lengths r'and N - 3 projected bond angles 8' 
suffice to determine the xj, yj coordinates of the planar ring. 

For this purpose, the planar reference ring is partitioned into 
three segments by inscribing into the ring the triangle OPQ (see 
Figure 3). 0 is identical with atom 1, and P and Q are determined 
by the length of the segment. It is convenient to fix the length 
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of the segments as shown in Table I and Figure 3a. In this way, 
error progression due to coupling of the ring parameters is kept 
at a minimum. In particular, the three unknown internal ring 
angles that depend on the 2 N  - 3 bond lengths and bond angles 
already fixed will be equally distributed over the ring. 

The x ,  y coordinates of the atoms of each segment can be 
calculated from the r’and @’ values. It is convenient to place the 
terminal atom with the lowest sequence number k at the origin, 
atom k + 1 on the positive x axis, and atom k + 2 in the first 
quadrant of the x, y coordinate system (Figure 3b). 

In the next step, the coordinates of the triangle OPQ are de- 
termined by using the distances RI ,  R2, R3 between the terminal 
atoms of each segment (Figure 3c). The origin is chosen as the 
position of 0 and Q is placed on the positive x axis. The remaining 
coordinates of the triangle OPQ are calculated with the help of 
RI ,  R2, and R,. In the following step, segment 3 is rotated in a 
way that its last atom coincides with Q keeping its first point at 
the origin (Figure 3d). Then, the last atom of segment 2 is shifted 
in the x, y plane until it coincides with Q. Rotation at  Q brings 
segment 2 in a position, in which its first point coincides with P 
(Figure 3e). In the last step, segment 1 is shifted and rotated in 
the x ,  y plane until its last points coincides with P (Figure 30 .  
In  this way all coordinates of the planar ring are determined. 
Eventually, a coordinate transformation that leads to the geo- 
metrical centre as the origin of the coordinate system and atom 
1 on the positive y axis yields the final set of Cartesian coordinates 
(Figure 3g). 

The procedure outlined can be applied to any N-membered ring 
with or without symmetry. A computer program has been written 
that uses this procedure to calculate the Cartesian coordinates 
of the ring atoms and the substituent atoms. To be compatible 
with other coordinate programs the input is arranged according 
to the z matrix formalism most ab  initio programs use. Beside 
the z matrix input, N a n d  the puckering coordinates have to be 
given. 

6. Geometry Calculation of Puckered Rings with Analytical 
Gradients 

Analytical energy gradients are available for many ab  initio 
methods. Normally, the analytical gradients are formed with 
regard to the Cartesian coordinates u = (x ,  y ,  z )  of the atoms of 
an molecule. The analytical calculation of forces 9 with regard 
to the internal coordinates (bond lengths, bond angles, and 
dihedral angles) is done with the Wilson B matrix that relates 
an infinitesimal shift of the internal coordinates to a corresponding 
change in the Cartesian  coordinate^:^'^^^ 

d{ = B du (18) 
The matrix B is rectangular and has the elements 

4, = at,/au, (19) 
with s = 1 ,  ..., 3N - 6, and t = 1, ..., 3N. The relationship between 
Cartesian forces f and internal forces 9 is given by 
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r) = (B+)-’f (20) 

with 
(B+)-I = (BMB+)-’BM 

and M being an auxiliary matrix. 
To extend available gradient algorithms to the use of puckering 

coordinates, the derivatives of (qm, with regard to the Cartesian 
coordinates have to be calculated for the corresponding B matrix 
elements (eq 19). 

Since qm and 4,,, depend only on z., their derivatives with regard 
to xj and y j  are zero. It suffices to And dqmlazi and t%pmlazp For 
this purpose, the puckering coordinates are given as a function 

(21) 

of zi 
N 

j =  I 
qm cos d,,, = (2/N)Il2Xzj cos aj = a 

(27) Pulay, P. Mol. Phys. 1969, 17, 197. 
(28) Wilson, E. B.; Dccius, J. C.: Cross, P. C. Molecular Vibrutiom; 

McGraw-Hill: New York, 1955. 
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N 

j =  I 
qm sin 4, = -(2/h91/zXzj sin aj = b (22) 

with aj = m ( 2 ~ / N ) ( j  - 1) and m = 2, ..., ( N  - 1)/2 for N being 
odd and m = 2, ..., ( N  - 2)/2 for N being even. In the case of 
even-membered rings, an additional equation is needed for the 
puckering amplitude of the crown form: 

N 
(23) 

1- 1 

To separate coordinates qm and &, eqs 21 and 22 are combined: 

(24) 
With eqs 21, 22, and 24, qm and +,,, can be given as a function 

qN/2 = (I  /N)’/’cZj cos[*(j - I)] 

qm2[cos2 4, + sin2 +,,,I = a2 + b2 

of z i  

qm = (a2 + b2)’/2 ( 2 5 )  

4,,, = arctan ( b / a )  (26) 

(27) 

Differentiation with regard to zj leads to 

aqm/aZj = (a2 + b2)-1/2(~ aa/azj + b ab/azj) 

and with 

aa/azj = ( 2 / ~ y / 2  a(zj COS + cZi COS ai)/azj = 
i #j 

( 2 / N ) ’ 1 2  COS ai (28) 

(29) ab/azj = - ( 2 / ~ ) ’ / ~  sin ai 

to eq 30: 

aqm/aZj = ( 1 / q , ) ( 2 / ~ ) l / ~ [ a  COS ai - b sin ai] = 
(2/N)1/2[c0s 4, cos ai - sin & sin a,] (30) 

For m = N/2, the partial derivative simplifies to 

aqN12/aZj = ( I / N ) * / ~ ( - I ~ - I  (31) 

Similarly, one obtains for &,/azj eq 32: 
a4,/azj = a[arctan (b/a)]/azj = [ l  + 

( ~ / u ) ~ I - I  a(b/a)/azi = [ I  + ( ~ / u ) ~ I - I ( ~ / u ~ ) ( u  ab/az, - 
b aa/azj) = ( 1  /qm)(2/N)1/2[sin 4, cos aj - cos 4m sin aj] 

(32) 
Equation 32 reveals that for q = 0 the partial derivative a4,/azj 
is no longer defined. This is a consequence of the fact that 4,,, 
is not specified for the planar ring. 

With (30)-(32) all derivatives of the puckering coordinates are 
determined, and the calculation of internal forces for puckered 
rings with the aid of eq 20 is straightforward. 

A computer program has been written that calculates analytical 
gradients for puckering coordinates. The gradient has been tested 
by comparison with the numerically determined gradient. For 
geometry optimizations of puckered rings it is convenient to use 
suitable starting values for the internal forces. Test calculations 
give 

fg = 0.64 hartree/bohr2 f+ = 0.23 hartree/rad2 

The program has been implemented in the ab initio package 
 COLOGNE^^ and applied for nonplanar N-membered rings up to 
N = 10. 

In Table 11, HF/STO-3G energies and geometries for the four 
basis conformations of cycloheptane, namely, boat (B), twist boat 
(TB), chair (C), and twist chair (TC) form (Figure 4), are giveam 
The basis conformations possess either C, or C, symmetry, and 
therefore only 29 and 28 internal coordinates of cycloheptane have 

(29) Gauss, J.; Kraka. E.; Reichel. F.; Cremer, D., Universitiit Kbln, 1988. 
(30) Complete sets of optimized parameters can be obtained from the 

author. 
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uaram B TB C TC mram B TB C TC 
SYm 
variables 
42 
dl 
43 

r(C3C4) 

b(C3C4C5) 
r(C7C 1 c 2 c 3 )  
r(ClCZC3C4) 
r(C2C3C4C5) 
r(C3C4CSC6) 
abs E (STO-3G) 

Cl C2 
29 28 
1.163 1.163 
0 90 
0 0 

1.545 1.546 
1.552 1.546 
1.546 1.560 
1.563 1.547 
1 15.0 114.6 
115.1 115.0 
115.0 115.8 
115.8 115.3 
-57.8 -45.5 
-30.9 66.0 
69.8 15.6 
0 -70.8 
-270.044 25 -270.044 23 

Cl 
29 
0 

0.664 
0 
1.547 
1.541 
1.551 
1 S68 
110.3 
112.9 
120.6 
124.5 
-83.0 
69.1 
-40.0 
0 
-270.033 45 

C2 
28 
0 

0.664 
90 
1.567 
1 S46 
1.540 
1.542 
126.3 
123.0 
115.0 
111.7 
-20.6 
55.1 
-77.9 
87.1 
-270.032 75 

re1 E 0 0.01 6.78 7.22 

energies in hartrees, relative energies in kcal/mol. 
'Puckering amplitudes and bond lengths in A, angles in deg, absolute 

B TB 

C n: 
Figure 4. Basis conformations of cycloheptane. 

to be optimized. Convergence was achieved in 19 (B), 14 (TB), 
14 (C), and 11 (TC) optimization steps leading to time savings 
between 30 and 50% compared to geometry optimizations with 
the same starting geometry but using dihedral angles rather than 
puckering coordinates. 

B and TB conformation form the first pseudorotational family 
of the seven-membered ring that is described by the puckering 
coordinates q2 and 42. Similarly, C and TC conformation con- 
stitute the second pseudorotational family that is described by q3 
and 43. 

The calculated puckering amplitudes reveal that B and TB form 
on the one side and C and TC form on the other side are equally 
puckered. hckering of C and TC, however, is just 60% of that 
of B and TB. The calculated energies (Table 11) reflect the 
similarity of the puckering amplitudes for B and TB as well as 
for C and TC. The energies suggest that within the B-TB family 
pseudorotation is free, while in the C-TC family there is a small 
barrier to pseudorotation (Table 11). 

Since the C form is less puckered than the B form, eclipsing 
of CH bonds is less effectively avoided and, accordingly, the 
relative energy of C is 6.8 kcal/mol higher than that of B. A 
similar observation can be made for the TC that is 7.2 kcal/mol 
higher in energy than the TB. However, the C and the TC form 
can be stabilized by appropriate admixtures of B and TB form 
(Table 111). For example, the C becomes more stable by 9.5 
kcal/mol due to an admixture of 32% of an inverted B (& = 
180'). In this way, the top part of the chair (atoms 6, 7, 1, 2, 
3) becomes flatter while the lower part (atoms 2, 3, 4, 5, 6, 7) 
becomes steeper. The result is an improved staggering of the 
methylene groups in the lower part and a stabilization of the C. 
Stabilization is partially offset by increased eclipsing of CH2 groups 

SYm 
variables 
42 
96 B or TBb 
dl 
43 
96 C or TCb 

h 
r(ClC2I 
r(c2c3j 
r(C3C4) 
r(C4C5) 
~(C7ClCZ) 
b(C 1 c 2 c 3 )  
b(C2C3C4) 
b(C3C4C5) 
r(C7C lC2c3) 
r(C1C2C3C4) 
r(C2C3C4C5) 
r(C3C4C5C6) 
abs E (STO-3G) 
re1 E 
abs E (6-31G2) 
re1 E 

Cl 
30 
1.162 
100 
0 
0.010 
0 
180 
1.162 
1.545 
1.552 
1.547 
1.563 
115.6 
115.2 
114.7 
115.7 
-56.5 
-3 1.9 
70.3 
0 
-270.044 29 
3.65 
-273.22341 
3.86 

c2 
29 
1.161 
100 
90 
0.010 
0 
270 
1.161 
1.546 
1.546 
1.559 
1.546 
115.0 
115.3 
115.8 
115.0 
-45.1 
64.6 
17.1 
-72.6 
-270.044 27 
3.66 
-273.223 40 
3.86 

c, 
30 
0.456 0.526 
31.6 38.7 
180 
0.670 
68.4 
0 
0.810 
1.443 
1.547 
1.546 
1.560 
114.9 
114.4 
114.7 
117.7 
-63.3 
83.9 
-66.5 
0 
-270.04043 
0.99 
-273.22806 
0.94 

C2 
29 

90 
0.662 
61.3 
90 
0.846 
1.549 
1.548 
1.547 
1.545 
116.3 
115.6 
113.2 
115.4 
-38.6 
86.7 
-7 1.8 
54.6 
-270.050 1 1  
0 
-273.229 56 
0 

'Puckering amplitudes and bond lengths in A, angles in deg, absolute 
energies in hartrees, relative energies in kcal/mol. The ring forms are 
named according to the basis conformation that dominates the character of 
the ring. *Given by lOO(q?/@) and 100(432/@), respectively. 'Q = (421 
+ q,2)'/2 denotes the total puckering amplitude? 

in the upper part of the C, but since the first effect dominates 
an overall increase in the stability of the C from mixing in the 
B results (Table 111). 

In a similar way, the stability of the TC form is increased by 
an admixture of the twist-boat form. This causes improved 
staggering at bonds ClC2, C2C3, C4C5, C6C7, and C7C1 as can 
easily be verified by inspection of Figure 4. Comparison of the 
optimized puckering amplitudes reveals that 39% of the TB form 
and 61% of the TC form lead to the most stable conformation 
of cycloheptane, which is 1 kcal/mol more stable than the C form 
with the 32% admixture of the B form. Hence, pseudorotation 
between these conformations will be hindered by a barrier of at  
least 1 kcal/mol. 

B and TB form mix only negligibly with C and TC form (Table 
111). Their energies are almost identical, namely, 3.7 kcal/mol 
above that of the TC form. This order of stabilities is confirmed 
by HF/6-31GS//HF/STO-3G calculations (Table 111). Fur- 
thermore, our results are in line with force-field investigations of 
cycloheptane published by various  author^.^'.'^ For example, 
calculated relative energies obtained by Allinger are in good 
agreement with the values obtained in this work. The experimental 
evidence available so far points also to the TC form as the most 
stable cycloheptane c~nformation.~'  

Conclusion 
Analytical gradients can be easily extended for the use of 

puckering coordinates in geometry optimizations of ring molecules. 
The necessary formulas have been given and tested for eight 
conformations of cycloheptane. Results show that the use of the 
puckering coordinates leads to time savings between 20 and 50% 
in geometry optimizations of puckered N-membered rings. It has 
to be stressed that the puckering coordinates become particularly 
useful for geometry optimization and conformational analysis of 
larger puckered N-membered rings.33 

(31) See, e&: Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS 
Monograph 177, American Chemical Society: Washington, D.C., 1982; p 98, 
and references therein. 

(32) It is interesting to note that Bocian et al. (Bocian, D. F.; Pickett, H. 
M.; Rounds, T. C.; Straw, H. L. J .  Am. Chcm. Soc. 1975,97,687) derived 
for the seven-membered ring a set of internal coordinates that is similar to 
the puckering coordinates. 
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Appendix: Tbe Invariance of tbe Mean Plane 
The mean plane will be an appropriate reference plane if it does 

not change during a conformational process such as ring pseu- 
dorotation or ring inversion. In the past, criticism has been raised 
that in the original derivation of the mean plane2 no proof on the 
invariance of the mean plane has been given. It has been claimed 
that the normal of the mean plane is not invariant but precesses 

‘under pse~dorotation.2~ Therefore, we prove now that the mean 
plane is indeed invariant and that previous criticism with regard 
to this point is unjustified. 

For a given conformer Cl of a puckered N-membered ring its 
N - 3 puckering parameters (qm, &,I and, hence, the orientation 
of the mean plane are considered to be known. Accordingly, the 
zj coordinates of C I  fulfil eqs 4-6. 

Any conformational change of the N-membered ring will lead 
to a new conformer Cz and a new set of puckering coordinates 
(q”, &,’I. The coordinates z,’ of C2 are given by eqs A1 and A2: 

z,’ = (2/N)’/2 C qm’ cos(&,,’ + maj) (Al )  
(N- I 1 /Z 

“2 

The coordinates x/  and y/ of C2 are found in the way described 
in section 5 .  

To prove that the mean plane of any puckered N-membered 
ring is invariant with regard to any conformational change, it 
suffices to show that the mean plane of conformer Cl is identical 
with that of conformer C2. The identity of the two mean planes 
follows immediately if the z,’ coordinates of eqs AI and A2 fulfil 
equations 4-6. For reasons of simplicity, we will show this first 
for an odd-membered ring and, then, for an even-membered ring. 

Insertion of eqs A1 and A2 into (4)-(6) leads to eqs A3-A5, 
where the exclamation mark indicates that the vanishing of the 
sums has yet to be proven: 

N (N-I)/2 
(2/N)l/zc C qm‘ cos(t$,’ + maj) A 0 (A3) 

j = I  m=2 

I N (N-I)/z 
(2/N)1/2z 4,,,‘ cos(&’ + maj) sin aj = 0 (A5) 

/ = I  m=2 

Equations A3-A5 can be rearranged to (A6)-(A8): 

qm’sin &,‘ sin(maj) 0 (A6) 

N fN-1)/2 
(2/N)”ZC . 2’ q“ cos 4” cos(maJ cos a] - 

j = l  m=2 I 

qm’sin &,’ sin(maj) cos ai = 0 (A7) 

N (N-1)/2 
(2/N)l/2C qm’ cos t$,,,’ cos(maj) sin a1 - 

I j = l  m=2 
qm’sin &,’ sin(maj) sin aj = 0 (A8) 

At this point, it is convenient to transform from N - 3 linearly 
independent hypercylindrical coordinates (qm’, +,,,’I to N - 3 linearly 
independent rectangular coordinates {&,,’, qm’): 

(‘49) qm‘ COS 4m’ = Fm’ 

(33) Cremer, D., to be published. 
(34) See. e.&: Pulay, P.; Fogarasi, 0.; Pang, F.; J. E. J.  Am. Chem. 

Soc. 1979, 101, 2550. 

qm’ sin 4 m  = qm’ 

With the rectangular coordinates l,,,‘ and qmf eqs AGAS change 
to (A1 I)-(A13): 

N I 

I=  1 
vm’%n(m a,) cos aj] = 0 (A12) 

(N-1)/2 N 

I N 
qm’Csin(maj) sin aj] = 0 (A13) 

These equations can be solved by applying the trigonometric 
relationships A14-A19: 

Ecos(maj) = 0 (A14) 

I= I 

N 

j= 1 

N 

j =  1 
Esin(maj) = 0 (A151 

(A16) 

6417) 

(A18) 

Csin(mal) sin a1 = O (A191 

with aj = 27r (j - l)/N. Thus, for each m = 2, ..., (N - 1)/2, 
eqs A1 1-A13 are correct. In view of (A9) and (A10) the same 
holds for eqs A3-AS. From (Al )  it follows that 

N 

j =  1 

N 

Ccos(maj) cos aj = 0 

Ccos(maj) sin aj = O 
/-I 

N 

j = l  

N 

j =  I 

Csin(maj) cos a1 = O 

N 

J 
cz,’ = 0 (A-20) 

(‘421) 
j 

Cz,’ sin aj = O (A221 

which means that the new conformer C, possesses the same mean 
plane as conformer C,. Since no restrictions have been made when 
going from C, to C2, eqs A20-A22 are correct for all conformers 
in the conformational space of an odd-membered ring of size N. 
In other words, conformational processes such as pseudorotation 
or inversion do not change the orientation of the mean plane. 

If N is even, a set of equations similar to (A3)-(A5) can be 
derived. These new equations contain an extra term resulting from 
qN/i in eq A2. There are now (N - 4) transformation equations 
(A9) and (A10) and an additional equation that associates the 
rectangular coordinate v’ to the puckering amplitude qN/2/: 

Equations A1 ]-A13 have to be extended by the J contributions, 
which vanish because: of (A14) and (AIS). Again, eqs A20-A22 
are fulfilled. This proves that the mean plane is invariant for all 
conformational processes involving either odd- or even-membered 
rings of seize N. 

It has been shown that the LSP is not identical with the mean 
plane and that it takes a new orientation for each conformer 
considered.” In a conformational process the normal of the LSP 

N cz,’ cos aj = 0 

N 

J 

qN/2/ = v‘ 



J.  Phys. Chem. 1990,94, 5509-5513 5509 

der Chemischen Industrie. Calculations have been carried out precesses around the normal of the mean plane. Hence, the LSP 
is not a suitable reference plane for invdgat ion  puckered rings. 
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Nonadditivity of Interaction In Hydrated Cu+ and Cu2+ Clusters 
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Two- and three-body interaction energies are calculated by using ab initio molecular orbital theory for tetrahedral, octahedral, 
and cubic arrangements of H 2 0  molecules around Cu+ and Cu2+ ions in [Cu(OH2),]* clusters to assess the nonadditivity 
of interactions in hydrated transition-metal-ion clusters. The results are compared to full many-body results for the clusters. 
For Cu2+ there appears to be a slow convergence of the interaction terms to the full many-body result. For Cu+ many-body 
effects are much less important, although a surprising result is the finding that the second water molecule is bound more 
strongly to Cu+ than the first water molecule in a [Cu(0H2),]+ cluster when the M u 4  angle is 180'. More detailed 
investigation of [Cu(OH,)]+ and [Cu(OH2),]+ clusters confirmed this result and also revealed that the n = 2 cluster is 
characterized by a shorter CuO distance than the n = 1 cluster. Neither the increase in binding nor contraction of the CuO 
distance occurs in [Cu(OHZ),J" clusters in going from n = 1 to n = 2 or in clusters containing non-transition-metal monocations - .. - .  

such as Li+ or Na+. 

I. Introduction 
The simulations of multivalent transition-metal ions in water 

play an important role in development of theoretical models of 
electron transfer in aqueous systems' as well as other areas of 
solution chemistry. Ion-water pair potentials derived from ab  
initio molecular orbital theory have been used in molecular dy- 
namics and Monte Carlo simulations of metal cations in wateP" 
with varying degrees of success, because of problems with non- 
additivity. Nonadditivity has been studied for a number of ion- 
water interactions.'2-16 Most of this work has concentrated on 
non-transition-metal ions including Li+,I2J3 Na+,16 Be2+,"J4 
Mg2+,l53I6 Ca2+,ls and Al3+.I6 As part of a molecular dynamics 
study of Fe2+ and Fe3+ in water, we recently reported* on the 
nonadditivity of ab initio ion-water pair potentials for these two 
transition-metal ions which indicated that three-body interaction 
terms were very substantial. A subsequent more extensive study" 
of Fd+ in water indicated a slow convergence of the two-, three-, 
and four-body interaction energies to the to the full many-body 
result. 

In this paper we report on a study using a b  initio molecular 
orbital theory to assess nonadditivity in interactions of Cu+ and 
Cu2+ with water. We have carried out a systematic calculation 
of the two- and three-body interaction terms for [CU(OH,),]~+ 
and [Cu(OHz),]+ clusters with n = 4,6,8 for comparison to total 
interaction energies of the clusters. A surprising result of this 
study was that the three-body water-ion-water term is attractive 
(negative) for the Cu+ ion with 0 -Cu-O angles of 180O. This 
result was investigated further by studying the [Cu(0H2),]+ and 
[Cu(OH,)]+ clusters at higher levels of calculation. It was found 
that the binding of the second water molecule to the cluster, 
[Cu(OHz)]+ + H 2 0  - [Cu(0H2),]+, is larger than that of the 
first water molecule, Cu+ + H 2 0  - [Cu(OH2)]+. This unusual 
feature has recently been reported in some experimental studies 
of hydration energies of transition-metal monocations including 
CU+.'&'~ In section 11, the theoretical methods and clusters studied 
are described. In section 111, the results for the clusters are 
presented and discussed. In section IV higher level calculations 
are presented for [Cu(H20),l2+ and [Cu(H,O),]+ clusters with 

'Present address: Chemistry Department, University of Minnesota, 
Minneapolis, MN. 

0022-3654/90/2094-5509S02.50/0 

n = 1, 2, and results for the binding of the second water molecule 
in the Cu2+ and Cu+ clusters are compared. 
11. Theoretical Metbods 

of one, two, three ,..., m-body terms, as follows 
Energies for an m-body system may be expanded in a series 

E(XiX2 ... X,) = 

2 E(l)(X,) + 2 E'2'(X;U,) + 2 E(")(xJqk) + 
i= 1 I > p l  B p k - 1  

(1) 
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