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Prediction of full CI energies with the help of sixth-order 
Moller-Plesset (MP6) perturbation theory’ 

Dieter Cremer”, Zhi He 

Abstract 

The sixth-order Moller-Plesset (MP6) correlation energy is analysed by using first- and second-order cluster operators and 
distinguishing between connected and disconnected operator products. Each product is described by simplified Brandow 
diagrams that help to characterize the associated energy contributions in termc of orbital relaxation, pair correlation, three- 
electron correlation or four-electron correlation effects. The importance of the various correlation terms and their coverage at 
MP2, MP3, MP4, MP5, and MP6 are analysed to understand and to predict the convergence behaviour of the MPn series, which 

strongly depends on the electronic structure of the atoms and molecules investigated. Adjusting existing extrapolation proce- 
dures to the convergence behaviour of the MPn series leads to improved predictions of full CI (FCI) energies based on MP6 
correlation energies. The best results are obtained by a combination of first-order and second-order Feenberg scaling, which 
produces the results of higher order Feenberg scaling. The mean absolute deviation of predicted FCI energies from exact values 
is found to be 0.07 mhartree for atoms and molecules in their equilibrium geometry and 1.03 mhartree for molecules with 
stretched geometries and, thereby, considerable multi-reference character. Reasonable FCI energies can also be obtained with 
approximate MP6 methods, the most economic method of which is MP6(M7) which scales with O(M’) (M is the number of 
basis functions). Mean absolute deviations of FCI energies based on MP6(M7) are 0.40 and I .SS mhartree for equilibrium and 
stretched geometries, respectively. 0 1997 Elsevier Science B.V. 0 1997 Elsevier Science B.V. 
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1. Introduction 

In previous work, we described the development 
and implementation of sixth-order Mailer-Plesset 
(MP6) perturbation theory [l-6]. MP6 is the last 
MPn method that can be developed using traditional 
techniques, as can be seen from Table I which gives 
the number of partial energy terms covered at order IZ. 
In the case of MP6, there are 55 energy terms, of 
which 36 are unique. However, at MP7 and MP8, 

* Corresponding author. 
’ Presented at WATOC ‘96. Jerusalem. Israel. 7- I2 July. 1996. 

there are already 221 and 915 energy terms leading 
to 141 and 583 unique terms. Clearly, development of 
a method such as MP7 or MP8 requires some kind of 
automated method development strategy based on 
computer algebra. Although the most expensive 
energy term of MP6 scales with O(M”) (M is the 
number of basis functions), it is possible to reduce 
computational cost to @My) [ 1,2]. However, this 
cost factor is still rather large and prevents routine 
calculations of larger molecules at the MP6 level of 
theory. On the other hand, it is possible to use MP6 for 
systematic investigations on small molecules. Based 
on these MP6 calculations and a partitioning of the 
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Table I 

Number of energy contrihutmnh Ei;A covered at MP,i (/I = 

2,3....,8)” 

Order II Total number Number 01 co\1 

terms unique terms 

2 1 I O(M’l 

3 1 I O(M”) 

4 4 1 OCM’) 

5 14 Y O(M”) 

6 55 36 O(M”) 

I 221 141 O(M I”) 

8 91s 583 OOM”) 

a M denotes the number of basis functions. 

MP6 correlation energy into individual energy contri- 
butions associated with specific excitations [l-5], we 
were able to show that the MPn convergence 
behaviour depends on the electronic structure of the 
system investigated [S]. The convergence character- 
istics of the MPn series are of fundamental importance 

for the understanding of the electron correlation 
problem in many-electron systems. 

In this work, we continue our previous work [l-5] 
by setting up improved extrapolation procedures that 
adjust to the convergence characteristics of the MPn 
series and, in this way, lead to reliable predictions of 
MPn limit energies (n = =) that are identical with full 
CI (FCI) energies. For this purpose, it is important to 
clarify which electronic systems can reliably be 
described with MP6. MP6 covers connected quadru- 

ple (Q), disconnected pentuple (P), and disconnected 
hextuple (H) correlation effects not covered at lower 
orders of perturbation theory. Clearly. any correlation 
problem that involves strongly coupled correlated 
movements of more than four electrons, cannot be 
handled by MP6. Since our previous investigations 
included some of these systems it will be important 
to identify and exclude them from the present inves- 
tigation. Our actual goal is to predict FCI correlation 
energies for single-reference systems with an accu- 
racy of 0.1 mhartree or better, and for multi-reference 
systems which can still be handled at MP6, with an 
accuracy of 1 mhartree or better. 

It is also important to investigate to what extent 
approximate MP6 methods can be used for the pre- 
diction of FCI energies. In recent work, we suggested 
the use of MP6(M8) and MP6(M7). which scale with 
O(Ms) and O(M’), respectively, because all terms 

more expensive than O(?& or 0(/V’) are deleted in 
the MP6 energy formula [3]. At MP6, all @My) terms 
are associated with connected Q correlation effects; 
however we will show that deleting these terms does 
not mean that connected Q terms are not covered by 
MP6(M8) or MP6(M7) at all. For this purpose. we 
will analyse in the following section the various 
energy contributions calculated at MP6 with the 
help of Brandow diagrams. thus showing which elec- 

tron correlation effects are covered by a given term. 
This insight will lead to a better understanding of the 
performance of MP6 and the approximate MP6 
methods, MP6(M8) and MP6(M7). 

2. Partitioning and analysis of the MP6 correlation 
energy 

MP6 requires the calculation of the third-order per- 
turbed wave function, which can be expressed with 
the help of third-order cluster operators ?,‘3) (i = I, 2, 

3, 4), i.e. at MP6, for the first time, connected Q 
effects are included into the expansion of the correla- 
tion energy. A derivation of the MP6 energy formula 
in terms of third-order cluster operators has been 
described by Kucharski and Bartlett and it has been 
shown that the MP6 energy can easily be structured 
into just four terms associated with the four third- 
order cluster operators [7]. (For the derivation of 
MP6 energies from FCI calculations, see Refs. [8] 
and [9].) 

We have refrained from using third-order cluster 
operators and, instead, have used a more elementary 
derivation of MP6 in terms of first- and second-order 
cluster operators, which makes it possible to partition 
the MP6 correlation energy into 28 (out of 36) partial 
contributions that provide a basis for the detailed ana- 
lysis of correlation effects covered at this level of 
theory. Third-order cluster operators are related to 
second- and first-order cluster operators according to 
Eqs. (l)-(4) 
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I’ ,%I denotes the number of basis function\ and D the denominator in Eq<. (l)-(4). 
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Fig. 2. Simphfied Brandow diagrams for the term I- I. 

)I 
with ?i” being defined by 

(3) 
c P:l’Ia”)= $ l~,J(E”-EJIVd~ 

d 
(6) 

TI;” = L v [( f(2) 
The indices s,d,t,q denote single (S), double (D), triple 

D, 
3 + ;ci?“,’ (4) (T), and Q excitations. Each part of the operators ?,“’ 

C ,(-1) -h in Eqs. (l)-(4), indicated in the following as Tj [7’] ] 
(or ri ‘j’[ ‘(ii‘$“)‘]) , can lead to the construction of dif- 

where D,( =E, -E,) (x = s, d, t, q) is the energy ferenk Mb6 energ terms. For example, the first term 
denominator and the second-order cluster operators -(3) -y2) 

? (2) (j = 1 2 3) are given by 
in Eq. (l), T, [T, ] (= (l)l(D,) I?j2’), generates the 

J 3 > energy term SSS when combined with the cluster 
operator (?\“)‘. In Table 2, for each energy term cal- 

~~2’=~l/f:l’iv=l,d,tforj=1,2,3) (5) 
culated at MP6 the associated cluster operators are 

, given, where individual energy terms are grouped 

Fig. I Partitioning of the MP6 energy formula. (a) Connected (C) and disconnected (D) cluster operator terms lead to energy contnbutions I, II, 

III that are converted in calculational steps I. 2, 3, 4 to energy sums E(MP6) ,, E(MP6)?,,, E(MP6)zh. E(MP6)3, and E(MP6),. Note that 
s 

abbreviations such as 
(:I ) 

D indicate a sum of terms such as (Si.. .) + (Di ,_ .) + (b) Wave operator products of (a) are given in the form of 

simphfed Brandow diagrams (L: linked energy diagrams) (see text). 
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Fig. 3. Simplified Brandow diagrams for the term I-2. 

according to the calculational steps Eq. (1) Eq. (2), 

Eq. (3), Eq. (4) leading to the partial sums E(MP6),, 
E(MP6)2, E(MP6)3, and E(MP6)$ [ 11. Also given are 
the computational cost for each energy contribution 
E&? 

Using first- and second-order cluster operators, the 
MP6 energy can be partitioned as shown in Fig. 1. 
First, E(MP6) is separated into three parts A,, A?, 
and Aj, where A, is associated with the connected 
operator product (v?$*‘)c, while A1 and A3 are asso- 
ciated with disconnected operator products (?k”)* 
(A*) and (VT!*‘), (A3). We assign to A,, A?, and 
A3 the symbols I, II, III (see Fig. 1) and discuss 
each of the three parts separately. 

Part I: A, covers all connected ( v?‘j2’)c terms and, 
therefore, automatically leads to linked diagram 
contributions. It can be split into terms I - 1 (i = 1). 
I - 2 (i = 2), and I - 3 (i = 3) which arise from second- 
order cluster operators ?j?‘, ?:?I, and ?y), respectively. 
In Fig. lb, simplified Brandow diagrams are given to 

represent the operator products P?,‘*’ which are con- 
verted to linked energy diagrams in Fig. 2 (I - l), Fig. 
3 (I - 2), and Fig. 4 (I - 3). 

The energy diagrams belong to one of the 36 energy 
terms of MP6. Since it is not possible to give all 
28 300 antisymmetrized Brandow diagrams asso- 
ciated with the MP6 energy, for each term just one 
typical Brandow diagram is shown in Figs. 2,3, and 4. 
They indicate that term I- 1 covers contributions of the 
type XSS and XDS with X = S, D, T. Term I-2 (Fig. 3) 
covers contributions XSD, XDD (X = S, D, T) and 
XTD (X = D, T) where in the latter case the T excita- 
tion results from the ?‘\” cluster operator as is revealed 
by the cluster operator diagram 3 of Fig. 3 (see also 
Table 2). In the case of part I-3, contributions XST, 
XDT (X = S, D, T), XTT (X = D, T) and, TQT result. 
The cluster operator diagram 4 of Fig. 4 shows that the 
Q excitations in term TQT represent the first con- 
nected Q correlation effect associated with @‘. 

All terms of A, are calculated and collected in the 
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Fig. 4. Simplified Brandow diagrams for the term I-3. 

sum E(MP6), (see Fig. 1) 

E(MP6), = E$;. + 2E$L + 2E$; + E& + 2E& 

Part II: Energy part A2 is characterized by the dis- 
connected first-order cluster operator (?‘$“)2, which 
leads to disconnected Q contributions collected in 
the term A(X, Y, Q)L. Combination of the perturbation 
operator v with (?‘$“)2 leads to the connected and 
disconnected wave operator terms 11-I and H-2, 
respectively (Fig. la), the diagrams of which are 
given in Fig. lb. 

The connected part II-1 is shown in Fig. 5. There 

are three different ways, 1, 2, and 3, to connect V with 
(?$I’)*. One obtains wave operator diagrams that are 

associated with D (l), connected T (2) and connected 
Q (3) excitations. When properly closed to energy 
diagrams, they lead to the MP6 energy terms XDQ, 
XTQ(I1) (X = S, D, T, Q) and XQQ(I1) (X = D, T, Q). 
The four-electron nature of the XQQ terms can be 

verified by realizing that they result from the second 
part of the operator fy’given in Eq. (4) (compare with 
Table 2). DQQ(I1) does not contain the denominator 
(Eo - EJ, which makes its calculation rather simple 
(Table 2) while the terms TQQ(I1) and QQQ(II)l, are 
difficult to calculate since they scale with O(M”) 

(Table 2). 
The terms of II-1 are collected in the sums 

E(MP6)2,, and E(MP6)2,q defined in the original 
derivation of the MP6 energy [ 1 ] 

E(MP6)?,, = 2E& + 2E;& + 2E$& + E&, 

E(MP6)?,? = [EF:,(II) + Ed&,] + E&(11), 

(8) 

+ ]E&(II) + Eppg (‘I (II),] + E;;Q(II)b 

+ 2E&(II) + 2E&(II) + 2EF;,(II) (9) 

It is useful to add to E(MP6)2,, and E(MP6),+, the 
term E(MP6&, which is identical to 11-2.4 of Fig. 1. 

It results from the disconnected part 11-2. There are 
four possibilities to arrange the v operator with one of 
the two first-order ?\” operators (Fig. lb), three of 
which lead by using the factorization theorem [lo] 
to products of ?‘&‘I and pi”’ (i = 1,2,3), i.e. these 
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Fig. 5. Simplified Brandow diagrams for the term 11-l. 

terms will cover disconnected T, disconnected Q, and 
disconnected P correlation effects. For combination 
possibility 4, one gets the disconnected wave operator 
part i@:“ii‘:“, which is shown in H-2.4 of Fig. 6. As 
discussed in Ref. [l], the wave operator part can be 

rearranged to lead to (l)/(3!)(?(?‘))3 (Fig. 6) which 
indicates a disconnected H contribution. Closing of 
the wave operator diagram in all possible ways 
gives the QHQ contribution, which is added as 

E(MP6)2UI 

E(MP6)2& = EEj!/(! (10) 

to E(MP6)*,, and E(MP6)2,2 to give E(MP6)2,. 
Part III: The term A3 splits into three contributions 

III-l, 111-2, and 111-3, which are associated with dis- 
connected T, Q, and P excitations (Fig. 1) and which 
can be combined with similar terms from 11-2. Hence, 
disconnected Q correlation effects are given by III-2 

and 11-2.2, disconnected T effects by 111-l and 11-2.1, 
and disconnected P effects by III-3 and 11-2.3. Details 
of the derivation of these terms can be found in Ref. 
[ 11. Fig. 1 and Fig. 6 show that III-2 + 11-2.2 define the 
energy terms of E(MP6)lh 

E(MP6)zb = [EDa, (‘) +E&(I)]+2[E&+E&(I)] 

+ ]E;& + Eyyy (6) (I)1 (11) 

As can be seen from Fig. 6, QQD + QQQ(1) cover 
connected Q excitations coupled with disconnected Q 
excitations, where again their calculation is facilitated 
as indicated in Table 2. It is useful to collect all terms 
that result from products ?i”@’ (j = 1,2) in the sum E 

WP6)2 [II 

E(MP6)2 = E(MP6)2, + E(MP6)2h (12) 

The terms associated with the cluster operator 
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Fig. 6. Simplified Brandow diagrams for terms 11-2.4. Ill-2 and 11-2.2. 

product fi”?i” are collected in diagrams III- I + 11-2.1 
given in Fig. 7. They represent combinations of 
disconnected T with S excitations (diagram I), D 
excitations (2), connected T excitations (3) and 
disconnected Q excitations (4), where the Q can 
represent couplings between three-electron corre- 

lation and orbital relaxation effects or pair-pair 
coupling effects. These terms are collected in 

E(MP6)3 

E(MP6)3 =E~~~+FI:h:C,(I)+Z[Ej:i, +E&(I)] 

Disconnected P excitations generated by the cluster 
operator product f\“?j’) lead to the diagrams III-3 + 
11-2.3 also shown in Fig. 7. There are two combination 
possibilities, the first of which (diagram 1) leads to 
terms TPT and TPQ, while the second couples discon- 
nected Q to P effects in the terms QPT and QPQ. 
These energy contributions are collected in E(MP6)4 

E(MP6)4 = [E$ + EP&] + I$, + E!&l (14) 

Hence, the total MP6 correlation energy is derived in 

Figs. l-7 and can be calculated according to Eq. (15) 

E(MP6) = E(MP6), + E(MP6)* + E(MP6)J +E(MP6), 

= E’“! + 2EC6’ 55.5 SSD 
+ 2ECh’ ssT + E& + 2Ep;, + 2EF& 

+ E;,iD + 2E;& + EghD + 2Eg;, + EgJT 

+ EP& + E’? + 2E”’ 
D7D 

D7.7 + E$& + EPA,. 

+ ‘E& + 2E& + 2E& + E;& 

+ L# + E$Q(IN + @&I) +Ej&#h,l 

+ f;&#h, + [E;& +Ef&(Ul 

+2[Ebh:, + E&(I)] + 2E&(II) 

+ [E::L:,, + E&(I)] + [E;;,(H) + E;;,(H),] 

+ IEzLD + Eppp (‘) (I)] + E&JII), 

+2[E”! +E!@ (I)]+2dh’ ns nQ nQ 
(II) 

+ 2[EF;,, + E:;,(I)] + 2EFAQ(II) 

+ E& + [ E!$ + Ep&] + [E;Lr + E;;,] 

(15) 
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Fig. 7. Simplified Brandow diagrams for term\ III- I, 11-2. I. III-3 and 11-2.3. 

3. Derivation of approximate MP6 methods 

Fig. 8 gives an overview over all energy terms cal- 
culated at MP6 [ l-31. For each term, computational 
cost are indicated (O(M”) terms in shaded boxes, 
O(M*) terms in white boxes, O(M’) terms in ellipses, 

all other terms lower than O(M’)) and the computa- 
tional step (1,2a, 2b, 3,4, see Section 2), in which the 
term in question is calculated, is also given. Two of 
the 17 MP6 terms in SDQ space, namely DQQ and 
QQQ, are split in part 1 and part II since they are 
evaluated and collected in different steps (26 and 
2az) of the MP6 calculation. The four partial terms 
are generated by different parts of ?y’ (see Table 2) 
and, therefore, they all cover connected Q excitations; 
however, only QQQ(I1) scales with O(M’). Apart 
from QQQ(II), the SDQ part of MP6 can be calculated 
with an O(@) cost dependence, i.e. cost requirements 
are comparable to MP3 or MP4(SDQ). We denote 

such a method MP6(SDQ,M6) indicating that only 
those terms with an O(Mh) cost dependence are 
included. However, in view of the 33 T terms 
(Fig. 8) calculation of MP6(SDQ,M6) is of academic 
rather than of any practical use. 

In the T part, there are three terms with an O(M’) 

cost dependence (QQT(I1) = TQQ(II), TQ7J and five 
terms with an O(M’) cost dependence (DTT, Q7T(II) 
= TTQ(II), T”TD and 77T, Fig. 8) while 23 of the 
remaining terms scale with O(M’) and the rest 
requires just O(Mh) operations. The PH part covers 

the two Mh-dependent terms QHQ(1) and QHQ(II), 
the M’-dependent terms QPT(1) = TPQ(I), QP Q(I), 
and TPT(I), while QPT(I1) = TPQ(II), QPQ(II), and 
TPT(I1) scale with O(M’). 

The derivation of an MP6(SDTQ) method is as 
useless as the derivation of an MP6(SDQ) method 
since both cover expensive terms that lead to an 
overall @My)-dependence. More promising is the 
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development of an MP6(M8) and an MP6(M7) 
method with computational requirements 5 O(Mx) 
and 5 O(M’), respectively, since more expensive 

terms are deleted [3] 

E(MP6, M8) =E(MP6, SDTQPH)- 

- 2E&(II) 

E(MP6, M7) = E(MP6, M8) - 2E:& - .E$$ 

-2E$&II) -E?;,.(B) - 2Ef;,(II) 

-E&(11) (17) 

The four terms excluded at the M8 level cover con- 
nected Q effects; however, this does not mean that all 
connected Q terms are excluded. As can be seen from 
Table 2 and Figs. 1-7, there still remain connected Q 
terms covered by QQD, DQQ, and QQQ(II)il, so that 
neither MP6(M8) nor MP6(M7) are methods without 
?A contributions. 

In MP6(M7), QPT(II), TPQ(II), QPQ(II), and 
TPT(I1) are deleted since they represent 0(/V’) 
terms. Again, the remaining terms QPT(I), TPQ(I), 

QPQ(l), and TPT(I) guarantee that MP6(M7) covers 
half of the disconnected P correlation effects. The 
other terms deleted at MP6(M7) represent TT cou- 
pling effects. Table 2 as well as Figs. 1-7 reveal 
that 777’, DTT, TTD, and UQ(I1) all involve con- 
nected T correlation effects and, therefore, are impor- 
tant to avoid an exaggeration of three-electron 
correlation. Other terms such as 7’ST or TDT represent 

just an indirect TT coupling and are not so effective, 
while 77S or TTQ describe just the coupling between 
connected and disconnected T correlation effects. 

A priori, it is not possible to predict whether 
MP6(M8) or MP6(M7) will lead to reasonable 
approximations of full MP6 correlation energies 
because this will depend on the electronic structure 
of a given atom or molecule. For example, if the elec- 
tron system in question is characterized by electron 
clustering, three-electron correlation and even four- 
electron correlation will be important [5]. A possible 
exaggeration of three-electron correlation at MP4 will 
be partially corrected at MP5 by the TT term; how- 

ever, additional corrections at MP6 might also 
become necessary. We will investigate these situa- 
tions in the following sections. 

4. Prediction of full CI (FCI) correlation energies 

In recent work, we have shown that the con- 
vergence behaviour of the MPn series can be pre- 

dicted for a given electron system by considering 
its electronic structure and bonding pattern [5]. We 
could distinguish between two classes of electron 

systems, namely class A and class B systems, 

which differ basically with regard to their electro- 

nic structure. Class A molecules have core, bond, 
and lone electron pairs well separated and distrib- 
uted over the whole space of an atom or mole- 
cule. For example, in the molecule BH( ‘1 ‘), the 
three electron pairs are localized in different parts 
of the molecule, namely in the core. the bonding 
and the non-bonding region. The same is true in 
the case of Li or Be compounds, boranes, alkanes 

and many other molecules. Since the electron pairs 
of class A systems are well-separated, the correla- 
tion energy is dominated by pair correlation 
effects and the importance of three-electron corre- 
lations and pair-pair couplings is moderate [5]. 
Pair correlation effects determine at each order of 

the MPn series the magnitude of the MPn correlation 
energy, which increases slowly but steadily to the FCI 
value, i.e. convergence in the MPn series is mono- 
tonic. This is shown in Fig. 9 where the correlation 
energy for class A systems (black bars) is given as a 
fraction of the FCI correlation energy. The MPn cor- 
relation energy steadily increases from 73% (MP2) to 
87% (MP3), 91% (MP4), 93% (MP5) and95% (MP6), 
dominated at each level of theory by pair correlation 
effects. 

For class B systems, clustering of electron pairs in 
certain regions of an atom or molecule is typical [5]. 
For example, for electronegative atoms such as F or 
Ne, three or even four electron pairs share the avail- 
able space in the valence sphere, which is rather lim- 
ited due to the orbital contracting and charge 
attracting force of the nucleus. Clustering of electron 
pairs is also found for molecules with multiple bonds 
(ethylene, acetylene) in the bond region, for hyperva- 
lent molecules at the central atom or for molecules 
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with two and more electron lone pairs (e.g. H20 or 

FH) in the nonbonding region. If electrons cluster in 

contined regions of atomic or molecular space, three- 

electron correlation or even four-electron correlation 
effects will become important since these effects pro- 
vide simple mechanisms to protect the region of an 
electron pair against occupation by other electrons. 
Accordingly, T correlation effects can become as 
large or even larger than pair correlation effects and 
connected Q effects cannot be neglected [5]. 

Clearly, dynamic electron correlation is more 
important for class B than class A systems. If the 
correlation problem has to be handled just by pair 

correlations at MP2, their effects are exaggerated, in 
particular since the electrons of a pair are separated 
without considering that there are other pairs in the 
same region of space. Of course, this leads to rela- 
tively large positive corrections at MP3 due to the 
inclusion of pair-pair coupling effects. A more effec- 
tive correction of pair correlation effects is included at 
MP4 by three-electron correlations, which provide the 
simplest mechanism for complicated correlated 
movements between an electron pair and a single 
electron in a confined region of space. The larger 
the clustering of electrons in a class B system, the 
larger the possibility that T correlation effects are 

exaggered so that they have to be corrected by TQ, 
TD, and TS coupling effects at MP5. Even connected 
Q correlation effects introduced at MP6 might be 
exaggerated so that a correction by appropriate cou- 
pling terms at MP7 becomes necessary. 

Electron clustering observed for class B systems 
will lead to an exaggeration of simple correlation 
effects (pair correlations, three-electron correlations, 
etc.) if one tries to solve the electron correlation pro- 

blem with MP2, MP4, etc. As a consequence, these 
exaggerations have to be corrected at odd orders by 

including coupling effects. The MPn series oscillates 
at low orders of MPn until a more realistic description 
of correlation is possible by the inclusion of sophisti- 
cated correlation effects. 

In principle, it is possible to predict the conver- 
gence behaviour of a given molecule just by investi- 
gating its electronic structure. With this knowledge it 
is possible to set up suitable extrapolation procedures 
that adjust to the different convergence behaviour of 
class A and class B systems. In this connection, we 
have suggested the two extrapolation formulas Eq. 

(18) and Eq. (19) [4,5] 

E(5) 

AE’A)(extrapII, MP6) = ,,i2 Ez’p + MP E(6) 
1-N 

E(5) 
MP 

(18) 
and 

E’@ 
MP 

AE(B)(extrapII, MP6) = EEL + E$, + (Eg’, + E$,)e E% 

E’@ 1 = i E(“) +Ec5’ MP 
n=2 

MP MPE',:l+~(E',:b+E%') 

E'"' ' 

() 

3 
EC41 

+ 

MP 
(19) 

As shown in Fig. 9, E(MP6) correlation energies 
already overshoot FCI energies, which indicates that 
certain correlation effects are still exaggerated. There- 
fore, their contributions to E’“’ have to be scaled 
down, which is done in Eq. (19) by using an exponen- 

tial formula. Both (l)/(l - X) (Eq. (18)) and er (Eq. 
( 19)) lead to similar series; however in the exponential 
series higher powers k of x are scaled down by pre- 

factors (l)l(k!) that effectively reduce higher order 
correlation effects. 

Applying extrapolation formulas Eq. (18) and 
Eq. (19) one can reproduce FCI correlation energies 
with an average deviation of 0.3 mhartree in the case 
of atoms and molecules in their equilibrium geometry 
[5]. However, even better predictions can be made 
with the help of second-order Feenberg scaling 

based on MP6 energies [4,5]. The theory of second- 
order Feenberg scaling has been described elsewhere 
[4] and, therefore, we summarize here just the most 
important results achieved with this method: 

Second-order Feenberg scaling effectively dam- 
pens out initial oscillations observed for class B 
systems by minimizing the fifth-order Feenberg 

correlation energy. 
Contrary to PadC approximants, which can lead to 
artificial oscillations [4], second-order Feenberg 
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scaling retains the monotonic convergence 

behaviour of class A systems. 
3. In total, second-order Feenberg scaling is more 

effective than using either Pade approximants or 
extrapolation formulas Eq. (18) and Eq. (19) [5]. 

Applying second-order Feenberg scaling, we 
obtained correlation energies that differ from FCI cor- 

relation energies by just 0.15 mhartree on average [5]. 
However, in the case of multi-reference systems with 
stretched geometries, deviations are as large as 
10 mhartree. 

Although the use of Feenberg scaling or other 
extrapolation procedures led to considerably 
improved correlation energies at negligible additional 
cost, it did not fulfil the actual goal of our investiga- 
tion, namely to reproduce FCI correlation energies 
with the help of MP6 energies with an accuracy of 
0.1 mhartree or even better. To achieve such an accu- 
racy one has to clarify 

1. whether for all electron systems considered the 
MP6 correlation energy is a reasonable starting 

energy for the extrapolation procedures applied, 
and 

2. whether a given extrapolation procedure adjusts to 
the convergence behaviour of class A or class B 
systems in the optimal way. 

There were 33 electron systems included in our 
previous investigation [4,5]: BH, ‘C’, R,, 1.5R,, 
2R,; R; basis set: (9s5pld/4slp)[4s2pld/2slp]; [l l] 

NH?, *B,, R,, 1.5R,, 2R,; U; basis set: (9s/5pld/ 

4slp)[4~2pld/2slp]; [12] NH2, ‘A,, R,, 1.5R,, 2R,; 
I/; basis set: (9~5~ 1 d/4s 1 p)[4s2pl d/2s 1 p]; [ 131 CH!, 
*A’;, 1.5R,, 2R,; CT; basis set: (9s5pld/4slp)[4s2pld/ 

2slp]; [14] CH?, *B,; U; CH2, ‘A,; R; basis set: 

(9s5pld/4slp)[4s2pld/2slp]; [15] Ne, ‘S; R; basis 
sets: 4s2pld, 5s3p2d, 6s4pld; [16] F, ‘P; U; basis 
sets: 4s3pld, 4s3p2d, 5s4p2d; [ 161 F-, ‘S; R; basis 
sets: 4s3pld, 4s3p2d, 5s4p2d; [16] FH, ‘C’, R,,, 

1.5R,, 2R,; R; basis set: (9s5pld/4slp)[4s2pld/ 
2~1~1; [17] H20, ‘A,. R,, 1.5R,, 2R,; R; basis set: 

(9s5p1d/4s1p)[4s2p1d/2s1p]; [17] HCCH, ‘C,+, R,; 
R; basis set: (9s5p1d/4s1p)[4s2p1d/2slp]; [18] CO, 
‘C’, R,; R; basis set: (9s5pld)[4s2pld]; [18] 03, 

‘A,, R,; R; c-03, ‘A,, R,; R; basis set: (9s5pld) 

[4s2pld]; [ 191. 
Open shell systems were calculated employing an 

unrestricted (U) reference wave function and closed 
shell systems employing a restricted (R) reference 
wave function. In this connection, it is appropriate 
to note that the UMPn series converges much slower 
than the RMPn series because of spin contamination 
of UMPn energies [8,20]. Particular slow conver- 
gence is found for O,, 0; or F2; however in all 
cases investigated convergence was achieved for 
high orders tl of MPn. 

It has to be clarified which of the electron systems 
listed above can reasonably be described at MP6. 
Olsen and co-workers have recently determined 

higher order MPn correlation energies by FCI calcu- 
lations [9]. Their calculations show that divergent 
behaviour of the MPn series can be generated artiti- 
cially by using unbalanced based sets. For example, 
addition of diffuse basis functions to a VDZ basis 
leads to divergent convergence behaviour for several 
class B systems such as Ne or FH. There is just one 
system in our previous study which may suffer in a 

similar way from the chosen basis set. This is the F- 
anion for which in the original FCI investigations the 

three basis sets 4s3p 1 d, 4s3p2d, and 5s4p2d were used 
[ 161. Our calculations indicate that these basis sets 
may be too small to lead to reasonable MP6 energies 
and, therefore, we excluded F- from the present 
investigation. 

Some of the multi-reference systems with stretched 
geometries were also excluded because for these 
systems it is unlikely that any reasonable description 
can be obtained at MP6. For example, stretching the 
three CH bonds of the methyl radical to twice their 
equilibrium value affects the three CH bonding elec- 
tron pairs. Three of these electrons arrange together 

with the single electron in the valence sphere of the C 
atom, while the other three electrons localize at the 

three hydrogens. It is clear that there are strong 
couplings between the three bonding electron pairs 
which require higher order correlation effects that 
cannot be described by connected Q or disconnected 
H correlations. An accurate description of electron 
correlation in the 2R,, geometry can probably be 
obtained if not just disconnected but also connected 
H correlation effects are covered by the calculation. 
However, the latter are included at MPlO and, there- 
fore, one cannot expect that at CH distances of more 
than 2 A the CH? radical has any chance of being 
correctly described at MP6. This is confirmed by a 
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Deviation from Full Cl (FCI) energies in our analysis comprises the following systems: 

n Class A 
I8 Class B 

Extrapll Pade[Z,Z] FE1 

Fig. 10. Mean absolute deviations (in mhartree) of estimated FCI 

correlation energies from exact FCI energies for class A (black bars) 

and class B systems (hatched bars) in the case of atom5 and mole- 

cules in their equilibrium geometry. FCI energies are estimated by 

first-order Feenberg scaling (FEI), second-order Feenberg scaling 

(FEZ). [2,2] PadC approximants, MP6 correlation energies or MP6 

based extrapolation formulas. Extrapll: Two extrapolation formulas 

(Eq (I 8) and Eq. (19)) are used which reflect the different conver- 

gence behaviour of class A and class B systems. 

quasi-linear decrease of MPn correlation energies for 
n = 4,5,6 [4]. 

Similar considerations also apply to the 2R, geo- 
metries of NH2 (stretching and reorganization of the 
valence electrons at N involves two bonding electron 
pairs and an electron lone pair) and H20 (two bonding 
pairs and two electron lone pairs are involved), 
however not necessarily to the single-bonded mole- 

cules FH and BH. One could also expect that the 1.5R, 
geometries of CH3, NH2 and HZ0 may cause 
problems since reorganization at the heavy atom may 
already lead to a coupling of the electron correlation of 
six electrons. On the other hand, typical transition state 
geometries of bond-forming or bond-breaking pro- 
cesses are closer to the 2R, rather than the lSR, geo- 
metries and, therefore, one has to decide from case to 
case whether the 1.5R, geometry can still be described 
by MP6. Hence, the set of atoms and molecules covered 

Equilibrium geometries : BH, ‘C+, R,; 1 NH,, *B,, R,; 

NH*, ‘A,, R,; CH3, ‘A’;, R,; CH,, *B,, CH,, ‘A,; 

Ne, ‘S, basis sets : 4s2pld, 5s3p2d, 6s4pld; F, ‘P, 

basis sets : 4s3p 1 d, 4s3p2d, 5s3p2d; FH, ’ C+ , R,; 

H20, ‘A,, R,; HCCH, ‘C.r’, R,; CO. ‘C+, R,; 03, 

‘AI&; c-O~,‘A,,R,; (20) 

Stretched geometries : BH, ‘C+, 1.5R,, 2R,; NH,, 

*B,, 1.5R,; NH2,*Al, 1.5R,; CH,, *A’;, 1.5R,; FH, 

‘C+, 1.5R,,2R,, HzO, ‘A,, 1.5R,; (21) 

For the electron systems listed in Eq. (20) and Eq. 

(21), we have determined MP6, MP6(MS), and 
MP6(M7) energies [4], which we have used for pre- 
dicting FCI energies either by first-order and second- 
order Feenberg scaling, the extrapolation formulas 
Eq. (18) and Eq. (19) or by the [2,2] PadC approximant 
[4,5). As can be seen from Fig. 10, where the mean 
absolute deviations of predicted FCI energies from 
exact FCI values are given for atoms and molecules 
in their equilibrium geometry, there is a considerable 
difference whether FCI energies are predicted for 

class A or class B systems. Reasonable estimates of 
FCI energies are obtained for class B systems by 
second-order Feenberg scaling, extrapolation formula 
Eq. (19) or the [2,2] PadC approximant. However, for 
class A systems, the mean absolute deviations of esti- 
mated FCI energies are larger by a factor of 3 to 7 
depending on what extrapolation procedure has been 
used. In view of the fact that class A systems possess 
monotonic convergence behaviour in the MPn series, 
while class B systems show initial oscillations, one 
should expect that it is easier to predict FCI energies 
for class A systems. 

An explanation for the different performance of 
extrapolation methods in the case of class A and 
class B systems can be found by inspection of Fig. 
9, in which the convergence behaviour of class A and 
class B systems is shown. For class A systems, the 
fraction of the correlation energy covered by MP2 is 
just 73%, but increases steadily to 94.6% at MP6. One 
can predict that if coverage of the correlation energy 

increases at the same rate, MPlO will cover more than 
99% of the correlation energy. However, for class B 
systems, coverage of the total correlation energy is 
already close to 100% for MP6 and even for MP4. 
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Hence, with an extrapolation method that handles 
oscillations of the MPn series as effectively as sec- 
ond-order Feenberg scaling, it is much easier to pre- 
dict FCI energies for class B systems than for class A 
systems. Clearly, one has to accelerate convergence 
for class A systems to obtain improved estimates of 
FCI energies. 

We have tested various acceleration procedures and 
have found that the best results are obtained by a 

simple combination of first-order and second-order 
Feenberg scaling. The scale factors X are always nega- 

tive for class A systems and they are even more nega- 
tive for second-order Feenberg scaling (A”‘) than for 
first-order Feenberg scaling (h’j’) [4]. This suggests 
that an optimal scale factor will only be found at third- 
order or fourth-order Feenberg scaling (corresponding 
to minimizing the MP7 or MP9 energy). Since this is 
not possible, we estimate an improved scaling factor 
by combining X’“’ and h”’ according to Eq. (22) 

opt 
= x(S) + ,(h’S’ _ A”‘) 

(22) 

where the factor c has been determined to be 2.1 for 
a number of test systems. In a similar way, one 
can improve the extrapolation formula (Eq. (18)) 

according to 

AE(“)(extraplI, MP6) = i E$, + 

+... 

(23) 

with 0 < a < 1 to accelerate convergence. In the 
present case, a = 0.85 was found to lead to reasonable 
results. 

FCI energies obtained by Feenberg scaling with h,,, 
are compared with MP6 energies and exact FCI ener- 
gies in Fig. 11. Improvements are significant in the 

case of multi-reference systems (indicated in Fig. 11 
by a star). The mean absolute deviation from exact 
FCI energies is just 0.073 mhartree in the case of 

Deviation of MP6 and Feenberg 

T 
%I 25 

correlation energies from FCI values 

r including multireference systems (‘) 
m 

Fig. 1 I. Differences between Feenberg energies calculated with Eq. (22) (circles). MP6 energies (dots). and exact FCI energies in mhartree for 

22 electron systems. Multi-reference systems are indicated by stars. 
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Deviation from Full Cl (FCI) Energies 

Z.Ofl 

MP6 MP6(M8) MP6(M7) MP6 MP6(M8) MP6(M7) 

equilibrium stretched 
geometries geometries 

Fig. 12. Comparison of mean absolute deviations of estimated from 

true FCI correlation energies when using first- and second-order Feen- 

berg scaling according to Eq. (22). FCI energies are babed on MP6, 

MP6(M8), and MP6(M7) energies. Both class A and class B cases are 

consldered; however electron systems are grouped into those with 

equilibrium geometries and those with stretched geometries. 

equilibrium geometries (Fig. 12) and 1.03 mhartree 
when all systems are considered. Hence, our goal to 
get reliable predictions of FCI energies is fulfilled. 

5. Prediction of FCI correlation energies using 
approximate MP6 methods 

Using the MP6(M8) and MP6(M7) methods 

described in Section 3, we have calculated approxi- 
mate MP6 correlation energies. For 22 electron sys- 
tems considered, MP6(M8) energies differ from exact 
MP6 energies on average by 0.2 mhartree, while 
MP6(M7) energies lead to an average deviation of 
0.5 mhartree. Inspection of Fig. 13, in which differ- 
ences between approximate MP6 energies and exact 
MP6 energies are given in mhartree, reveals that the 

largest deviations (about 1 mhartree) are obtained 
at MP6(M7) for systems with multi-reference 
effects. If one would include systems with strong 

multi-reference character such as the 2R, geometry 

of H20, then deviations of 3.5 mhartree (Fig. 13) 
and more are obtained. Since in the latter case the 
deviation is about the same for MP6(M8) and 
MP6(M7), clearly the connected Q correlation effects 
covered by the @My) terms QQQ(Il), QQT(I1) or TQT 
are responsible for the difference in calculated correla- 

tion energies. This is in line with the understanding that 
at 2R, there is considerable coupling between the two 

bonding electron pairs and the two electron lone pairs, in 
particular in connection with a reorganization of elec- 
trons in the valence sphere of oxygen which increases 
the importance of connected Q correlation effects. 

Apart from those cases in which multi-reference 
effects play an important role, both MP6(M8) and 
MP6(M7) lead to reasonable sixth-order correlation 
energies, which in turn can be used to extrapolate to 
FCI correlation energies using improved second-order 
Feenberg scaling according to Eq. (22). Mean abso- 

lute deviations of FCI correlation energies obtained in 
this way from exact values are compared with those of 
MP6-based FCI correlation energies in Fig. 12. 
Clearly, there will be a loss in accuracy if one uses 
approximate MP6 methods for the prediction of FCI 

correlation energies. However, this loss is moderate 
considering that the mean absolute deviation of pre- 
dicted from exact FCI energies increases from just 
0.073 (MP6) to 0.173 (MP6(M8)) and 0.395 mhartree 
(MP6(M7)) in the case of atoms and molecules in 
their equilibrium geometries, and from 1.029 (MP6) 
to 1.268 (MP6(M8)) and 1.882 mhartree (MP6(M7)) 
in the case of stretched geometries. Hence, for the cost 
of essentially an MP4 calculation, one can obtain 
reasonable estimates of FCI correlation energies. 

6. Summary and conclusions 

Our work on MP6 has led to an understanding of 
the convergence behaviour of the MPn series. 
Thereby, it is possible to adjust existing extrapolation 
procedures to the different convergence behaviour of 
class A and class B systems and to predict reliable FCI 
correlation energies. The understanding of the con- 
vergence behaviour of the MPn series also has direct 

consequences for the daily use of low-order MPn 
methods as is indicated in Fig. 14. 

We can correct some of the common beliefs on the 
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Fig. 13. Differences between MP6 energies (references) and MP6(M8) (dots) or MP6(M7) energies (trIanglea) in mhartree 

performance of MP2, MP3, and MP4. For example, it 
is not true that MP2 always largely exaggerates pair 
correlation effects. For class A systems, such an exag- 
geration does not play a significant role since only 
73% of the total correlation energy is covered at this 
level of theory. In this situation, MP3 is a rather useful 
and economic method to significantly improve correla- 
tion energies. Of course, for almost the same costs one 
can also carry out an MP4(SDQ) calculation, which 
leads to an even better improvement of MP2 results by 
including more pair-pair correction terms. However, 

the additional cost factor for including the T excitations 
at MP4 does not pay off for class A systems. 

Use of MPn Methods within 

MPZ 

MP3 

MP4(SDQ) 

MP4(SDTQ) 

Class A Class B Class A + B I 
significant 

improvement 

small 

improvement ok 

Fig. 14. Recommended use of low-order MPn methods (n = 2,3,4) in 

the case of class A, class B, and class A + B systems. 

For class B systems, MP2 covers more than 90% of 
the total correlation energy due to an exaggeration of 
pair correlation. Although MP3 and MP4(SDQ) par- 
tially correct for an exaggeration of pair correlation, 
these corrections are in a way superfluous since it is 
much more important to include three-electron corre- 
lation effects and to proceed right away from MP2 to 
MP4(SDTQ). Depending on the degree of electron 
clustering in class B systems, MP4 might exaggerate 
T effects and, then, it is also advisable to calculate 
MP.5 and MP6 correlation energies. 

Of course, it occurs more often that class A and 

class B systems are mixed in a chemical reaction. 
For example, the hydrogenation reaction of ethylene 
or acetylene leading to ethane is such a reaction. In 
this case, one will have relatively large errors at MP2, 
which are stepwise reduced from MP3 to MP4; 
however even at MP4 one will encounter considerable 

errors. These can be reduced by carrying out 
MP6(M7) calculations and extrapolating to FCI 
energies with the help of Feenberg scaling. 

MP6(M7) is a suitable method for routine calcu- 
lations since it possesses the same cost dependence 
as MP4. One can obtain FCI energies at no additional 
cost by an improved version of second-order Feenberg 
scaling (FE1 + FE2). Although any of these calcu- 
lations will clearly show whether a class A or class 
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Class A Systems: systems with well-separated electron pairs 

Li-, Be-compounds 

Ltoranes 

Carboraoea 

Carbenes 

Linear alkanes 

Cassical carbocations 

Alkyl radicals 

Amines 

etc. 

LiH, Lithioalkanes, BeH2, et, 

BH3, B,H,, etc. 

R.CZH.+Z 

CH,, CR2, etc. 

CH,,t$H,, etc. 

CHx+, 

CH3’, CH,‘, etc. 

R-NH2, R,NH, R,N, etc. 

Class B Systems: systems with electron clustering 

Electron-rich atoms 

Halogen compounds 

Peroxides, Ketones, Acids 

Molecules with multiple bonds 

Conjugated systems 

Hypervalent molecules 

Nonclassical carbocations 

Transition metal compounds 

etc. 

Ne, F, 0, etc. 

R-CH,F, 

R-00-R, RC(=O)OR, etc. 

NZ, CO, HCCH, H2C=CH2, c 

benzene, butadiene, O,, etc. 

SF,, PF5, etc. 

vinyl cation, etc. 

Fig. IS. Examples for class A and class B systems. 

B system is investigated, it might be useful to predict 
whether a given molecule belongs to class A or class 
B. By inspection of the electron pair structure of an 
atom or molecule, it is easy to clarify whether a given 
electron system belongs to class A or class B and, 
accordingly, whether the MPn series for this system 

possesses monotonic or erratic convergence 

behaviour (see Fig. 15). Of course, there are border 
cases between the two classes for which predictions 
may be difficult. Examples are water and alcohols in 
their equilibrium geometry, for which correlation con- 
tributions seem not to oscillate although convergence 
is not monotonic. However, investigation of the MP4, 
MP5, and MP6 spectrum will clearly reveal whether 

the system in question belongs to class A or B. 
Comparing class A and class B systems and the 

convergence behaviour of the MPn series for these 
systems, it is appropriate to consider a class B system 
as the normal case which reveals the typical deficiencies 

of MP perturbation theory. MP theory is characterized 
by an inclusion of new correlation effects at even orders 

and a coupling between these effects at odd orders, thus 
reducing part of the correlation effects obtained at the 
previous order. In the case of strong electron correlation, 
this must lead to oscillations in the MPn correlation 
energy. With increasing number of electrons, there 
will be more systems with clustering of electron pairs 
in certain regions of atomic or molecular space and a 

strongly correlated movement of the electrons. 
One can compare MP perturbation theory with a 

bad driving style. The perturbation engine is acceler- 
ated at even orders n by ‘fuelling’ it with new correla- 

tion effects. However, it is slowed down at odd orders 
by pushing the ‘coupling brake’. This must lead to 
initial oscillations in the MPn series as observed in 
many cases. The exceptions to this are the class A 
systems, for which, as a result of weak couplings 
between different correlation effects, the typical 
MPn oscillations do not occur and monotonic con- 

vergence of the MPn series is obtained. 
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