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Abstract

Vibrational spectra contain explicit information on the electronic structure and the bonding situation of a molecule, which
can be obtained by transforming the vibrational normal modes of a molecule into appropriate internal coordinate modes, which
are localized in a fragment of the molecule and which are associated to that internal coordinate that describes the molecular
fragment in question. It is shown that the adiabatic internal modes derived recently (Int. J. Quant. Chem., 67 (1998) 1) are the
theoretical counterparts of McKean’s isolated CH stretching modes (Chem. Soc. Rev., 7 (1978) 399). Adiabatic CH stretching
frequencies obtained from experimental vibrational spectra can be used to determine CH bond lengths with high accuracy.
Contrary to the concept of isolated stretching frequencies a generalization to any bond of a molecule is possible as is
demonstrated for the CC stretching frequencies. While normal mode frequencies do not provide a basis to determine CC
bond lengths and CC bond strengths, this is possible with the help of the adiabatic CC stretching frequencies. Measured
vibrational spectra are used to describe different types of CC bonds in a quantitative way. For CH bonds, it is also shown that
adiabatic stretching frequency leads to the definition of an ideal dissociation energy, which contrary to the experimentally
determined dissociation energy is a direct measure of the bond strength. The difference between measured and ideal dissocia-
tion energies gives information on stabilization or destabilization of the radicals formed in a dissociation process.q 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the major goals in chemistry is the investi-
gation and understanding of the chemical bond [1–4].
Bond lengths, bond stretching frequencies, vicinal
NMR spin–spin coupling constants, and bond disso-
ciation energies obtained from appropriate experi-
ments are used to describe and discuss the strength
of the chemical bond. The bond strength is best

described by the bond energy, however both bond
strength and bond energy are model quantities defined
for a particular model of the chemical bond. Neither
bond strength nor bond energy can directly be
measured for polyatomic molecules and, accordingly,
one has to revert to other molecular properties to get
insight into the strength of the chemical bond. Clearly,
measured properties such as bond dissociation ener-
gies or bond lengths can be used to quantitatively
assess the strength of the chemical bond in an indirect
way. For example, bond dissociation energies depend
on both the strength of the bond to be broken and the

Journal of Molecular Structure 485–486 (1999) 385–407

0022-2860/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0022-2860(99)00093-9

* Corresponding author. Tel.:1 46-31-7735597; fax:1 46-31-
7735590.



stability of the fragments (radicals) obtained after
bond cleavage, which in general makes it difficult to
assess the strength of a chemical bond. This would
only be possible if one would know the stabilization
energy (SE) of the fragments of a bond dissociation
process so that one could determine ideal dissociation
energiesDideal

e corresponding to a dissociation into
fragments without any (de)stabilization (see Scheme
1). Ideal dissociation energies (contrary to experi-
mental dissociation energiesDexp

e ) would be a perfect
measure for the equilibrium bond strength1. In the
case of diatomic molecules, bond energy, and bond
dissociation energies are identical, which is the reason
why for a long time knowledge about chemical bonds
was collected primarily for diatomic molecules [5,6].

In chemistry, it is a generally accepted assumption
that measured bond lengths reflect the strength of the
corresponding chemical bond. This is certainly true as
long as the bond strength is predominantly determined
by the accumulation of electron density in the bond
region and the screening of the nuclei by this
density [7]. However, when electrostatic interac-
tions between the bonded atoms dominate as in
the case of polar or ionic bonds, the bond length
may no longer be a reliable indicator for the bond
strength. Convincing examples are the fluoroa-
mines NH32nFn�n� 0;…;3�, for which with
increasing fluorination the NF bonds becomes shorter
(normally indicating a strengthening of the bond), but
the NF bond strength becomes weaker [8]. Also, steric
interactions between the substituents attached to a
bond may influence its strength in a way that is not
necessarily reflected by the bond length. This
becomes clear if one considers not just the case of
steric repulsion leading to bond weakening and bond
lengthening but also that of steric attraction (e.g. in
connection with thecis effect (see for example Ref.
[9])), which may have opposing effects on bond
strength and bond length. Therefore, it is advisable
to determine other molecular properties, which may
complement the description of the chemical bond by
bond length and bond dissociation energy.
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Scheme 1.

1 We note that the termbond strengthis often used in a
misleading way. For example, in the Handbook of Chemistry and
Physics, 72. Edition, D.R. Lide, Edt., CRC Press, Boca Raton, 1991,
dissociation enthalpiesDexp

0 are listed under the headingBond
Strengths in Polyatomic Molecules, although this quantity reflects
both the strength of a bond and the stability of the radical(s) formed.
To our opinion, it is not sufficient and still misleading if one distin-
guishes between an equilibrium bond strength reflected, e.g. by
equilibrium bond length and equilibrium stretching force constant
and a (non-equilibrium) bond strength reflected, e.g. by bond disso-
ciation energies since the latter quantities cannot be trustful indica-
tors of bond strength.



In this connection, an important contribution has
been made by McKean [10,11] who has demonstrated
in the case of the CH bonds of many different polya-
tomic molecules that bond stretching frequencies can
provide an excellent measure for the bond strength.
The normal mode frequencies of conventional
infrared or Raman studies are not suited for this
purpose because coupling between the CH stretching
motions and other motions or Fermi resonances
between CH stretching motions and CHn bending
motions make it difficult to assign an accurate
frequency to pure (localized) stretching motion of an
individual CH bond.

McKean solved this problem by replacing all but
one H atom of a molecule by deuterium (i.e. investi-
gating perdeuterated isotopomers with just one H
atom in a CD2H or CDH group). The frequencies of
CDn21H bending motions are significantly reduced
and, as a consequence, Fermi resonances are less
strong in the CH stretching region. Couplings of a
particular CH stretching mode to other motions of a
hydrocarbon are minimized to less than 5 cm21 [10].
McKean called the CH stretching frequencies
obtained in this way ‘‘isolated’’ (symbolniso�CH�)
and used them directly as a measure for the properties
of the CH bond. He showed that a relationship
between isolated CH stretching frequencies and CH
bond lengths exists, which can be used to determine
unknown r0 values of CH bond lengths with high
accuracy once the correspondingniso�CH� value has
been measured [10]. A similar correlation with CH
bond dissociation energies provided a basis to discuss
(de)stabilization effects in molecules and radicals
generated by CH bond cleavage [11]. Utilizing these
relationships isolated CH stretching frequencies were
measured and used in several investigations [12–20].

McKean’s investigations have inspired the present
work in various ways. First, they clearly demonstrate
that, in principle, the vibrational spectra of a molecule
contain all the information needed to describe its
chemical bonds. Secondly, they show the major
problems of using directly measured or calculated
normal mode frequencies for this purpose. Finally,
they lead to the question whether McKean’s approach
can be generalized and isolated frequencies can be
determined for other than CH bonds. One could
think of systematically replacing all but two directly
bonded C atoms of a hydrocarbon by13C isotopes to

determine isolated CC stretching frequencies.
However, this does not lead to the suppression of
mode mixing between CC stretching and other vibra-
tional motions and, therefore, it is obvious that a
generalization of McKean’s approach is limited to
AH or AX bonds with terminal X and a similar rela-
tionship between isotope masses as given for the CH
group.

Recently, we have developed the theory of the adia-
batic internal modes (AIMs) [21–26]. Contrary to the
delocalized normal modes of vibrational spectro-
scopy, AIMs are localized in a particular molecular
fragmentfm with two, three or more atoms character-
ized by an internal coordinate such as the bond length,
the bond angle, etc. Therefore, AIMs are pure bond
stretching, bond bending, etc. modes that are perfectly
suited as reference modes for analyzing the normal
vibrational modes of a molecule and to describe the
properties of the molecular fragments [21–24]. If one
knows the AIMs of a molecule, one should be able to
set up McKean relationships between bond lengths
and bond stretching frequencies for all its bonds.
Hence, the AIMs of a molecule should provide reli-
able descriptions of the chemical bonds of a molecule.

In this work, we focus on the question whether AIM
frequencies are the theoretical equivalents of
McKean’s isolated stretching frequencies by investi-
gating first 66 CH bonds of 38 different molecules.
We also test whether McKean’s idea can be extended
in those cases where isolated stretching frequencies
are difficult to obtain but AIM frequencies are avail-
able. Our work is based on standard quantum
chemical calculations of the normal modes of a mole-
cule. Because of the approximations made in these
calculations (mechanical rather than quantum
mechanical description of the vibrational problem,
use of a harmonic potential to calculate vibrational
frequencies, limitations with regard to basis set and
electron correlation effects covered), one obtains
harmonic vibrational frequencies, which for
stretching modes are about 10% too large. One
could improve standard calculations of vibrational
modes in various ways, however this would become
rather costly and would not guarantee the general
applicability of the approach described in this work.
Therefore, we will choose another less costly way
to apply the concept of the AIMs to measured vibra-
tional spectra and to determine experimental AIM
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frequencies that can directly be compared to
McKean’s isolated stretching frequencies.

To present the results of our investigation, this
report is structured in the following way. In Section
2, we will briefly summarize the AIM concept and its
theory. The computational methods used in this work

are described in Section 3. In Sections 4–6, we will
compare isolated CH stretching frequencies with adia-
batic CH stretching frequencies obtained either from
quantum chemical calculations or experiment, set up
McKean relationships with CH bond lengths, and then
extend the McKean approach to the CC bond.
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Fig. 1. Molecules1–38 investigated. CH bonds are identified by small numbers in normal print, CC bonds by small numbers in bold print. The
following notation is used to distinguish H atoms of aCHn group: ip: in-plane; op: out-of-plane; ax: axial; eq: equatorial; c:cis; t: trans.



2. Theory of adiabatic internal vibrational modes

The basic instrument of vibrational spectroscopy to
describe a vibrating molecule in classical terms is the
normal mode analysis (NMA) [27–29]. A normal
mode Im expressed in Cartesian coordinate space
and associated with a normal coordinate Qm (m �
1,…,Nvib; Nvib � 3K 2 L; K: number of atoms in a

molecule;L: number of rotational and translational
motions of a molecule) leads to the movement of
many or even all atoms of a molecule, i.e. it is a
delocalized mode.

x � lmQm �1�
(x: vector of Cartesian displacements with elements
xi, i � 1,…,3K). The Nvib normal modeslm of a
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Table 1
Comparison of experimentally and theoretically determined properties of CH bonds (B3LYP/6-31G(d,p) calculations)a

Name Position re r0 �vm vBG va v iso nexp
a nf

a n iso

1 Methane (1) 1.092 1.092 3104 3136 3129 3136 2990 3010 2993
2 Fluromethane (2) 1.096 3066 3080 3074 3081 2976 2957 2976
3 Methanol (3) CH3, ip 1.093 3120 3114 3109 3114 2988 2991 2979
4 CH3, op 1.101 3009 3015 3004 3015 2897 2890 2921
5 Methylamine (4) CH3, op 1.104 2964 2972 2959 2971 2818 2846 2880
6 CH3, op 1.095 3091 3090 3084 3089 2965 2967 2955
7 Chloromethane (5) 1.089 3140 3158 3152 3161 3000 3032 3012
8 Methylsilane (6) 1.094 3092 3109 3098 3108 2947 2980 2957
9 Formaldehyde (7) 1.110 2926 2925 2923 2927 2811 2812
10 Methyleneimine (8) cis 1.099 3026 3040 3038 3044 2937 2923 2936
11 trans 1.094 3130 3114 3114 3117 3018 2995 3018
12 Hydrogen cyanide (9) 1.069 3475 3408 3404 3475 3241 3274 3312
13 Ethane (10) 1.095 1.096 3077 3090 3085 3090 2956 2967 2950
14 Fluroethane (11) CH2F 1.097 3052 3054 3049 3054 2954 2933 2950
15 CH3, ip 1.095 3089 3098 3092 3098 2974 2974 2957
16 CH3, op 1.094 3105 3110 3105 3110 2982 2987 2973
17 Acetaldehyde (12) CHO 1.114 2884 2884 2878 2884 2817 2769 2751
18 CH3, ip 1.091 1.091 3162 3144 3141 3145 2990 3021 3002
19 CH3, op 1.097 1.097 3068 3081 3064 3080 2936 2948 2945
20 Acetic acid (13) CH3, ip 1.089 3186 3167 3164 3169 3031 3044
21 CH3, op 1.094 3100 3113 3086 3113 2962 2969
22 Methylnitrile (14) 1.093 3100 3116 3110 3115 2988 2991 2985
23 Ethene (15) 1.087 1.085 3193 3190 3188 3195 3052 3067 3053
24 Chloroethene (16) ipso 1.084 3229 3223 3222 3230 3079 3100 3082
25 trans 1.085 3220 3210 3208 3216 3070 3086 3072
26 cis 1.084 3220 3225 3223 3231 3083 3100 3074
27 Ketene (17) 1.082 3251 3250 3241 3255 3109 3118
28 Ethyne (18) 1.066 1.060 3487 3439 3437 3492 3283 3307 3336
29 Propane (19) CH3, ip 1.095 1.096 3072 3090 3085 3090 2956 2968 2950
30 CH3, op 1.096 1.098 3069 3080 3074 3079 2949 2957 2936
31 CH2 1.098 1.099 3045 3050 3047 3050 2927 2931 2918
32 Dimethylketone (20) CH3, ip 1.091 3165 3149 3145 3150 3005 3025 3004
33 CH3, op 1.096 3074 3086 3052 3085 2944 2936 2946
34 2-propenal (21) trans 1.085 3200 3212 3211 3219 3065 3089
35 cis 1.088 3200 3181 3179 3186 3029 3058
36 ipso 1.087 3193 3188 3188 3194 3025 3067
37 CHO 1.114 2888 2887 2882 2888 2794 2772
38 Ethylnitrile (22) CH2 1.096 3073 3076 3071 3075 2874 2954 2952
39 CH3, ip 1.093 3103 3115 3110 3115 2996 2992 2974
40 CH3, op 1.093 3117 3120 3115 3120 2992 2997 2974
41 Allene (23) 1.087 1.086 3166 3177 3174 3181 3044 3053 3049
42 Propyne (24) CH 1.065 1.060 3492 3443 3442 3492 3286 3311 3334
43 CH3 1.095 1.095 3072 3085 3079 3084 2974 2962 2958
44 Cyclopropane (25) 1.086 1.085 3185 3181 3180 3185 3056 3059 3056
45 Oxirane (26) 1.090 3136 3135 3129 3140 3028 3010
46 Aziridine (27) trans 1.087 3158 3164 3161 3169 3046 3041
47 cis 1.088 3158 3148 3144 3152 3032 3025
48 Thiirane (28) 1.086 3184 3182 3178 3187 3048 3058
49 trans-butadiene (29) CH2, trans 1.085 3215 3208 3207 3214 3058 3085
50 CH2, cis 1.087 3201 3186 3183 3190 3041 3062
51 CH 1.090 3151 3147 3147 3151 3000 3027
52 2-butyne (30) 1.096 1.096 3063 3076 3070 3075 2952 2953 2950



molecule are obtained by solving Eq. (2)

fL � ML L �2�
wheref is the force constant matrix in Cartesian coor-
dinate space,M the mass matrix with elementsmi (i �
1,…,3K). L covers the column vectorslm with
elementsLim(i � 1,…,3K) and matrixL collects the
squares of the normal mode frequenciesvm on its
diagonal. Eq. (2) can be rewritten for internal coordi-
nate space spanned by the internal coordinatesq:

FD � G21DL �3�
where F is the force constant matrix in this space,
matrix D contains normal mode vectorsdm in internal
coordinate space, and the WilsonG matrix is given by
BM 21B† whereB � 2q=2x. A normal mode vectordm

can be transformed to Cartesian coordinate space
according to Eq. (4):

lm � Cdm: �4�
One might think that localized internal mode vectors
vm can be obtained from the normal modes by simply
assuming that (dm)m � Dmm � dmm (dmm: Kronecker
delta) since this would lead tolm � cm for m � m
where eachvm� cm would be associated with a parti-
cular internal coordinateqm. However, even if there is

no electronic coupling between displacement vectors
cm and cn (reflected by a diagonal force constant
matrix) there will be always mass coupling between
these vectors because theG matrix of Eq. (3) is non-
diagonal, which implies thatDmm ± dmm andlm ± cm.
Mass coupling between different internal modes can
be avoided by assuming that all masses but the ones
which belong to the atoms of a particular molecular
fragmentfm are zero. This assumption is equivalent
to requiring that the internal parameterqm of fragment
fm is associated with the generalized momentumpm�
0. With this assumption, the Euler–Lagrange equa-
tions of a vibrating molecule take a specific form,
which leads directly to the AIMs. [21–24] Alterna-
tively, AIMs can be explained by considering the
potential energy of a vibrating molecule. A vibration
may be initiated by a change of an internal coordinate
associated with molecular fragmentfm from valueqm

to q*m which will lead to a displacement of the atoms
of the molecule. If one relaxes the positions of all
atoms but those of fragmentfm so that the molecular
energy attains a minimum, the motion caused by the
changeqm! q*m (infinitesimal geometrical perturba-
tion) will be localized infm and will represent an
AIM. Internal coordinate qm ‘‘leads’’ the AIM
(leading parameter principle), [21–24] which can

J.A. Larsson, D. Cremer / Journal of Molecular Structure 485–486 (1999) 385–407 391

Table 1 (continued)

Name Position re r0 �vm vBG va v iso nexp
a nf

a n iso

53 1,3-butadiyne (31) 1.065 3490 3445 3443 3490 3266 3312
54 Furan (32) C(2)H 1.079 3297 3283 3285 3293 3147 3160
55 C(3)H 1.080 3265 3260 3261 3269 3130 3137
56 Pyrrole (33) C(1)H 1.080 3278 3264 3266 3273 3125 3142
57 C(2)H 1.081 3253 3250 3252 3259 3109 3128
58 Isoxazole (34) C(5)H 1.080 3288 3271 3273 3282 3127 3148
59 C(4)H 1.079 3288 3282 3284 3293 3142 3159
60 C(3)H 1.082 3253 3246 3248 3255 3082 3125
61 Maleic anhydride (35) 1.082 3267 3256 3258 3267 3109 3134
62 Thiophene (36) C(2)H 1.081 3268 3259 3260 3266 3119 3136
63 C(3)H 1.084 3221 3217 3218 3223 3089 3096
64 Cyclohexane (37) ax 1.100 3016 3030 3025 3029 2878 2910 2891
65 eq 1.097 3067 3058 3055 3058 2920 2939 2923
66 Benzene (38) 1.086 1.084 3189 3184 3186 3189 3055 3065 3065

a Equilibrium bond lengthsre and spectroscopically determined bond lengthsr0 in Å, calculated averaged harmonic normal mode frequencies
�vm, harmonic intrinsic frequencies of Boatz and Gordon [52]vBG, calculated harmonic adiabatic internal coordinate frequenciesva, calculated
harmonic isolated stretching frequenciesv iso, experimental adiabatic internal coordinate frequenciesnexp

a , scaled harmonic adiabatic internal
coordinate frequenciesnf

a, and experimental isolated stretching frequenciesn iso in cm21. r0 andn iso values from Refs. [10–17]. The following
notation is used to distinguish H atoms of aCHn group: ip: in-plane; op: out-of-plane; ax: axial; eq: equatorial; c:cis; t: trans.
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Fig. 2. Comparison of experimental isolated CH stretching frequenciesn iso(CH) with calculated isolated CH stretching frequenciesv iso(CH)
(B3LYP/6-31G(d,p) calculations). Numbers identify CH bonds listed in Table 1.

Fig. 3. Comparison of calculated isolated CH stretching frequenciesv iso(CH) with calculated adiabatic CH stretching frequenciesva(CH)
(B3LYP/6-31G(d,p) calculations). Numbers identify CH bonds listed in Table 1. Alkyne CH bonds,xCH, are not included into the linear
regression analysis.



be calculated by carrying out a minimization of the
potential energy Eq. (5a) with the constraint (5b):

V�Q� � min �5a�

qm � const: � q*m: �5b�
Condition (5b) can be imposed on minimization (5a)
with the help of a Lagrange multiplierl

2

2Qu
�V�Q�2 l�qm�Q�2 q*m�� � 0: �6�

In the harmonic approximation, which is normally
used in quantum chemical calculations of vibrational
spectra, the potential energy of a molecule at its equi-
librium geometry is given by [27–29]:

V�Q� � 1
2

XNvib

m�1

kmQ2
m �7�

where vectorQ contains the 3K 2 L normal coordi-
natesQm and km is the reduced force constant of
normal modem as obtained in the normal mode
analysis. The internal coordinates can be expressed

in terms of normal coordinates [27–29]:

qm�Q� �
XNvib

m�1

DmmQm: �8�

The solution forqm�Q� � q*m Eq. (5b) is denoted
Q�m�m and is given by Eq. (9):

Q�m�m � Dmm

km
l: �9�

Inserting (9) into (8), constraint (5b) leads to an
expression for Lagrange multiplierl in dependence
of q*m

l � 1PNvib

m�1
�D2

mm=km�
q*m �10�

which in turn can be used to obtainQ�m�m in depen-
dence ofq*m:

Q�m�m � Q0
mmq*m �11�
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Fig. 4. Bond lengthsre(CH) given as a function of adiabatic CH stretching frequenciesva(CH) (B3LYP/6-31G(d,p) calculations). Numbers
identify CH bonds listed in Table 1.



with

Q0
mm �

Dmm=kmPNVib

n�1
�D2

mn =kn�
: �12�

According to Eq. (11), internal coordinateq*m deter-
mines a movement of the atoms of the molecule along
the AIM vectoram:

�am�m � Q0
mm �13�

given by the normal coordinate specific constants

Q0
mm. One can express AIM vectors in the space of

Cartesian displacements by using the transformation:

�am�i �
XNvib

m�1

Lim�am�m i � 1;…;3K: �14�

Once AIMs are defined it is straightforward to deter-
mine their force constantska, the internal massma of
fragmentfm and by this also the AIM frequenciesva.

ka � a†
mfam �15�

ma � 1

b†
mM21bm

� 1
Gmm

�16�

v2
a � a†

mfamGmm� kaGmm �17�
wherebm is a column vector of theB matrix, Gmm an
element of theG matrix, andma represents a general-
ized reduced mass. Since the AIMs are based on a
dynamic principle (the leading parameter principle)
[21–24] and are obtained directly from a modified
form of the Euler–Lagrange equations, they comply
with the total symmetry of the molecule and they are
independent of the set of internal parameters used to
describe a molecule, i.e. AIMs are perfectly suited to
represent the local modes of a molecule.

Force constant and frequency of an AIM charac-
terize the electronic properties of the corresponding
molecular fragment. In particular, one can describe
with the AIM stretching force constant the properties
of a bond, with the AIM bending force constant bond–
bond interactions in a fragment X–A–Y or with the
AIM torsional force constant electronic interactions in
a four-atom fragment. One might argue that this is
also accomplished by using, for example, the quantum
chemically calculated valence bond stretching force
constants given by the diagonal elements of the force
constant matrix in internal coordinate space. These
force constants are associated with thec-vectors of
the normal mode analysis [21]. Konkoli and co-
workers [22] showed thatc-vectors possess an unphy-
sical form and are not necessarily localized in a parti-
cular molecular fragment. This has to do with the fact
that they, contrary to the adiabatic modes, are not
based on a dynamic principle. Furthermore,c-vectors
depend on the set of internal coordinates chosen to
describe the molecule, which is particularly problem-
atic for cyclic molecules. Hence,c-vectors and the
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Table 2
Determination of CH bond properties with the help of CH bond
stretching frequencies

Ref. Linear relationship r2 Accuracy [Å]

(1) McKeana re(CH) � 1.3352

0.0000809n iso(CH)
0.980 ^ 0.0011

(2) This work re(CH) � 1.3532

0.0000835va(CH)
0.993 ^ 0.0006

(3) This work re(CH) � 1.3682

0.0000923nexp
a �CH�

0.967 ^ 0.0011

(4) McKeanb,c D0(T) �
0.08700n iso(CH) 2

156.1

0.996

(5) This workc D0(T) �
0.09458nexp

a �CH� 2

177.7

1.000

(6) This workc D0(T) �
0.08166va(CH) 2

149.1

0.994

(7) This work Dideal
e �

0.09497nexp
a �CH� 2

171.6

0.999

(8) This work Dideal
e �

0.08768va(CH) 2

161.2

1.000

a Here re values from B3LYP calculations. Calculated values
were taken with an accuracy of 10-4 Å (see Supporting Information)
and after correlation with frequencies results were rounded to repro-
duce an accuracy of 1023 Å. In Ref. [10], a linear relationship
betweenr0(CH) andn iso(CH) is given for a restricted range between
2800 and 3050 cm21: r0(CH)� 1.4022 0.0001035n iso(CH), which
leads to an accuracy of̂ 0.0005 Åprovided certain problem cases
are excluded.

b Obtained with the same reference compounds as used in this
work. In Ref. [10], the equation:D0(T) � 0.08616n iso (CH) 2 154.6
is given for the range 2700 and 3100 cm21.

c Here T corresponds to room temperature. For the equations
involving D0(T) the CH molecule is added to the set of reference
molecules.



corresponding force constants do not lead to physi-
cally or chemically reliable description of internal
modes and cannot be recommended for an investiga-
tion of molecular properties [22].

It is important to stress that the adiabatic modes can
also be defined if a more realistic potentialV(Q) is
used rather than the harmonic approximation of Eq.
(7). However, the calculational cost for such an
approach are excessive and, therefore, it is better to
revert to an approach which leads to experimental
AIM frequencies directly derived from experimental
normal mode frequencies. For this purpose, one
assumes that the normal mode vectorsdm obtained
from Eq. (4) using the harmonic approximation repre-
sent a reasonable approximation to the true normal
mode vectorsd 0m so that D < D 0 [29–32]. This
assumption makes some sense in view of the fact
that experimental frequencies can be predicted from
calculated harmonic frequencies by simple scaling
procedures [33–37]. The experimental frequencies
differ from the harmonic frequencies by increments
Dvm . Hence, the eigenvalue matrixL of Eq. (3) can
be corrected by a matrixDL � {Dv2

m}, which leads to

a new eigenvalue Eq. (18) and a new force constant
matrix F 1 DF given by

�F 1 DF�D � G21D�L 1 DL�: �18�
The new force constant matrix is used to determine
experimentally based AIM force constantskexp

a and
AIM vibrational frequenciesnexp

a :

3. Computational methods

Hartree–Fock (HF) calculations using the 6-
31G(d,p) basis set [38] were carried out to determine
equilibrium geometries and vibrational frequencies of
molecules1–38shown in Fig. 1. Utilizing Eqs. 12–17
adiabatic force constants and vibrational frequencies
where determined with the program ADIA, which is a
part ofcologne96 [39]. AIMs were checked by veri-
fying localization with a dynamic visualization
program being a part ofcologne96.

In the second step of the investigation, calculations
were repeated with density functional theory (DFT)
using Becke’s three parameter functional B3LYP
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Fig. 5. Bond lengthsre(CC) given in dependence of normal mode CC stretching frequenciesvm (CC) (B3LYP/6-31G(d,p) calculations).
Numbers identify CC bonds listed in Table 3.



[40,41] and the 6-31G(d,p) basis where these calcula-
tions were carried out withgaussian94 [42]. B3LYP
covers a relatively large amount of correlation correc-
tions and is known to lead to reliable geometries and
vibrational frequencies, often of the quality of MP2 or
even CCSD(T) results. Accordingly, B3LYP/6-
31G(d,p) results were used to solve Eq. (18) and to
determine experimental AIM frequencies. For this

purpose, the appropriate sets of experimental frequen-
cies were taken from the literature [43–45].

Calculations used standard convergence criteria for
SCF and geometry optimization (convergence
threshold for the changes in the density matrix:1028;
convergence thresholds for rms changes in the force
and the displacement vectors: 3× 1024 and 1.2×
1023). For the DFT calculations, the standard pruned
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Table 3
Comparison of CC bond properties calculated at the B3LYP/6-31G(d,p) level of theorya

Molecule CC bond re �vm vBG va nexp
a

1 Ethane (10) 1.530 1006 1025 1083 1068
2 Fluroethane (11) 1.516 990 1041 1099 1069
3 Acetaldehyde (12) 1.507 889 1007 1074 1086
4 Acetic acid (13) 1.507 866 1023 1098 1083
5 Methylnitrile (14) 1.460 934 1170 1202 1178
6 Ethene (15) 1.330 1552 1647 1674 1594
7 Chloroethene (16) 1.327 1688 1641 1666 1596
8 Ketene (17) 1.314 1300 1627 1666 1597
9 Ethyne (18) 1.205 2086 2239 2234 2115
10 Propane (19) 1.532 970 1011 1072 1059
11 Dimethylketone (20) 1.520 1011 971 1044 1032
12 2-propenal (21) Double 1.337 1698 1599 1631 1569
13 Single 1.475 1174 1066 1138 1116
14 Ethylnitrile (22) H2C–CN 1.466 844 1134 1169 1151
15 H3C–CH2 1.539 1018 993 1053 1037
16 Allene (23) 1.306 1596 1704 1729 1645
17 Propyne (24) Triple 1.207 2247 2215 2216 2119
18 Single 1.459 949 1186 1219 1190
19 Cyclopropane (25) 1.508 1058 1052 1082 1049
20 Oxirane (26) 1.469 1105 1198 1230 1194
21 Aziridine (27) 1.485 1064 1138 1162 1078
22 Thiirane (28) 1.481 1155 1124 1136 1098
23 trans-butadiene (29) Double 1.340 1700 1588 1622 1550
24 Single 1.457 1070 1145 1207 1176
25 2-butyne (30) Triple 1.209 2378 2196 2202 2091
26 Single 1.461 954 1185 1218 1193
27 1,3-butadiyne (31) Triple 1.212 2213 2157 2172 2061
28 Single 1.369 925 1414 1474 1395
29 Furane (32) C3–C4 1.435 1233 1222 1255 1218
30 C2–C3 1.361 1571 1480 1507 1461
31 Pyrrole (33) C3–C4 1.425 1220 1250 1282 1288
32 C2–C3 1.378 1595 1416 1444 1404
33 Isoxazole (34) C3–C4 1.360 1546 1526 1506 1476
34 C4–C5 1.424 1199 1245 1281 1277
35 Maleic anhydride (35) C3–C4 1.335 1665 1611 1636 1570
36 C2–C3 1.491 970 1047 1099 1079
37 Thiophene (36) C3–C4 1.430 1059 1232 1269 1231
38 C2–C3 1.367 1523 1449 1472 1414
39 Cyclohexane (37) 1.537 953 983 1053 1038
40 Benzene (38) 1.396 1274 1322 1366 1326

a Bond lengths in A˚ , frequencies in cm21. For an explanation of symbols, see Text and Table 1.



(75,302) fine grid was used, which is a reasonable
compromise between calculational time and accuracy.
We also performed test calculations with a tighter
convergence criterion for the geometry optimization
(convergence thresholds for rms changes in the forces
and the displacement vectors: 1× 1025 and 4× 1025)
and found that calculated geometries and frequencies
differed by maximally 1024 Å (bond lengths), 0.018
(bond angles), and 2 cm21 (see examples in the

Supporting Information) from the corresponding para-
meters calculated with the less stringent convergence
criteria. We considered the latter criterion sufficient
for the present work and used it throughout all calcu-
lations.

Isolated stretching frequenciesviso (CH) were
calculated by determining CH stretching frequencies
for these isotopomers, in which all H atoms but the
target H are replaced by D atoms. These frequencies
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Fig. 6. Bond lengthsre(CC) given in dependence of averaged normal mode CC stretching frequencies�vm�CC� (B3LYP/6-31G(d,p) calcula-
tions). Numbers identify CC bonds listed in Table 3.

Table 4
Comparison of B3LYP and HF results obtained with the 6-31G(d, p) basis

Frequency Bond property Number of points B3LYPr2 HF r2

va(CH) re(CH) 66 0.993 0.992
nexp

a �CH� re(CH) 66 0.967 0.976
va(CC) re(CC) 40 0.991 0.995
nexp

a �CC� re(CC) 40 0.990 0.993
�vm�CC� re(CC) 40 0.844 0.898
va(CH) D0(T, CH) 24 0.994a 0.981a

nexp
a �CH� D0(T, CH) 24 1.000a 1.000a

va(CH) n iso(CH) 40 0.976 0.972
nexp

a �CH� n iso(CH) 40 0.953 0.966

a The linear regression is based on data points 1, 9, 23, 28, 66 and the CH molecule. For an explanation of symbols, see Text and Table 1.



can be used to check on the accuracy of experimen-
tally determined isolated CH stretching frequencies.
We will distinguish between experimental and calcu-
lated frequencies using symbolsn andv (harmonic)
where approximations to experimental frequencies
obtained after scaling or the procedure given by Eq.
(18) will be denoted asn f, n exp, etc. For example,
there will be three sets of isolated CH stretching
frequencies to be discussed, namely experimentally
determined valuesn iso, calculated harmonic values
v iso, and scaled calculated valuesn f

iso. Subscriptsm ,
an, and a will denote normal (vm), averaged normal
(vm;av � vm), and adiabatic frequencies (va).

4. Comparison of isolated and AIM frequencies

In Table 1, calculated and experimental CH bond
properties are compared: B3LYP/6-31G(d,p) CH
bond lengthsre, experimentally determined CH bond
lengths r0 taken from McKean’s work [10], AIM
frequenciesva calculated at B3LYP/6-31G(d,p) and
experimentally corrected AIM frequenciesnexp

a .
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Fig. 7. Bond lengthsre(CC) given in dependence of adiabatic CC stretching frequenciesva(CC) (B3LYP/6-31G(d,p) calculations). Numbers
identify CC bonds listed in Table 3.

Table 5
Comparison of the properties of standard CH and standard CC
bonds (B3LYP/6-31G(d, p) calculations)a

Bonds Molecule re va nexp
a

CH bonds
C–H CH 1.113 2792 2734
C(sp3)– H H3C–CH3 1.095 3085 2956
C(sp2)– H H2CyCH2 1.087 3188 3052
C(sp2)– H c-C3H6 1.086 3180 3056
C(sp2)– H c-C6H6 1.086 3186 3055
C(sp)– H HCxCH 1.066 3437 3283

CC bonds
C(sp3)– C(sp3) H3C–CH3 1.530 1083 1068
C(sp2)– C(sp2) H2CyCH–CHyCH2 1.457 1207 1176
C(sp)– C(sp) HCxC–C ; CH 1.369 1474 1395
C(sp2)yC(sp2) H2CyCH2 1.330 1674 1594
C(sp)xC(sp) HCxCH 1.205 2234 2115
C(sp2)…C(sp2) c-C6H6 1.396 1366 1326
C(spn)– C(spn) c-C3H6 1.508 1082 1049

a Bond lengths in A˚ , frequencies in cm21. For cyclopropane, sp2

hybridization is assumed for the CH bonds, while hybridization is
not specified for the CC bonds.



Calculated energies and geometries of molecules1–
38 are given in the Supporting Information.

In total, 66 different CH bonds (Fig. 1) were inves-
tigated in this work where the whole range from rela-
tively strong CH bonds as in alkynes (xC–H: bond
length 1.060 A˚ ; AIM frequency 3283 cm21) to rela-
tively weak CH bonds as in aldehydes (OyC–H: bond
length 1.110 A˚ ; AIM frequency 2811 cm21, Table 1)
was covered. The molecules investigated comprise
alkanes, alkenes, alkynes, alcohols, amines, haloge-
nated hydrocarbons, aldehydes, ketones, acids,
cyanides, etc. so that CH bonds in different hybridiza-
tion states of C and under the impact of different
substituents could be investigated. Only those mole-
cules were studied, for which a full set of reliable
experimental frequencies is available [43–45] and
for which isolated CH stretching frequencies could
be measured [10–18].

Calculated CH bond lengths represent equilibrium
values re, which are not directly comparable with
experimentally determinedr0 values. Nevertheless, a
correlation of the calculatedre values with the avail-

abler0 data (Table 1) reveals that both HF and B3LYP
theory reproduce trends in CH bond lengths well.
B3LYP/6-31G(d,p) CH bond lengths agree within
0.002 Å with the correspondingr0 values while HF/
6-31G(d,p) bond lengths are about 0.010 A˚ smaller.
The only exceptions are the CH bonds in alkynes
(#28, #42), which are calculated 0.006 A˚ too long at
the B3LYP/6-31G(d,p) level of theory while the HF/
6-31G(d,p) values are 0.003–0.004 A˚ too short.
CCSD(T)/TZ12P calculations [46] lead to CH bond
lengths in these cases close to the experimentalr0

values, which clearly indicates that B3LYP underes-
timates the strength of the CH bond in alkynes. Apart
from these cases, the comparison of calculated and
experimental geometries suggests that the B3LYP/6-
31G(d,p) geometries are more reliable than the corre-
sponding HF geometries and, therefore, the following
discussion will focus on the B3LYP/6-31G(d,p)
results.

Calculated and measured isolated CH stretching
frequencies are compared in Fig. 2. The two sets of
frequencies differ on the average by 134 cm21, which
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Fig. 8. Dissociation energiesDe(CH) given in dependence of the experimentally based adiabatic CH stretching frequenciesnexp
a �CH� (B3LYP/

6-31G(d,p) calculations). Numbers identify CH bonds listed in Table 6. The five reference points 1, 9, 23, 28, and 66 determine the linear
relationship betweenDe(CH)ideal andnexp

a �CH�.



simply reflects the fact that calculated frequencies are
based on the harmonic approximation. By proper
scaling with an average scaling factor of 0.957 this
difference can be reduced to 12 cm21. Clearly, there is
a reasonable correlation between experimental and
calculated CH stretching frequencies (r2 � 0.985),
however the remaining difference after scaling indi-
cates errors in either calculated or experimental
frequencies. Although all molecules investigated are
standard closed shell molecules, which can reason-
ably be described by B3LYP, the residual error of
12 cm21 is probably due to deficiencies in the basis
and higher order correlation effects not covered by
B3LYP. Isolated CH stretching frequencies are
considered to be accurate tô 5 cm21 as estimated
by McKean. [10] More recent studies of Quack
[47,48] and Duncan [49,50] suggest that it will be
possible to determine isolated CH stretching frequen-
cies with an accuracy of̂ 1 cm21 or better using
techniques such as isotope selective overtone spectro-
scopy.

A correlation of va(CH) and v iso(CH) (Fig. 3)
values reveals a linear relationship between these
quantities (r2� 0.976) suggesting that they are closely
related. Actually, the relationship can be improved
(r2 � 0.997, Fig. 3) by deleting the three data points
corresponding toxC–H bonds, which is in line with
the fact that in the case of alkynes isolated CH
stretching modes still contain considerable residual
coupling with the CxC stretching modes (errors in
the theoretical description of thexC–H bonds cancel
since two calculated quantities are compared). We
have also compared experimentally corrected
frequenciesnexp

a obtained utilizing Eq. (18) with
isolated frequenciesn iso. As is reflected by the data
of Table 1,nexp

a (CH) values andn iso(CH) values differ
on the average by just 16 cm21 where there are just
five cases (bonds #5, #12, #17, #28, and #42, Table 1)
with differences larger than 30 cm21. Excluding the
latter the mean deviation is just 7 cm21, which is
excellent in view of the approximations and limita-
tions of the quantum chemical calculations and the
error probably contained in experimental isolated
CH stretching frequencies (5 cm21). We conclude
that the AIM CH stretching frequencies are indeed
the theoretical equivalents of the isolated CH
stretching frequencies of McKean and that the
AIMs, in particular if they are based on experimental

data, can play the same role as McKean’s isolated
stretching frequencies for describing chemical
bonds.

In passing we note that even if the length of a CH
bond such as #17, #28, and #42 is reasonably
described by theory, the assumptionD � D 0 of Eq.
(18) may not be correct thus leading to inaccurate
nexp

a (CH) values and larger deviations with regard to
n iso(CH) frequencies. Based on the observation that
calculated and experimentally determined isolated
CH stretching frequencies scale well, we have inves-
tigated whether betternexp

a (CH) can be obtained by
using a scaling procedure. Scaling covers errors due
to the harmonic approximation but also those caused
by deficiencies of method and basis set. It is more
efficient when done separately for different types of
bonds [33,35] and, therefore, scaling of calculated CH
stretching frequencies should lead to reasonable esti-
mates of the truenexp

a (CH) values. With the help of the
availablen iso(CH) values, we calculate scaling factors
0.954# f � n iso/va # 0.973 suggesting an averagefav

value of 0.961, which is close to what was found when
comparing experimental and calculated isolated CH
stretching frequencies [33–37]. Usingfav, the n f

a

values of Table 1 were obtained, which differ from
n iso(CH) frequencies on the average by 16 cm21 iden-
tical with the deviation found fornexp

a values. Note-
worthy, however, is that the critical CH bonds #5, #12,
#17, #28, and #42 are in better agreement with experi-
ment, which simply reflects the fact that scaling
covers also some of the method errors while use of
Eq. (18) leads to an enhancement of method errors.
We conclude that scaling of AIM frequencies repre-
sents an alternative for getting frequencies that are
directly comparable with isolated stretching frequen-
cies. The local AIMs can be much easier classified
than normal modes and, therefore, group-specific
scaling should be more efficient for the former than
that for the normal modes. Accordingly, it will be
interesting to see whether scaling can be improved
by a cyclic process leading from calculatedvm to
va, scaledn f

a and back to scaled frequenciesfvm �
n f
m , which should be in better agreement with

measured normal mode frequencies than directly
scaled vm values (of course, this cyclic process
implies the scaling of the elements of the force
constant matrix [51]).

Since AIM and isolated frequencies for CH
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stretching modes are closely related, it is obvious that
the McKean relationship between CH bond lengths
and n iso(CH) should also hold for AIM frequencies.
In Fig. 4, AIM frequenciesva are correlated with
theoretical CH bond lengthsre both calculated at the
B3LYP/6-31G(d,p) level of theory. There is a high
correlation between these two quantities (r2 �
0.993, Fig. 4) even higher as the one found by
McKean. [10,11] The correlation coefficient is some-
what smaller whennexp

a (CH) values are correlated
with re (r2 � 0.967), but use ofn f

a reinstalls a high
correlation coefficient (r2 � 0.993). Hence, we can
confirm McKean’s conclusion that CH bond lengths
can be predicted with an accuracy of 0.001 A˚ or better
once an isolated or AIM CH stretching frequency is
known. This is obvious from a comparison of linear
regression data as obtained in McKean’s and in our
work (see Table 2).

Before we consider the question whether the
McKean relationship can be extended to other
bonds, we investigate whether other definitions of
local mode frequencies may also be used to set up
McKean relationships. For example, often one takes
the average of symmetric and antisymmetric CH
stretching frequenciesvm and uses these averaged
normal mode valuesvm as substitutes for local
mode frequencies. Values ofvm(CH) (Table 1) differ
from AIM frequencies on the average by 10 cm21 and
seem to provide also a good basis for the correlation
between CH bond lengths and local mode frequencies
(r2 � 0.981). However, we will see in the following
that averaging of normal mode frequencies does not
lead to useful quantities in general. Boatz and Gordon
[52] derived from normal mode frequencies intrinsic
frequencies, which can be viewed as internal mode
frequencies based on the averaging of the normal
mode frequencies [21–24]. The intrinsic CH
stretching frequenciesvBG given in Table 1 differ
from AIM frequencies on the average just by
4 cm21. They correlate nicely withre(CH) distances
(r2 � 0.994), which confirms that they are useful to
describe CH bonds. In contrast, a caveat is necessary
since intrinsic frequencies are frequencies without a
vibrational mode, which simply results from the fact
that they are a mathematical construction and have not
been derived from a dynamic principle as in the case
of the AIMs [21]. Their deficiencies have been
described and it has been concluded that in general

they are not suitable to represent the local internal
modes of a molecule [22].

5. Extension of the McKean relationship to CC
bond

Experimentally, the determination of isolated CC
stretching frequencies is hampered by immense diffi-
culties in the case of molecules with symmetry
equivalent CC bonds. Use of13C or even14C isotopes
cannot suppress the coupling between the possible CC
stretching modes (or between CC and other internal
modes) and, therefore, makes the extension of the
McKean relationship to CC bonds very difficult, if
not impossible. Of course, one could think of using
measured normal mode frequencies in some way to
get approximate isolated CC stretching frequencies.

In Fig. 5, calculated normal mode frequencies of
CC stretching modesvm(CC) are compared with
re(CC) bond lengths as obtained at the B3LYP/6-
31G(d,p) level of theory (see Table 3). There is little
correlation between the two quantities, which has to
do with the fact that in those cases where CC
stretching modes are coupled with symmetry equiva-
lent CC stretching modes (or with other internal
modes) two or even morevm(CC) values have to be
given for the samere(CC). The situation is somewhat
improved when CC stretching frequencies involving
the same CC bond are averaged (Fig. 6), however the
correlation coefficient in this case is still rather small
(r2� 0.844, Fig. 6). This clearly shows that in general
averaging of normal mode frequencies cannot be
considered to lead to useful substitutes for local
mode frequencies, which help to describe the
chemical bond.

AIM frequencies obtained at the B3LYP/6-
31G(d,p) level of theory (for results with HF/6-
31G(d,p), see Table 4) correlate well withre(CC)
bond lengths (Fig. 7) since the AIMs are localized
and determined by the properties of each particular
CC bond. Contrary to the linear relationship for CH
bonds, theva(CC) 2 re(CC) relationship is quadratic,
which is reasonable in view of the fact that previous
bond length–stretching frequency relationships also
involved higher powers ofre, in particular if the
bond in question can vary strongly (see for example
Refs. [53,54]). In the present case, CC bond lengths
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Table 6
Comparison of experimental and ideal dissociation energiesa

Molecule CH bond Dexp
0 �T� Dexp

e Dideal
e DDe

1 Methane (1) 104.9 112.9 112.3 0.5
2 Fluoromethane (2) 100 107.5 111.0 23.4
3 Methanol (3) CH3, ip 112.1
4 CH3, op 94 101.2 103.6 22.3
5 Methylamine (4) CH3, ip 96.1 103.3 96.0 7.3
6 CH3, op 110.0
7 Chloromethane (5) 100.9 108.6 113.4 24.7
8 Methylsilane (6) 108.3
9 Formaldehyde (7) 88.0 95.1 95.4 20.2
10 Methyleneimine (8) cis 107.3
11 trans 115.1
12 Hydrogen cyanide (9) 126.1 132.0 136.2 24.3
13 Ethane (10) 101.1 109.0 109.2 20.1
14 Fluoroethane (11) CH2F 109.0
15 CH3, ip 110.8
16 CH3, op 111.6
17 Acetaldehyde (12) CHO 89.4 95.6 95.9 20.3
18 CH3, ip 112.3
19 CH3, op 94.3 101.2 107.2 26.0
20 Acetic acid (13) CH3, ip 116.3
21 CH3, op 109.7
22 Methylnitrile (14) 94.8 102.3 112.1 29.8
23 Ethene (15) 111.2 118.8 118.2 0.5
24 Chloroethene (16) ipso 120.8
25 trans 119.9
26 cis 121.2
27 Ketene (17) 105.3 111.9 123.7 211.7
28 Ethyne (18) 132.8 140.1 140.2 20.1
29 Propane (19) CH3, ip 109.1
30 CH3, op 97.9 105.6 108.5 22.9
31 CH2 95.1 102.9 106.4 23.4
32 Dimethylketone (20) CH3, ip 113.8
33 CH3, op 92 99.1 108.0 29.0
34 2-propenal (21) trans 119.5
35 cis 116.1
36 ipso 115.7
37 CHO 87.1 93.4 93.7 20.3
38 Ethylnitrile (22) CH2 89.9 97.3 101.4 24.1
39 CH3, ip 112.9
40 CH3, op 112.5
41 Allene (23) 117.5
42 Propyne (24) CH 140.5
43 CH3 89.4 97.0 110.9 213.9
44 Cyclopropane (25) 106.3 113.9 118.7 24.7
45 Oxirane (26) 116.0
46 Aziridine (27) trans 117.7
47 cis 116.3
48 Thiirane (28) 117.9
49 trans-butadiene (29) CH2, trans 118.9
50 CH2, cis 117.2
51 CH 113.3
52 2-butyne (30) 87.2 94.7 108.7 214.0



range from 1.20 to 1.54 A˚ , which represents a consid-
erably larger area than covered by the CH bonds
investigated in Section 4. However, even for the CH
bond correlations somewhat better correlation coeffi-
cients are found when a quadratic fit is used and when
particularly long (e.g. the CH bond in methine:
1.133 Å) or particularly short CH bonds are included
in the data set.

CC stretching frequenciesn exp(CC) based on Eq.
(18) are also given in Table 3. They show that typical
CC stretching frequencies are in the region from 1000
to 2100 cm21 depending on the degree of hybridiza-
tion at the C atoms and delocalization ofp -electrons
in the molecule considered. In Table 5, a classification
of CC bonds based on calculatednexp

a (CC) values is
given. Values for single, double and triple bond are ca.
1070, 1600 and 2100 cm21, respectively, suggesting
an increase of about 500 cm21 for an increase in bond
order by one. The stretching frequencies of CC single
bonds increase to 1086 (12,3), 1176 (29,24) and
1395 cm21 (31,28) if one sp2, two sp2 or even two
sp hybridized C atoms participate in bonding. The
aromatic CC bond possesses an AIM frequency of
1326 cm21. The degree ofp -delocalization in the
five-membered rings32 to 36 can nicely be assessed
by comparing thenexp

a values of formal single and

formal double bonds where the average of these
frequencies seems to be always close to the benzene
AIM frequency of 1326 cm21. Hence, there is the
possibility of assessingp -delocalization and the
degree of aromaticity by an analysis of AIM frequen-
cies.

A characterization of CC bonds as presented in
Table 5 is rather difficult if just normal mode frequen-
cies from experiment would be known. Of course, one
could argue that because of the relationship between
va(CC) or nexp

a (CC) andre(CC), the same classifica-
tion would be obtained if bond lengths would be used.
Although this is true in most cases, one has to consider
the fact that bond lengths not always reflect environ-
mental effects influencing the bond strength. For
example, the CC bonds of cyclopropane are known
to be weakened by ring strain [55,56]. In contrast, the
CC bond length measured (calculated) for25 is just
1.51 (1.50) Å[55,56] suggesting that the bonds are
stronger than normal CC single bonds of 1.54 A˚ ,
which of course would contradict all energetic inves-
tigations of25. The nexp

a (CC) of 25 (Table 5) is just
1049 cm21 and by this suggests that the CC bonds of
25 are weaker than normal CC single bonds. Clearly
AIM frequencies are a more reliable measure for bond
strength than measured or calculated bond lengths.
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Table 6 (continued)

Molecule CH bond Dexp
0 �T� Dexp

e Dideal
e DDe

53 1,3-butadiyne (31) 138.6
54 Furan (32) C(2)H 127.3
55 C(3)H 125.7
56 Pyrrole (33) C(1)H 125.2
57 C(2)H 123.7
58 Isoxazole (34) C(5)H 125.4
59 C(4)H 126.8
60 C(3)H 121.1
61 Maleic anhydride (35) 123.7
62 Thiophene (36) C(2)H 124.6
63 C(3)H 121.7
64 Cyclohexane (37) ax 95.5 103.1 101.8 1.3
65 eq 105.8
66 Benzene (38) 111.2 118.0 118.6 20.6

a All values in kcal/mol. Experimental dissociation enthalpiesDexp
0 �T� for T� 298 or 300 K from Ref. [57] (1, 4, 7, 9, 10, 12, 14, 15, 17, 18,

37, 38), Ref. [58] (2, 3, 5, 19, 22, 24, 25, 30), and Ref. [59] (20). The correspondingDexp
e were calculated using B3LYP/6-31G (d, p) zero-point

energies and thermal corrections according to Eq. (20). Values ofDideal
e from Eq. (7) of Table 2.DDe � Dexp

e 2 Dideal
e is the stabilization/

destabilization enthalpy of the radical excluding rehybridization effects.



6. Use of AIM frequencies for the description of
CH bond strengths

McKean [10,11] showed that isolated CH
stretching frequencies provide a reliable measure for
the CH bond strength. Therefore, this should also be
true in the case of AIM frequencies and we expect that
va values correlate with CH dissociation energies.
There are two effects, which make this correlation
problematic. First, experimental dissociation energies
D0 atT (K) (T� 298 or 300 K) [57–59]2 measured for
the reaction

R–H! R z 1 z H

can be expressed according to the following equation:

DDH0
f �T� � DH0

f �T;Rz�1 DH0
f �T;Hz�2 DH0

f �T;R–H�

� D0�T�:
�19�

Obviously, dissociation energyD0�T�; which
according to (19) is actually an enthalpy rather than
an energy, covers besides the energy difference
between dissociating molecules and fragments also
the zero-point energy differenceDZPE� ZPE�Rz�2
ZPE�R–H� and the difference in thermal corrections

DTHERM�T� � THERM�T;Rz�1 THERM�T;Hz�2
THERM�T;R–H� where THERM�T;Hz� contains just
the translational contributions to the thermal correc-
tion while for the other THERM values both transla-
tional, rotational and vibrational contributions are
covered. NeitherDZPE norDTHERM�T� are constant
and may not necessarily vary linearly withva. There-
fore, we have derived equilibrium dissociation ener-
gies, De, from experimentalD0(T) values utilizing
calculatedDZPE andDTHERM�T� values in connec-
tion with Eq. (20). Since these dissociation energies
are based on experimental dissociation energiesD0�T�
we denote themDexp

e to distinguish them from directly
calculated dissociation energiesDcal

e :

Dexp
e � E�Rz�1 E�Hz�2 E�R–H�
� D0 2 DZPE2 DTHERM�T�2 RT: �20�

The dissociation energies thus obtained should give
a direct measure of the CH bond strength provided
there are no new (de)stabilization effects in radical
R z , which are not encountered in molecule R–H.
Actually none of the molecules considered leads to
a radical which does not stabilize itself by rehybridi-
zation at the carbon center and subsequent changes in
the geometry at the radical center (bond length, bond
angle, and even conformational changes). We refrain
from considering these stabilization effects in detail
and instead concentrate just on additional effects
caused by delocalization of the single electron via
three-electron interactions orp -conjugation. There
are just a few molecules of those shown in Fig. 1,
which upon CH bond breakage lead to radicals Rz
without these extra-(de)stabilization effects, namely
methane (1), formaldehyde (7), ethene (15), ethine
(18), benzene (38). Accordingly, these molecules
were chosen to determine ideal dissociation energies
Dideal

e (see Scheme 1) for the correlation with the
correspondingnexp

a �CH� values (see Fig. 8). A linear
relationship is obtained (r2 � 0.999), which confirms
that the increase in AIM frequencies is proportional to
the strength of the CH bond and which can be used to
predict Dideal

e values for CH bonds (Table 6) and by
this their bond strength utilizing adiabatic CH
stretching frequencies.

For 25, CH bonds, measured dissociation energies
are known and, therefore experimentally basedDexp

e

values and predictedDideal
e values can be compared.
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Scheme 2.

2 The value of 92 kcal/mol for the (CH3)2CyO bond was taken
from Ref. [59].



The difference SE� DDe � Dexp
e 2 Dideal

e (see
Scheme 1) also given in Table 6 quantifies (de)stabi-
lization effects in Rz .

Four classes of molecules with different (de)stabi-
lization effects in radicals Rz can be distinguished:

A. Radicals with 3-electron stabilization effects:
entries #2:23.4, #4:22.3, #7:24.7, #30:22.9,
#31: 23.4, #44:24.7 kcal/mol (Table 6).
B. Radicals withp -conjugation: entries #19:26.0,
#22:29.8, #27:211.7, #33:29.0, #38:24.1, #43:
213.9, #52:214.0 kcal/mol (Table 6).
C. Destabilized radicals: entry #5: 7.3 kcal/mol
(Table 6).
D. Radicals with a stabilization/destabilization,
which is vanishingly small (radicals derived from
the reference molecules) or which in view of the
errors in experimentalD0�T� values cannot be
considered to be significant: entries #13, #17, #37,
#64 (Table 6).

Of course, each of group D radicals is stabilized by
rehybridization at the radical center, e.g. the methyl
radical by about 6 kcal/mol as can easily be verified
by appropriate calculations. This standard stabiliza-
tion, which is not considered in this work, is similar
for group D systems and, therefore, it is possible to
derive ideal dissociation energiesDideal

e in the way
described above.

The radicals of group A benefit from the rehybridi-
zation-effect and, in addition, from stabilizing three-
electron interactions involving the single electron and
the lone pair at F (2, CH bond 2), O (3, CH bond 4),
and Cl (5, CH bond 7) or from hyperconjugative inter-
actions as in19 (CH bonds 30 and 31) and25 (CH
bond 44).

Radicals of group B molecules are stabilized by
delocalization of the single electron into a neigh-
boring p -system. Examples are:12 (CH bond 19;
conjugative interaction with the CO double bond),
14 (CH bond 22; conjugative interaction with the
CN triple bond),17 (CH bond 27; conjugative inter-
action with the ketenep -system),20 (CH bond 33;
conjugative interaction with the CO double bond),22
(CH bond 38; conjugative interaction with the CN
triple bond),24 (CH bond 43; conjugative interaction
with the CC triple bond), and30 (CH bond 52; conju-
gative interaction with the CC triple bond). Extra-
stabilization byp -electron delocalization is two to

three times as large (26 to 214 kcal/mol) as extra-
stabilization by three-electron or hyperconjugative
interactions (23 to 25 kcal/mol).

There is only one molecule that forms a radical
belonging to group C (Fig. 8, Table 6), namely4.
The methylamine radical is significantly stabilized
by rehybridization at the radical center, which
becomes obvious by the changes in CH bond lengths
(from 1.095 to 1.085 A˚ ), the CN bond length (from
1.464 to 1.400 A˚ ), and the HCN/HCH angles (from to
109.3/107.5 to 115.9/117.6). However, the stabiliza-
tion due to rehybridization is partially offset by a
destabilizing three-electron interactions, which
depend on the overlap between the lone pair orbital
at N (orbital energye) and the single electron orbital
at C (orbital energye1 2 e2). It has been shown that
three-electron effects can be either stabilizing (small
overlap and a relatively large orbital energy difference
De � e1 2 e2� or destabilizing (large overlap and a
relatively small orbital energy differenceDe). [60]
For the hydroxmethyl, chloromethyl or fluromethyl
radical, De is relatively large while for the amino-
methyl radical it is relatively small. Also, the overlap
between the interacting orbitals is larger in formR4a
than in formR4b (Scheme 2) so that both factors lead
to a destabilizing three-electron interaction. Calcula-
tions show that radicalR4 can stabilize itself by
12 kcal/mol because of rehybridization (i.e. changing
from R4a to R4b), but looses at the same time 7 kcal/
mol because of destabilizing three-electron effects so
that the net-stabilization is just 5 kcal/mol.

If one considers theDideal
e values, the classification

of CH bonds given in Table 5 can be complemented.
The range of CH energies is about 45 kcal/mol (from
95 to 140 kcal/mol, Table 6), where the CH bonds in
aldehydes (at the CyO double bond) are the weakest
and those in alkynes the strongest. Anomeric lone pair
delocalization into a vicinal CH bond combined with
the inductive effect of an electronegative X in a CX
bond leads to significant bond weakening as in alde-
hydes7 (Scheme 2) and12, in imine8 (cisposition) or
in amine 4 (anti position) where the destabilizing
effect can be 10–15 kcal/mol. The CH bonds of CH3

groups possessDideal
e value of about 110 kcal/mol

while those of a CH2 group with sp2 hybridized C
are close to 119 kcal/mol. It is interesting to note
that the CH bonds in ethene, cyclopropane, and
benzene have the same bond strength, which confirms
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that cyclopropane is related to alkenes. The ring strain
of the three-membered ring is partially compensated
by the extra-stability of the CH bonds (as compared to
the CH bonds of the methylene group in propane)
[55].

Substitution by an electronegative atom withdraws
negative charge from the CH bonds (inductive effect)
and by this leads to some CH bond weakening. These
effects can be quantified with the help of the data in
Table 6, however effects are relatively small and diffi-
cult to discuss in view of the uncertainties of experi-
mental dissociation energies [57–59]. In contrast,
experimental vibrational frequencies are much more
accurate than measured dissociation energies, which
means that ideal dissociation energies based on
experimental adiabatic frequencies provide a reliable
measure for trends in bond strengths. We conclude
that the adiabatic CH stretching frequencies can be
used to discuss CH bond strengths with high relia-
bility. In addition, the deviation of the ideal dissocia-
tion energy from the corresponding experimental
dissociation energy provides information on extra-
stabilization/destabilization of the associated radical
not contained in the parent system.

7. Conclusions

The vibrational spectrum of a molecule contains
valuable information on its electronic structure and
bonding situation. However, to decode this informa-
tion in a way that it can be used in chemistry, the
vibrational normal modes of a molecule must be trans-
formed into localized internal coordinate modes that
are associated with a particular internal coordinate
such as the bond length. The adiabatic modes
described recently [21–24] are based on such a trans-
formation derived from a dynamic principle. Adia-
batic modes turn out to be particularly useful since
they provide detailed insight into bond properties.
They are the theoretical counterparts of McKean’s
isolated stretching modes, however compared to the
latter they posses several important advantages.

1. The adiabatic modes are strictly localized thus
representing modes associated with just one
internal coordinate. The isolated stretching modes
in contrast are contaminated by residual couplings
with other modes as in the case of alkynes.

2. Contrary to the isolated stretching modes, determi-
nation of the adiabatic modes leads to both a
stretching frequency and a force constant since
the adiabatic mode concept implies the unique
definition of a mass [21–24].

3. Adiabatic modes can be determined for any bond
in any molecule and, therefore, they provide the
basis for an elegant extension of the isolated
stretching modes, which so far could only be deter-
mined for CH bonds.

It is another advantage of the adiabatic modes that
they can be determined for experimental spectra. As
shown in this paper, experimentally based adiabatic
stretching modes can replace the isolated CH
stretching modes of McKean in correlations with
bond lengths and bond dissociation energies. Contrary
to bond length and bond dissociation energy, they
represent a useful and reliable tool to characterize
the strength of the chemical bond via the ideal disso-
ciation energies derived from adiabatic frequencies as
shown in this work. While we applied the adiabatic
mode concept just to CH and CC bonds in this work, it
should be straightforward to set up general relation-
ships between bond properties and adiabatic
stretching force constants for any bond of interest.
Work is in progress to demonstrate this.
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