Spectral and Chemical Properties of Dimethyldioxirane as Determined by **Experiment and ab Initio Calculations**

Waldemar Adam,*[†] Yuk-Yee Chan,^{†,‡} Dieter Cremer,[§] Jürgen Gauss,[§] Dieter Scheutzow,[†] and Michael Schindler^{||}

Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-8700 Würzburg, West Germany, Institute of Photography Chemistry, Academia Sinica, Beijing, China, Lehrstuhl für Theoretische Chemie, Universität Köln, D-5000 Köln 41, West Germany, and Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-4630 Bochum, West Germany

Received November 26, 1986

Dimethyldioxirane (2b), prepared by the reaction of potassium monoperoxy sulfate with acetone under buffered conditions as a yellow acetone solution, exhibits a ¹³C resonance at 102.30 ppm. Ab initio calculations are in good agreement with this experimental value. At room temperature the dioxirane 2b persists for ca. 7 h. The unexpected stability of this most strained cyclic peroxide is rationalized in terms of gem-dimethyl substitution, imparting thermodynamic as well as kinetic stabilization, as suggested by ab initio calculations. Oxygen transfer by dioxirane 2b to thianthrene 5-oxide (SSO) reveals a dominating nucleophilic character, causing mainly oxidation of the sulfoxide sulfur.

Among the reaction intermediates, the carbonyl oxides 1 and the dioxiranes 2 have received much attention from

the experimental and theoretical point of view, especially during the last few years.¹⁻³ Although carbonyl oxides have been invoked some 35 years ago as key species in the mechanism of ozonolysis,⁴ only recently was it possible to provide spectral data on these elusive entities by means of matrix isolation.¹ Dioxiranes, on the other hand, have a much later history, the parent system 2a having been spectroscopically detected in the gas phase.⁵ In fact, the relatively stable dimethyldioxirane (2b) was recently isolated in acetone solution and a number of oxygen-transfer reactions reported.⁶

In the interest of differentiating the nucleophilic character of these distinct chemical species in their oxygen transfer (epoxidation, sulfoxidation, etc.), we developed thianthrene 5-oxide (SSO) as a convenient mechanistic probe.⁷ Indeed, the carbonyl oxides 1 with their nucleo-

philic pendant oxygen produced proportionally more sulfone SSO₂ than disulfoxide SOSO compared to the dioxiranes 2. However, in those experiments⁷ the dimethyldioxirane (2b) was prepared in situ from acetone and potassium monoperoxy sulfate, and the possibility that the "true" electronic character of the dioxirane could be obscured by oxygen transfer from unknown intermediary oxidants in that reaction could not be rigorously excluded.

It seemed to us, therefore, advisable to check our previous oxygen-transfer results⁷ with the thianthrene 5-oxide (SSO) probe by employing the recently isolated⁶ dimethyldioxirane (2b). We used this opportunity to reinvestigate the spectroscopic properties of 2b and to compare these with the results of ab initio calculations carried out for 1, 2a,b, and appropriate reference compounds.

Results and Discussion

We found it convenient and advantageous to simplify the published^{6a} procedure. For large-scale preparations (more than 300 mL of 0.1 M solutions of 2b in acetone), best results were obtained when vigorous mechanical stirring was used, a carrier gas (argon or nitrogen), moderately reduced pressure (ca. 150-200 Torr; water aspirator), an efficient double-jacketed spiral condenser, a reaction temperature of ca. 20 °C, and addition of the potassium monoperoxy sulfate in ca. 100-g portions over a period of 15 min. Under these operations, besides the dry ice cooled receiving flask, only one additional trap was necessary. The pale yellow dioxirane solution could be concentrated maximally to ca. 0.10 M by means of frac-

(3) (a) Cremer, D. J. Am. Chem. Soc. 1979, 101, 7199-7205. (b) Cremer, D. J. Am. Chem. Soc. 1981, 103, 3619-3626, 3627-3632, 3633-3638. (c) Yamaguchi, K. J. Mol. Struct. 1983, 103, 101-120. (d) Cremer, D.; Schindler, M. Chem. Phys. Lett. 1987, 133, 293.

 (4) Criegee, R. Angew. Chem. 1975, 87, 765-771.
 (5) (a) Lovas, F. J.; Suenram, R. D. Chem. Phys. Lett. 1977, 51, 453-456. (b) Suenram, R. D.; Lovas, F. J. J. Am. Chem. Soc. 1978, 100, 5117-5122

[†]Universität Würzburg.

[‡]Academia Sinica; deceased, February 1987.

[§]Universität Köln.

Ruhr-Universität Bochum.

^{(1) (}a) Bell, G. A.; Dunkin, I. R. J. Chem. Soc., Chem. Commun. 1983, 1213–1215.
(b) Chapman, O. L.; Hess, T. C. J. Am. Chem. Soc. 1984, 106, 1842–1843.
(c) Dunkin, I. R.; Bell, G. A. Tetrahedron 1985, 41, 339–347.
(d) Ganzer, G. A.; Sheridan, R. S.; Liu, M. T. H. J. Am. Chem. Soc. 1986, 100 (2017) 10000 (2017) 1000 (2017) 1000 (2017) 1000 108, 1517-1520. (e) Sander, W. Angew. Chem. 1986, 98, 255-256; Angew. Chem., Int. Ed. Engl. 1986, 25, 255-257.

Chem., Int. Ed. Engl. 1986, 25, 255-257.
 (2) (a) Talbott, R. I.; Thompson, P. G. U.S. Pat. 3 632 606, 1972. (b) Montgomery, R. E. J. Am. Chem. Soc. 1974, 96, 7820-7821. (c) Gallopo, A. R.; Edwards, J. O. J. Org. Chem. 1981, 46, 1684-1688. (d) Cicala, G.; Curci, R.; Fiorentino, M.; Laricchiuta, O. J. Org. Chem. 1982, 47, 2670-2673. (e) Jeyaraman, R.; Murray, R. W. J. Am. Chem. Soc. 1984, 100, 0400. 106, 2462-2463.

 ^{(6) (}a) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847-2853.
 (b) Murray, R. W.; Jeyaraman, R.; Mohan, L. Tetrahedron Lett. 1986, 27, 2335-2336.
 (c) Murray, R. W.; Jeyaraman, R.; Mohan, L. J. Am. Chem. Soc. 1986, 108, 2470–2472. (d) Murray, R. W.; Jeyaraman, R.; Krishna Pillay, M. J. Org. Chem. 1987, 52, 746–748. (e) Cassidei, L.; Fiorentino, M.; Mello, R.; Sciacovelli, O.; Curci, R. J. Org. Chem. 1987, 52. 699-700.

⁽⁷⁾ Adam, W.; Hass, W.; Sieker, G. J. Am. Chem. Soc. 1984, 106, 5020-5022.

 Table I.
 ¹³C NMR Chemical Shifts of Dimethyldioxirane

 (2b) and Appropriate Reference Compounds Relative to

 Me.Si

molecule	carbon	ppm	ref			
dimethyldioxirane (2b)	CH ₃	22.69	this work,			
	C	102.30	and 6d, e			
1,2-dioxetane	CH_2	76.14	9			
acetone	CH_3	30.71	this work			
	CO	206.52				
cyclopropane	CH ₂	-6.2	а			
oxirane	CH_2	37.4	а			
<i>n</i> -propane	CH_2	12.5	а			
dimethoxymethane	CH_2	109.9	Ь			
1,3-dioxane	$C(0-)_{2}$	94.8	Ь			
1,1-dimethylcyclopropane	$C(CH_3)_2$	11.3	Ь			
tetramethyl-1,2,4,5-tetroxane	$C(CH_3)_2$	106	6d			

^aBreitmaier, E.; Voelter, W. ¹³C NMR Spectroscopy, 2nd ed.; Verlag Chemie: Weinheim, West Germany, 1978. ^bKalinowski, H.-O.; Berger, S.; Braun, S. ¹³C NMR Spektroskopie; Thieme Verlag: Stuttgart, West Germany, 1984.

tional distillation (bath temperature ca. 0 °C and ca. 35 Torr). Either the dioxirane 2b and acetone form an azeotrope at this concentration or the dioxirane decomposes about at the same rate as it is being concentrated.

The yellow acetone solutions of **2b** could be stored in the freezer (ca. -20 °C) for weeks, but at room temperature (ca. 22 °C) the dioxirane content was consumed within ca. 7 h, as monitored by UV spectrometry. Its decomposition kinetics was not first order as expected but exhibited a pronounced inhibition period.

For small-scale preparation of dioxirane 2b (ca. 10–15 mL of ca. 0.10 M solutions), we found it more practical to use efficient magnetic stirring, no external carrier gas (sufficient oxygen gas is self-produced during the reaction), and to add the potassium monoperoxy sulfate all at once, but to maintain otherwise the same reaction conditions as in the large-scale preparation.

For the quantitative determination of the dioxirane 2bin these acetone solutions, three methods were utilized. These consisted of iodometric titration for peroxide content, comparison of the methyl proton resonance (1.65 ppm) vs. the C-13 satellite signal of acetone, and oxidation of methyl phenyl sulfide to its sulfoxide with subsequent electronic integration of the phenyl proton resonances of the sulfoxide vs. sulfide. All three methods gave within experimental error consistently ca. 0.10–0.11 M dioxirane 2b as maximum concentration.

The following characteristic spectral data were obtained for the dimethyldioxirane (**2b**) solutions in acetone. The pale yellow solution exhibited a maximum UV absorption of λ 335 nm (ϵ 10), with broad tailing out to 450 nm, similar to that reported.^{6a} A freshly distilled solution showed only tailing to 390 nm, but on standing in the freezer overnight the tailing extended to 450 nm.

The proton NMR spectrum reveals only one singlet at 1.65 ppm, as previously observed^{6a} for the dioxirane **2b**. The carbon NMR spectrum (100 MHz) at -15 °C showed absorptions at 22.69 and 102.30 ppm (relative to Me₄Si), respectively, for the methyl (q) and ring carbons (s).^{6a,d} The 102.30 and 22.69 ppm signals disappeared on reduction with methyl phenyl sulfide. Meanwhile, similar results were obtained by using ¹³C-enriched dioxirane.^{6d,e}

Because of the large discrepancy between our results and those reported^{6a} for the ring carbon resonance of dioxirane 2b,⁸ we felt obliged to back up our observations with theoretical estimates for this critical value. In Table I, J. Org. Chem., Vol. 52, No. 13, 1987 2801

molecule	¹³ C		¹ H		¹⁷ O
dioxirane (2a)	CH_2	82.6	CH_2	4.32	250
dimethyldioxirane (2b)	С	99.2	\mathbf{H}_{i}	0.31	330
	CH_3	17.0	H_{o}	0.73	
dioxetane	CH_2	65.5	CH_2	3.82	268
acetone	CO	23.5	\mathbf{H}_{i}	1.16	680
	CH_3	209.7	H_{o}	1.01	

^aAll values in ppm relative to Me₄Si (¹³C, ¹H) or H₂O (¹⁷O). Subscripts i and o denote in-plane and out-of-plane protons with the reference plane given by the positions of the three C atoms. MP2/6-31G* geometries have been used for $2a^{3a}$ and 2b (see Figure 1). Dioxetane geometry: Schmidt, T.; Cremer, D.; unpublished results. Acetone geometry: ref 3d.

Table III.	Isodesmic	Stabilization	Enthalpies ·	$(cf. eq 1)^a$
------------	-----------	---------------	--------------	----------------

molecule H ₂ CXY	$\Delta\Delta H(1)$	molecule H ₂ CXY	$\Delta\Delta H(1)$	
n-propane	8.5	cyclopropane	10.0 ^b	
dimethoxymethane	13.9	oxirane	16^{c}	
ethene	12.0	oxirane (O-protonated)	25°	
formaldehyde	21.2	dioxirane	21.4^{d}	

^a $\Delta\Delta H(1)$ in kcal/mol. $\Delta H_f^{\circ}(298)$ values from Cox and Pilcher [Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic Press: New York, 1970]. ^b ΔH_f° of 1,1-dimethylcyclopropane from Fuchs et al. [Fuchs, R.; Hallman, J. H.; Perlman, M. O. Can. J. Chem. 1982, 60, 1832–1835]. ^c Estimated from ab initio reaction energies $\Delta E(1)$. Cremer, D.; Kraka, E. J. Am. Chem. Soc. 1985, 107, 3800–3810. ^d MP2/6-316* value of $\Delta\Delta E(1)$.

known ¹³C shift values are listed that provide a basis to estimate the position of this signal. Extrapolating the ¹³C shift values for cyclopropane and oxirane to the one of **2a**, a shift value of ca. 80 ppm can be predicted. A somewhat higher value is obtained when comparing ¹³C(H₂) shifts for propane, dimethoxymethane, and 1,3-dioxane (Table I). The difference in the ¹³C absorptions of cyclopropane and 1,1-dimethylcyclopropane (Table I) suggests that geminal methyl groups lead to a downfield shift of ca. 20 ppm for a substituted ring carbon. Hence, the signal for the ring carbon of **2b** should appear between 100 and 110 ppm.

In Table II, ab initio values of the NMR chemical shifts for 2a, 2b, the parent dioxetane, and acetone obtained with the IGLO approach (see Experimental Section) are listed. These values refer to isolated molecules in their equilibrium geometries at 0 K. Thus, neither a temperature dependence of the NMR signals nor effects of intermolecular interactions are considered in the calculations. As a consequence, ab initio shift values differ from experimental shifts measured in liquid or solution phases. For example, the theoretical ¹³C shift value of the parent dioxetane is 10.6 ppm lower than the reported experimental shift⁹ (Table I). On the other hand, calculated ¹³C shift values of **2b** (99.2 and 17.0 ppm, Table II) deviate by just 3 and 5.7 ppm, respectively, from the experimental ones (102 and 22.7 ppm, Table I), suggesting a ¹³C shift of ca. 86 ppm for the parent dioxirane 2a. (Note added in **proof**: After completion of this work we were informed^{6e} that the experimental ¹⁷O shift value is 302 ppm (relative to external $H_2^{17}O$). In view of the large sensitivity of ¹⁷O NMR resonance signals on experimental conditions, the agreement with our theoretical value (330 ppm, Table II) is satisfactory. Hence, the dioxirane structure 2b for the product of the monoperoxy sulfate-acetone reaction is confirmed.)

⁽⁸⁾ While this work was in progress (cf. ref 3d), Prof. R. W. Murray has informed^{6d} us that the 214 ppm $^{13}\mathrm{C}$ resonance is an artifact.

⁽⁹⁾ Adam, W.; Baader, W. J. Angew. Chem. 1984, 96, 156-157; Angew. Chem., Int. Ed. Engl. 1984, 23, 166-167. See also: Adam, W. In The Chemistry of Functional Groups, Peroxides; Patai, S., Ed.; Wiley: New York, 1983; pp 828-920.

Figure 1. Ab initio geometry of dimethyldioxirane (2b); bond lengths in Å and bond angles in degrees.

In view of the labile nature of 2a (decomposition at -60 °C),⁵ it is surprising that the dimethyl derivative 2b can be kept at room temperature for several hours. We attribute this increase in stability to the electronic and steric effects of the geminal methyl groups. Such stabilization of *gem*-dimethyl substitution can be estimated by the isodesmic reaction of eq 1. Changes in reaction enthalpies

$$(CH_3)_2CXY + 2CH_4 \rightarrow H_2CXY + 2CH_3CH_3 \quad (1)$$

 $\Delta\Delta H(1)$ for appropriate reference compounds are listed in Table III. They are all positive, thus indicating that geminal methyl groups always lead to stabilization of the H₂CXY molecule. The degree of stabilization depends on both the hybridization of the quarternary carbon atom and the electronegativity of its X and Y substituents. Ethylene is more stabilized by two methyl groups than propane, while cyclopropane takes an intermediate position (Table III). For $X = Y = OCH_3$, the stabilizing effect of methyl substitution is larger than that for $X = Y = CH_3$ (Table III). Methyl acts as an electron-releasing substituent that is more effective the larger the electron deficiency at the substituted carbon is. The isodesmic reaction energy calculated for 2a, i.e., $\Delta E(1) = 20$ kcal/mol (Table III), nicely fits into these trends and explains the increase in the thermodynamic stability of dialkyl dioxiranes.

Ab initio calculations reveal that the breaking of the oxygen-oxygen bond of 2 requires considerably less energy than that of a carbon-oxygen bond.¹⁰ We expect that decomposition of 2a or 2b will be initiated by oxygen-oxygen bond lengthening (widening of the COC angle). This causes a rehybridization of the ring carbon and a subsequent decrease of the exocyclic angle. The latter is 117° in 2a^{3a,5b} but 120° in 2b (Figure 1). Clearly, enhanced steric interactions between the methyl groups upon decrease of the CCC angle will hinder any decomposition of 2b that is initiated via oxygen-oxygen bond rupture. We suggest that gem-dialkyl substitution leads also to increased kinetic stability of dioxiranes, enabling the impressive feat of isolating⁶ acetone solutions of this to date most strained cyclic peroxide.

The data on the oxygen transfer by dioxirane 2b to thianthrene 5-oxide (SSO) are collected in Table IV. Clearly, the nucleophilicity parameter (X_{Nu}) for the dioxirane 2b depends on the medium. When the isolated authentic dioxirane 2b is added to a spent solution from the in situ oxygen transfer (entry 5 in Table IV), within experimental error (±0.03), nearly the same X_{Nu} value is obtained as in the in situ oxygen transfer (entry 4 in Table IV), i.e., 0.74 vs. 0.71. In methylene chloride $X_{Nu} = 0.77$ (entry 2 in Table IV) and in acetone $X_{Nu} = 0.85$ (entry 1 in Table IV). However, it is gratifying that in the same

Table IV. Nucleophilic Character (X_{Nu}) of Dimethyldioxirane (2b) in the Oxygen Transfer to Thianthrene 5-Oxide (SSO)

	convn ^b	product composition ^b $(\%)$			Xxx
medium ^a	(%)	$\overline{SSO_2}$	SOSO	$SOSO_2$	(± 0.03)
1. acetone	33	84.9	15.1		0.85
 CH₂Cl₂ 	16	77.2	22.8		0.77
3. phosphate buffer, ^d CH ₂ Cl ₂	40	54.6	17.9	27.5	0.68
4. phosphate buffer, CH ₂ Cl ₂ , KHSO ₅ ^e	26	61.0	17.3	21.7	0.71
5. spent solution ^f	36	58.8	10.4	30.8	0.74

^aConcentration of SSO (acetone or CH_2Cl_2) ca. 0.008 M. ^b% conversion of SSO into SSO₂, SOSO, and SOSO₂, determined by HPLC on a silica gel column, using *p*-nitrophenyl sulfone as internal standard. ^cCf. ref 7. ^dTo phosphate buffer (3 mL) and CH_2Cl_2 (3 mL) was added 0.092 M dioxirane-acetone (0.1 mL) and SSO (0.02 mmol). ^eDioxirane generated in situ; in all other entries authentic dioxirane (after 19 h at room temperature) without SSO was added subsequently first SSO and then the dioxirane in acetone.

medium (biphasic phosphate buffer and methylene chloride system) the nucleophilic character of the isolated authentic and of the in situ generated dioxirane **2b** are the same, i.e., $X_{Nu} \sim 0.70$. Consequently, the same molecular species, namely dioxirane **2b**, serves as donor in the oxygen transfer to SSO,^{2d} irrespective of whether in situ generated^{2d} or isolated dioxirane **2b**^{6a} is used. This high nucleophilicity of the genuine dimethyldioxirane (**2b**) is unexpected, especially in view of its chemical behavior such as oxidizing pyridine to its N-oxide, primary amines (aliphatic and aromatic) to their nitro compounds, aromatic hydrocarbons to arene oxides, alkenes to epoxides, or alkanes to alcohols.⁶

Experimental Section

Instrumentation. ¹H NMR and ¹³C NMR were recorded on a Bruker WM 400-MHz spectrometer. Samples were measured in acetone, with deuteriated acetone (15%) being added for deuterium lock. UV spectra were obtained on a Perkin-Elmer 330 UV-vis spectrophotometer. Analytical HPLC was performed on a Kontron HPLC Model, with a silica gel column (25 cm × 4 mm) purchased from the Bischoff Co., Leonberg, West Germany.

Materials. Commercially available reagents were used directly without purification. Potassium monoperoxy sulfate (2KHS- O_5 ·KHSO₄·K₂SO₄) was obtained as a generous gift from Peroxid-Chemie GmbH. Acetone (C.P.) was used in all experiments.

Preparation of Dimethyldioxirane Solution. (a) Large Scale. A 4-L, four-necked, round-bottomed flask, containing a mixture of water (440 mL), acetone (320 mL, 4.35 mol), and sodium bicarbonate (240 g), was equipped with a mechanical stirrer, an addition funnel for solids, containing potassium monoperoxy sulfate (500 g, 0.813 mol), a gas inlet tube, and an air condenser, loosely packed with glass wool. The exit of the air condenser was connected to the top entry of a high-efficiency double-jacketed spiral condenser, supplied with methanol coolant (-78 °C to -85 °C) from a Colora Ultra Cryostat, Model KT 290S. The bottom exit of the high-efficiency condenser was attached in succession to a receiving flask (500 mL) and three cold traps, all being kept at dry ice-acetone temperature. Argon was passed through the reaction flask, while the solid potassium monoperoxy sulfate was added in five portions at 3-min intervals, stirring the mixture vigorously at room temperature (20 °C) and applying simultaneously a slight vacuum (ca. 180 Torr, water aspirator). The effluent was collected as a yellow solution consisting of dimethyldioxirane and acetone, mainly in the receiving flask (300 mL, ca. 0.100 M in dioxirane), an appreciable amount (26 mL, 0.090 M) in the first trap and negligible amounts in the second trap (8 mL, 0.088 M) and third trap (5 mL, 0.094 M). The

⁽¹⁰⁾ For example, in the presence of an electrophile (H⁺) carbon-oxygen bond rupture requires five times more energy than oxygen-oxygen rupture. Gauss, J.; Cremer, D., unpublished results.

combined yellow solutions were stored in the freezer for subsequent use.

(b) Small Scale. A 250-mL, three-necked, round-bottomed flask, containing a mixture of water (20 mL), acetone (13 mL, 0.177 mol), sodium bicarbonate (12 g), and a magnetic stirring bar, was equipped with an addition funnel for solids containing potassium monoperoxy sulfate (25 g, 0.041 mol) and an air condenser (set up as described above), except only a receiving flask (25 mL), cooled by means of dry ice-acetone, was required. While applying a slight vacuum (ca. 180 Torr, water aspirator), the solid potassium monoperoxy sulfate was added in one portion, stirring vigorously at room temperature (ca. 20 °C). The yellow dioxirane-acetone solution (11 mL, 0.099 M) was collected in the receiving flask.

(c) Fractionation. A 50-mL, round-bottomed flask, containing 25 mL of 0.096 M dimethyldioxirane-acetone solution, was equipped with a 25-cm Vigreux fractionation column, whose top exit was connected to the top entry of a high-efficiency double-jacketed, spiral condenser, supplied with methanol coolant (-78 °C) from a cryostat, and bottom exit to a receiving flask (25 mL), which was cooled by means of dry ice-acetone. At an ice-water bath temperature and an intermediate vacuum of 32-37 Torr (mechanical pump), during the first 60 min, 14 mL of a yellow solution of the dimethyldioxirane in acetone (ca. 0.11 M) distilled, and during the next 30 rain another 7 mL (ca. 0.092 M). All efforts to concentrate the dioxirane solution in failed.

Spectroscopic Measurements on Dimethyldioxirane. (a) Ultraviolet. The UV spectrum of dimethyldioxirane was measured by using 1-cm quartz cells and acetone as reference solvent: $\lambda_{max} = 335$ nm (ϵ 10) with a tail extending to 450 nm.^{6a}

(b) NMR. The ¹³C NMR spectrum of a freshly prepared solution of dimethyldioxirane (ca. 0.11 M) was recorded in acetone by using acetone- d_6 (15%) lock. The proton-decoupled spectrum was accumulated at -15 °C for 1 h, exhibiting absorptions at 22.69 (q) and 102.30 (s) ppm respectively for the methyl and dioxirane carbons.^{6d,e} An additional singlet at 125.63 ppm was also detected (carbon dioxide),^{6d} which decreased in intensity on long accumulation or on warming up to 40 °C. Strong acetone absorptions were also observed at 30.71 (q) and 206.52 (s) ppm for the methyl and carbonyl carbons (relative to Me₄Si).

The ¹H NMR spectrum of dioxirane in acetone solution showed besides the solvent signal a single absorption at δ 1.65 (s) for the methyl protons.^{6a}

Assays for Dioxirane Content. (a) Phenyl Methyl Sulfide. A solution of dimethyldioxirane (1.00 mL) in acetone was mixed with a acetone- d_6 solution of phenyl methyl sulfide (0.4 mL, 0.55 M). The solution was allowed to stand at room temperature for 5 min and the ¹H NMR spectrum was taken. Signal integration of the sulfoxide phenyl protons (δ 7.6–7.9) vs. those of the sulfide (δ 7.1–7.3) gave a 1:1 ratio. Assuming all dioxirane had reacted, the concentration of dioxirane solution in acetone was calculated to be 0.11 M.

(b) Iodometric Titration. A solution of dimethyldioxirane in acetone (1.00 mL) was added to a 3:2 mixture of acetic acidacetone solution (2 mL). Saturated aqueous KI solution (2 mL) was then added together with some dry ice to deaerate and the resulting mixture was stored in the dark at room temperature (ca. 20 °C) for 10 min. The sample was diluted with water (5 mL) and three aliquots (1.00 mL) were titrated with aqueous $Na_2S_2O_3$ (0.001 N) solution, affording a dioxirane concentration of 0.11 M.

(c) ¹H NMR. The height of the methyl proton signal of the dioxirane (at δ 1.65) was compared with the ¹³C satellite peak to the right of acetone (0.5%), resulting in a 1% or 0.1 M dioxirane solution.

Oxidation of Thianthrene 5-Oxide. (a) Authentic Dioxirane. To 4.60 mg (0.0200 mmol) of thianthrene 5-oxide (SSO) in 2.5 mL of acetone or 2.5 mL of CH_2Cl_2 was added 0.1 mL of a 0.092 M (0.0092 mmol) freshly distilled dioxirane solution in acetone and the resulting mixture was allowed to stand at ca. 20 °C for 20 min. The acetone was removed, and the residue taken up in 1 mL of CH_2Cl_2 and dried over anhydrous MgSO₄. The reaction mixture was analyzed by HPLC for thianthrene 5,5 dioxide (SSC₂), thianthrene 5,10-dioxide (SOSO), and thianthrene 5,5,10-trioxide (SOSO₂), by eluting with a 96:4:0.4 mixture of petroleum ether (64-68 °C)-ethyl acetate-methanol, at a flow rate of 3.0 mL/min, using *p*-nitrophenyl sulfone as standard.¹¹ The quantitative results are given in Table IV.

(b) In Situ Generated Dioxirane.¹¹ A solution of potassium monoperoxy sulfate (408 mg, 1.61 mmol) and EDTA (ca. 20 mg), dissolved in doubly distilled water (10 mL), was added to a biphasic system of 0.60 M KH₂PO₄/Na₂HPO₄ buffer solution (20 mL, pH 7.5), CH₂Cl₂ (30 mL), acetone (0.83 mL, 11.3 mmol), 18-crown-6 (250 mg, 0.946 mmol), and SSO (180 mg, 0.775 mmol). The resulting mixture was stirred at 0 °C for 1 h and then at 23 °C for 19 h. The organic layer was separated, the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL), and the combined CH₂Cl₂ solutions were dried over anhydrous MgSO₄ and analyzed by HPLC as above. The results are shown in Table IV.

Ab Initio Calculations. The geometry of 2b has been computed at the MP2 level of theory, ¹² employing the 6-31G* basis set.¹³ Previous investigations^{3a} have revealed that peroxides are fairly well described at the MP2/6-31G* level. NMR chemical shifts have been determined with the IGLO (individual gauge for localized orbitals) method¹⁴ using a (9s5p1d/5s1p) Huzinaga basis¹⁵ contracted to [51111, 2111, 1/311, 1]. The exponents of the polarization functions of this basis are 1.0 for d(C) and d(O), respectively, and 0.65 for p(H).

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for generous financial support. We are grateful for preliminary experiments by Dr. W. Haas and Dr. L. Pasquato. Support by the Rechenzentren der Universität Köln and the Ruhr-Universität Bochum is acknowledged.

Registry No. 2a, 157-26-6; **2b**, 74087-85-7; SSO, 2362-50-7; SSO₂, 2362-53-0; SOSO, 951-02-0; SOSO₂, 2362-54-1; acetone, 67-64-1; 1,2-dioxetane, 6788-84-7.

⁽¹¹⁾ Haas, W., Doctoral Dissertation, Universität Würzburg, BRD, 1985.

⁽¹²⁾ Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.

⁽¹³⁾ Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.

^{(14) (}a) Kutzelnigg, W. Israel J. Chem. 1980, 19, 193. (b) Schindler,
M.; Kutzelnigg, W. J. Chem. Phys. 1982, 76, 1919–1933. (c) Schindler,
M.; Kutzelnigg, W. J. Am. Chem. Soc. 1983, 105, 1360–1370.

⁽¹⁵⁾ Huzinaga, S. Approximate Atomic Functions I, University of Alberta, 1971.