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ABSTRACT: Diabatic ordering of the normal model of a reaction complex
along the reaction path has several advantages with regard to adiabatic ordering.
The method is based on rotations of the vibrational normal modes at one point,
s, of the reaction path to maximize overlap with the vibrational modes at a
neighboring point. Global rotations precede the rotations of degenerate modes
so that changes in the direction of the reaction path and changes in the force
constant matrix, which represent the two major effects for changes in mode
ordering, can be separated. Overlap criteria identify resolved and unresolved
avoided crossings of normal modes of the same symmetry. Diabatic mode

Ž .ordering DMO can be used to resolve the latter by reducing the step size, thus
guaranteeing correct ordering of normal modes in dependence of s. DMO is
generally applicable to properties of the reaction complex that depend on s such
as normal mode frequencies, orbital energies, the energy of excited states, etc.
Additional applications are possible using a generalized reaction path vector,
which may describe the change in atom masses, geometrical parameters, andror
the force constant matrix. In this way, the vibrational spectra of isotopomers can
be investigated or the vibrational frequencies of different molecules correlated.
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Introduction

nvestigations with the reaction path Hamilto-I Ž . 1nian RPH of Miller et al. focus on the reac-
tion path and the associated reaction valley, which
is described by 3K-7 normal modes of vibration
transverse to the reaction path following mode of a
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reaction complex with K atoms.2 ] 5 A key feature of
the investigation is the representation of the nor-
mal mode frequencies, v , as a function of them

Ž . 3, 6 ] 11reaction coordinate s in the form v s . De-m

pending on the symmetry and electronic structure
of the reaction complex one encounters various

Ž .crossings of the curves v s along the reactionm

Ž .path: a These can be crossings involving modes
Ž .of different symmetry, which are allowed. b If

the crossing modes possess the same symmetry, an
avoided crossing will be encountered where the
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degree of interaction between the modes deter-
Ž .mines how close the curves v s approach at them

avoided crossing point before they separate and
continue in different directions.

The correct ordering of normal modes before
and after a crossing or avoided crossing point is
essential for the study of mode]mode coupling
that determines the energy dissipation between
modes along the reaction path. It is even more
important for the characterization of the reaction

Ž .path curvature, k s , in terms of normal modes,
which is carried out with the help of the normal

Ž . 1 ] 4mode-curvature coupling coefficients, B s .m, s
Ž .Maxima of the curvature k s indicate those posi-

tions of s at which energy stored in vibrational
modes can flow into the translational mode of the
reaction complex and, by this, enhance the reaction
rate. The normal modes that couple most strongly
with the reaction path mode are identified by the

Ž .coupling coefficients, B s , which can only cor-m, s
rectly be determined if the normal modes are cor-
rectly ordered throughout the whole reaction path
from reactants to products.

In most investigations carried out with the RPH,
normal mode ordering is carried out with the help
of symmetry because this is a simple means to

Ž .detect avoided crossing points of v s . Symmetrym

criteria also help to correctly label normal modes
at allowed crossing points. However, difficulties
can arise in the latter case if the reaction complex
possesses C -symmetry or the symmetry is1
changed along the reaction path because of one or
more bifurcation points.12 Apart from this, one has
to consider numerical problems, which arise from
the fact that, depending on the step size used to
follow the reaction path, there may be situations
where slight deviations from the true path lead to
distortions of the reaction complex associated with
a lowering of its symmetry and the symmetry of
the normal modes. Although these deviations nor-
mally do not affect the overall investigation of
reaction path and reaction valley, they cause local
difficulties in the ordering of normal modes, which
can only be resolved by repeating calculations
with smaller step size so that deviations from the
reaction path are avoided and the symmetry of the
reaction complex is correctly reproduced. While
such a procedure can be automated, it leads to
considerable calculational cost.

An ordering of normal modes with the help of
symmetry is generally called adiabatic ordering
and has calculational disadvantages, which will be
discussed in this work. An appropriate alternative
to adiabatic ordering is diabatic ordering, which

does not use a symmetry criterion. We will repre-
sent here a diabatic ordering method that provides
a simple, totally automated way of obtaining the

Ž .correct curves v s . This method is not affectedm

by occasionally occurring deviations from the reac-
tion path and, therefore, allows a relatively large
step size for reaction valley investigations. Apart
from this, it can be set up in a way that the step
size is automatically reduced at avoided crossing
points and, by this, all avoided crossings are cor-
rectly resolved despite the fact that a symmetry
criterion is not used in the procedure.

In the next section we discuss the theory of
Ž .diabatic mode ordering DMO and then examine

its implementation within an ab initio program.
The performance of the new method will then be
discussed for an application example. Finally, we
present general application possibilities of a dia-
batic ordering of properties depending on some
generalized reaction path, which may involve sep-
arately or simultaneously geometry changes, mass
changes, or force constant changes. The general-
ized approach can be used to assign vibrational
modes of isotopomers or to correlate the vibra-
tional spectra of different molecules.

Theory of Diabatic Ordering of Normal
Modes

The geometry of a nonlinear reaction complex
with K atoms is fully determined by a set of
N s 3K-6 internal coordinates. The direction of the
reaction path is given by the gradient g expressed˜
in mass-weighted internal coordinates. In what
follows, the tilde indicates mass weighting of a
quantity. At a given point of the reaction path,
defined by the reaction coordinate s, the general-

˜g Ž .ized normal modes, I s , and the associated nor-m

Ž .mal mode frequencies, v s , are calculated bym

Ž . 1, 4, 13 ] 15solving eq. 1 :

˜ ˜g 2 ˜Ž . Ž . Ž . Ž . Ž .K s I s s v s I s , m s 1, . . . , N 1m m m v ib

which has N solutions that span the N s 3K-v ib v ib
7-dimensional space orthogonal to the one-dimen-

˜Ž .sional reaction path space. Matrix K s is obtained
˜Ž .by projection of the force constant matrix F s

expressed in mass-weighted internal coordinates
from 3K- to 3K-7-dimensional space according to

Ž .eq. 2 :

˜ ˜ ˜ ˜Ž . Ž Ž .. Ž .Ž Ž .. Ž .K s s 1 y P s F s 1 y P s 2
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˜Ž . Ž .where P s is a projection matrix given by eq. 3 :

˜ qŽ . Ž . Ž . Ž .P s s g s g s 3˜ ˜

Ž .In practice, eq. 1 has to be solved at a discrete set
of reaction coordinate values s separated by incre-

Ž .ments D s. Assuming that eq. 1 has been solved
at two nearby values, s and s , of the reactiona b

Ž .coordinate, eq. 4 follows:

2aŽ . Ž .K a s v a m s 1, . . . , N 4aa m m m v ib

2b Ž .K b s v b m s 1, . . . , N 4bŽ .b m m m v ib

where a and b denote generalized mass-m m

weighted normal modes calculated at s s s anda
˜ ˜Ž . Ž .s s s , respectively, and K s K s , K s K s .b a a b b

Ž .In eq. 4 and in the following, the tilde, which is
used to indicate mass weighting, is dropped for
reasons of simplicity. It is useful to collect normal

Ž .mode vectors a and b in the N = N matricesm m v ib
Ž .A and B according to eq. 5 :

Ž . Ž .A s a , a , . . . , a , . . . , a 5a1 2 m Nv i b

Ž . Ž .B s b , b , . . . , b , . . . , b 5b1 2 m Nv i b

The normal modes of matrices A and B span the
vector spaces V Ž A. and V ŽB ., respectively. They
have to be labeled in such a way that any occa-
sional change in the sequence 1, . . . , N , becausev ib

Ž .of a crossing of the curves v s between points sm a
and s , is correctly described. Also, degenerateb

Žnormal modes at an avoided crossing or at a
.normal crossing have to be rotated, so that they

can match the old normal modes in the best possi-
ble way. Any error in the ordering of normal
modes between s and s will lead to inconsisten-a b

Ž . Ž .cies kinks, etc. in the representation of v s , them

Ž . Ž .coupling coefficients B s and B s , or anym, s m , n

other on the normal modes’ dependent property
Ž .X s . In this situation, we apply diabatic mode

labeling to avoid any errors in the ordering of
normal modes.

Diabatic normal mode labeling as carried out by
Ž .the DMO method is performed in four steps: 1 at

point s , the space V ŽB . is appropriately parti-b
ŽB . Ž .tioned into subspaces V ; 2 an image of matrixi

A is calculated in space V ŽB . and amplitudes AŽ i.
m

are calculated to relate each subspace V Ž A. to ai
ŽB . Ž . ŽB .subspace V ; 3 the vectors in V are rotatedi i

Ž .to get a correct ordering of normal modes; and 4
a final overlap matrix between A and B is calcu-

lated to check assignments. If necessary, appropri-
ate corrections are made by repeating steps 1]4 for
a reduced step size.

The strategy of mode ordering is a backward-
directed strategy; that is, for each new point s, the
current sequence of frequencies and degree of de-
generacy is taken as a fact and the previous order-
ing of normal mode frequencies is adjusted to the
new situation. This is necessary because, at point
s , it is difficult to predict the degree of degeneracya
at point s without using symmetry and this willb
lead to problems as we will show in what follows.
However, once modes at s have been assigned toa
those at point s , the ordering of the latter is doneb
according to the previous ordering at point s .a

STEP 1: PARTITIONING OF SUBSPACE V(B )

ŽB . ŽSpace V , spanned by the vectors b m sm

. Ž .1, . . . , N , is partitioned according to eq. 6 :v ib

V ŽB . s V ŽB . [ V ŽB . [ ??? [ V ŽB . [ ??? [ V ŽB .
1 2 i M

Ž .6a

Ž .N s N q N q ??? qN q ??? qN 6bv ib 1 2 i M

where M is equal to the number of subspaces and
N indicates the number of vectors b with thei m

Ž .same frequency v s that span the subspace V .m i
Ž .This is indicated in eq. 7 :

ŽB . b b w x w xV s b v s v ; m i , n i s 1, . . . , N½ 5i w m i x w m i x w n i x i

Ž .7

w xwhere the subspace index m i is used.

STEP 2: RELATING SUBSPACES V( A ) TOi
SUBSPACES V(B )

i

To each subspace V ŽB ., space V Ž A., spanned byi i
vectors a , has to be related by fulfilling criterionm

w Ž .xeq. 8 :

Ž A. � w x 4 Ž .V s a m i s 1, . . . , N 8i w m i x i

The N normal modes a that span subspacei w m i x
V Ž A. are those that possess a large amplitude AŽ i.

i m

measuring the overlap between a and subspacew m i x
V ŽB .. If all vectors between two subspaces of Ai
and B overlap sufficiently, V Ž A. and V ŽB . can bei i
related to each other. Once all vectors have been
grouped in related subspaces, the vectors b inw m i x
each subspace V ŽB . have to be rotated in such ai
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way that they match, in the best possible way,
vectors a in subspace V Ž A.. This will guaranteew m i x i
that all normal modes smoothly change from point
s to s .a b

ŽB . Ž .The construction of subspaces V step 1 isi
straightforward and can easily be automated.
However, the construction of spaces V Ž A. is morei
difficult. To make automatic assignments, one has
to quantify how much the vector a overlaps withm

the vectors b in space V ŽB .. This is a nontrivialm i
problem because of two reasons:

Ž .1. The projector P s projects onto the direction
Ž .of the reaction path, while 1 y P s projects

onto the 3K-7-dimensional space V spanned
by the normal modes, which are orthogonal
to the reaction path vector. One can consider
the 3K-7-dimensional vibrational space as a
Ž .hyper plane, the normal vector of which is
the reaction path vector defined by the gradi-
ent vector. Any change in the direction of the
gradient vector for increasing s leads to a

Ž .rotation of the vibrational plane space V
and, as a consequence, also to rotations of the
normal modes. Hence, changes in the order-
ing of the normal modes can be caused by

Ž .changes in the projector P s . In general,
Ž . Ž . ŽB .P s / P s and, accordingly, space Va b

and space V Ž A. differ. The global rotation of
space V ŽB . relative to V Ž A. has to be explic-
itly taken care of to make an unambiguous
identification of normal modes possible. Any
type of amplitude, which relates space V ŽB .

i
Ž .with vector a will be determined by: am

global rotations of the two spaces relative to
w Ž .each other i.e., changes of P s along the

x Ž .reaction coordinate ; and b individual mix-
ing of normal modes caused by either the
diagonalization procedure required to solve

Ž . Ž .eq. 1 in the case of degenerate modes or
Ž .by changes of F s . Those two effects have to

be separated as will be discussed for step 4.

2. The second difficulty arises from the fact that
vectors a have to be related to subspacesm

V ŽB ., which implies the definition of a suit-i
able amplitude based on the overlap between
vector and subspace.

STEP 2a: CALCULATION OF AN IMAGE OF
MATRIX A IN SPACE V(B )

Problem 1 can be avoided by simulating vectors
a with vectors b . In principle, one can rotatem m

vectors b with the help of an unitary matrix T inm

such a way that a new set of vectors aX is gener-m

ated, which represents an image of vectors a inm
ŽB . w Ž .xthe space V see eq. 9 :

Ž .A f A9 s BT 9a
Ž q . Ž .Tr A A9 s max 9b

q Ž .TT s I 9c

It is impossible to find T such that A s A9 because
the vectors of A and those of B span different

Ž . Ž .spaces. Only in the case of P s s P s , which isa b
not true in general, can one find a matrix T so that

Ž q .A s A9 holds. The actual value of Tr A A9 in
Ž .eq. 9b can indicate whether it is possible to as-

sign the normal modes associated with matrix A
Ž .correctly. In addition, eq. 9 will automatically

take care of possible permutations of modes am

relative to b .m

Ž .The matrix T, which fulfills eq. 9b , is given by
Ž .eq. 10 :

y1r2q qŽ . Ž .T s S S S 10A B A B A B

where:

q Ž .S s A B 11A B

is the matrix that describes the overlap between
vectors a and b .m m

STEP 2b: DEFINITION OF AN APPROPRIATE
AMPLITUDE

Ž .The procedure given in eq. 9 takes care of
global rotations of spaces V ŽB . and V Ž A. relative to
each other, leading to possible permutations of
normal modes. To solve the problem of assigning
N vectors in space V Ž A. to N vectors in spacei i
V ŽB ., an appropriate amplitude will be defined.i

Utilizing the inverse of matrix T defined in eq.
Ž .9 , vectors b can be expressed in terms of vectorsm

X Ž .a according to eq. 12 :m

Nvib
X q Ž .b s a T 12Ým n nm

ns1

It is convenient to construct the projector, P ŽB .,i
onto the space V ŽB .:i

Ni
ŽB . q Ž .P s b b 13Ýi w m i x w m i x

w xm i s1
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Ž . Ž .By using eq. 12 , one obtains eq. 14 :

N Nvib i
X XqŽB . Ž .P s a a T T 14Ý Ýi l s w m i x , l w m i x , s

l, ss1 w xm i s1

Ž .Because eq. 15 holds:

Ž ŽB . . Ž .N s Tr P 15i i

Ž .it is possible to obtain eq. 16 :

Nvib
Ž i. Ž .1 s A 16Ý l

ls1

where:

Ni1
Ž i. 2 Ž .A s T 17Ýl w m i x , lNi w xm i s1

The N normal modes a with largest amplitudei m

values AŽ i. can be assigned to space V Ž A..l i
Ž . Ž .The transformation of eqs. 13 into 14 is essen-

tial for determining amplitudes AŽ i. because it ism
ŽB . wthe basis for relating the space V described byi

ŽB .x Ž A.the projector P with vectors a of space V . Ini m

addition, the procedure of finding image vectors
X ŽB . wa , which mimic vectors a in space V see eq.m m

Ž .x9 is the only way of connecting the vectors of
spaces V ŽB . and V Ž A. because, in general, it is not
possible to express vectors b in terms of a .m m

Because the two spaces are rotated with regard to
each other, the image vectors aX cannot be re-m

placed by vectors a , and the use of image vectorsm

Ž .in eq. 12 cannot be avoided when constructing
amplitudes AŽ i..m

STEP 3: ROTATION OF VECTORS B INm

SUBSPACE V(B )
i

Finally, vectors b in subspace V ŽB . are rotatedm i
Ž .according to eq. 18 :

Ni
X i w xb s b R , m i s 1, . . . , NÝw m i x w n i x w n i x , w m i x i

w xn i s1

Ž .18

where R is the rotation matrix associated withi
space V ŽB .:i

y1r2q qi i i iŽ . Ž . Ž .R s S S S 19A B A B A B

and S i is the overlap matrix for space V ŽB . givenA B i
Ž .by eq. 20 :

Ž i . q w x w xS s a b , m i , n i s 1, . . . , Nw x w xm i , n iA B w m i x w n i x i

Ž .20

This leads to the correct ordering of degenerate
modes spanning subspace V ŽB .. It is convenient toi

Žarrange ordered and rotated vectors b i sw m i x
w x .1, . . . , M; m i s 1, . . . , N in matrix B9 column-i

wise.

STEP 4: TESTING OF FINAL ASSIGNMENTS

Once all normal modes are ordered and degen-
erate modes are rotated, it is simple to test assign-
ments by calculating the final overlap matrix SA B

Ž .according to eq. 21 , which should be close to
diagonal.

Ž . q Xq Ž .S s a b 21mnA B m m

In addition, one can define a single characteristic
amplitude of assignment defined by the smallest
value of S :A B

Ž . Ž . Ž .A A, B9 s min S m s 1, . . . , N 22� 4m , mA B vib

If A is smaller than a threshold S , the assign-min
ment will be considered weak and, therefore, it
must be repeated, as will be described in the next
section.

Ž .The assignment amplitude defined in eq. 22
accounts for the rotation of the projection plane
w Ž . xi.e., the change of P s along the reaction path
and normal mode mixing resulting from a change

Ž .of F s . These two effects have to be separated to
gain better control over the assignment of normal
mode vectors a . It is possible to define an ampli-m

Ž .tude A A, A9 , which only measures the degree of
Ž .rotation caused by the change of P s when going

from s to s :a b

qŽ . � Ž . 4 Ž .mmA A, A9 s min A A9 m s 1, . . . , N 23V ib

Ž .where A9 is given by eq. 9 .
Ž .The simultaneous usage of A A, B9 and

Ž .A A, A9 is important when there are large changes
Ž .in the projector P s along the reaction path and,

accordingly, space V ŽB . is considerably rotated
relative to space V Ž A.. This can happen if a too-
large step size D s is used for the investigation of a
particular reaction path. In such a case, it is diffi-
cult to assign the normal modes at point s toa
those at point s because all amplitudes AŽ i. willb m
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have relatively small values. This situation can be
Ž .controlled with the help of amplitude A A, A9 :

The step size is reduced as long as amplitude
Ž .A A, A9 is smaller than the threshold value S .min

For that step size which leads to a sufficiently
Ž .large amplitude A A, A9 additional problems in

Ž .assigning normal modes caused by changes in F s
Ž .can exist. For example, at an avoided crossing, F s

changes considerably and, accordingly, amplitude
Ž .A A, B9 could be smaller than S . Further reduc-min

tion of the step size controlled by the value of
Ž .amplitude A A, B9 , which in this situation in-

Ž .cludes only effects of F s , would lead to a resolu-
tion of the avoided crossing. Hence, requiring that

Ž . Ž .both A A, A9 and A A, B9 are larger than Smin
guarantees a correct correlation of normal modes
at two neighboring points along the reaction path
and represents the final check of the DMO method.

Implementation of DMO Method

The possibility of quantifying the assignment of
vectors a to vectors b is the basis for the imple-m m

mentation of self-correcting algorithms. There are
two basic strategies of generating generalized nor-

Ž .mal modes v s : the first uses a fixed and the
second a variable step size along the reaction path,
which will be discussed next.

USE OF A FIXED STEP SIZE

The use of a fixed step size, D s s s y s sn ny1
Ž 1r2const, where the constant typically F 0.01 amu

.Bohr is chosen to be so small that assignment
amplitudes are mostly larger than a threshold
value S s 0.999. This procedure will be suitablemin
if the calculation of points along the reaction path
is not costly. The procedure comprises the follow-
ing steps:

1. The reaction path is generated by calculating
the energy, energy gradient, and force con-
stant matrix at a certain sequence of points
s , s , . . . , s , . . . , s , where the spacing be-1 2 n p
tween the points is given by D s.

2. Labeling of normal modes is carried out for
Ž .point s according to increasing decreasing1

values of the corresponding normal mode
frequencies. The normal mode vectors are

w Ž .xstored in matrix A eq. 5a .
Ž3. The normal modes calculated at point s ifn

step 3 is entered from step 2 rather than step

. w4, then s s s are stored in matrix B eq.n 2
Ž .x Ž . Ž .5b and ordered according to eqs. 6 ] 20
so that they match modes a collected inm

matrix A.
4. The characteristic assignment amplitudes

Ž . Ž . Ž .A A, B9 and A A, A9 defined in eqs. 22
Ž .and 23 are calculated. If both amplitudes

are larger than S s 0.999, then all assign-min
ments can be accepted, matrix B is stored in
A, and the procedure continues with step 3
provided the final point s has not beenp

Ž . Ž .reached. If amplitudes A A, B9 and A A, A9
are smaller than S , improved assignmentsmin
will have to be made according to step 5.

5. The amount of rotation of space V ŽB . with
regard to V Ž A. can be reduced if the incre-
ment D s is decreased and a new point sU isn
included in the sequence of points used to
describe the reaction path. In principle, one

Ž U . Ž U . Ž U . Ž U .could calculate P s , F s , K s , and I sn n n m n
w Ž . Ž .xeqs. 1 ] 3 and repeat steps 2, 3, and 4 for
sU to obtain improved assignments. How-n
ever, this would lead to a awkward calcula-
tional procedure and extensive restoring of
properties calculated along the reaction path.
If the increment D s is chosen to be rather
small from the beginning one can refrain

Ž U . Ž U . Ž U .from explicitly calculating P s , F s , K s ,n n n
Ž U .and I s and, instead, use the linear inter-m n

Ž .polation formula eq. 24 :

sU y s sU y sn ny1 n nUŽ . Ž . Ž .P s s P s q P sn n ny1s y s s y sn ny1 ny1 n

Ž .24a

sU y s sU y sn ny1 n nUŽ . Ž . Ž .F s s F s q F sn n ny1s y s s y sn ny1 ny1 n

Ž .24b

Ž U . Ž U .to obtain P s and F s for an improvedn n
Ž .assignment. Repeated application of eq. 22

may be necessary to get a characteristic as-
signment amplitude G 0.999.

USE OF A VARIABLE STEP SIZE

The use of a variable step size leads to a de-
crease of computational cost because the larger the
increment D s the smaller the number of points sn
to be calculated. A procedure based on a variable
step size differs from the one with fixed step size
insofar as fixing of D s and mode ordering is done
as soon as energy, energy gradient, and force con-
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stant matrix are calculated for a new point s . Then
procedure covers the following computational
steps:

1. After calculating and storing normal mode
vectors a in matrix A, a relatively large trialm

step size D s is chosen, which depends onmax
the reaction system investigated.

2. After calculating P, F, and the normal modes
at s s s q D s , storage of b in B,nq1 n max m

Ž . Ž .ordering according to eqs. 6 ] 20 , and cal-
culation of the characteristic amplitudes
Ž . Ž .A A, B9 and A A, A9 is carried out. If these

are both larger than S s 0.999, then stepsmin
1 and 2 will be done for the next point,
otherwise step 3 has to be performed.

3. To increase the overlap between A and B, D s
is scaled by a reduction factor l ) 0 to obtain
a new point sU between s and s :n n nq1

U Ž . Ž .s s ls q 1 y l s 25n n nq1

where l is determined according to the cal-
culated values of the characteristic ampli-
tudes. The normal modes calculated at point

U Ž .s lead to larger amplitudes A A, B9 andn
Ž .A A, A9 than those calculated at s . Thisnq1

Ž .procedure can be repeated until A A, B9 and
Ž .A A, A9 become larger than S .min

Clearly, step 3 will only be necessary at points
where electronic changes occur, otherwise large
step sizes can be used. In this way, smooth func-

Ž .tions, v s , are obtained with relatively low com-
putational cost, which is an advantage when the
calculation of energy, energy gradient, and force
constant matrix at each point along the reaction
path is expensive.

In its present version DMOL uses a fixed step
size, while a fully automated version with variable
step size is under development. DMOL is a part of
the ADIA program16 that carries out unified reac-

Ž .17tion valley analysis URVA within the ab initio
package COLOGNE96.18 Next, we present a test
example to demonstrate the usefulness of the DMO
method.

APPLICATION OF DMO

Diabatic mode ordering was tested for reaction
Ž . 18 ] 2026 :

Ž .CH q H ª CH q H 263 2 4

which has been studied with the help of the RPH
by various investigators at different levels of the-
ory.21 ] 28, 5, 11 Because the primary goal of this work
is to test the usefulness of DMOL rather than to

Ž .investigate the reaction mechanism of reaction 26 ,
its reaction path was generated at the UHFrSTO-
3G level of theory, applying the method suggested
by Gonzales and Schlegel.29

Figure 1 shows calculated generalized normal
Ž .mode frequencies v s in the range from y3 to 3

amu1r2 Bohr of the reaction path using a fixed step
size of 0.05 amu1r2 Bohr. Because this step size is
relatively large, the DMO method cannot resolve

Ž .an avoided crossing involving v s of modes 2 a1
Ž . Ž .mode 8 and 3a mode 11 , which occurs between1
s s y0.3 and y0.25 amu1r2 Bohr. Modes 2 a and1
3a interact so weakly in this region that they1
approach each other rather closely. Even if the
avoided crossing is resolved by DMO, one has to
enlarge the representation in Figure 1 to see that

Ž .the curves v s indeed do not cross.
The consequences of missing the avoided cross-

ing between s s y0.3 and y0.25 amu1r2 Bohr are
shown in Figure 2, where the reaction path curva-

Ž .ture k s and the normal mode-curvature cou-
pling coefficients B are given as a function of s.m, s
At the position of the avoided crossing, the func-

Ž .tion B s possesses a kink that is a direct2 a1, s
consequence of an erroneous mode ordering after
the nonresolved avoided crossing shown in Fig-
ure 1.

The avoided crossing between s s y0.3 and
y0.25 amu1r2 Bohr can be resolved by reducing
the step size as described previously. In Figures 3
and 4, results are shown for the region y3 F s F 3

1r2 Ž .amu Bohr compare with Fig. 1 where the in-
Ž .sert in Figure 3 provides a better view of v s in

the region of the avoided crossing. In Figure 5,
Ž . Ž q X.individual amplitudes A A, B9 s A B formm mm

a - and e-symmetrical vibrational modes are shown1
as a function of reaction coordinate s for the situa-
tion of the unresolved avoided crossing, whereas

Ž .in Figure 6, characteristic amplitudes A A, B9 and
Ž . Ž .A A, A9 are given before Fig. 6a and after resolv-

ing the avoided crossing between s s y0.3 and
1r2 Ž .y0.25 amu Bohr Fig. 6b .

Ž q .The amplitudes A A B9 of modes 2 a andmm 1
Ž3a become relatively small relative to S s1 min

. Ž .0.999 at s s y0.26 A s 0.954; A s 0.938 ,2 a1 3a1
Žof modes 1a and 3a at s s 0.24 A s 0.976;1 1 1a1

.A s 0.977 and of modes 2 a and 3a at s s 0.573a1 1 1
1r2 Ž . Ž .amu Bohr A s 0.971; A s 0.965 Fig. 52 a1 3a1

thus indicating that these mode pairs are involved
in avoided crossings at the locations given. Simi-
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Ž .FIGURE 1. Diabatic representation of normal mode frequencies v s calculated at the UHF / STO-3G level of theorym
1/2 (for the reaction CH + H ª CH + H using a fixed step size, Ds s 0.05 amu Bohr. Symmetry symbols CH : D ;3 2 4 3 3h

)CH : T symmetry and characterization of normal modes are indicated both with regard to reactants and products. The4 d
( )numbering of the normal modes of the C -symmetrical reaction complex is done in the entrance channel s - 0 from3v

Ž . ( )small to large frequencies. The function v s of the 2a 8 vibrational mode is dashed to show that the avoided1
( )crossing with the 3a 11 mode is not resolved at the step size chosen. The position of the transition state corresponds1

to s = 0 amu1/2 Bohr.

larly, the corresponding amplitudes for the e-sym-
metrical modes 2 e and 3e indicate avoided cross-
ings at s s y0.06 and s s 0.19 amu1r2 Bohr. Be-
cause the avoided crossing involving modes 2 a1
and 3a at s s y0.26 amu1r2 Bohr is not resolved1
Ž .Fig. 1 , the labeling of these two modes for any
s ) y0.26 amu1r2 Bohr must be erroneous.

Ž .The characteristic amplitudes A A, B9 and
Ž .A A, A9 , shown in Figure 6a and b, summarize the

results of Figure 5. It is noteworthy that amplitude
Ž . Ž .A A, B9 , which covers the effects of both P s and
Ž .F s , is considerably smaller than amplitude
Ž .A A, A9 at the nonresolved avoided crossing point.

As discussed in the previous section, amplitude
Ž .A A, A9 provides a measure for rotation of the

projection plane at the avoided crossing point,
which is related to the curvature of the reaction
path. As can be seen from Figure 2, this is larger at
s s 0.5 than at s s y0.3 amu1r2 Bohr, which is

Ž .confirmed by the corresponding values of A A, A9
Ž .see Fig. 6a . If, beside rotation of the projection

Ž .plane, the changes in F s are also covered by the
Ž .characteristic amplitude, as is the case for A A, B9 ,

a smaller value of A will result.
As can be seen from Figure 3, the application of

a reduced step size in the range between s s y0.3
and y0.25 amu1r2 Bohr prevents that the curves
Ž .v s of normal modes 2 a and 3a cross, even1 1

though the two curves approach each other closely.
The correct ordering of normal modes 2 a and 3a1 1
at the avoided crossing point leads to drastic
changes in the decomposition of the reaction path
curvature in normal mode components, as shown
in Figure 4. After resolving the avoided crossing, it
becomes obvious that the two curvature compo-
nents B and B contribute almost equally2 a1, s 3a1, s
to the curvature peak at s s y0.3 amu1r2 Bohr.
For s - y0.28 amu1r2 Bohr the 3a component1
dominates, and for s ) y0.28 amu1r2 Bohr the 2 a1
component dominates, while component 3a seems1
to be dominating in the whole range when the
avoided crossing between s s y0.3 and y0.25
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FIGURE 2. Characterization of the reaction path
Ž . ( )curvature k s thick solid line in terms of curvature

Ž . ( )coupling coefficients B s dashed lines . The functionm, s
Ž . y1/ 2 y 1k s has been shifted by 0.5 amu Bohr to better

Ž .distinguish between reaction path curvature k s and
Ž .curvature coupling coefficients B s . Symmetrym, s

(symbols and numbering of normal modes in
)parentheses are indicated. The position of the transition

state corresponds to s = 0 amu1/2 Bohr.

1r2 Ž .amu Bohr is not resolved Fig. 2 . For the sec-
ond curvature peak, the 2 a component is much1

Ž . Ž .larger Fig. 4 than the 3a component Fig. 2 .1
Hence, the unresolved avoided crossing shown in
Figure 1 leads not only to the kink in the 2 a1

Ž .component Fig. 2 but also to the wrong decom-
position of the two curvature peaks between s s

1r2 Ž .y0.3 and s s 0.5 amu Bohr Fig. 2 .
The two curvature peaks are related to changes

in the direction of the reaction path when de-
scribed as a function of the HH distance R1 and

Ž .the CH distance R2 see Fig. 7 . The first curvature
1r2 Ž .peak at s s y0.3 amu Bohr Fig. 4 corresponds

to curvature k1 in the R1rR2 diagram and the
second curvature peak at 0.5 amu1r2 Bohr to cur-
vature k2; that is, the curvature peaks of the CH3
q H reaction path are dominated by changes in2

Ž .the HH distance R1 first curvature peak and the
Ž .CH distance second curvature peak .

At a step size of 0.01 amu1r2 Bohr, the avoided
crossing is resolved which is indicated by an am-

FIGURE 3. Diabatic representation of normal mode
Ž . 1/2frequencies v s in the region y3 F s F 3 amu Bohrm

Ž .using a reduced step size. The function v s of the
( )2a 8 vibrational mode is dashed to show that the1

( )avoided crossing with the 3a 11 mode is resolved. This1
is shown more clearly by enlarging the region y0.3 F s
F y0.25 amu1/2 Bohr as is done in the upper half of the
figure.

Ž .plitude A A, A9 ) 0.999 for all s values consid-
Ž .ered. However, amplitude A A, B9 at the avoided

crossing point, which describes changes in matrix
Ž .F s , drops from 0.94 to 0.75, contrary to what one

might expect in view of the smaller step size. We
Ž .note that the reduction of amplitude A A, B9 is,

first of all, a numerical effect that results from the
fact that the avoided crossing point is better lo-
cated with a step size of 0.01 rather than 0.05
amu1r2 Bohr and, accordingly, numerically better
described. The same is true for the peaks of curva-

Ž .ture k s , for which reliable values can only be
obtained using a sufficiently small step size.

In the present case, investigation of amplitude
Ž .A A, A9 is sufficient to correctly describe the

avoided crossing at s s y0.28 amu1r2 Bohr and
the additional reduction of the step size to fulfill

Ž .the criterion A A, B9 ) S s 0.999 is not neces-min
Ž .sary. However, for the general case, both A A, A9
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FIGURE 4. Characterization of the reaction path
Ž . ( )curvature k s thick solid line in terms of curvature

Ž . ( )coupling coefficients B s dashed lines afterm, s
correction of normal mode ordering with the help of a

Ž .reduced step size Ds. The function k s has been
shifted by 0.5 amuy1/ 2 Bohr y1 to better distinguish

Ž .between reaction path curvature k s and curvature
Ž .coupling coefficients B s .m, s

Ž .and A A, B9 have to be investigated to make sure
that all avoided crossings are described correctly.
Future work has to clarify when these rather strin-
gent conditions can be relaxed.

General Application Possibilities

Diabatic ordering described in this work can
also be applied to other properties that depend on
a reaction coordinate s. Some examples are given
next.

In reaction path studies it may be of interest
that the orbital energies, « , of the reaction complex

Ž .are investigated as a function of s, « s . The prob-
Ž .lem of labeling molecular orbitals MO resembles

that of labeling normal modes. Partitioning of the
total space at point s depends on the degree ofn
degeneracy of MOs. If the MOs are represented by
the vector c , the elements of which are the coeffi-m

cients of a LCAO expansion, then the overlap
between the MOs at subsequent points s andn

( . ( )FIGURE 5. Amplitudes A A, B9 calculated for amm

( )a -symmetrical and b e-symmetrical normal modes of1
the reaction complex CH ??? H as a function of the3 2
reaction coordinate. Numbers in parentheses correspond
to the numbering of normal modes given in Figure 1 and

( )3 UHF / STO-3G calculations .

s will be determined in the same way as thenq1
overlap between normal modes at these points.
Similar considerations will apply if one wants to
study changes in the energy of ground and excited

Ž .states, E s , along the reaction path.i
Another problem that can be solved by the

diabatic labeling procedure just described is the
correct assignment of normal modes that belong to
different isotopomers. This becomes obvious when
one uses the change in mass from one isotopomer
to the other as a reaction coordinate. Then, a step-
wise change in mass will convert one isotopomer
into the other comparable to a rearrangement reac-
tion between two isomers. Hence, isotopomer fre-
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( . ( . ( )FIGURE 6. Amplitudes A A, B9 and A A, A9 dependent on the reaction coordinate s calculated a before resolution
1/2 ( 1/2 ) ( )of the avoided crossing at s = y0.28 amu Bohr step size Ds = 0.05 amu Bohr and b after resolution of the

avoided crossing by locally reducing the step size to 0.01 amu1/2 Bohr.

quencies can be related to each other using a
mass-dependent reaction coordinate s and the
DMO method.

In a particular case, two isotopomers l1 and l2
may differ with regard to the masses of L of their
atoms. The masses which differ can be aligned in
two column vectors u and u :1 2

qŽ1. Ž1. Ž1.Ž . Ž .u s m , m , . . . , m 27a1 1 2 L

qŽ2. Ž2. Ž2.Ž . Ž .u s m , m , . . . , m 27b2 1 2 L

The generalized reaction path connecting the two
Ž .isotopomers is given by the vector function u s

Ž .with components defined in eq. 28 :

qŽ . Ž Ž . Ž . Ž ..u s s m s , m s , . . . , m s1 2 L

Ž .for 0 - s - 1 28

and the boundary conditions:

Ž . Ž . Ž .u 0 s u , u 1 s u 291 2

Ž .Because there is no criterion that determines u s ,
an infinite number of paths connecting u and u1 2

Ž .exists and the parameterization of u s is arbitrary.
A simple parameterization is given by:

Ž . Ž . Ž .u s s 1 y s u q su 301 2

Ž .Once u s is chosen, diabatic labeling of normal
modes is straightforward because the vibrational

w Ž .xequation eq. 31 can be parameterized with the
help of s:

Ž . 2 Ž . y1 Ž . Ž . Ž .Fd s s v s G s d s 31m m m

In this case, the force constant matrix F is indepen-
dent of s and, therefore, it has to be calculated just
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FIGURE 7. The reaction path of the reaction CH + H3 2
ª CH + H given as a function of the HH distance R14
and the CH distance R2. The path curvatures k1 and
k2 correspond to the curvature peaks of Figure 4.

for s s 0. Because of this, the calculational cost for
diabatic mode ordering in the case of isotopomers
is small.

Another problem of interest, which can be
solved with DMO, is the question of whether the
vibrational spectra of two closely related molecules
such as benzene and toluene can be correlated
using the procedure described for isotopomers.
Prerequisite for such a procedure is the definition
of a generalized reaction path vector u which cov-

Žers changes in geometry described by internal
.coordinates q , masses, and force constant matrixn

elements:

Ž . Žu s s q ; n s 1, . . . , N ¬ m , m , . . . m ¬ F ;n 1 2 K n m

q. Ž .n , m s 1, . . . , N 32

The force constant matrix F has to be calculated at
s s 0 and s s 1 and, for intermediate points, a

Ž .formula similar to eq. 24b has to be applied.
Ž .Using step sizes D s s D s Dq , Dm, DF for a se-n

quence of points between s s 0 and s s 1 normal
modes are calculated and ordered with DMO so
that an exact correlation of vibrational spectra is
possible. Work is in progress to clarify the extent
to which such a method can be applied to vibra-
tional spectra of molecules with increasingly dif-
ferent structures.

Conclusions

In this work, we have presented a new method
Ž .of diabatic mode ordering DMO that can be ap-

plied in connection with reaction path investiga-

tions. The advantages of the DMO method are:

1. DMO does not use symmetry and, accord-
ingly, can be applied in situations where the
symmetry of the reaction complex changes
along the reaction path, as for example, at a
bifurcation point.

2. The assignment of normal modes at different
points s and s can be quantified by cal-n nq1
culating the characteristic assignment ampli-

Ž . Ž . Ž .tudes A A, B9 and A A, A9 of eqs. 22 and
Ž .23 .

3. DMO is presently run by applying a fixed
step size D s. However, considerable im-
provements are possible by applying a vari-
able step size and automatically resolving
avoided crossings detected with the help of
overlap matrix and characteristic assignment
amplitude.

DMO is generally applicable to properties of the
reaction complex that depend on s. As an exam-
ple, the ordering of orbitals and energy eigenstates
along the reaction path has been discussed. Addi-
tional applications are possible when a generalized
reaction path vector u is introduced. In the case
that u represents the change in mass when con-
verting one isotopomer into the other, the vibra-
tional modes of the two isotopomers can be corre-
lated correctly with the help of DMO. This is a
special case of the more general problem of corre-
lating the vibrational modes of two different
molecules. As discussed in this work, the correla-
tion problem can also be solved in this case using
DMO.
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