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with the help of an adiabatic connection scheme
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Information on the electronic structure of a molecule and its chemical bonds is encoded in the molec-
ular normal vibrational modes. However, normal vibrational modes result from a coupling of local
vibrational modes, which means that only the latter can provide detailed insight into bonding and
other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational
modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)] represent a unique set of local
modes that is directly related to the normal vibrational modes. The missing link between these two
sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local
mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode
frequencies of any molecule can be converted into its normal mode frequencies with the help of an
adiabatic connection scheme that defines the coupling of the local modes in terms of coupling fre-
quencies and reveals how avoided crossings between the local modes lead to changes in the character

of the normal modes. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747339]

Il. INTRODUCTION

Determining the strength of the chemical bond is a diffi-
cult task because bonds are not observable.!= This difficulty
results from the fact that the chemical bond is just a concept
(rather than a measurable quantity) for explaining structure
and stability of molecules. There is a multitude of interactions
between the nuclei and the electrons of a molecule with the
consequence that some atoms are strongly attracted to each
other, whereas other atoms only weakly attract or even repel
each other. There is no way of deriving from these complex
interactions an exact definition of the chemical bond in the
quantum mechanical sense because this would imply a set of
hermitian operators for bond properties such as bond energy,
bond length, bond density, etc. Since this is not possible, one
can describe the chemical bond only on the basis of one of
the many models of bonding.'”” Some of these models are
based on observable molecular properties such as relative en-
ergy, geometry, or electron density distribution whereas others
revert to quantum mechanics and use molecular orbitals, the
molecular wave function, or molecular density matrices as a
means to describe bonding.!™’

The commonly used approach for assessing the strength
of a chemical bond is based on measured or calculated bond
dissociation energies (BDEs).®° If a chemical bond is fully
destroyed in a dissociation reaction, the energy needed for
this process should provide a dynamic measure for the bond
strength where the term dynamic is used to distinguish from
static bond strength descriptors such as bond length, bond
density, or bond polarity. The use of BDEs as bond strength
descriptors is problematic in several ways. For example, in the
hydrogen molecule electron density is drawn from the outside
into the bonding region. If the HH bond is cleaved there is a
relaxation of the bond density in the way that the spherical
charge distribution of the H atom is reestablished. By measur-
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ing the bond strength relative to the density-relaxed H atom,
the actual bond strength of the HH bond is underestimated and
can no longer be related to any other bond strength because
density relaxation is different in each case and accordingly a
flawed comparison of bond strengths results.'%!!

If in the dissociation process larger fragments are gen-
erated, there is, besides the relaxation of the electron density
of the original molecules, also a relaxation of the geometries
of the fragments thus yielding more stable fragment struc-
tures. Hence, the stabilization energies (SE) of the fragments
caused by both electron density and geometry relaxation have
to be added to the BDE of a bond to obtain the intrinsic BDE,
IBDE:

IBDE(H,A-BH,) = BDE(H,,A-BH,) + SE(H,,A-)

+ SE(-BH,), (1)

which is a true measure of the strength of bond A — B
in molecule H,,A-BH,. In the case of the CH bonds in
methane, SE can take values as large as 40 kcal/mol, i.e.,
BDE and IBDE differ significantly in magnitude.'' Also, SE
values of the same type of bond in different molecules can dif-
fer considerably so that a priori no relationship between BDE
and IBDE values can be expected. Since there is currently no
generally applicable way of calculating SEs, and by this IB-
DEs, from known BDE values, measured or calculated BDEs
are commonly used as bond strength descriptors despite the
fact that they may not be reliable and often be misleading
when comparing the strength of a bond A — B in different
molecules.

The assessment of bond strength via a dynamic pro-
cess is in principle a viable way, however it should be done
without changing the electron density distribution or molec-
ular geometry so that there is no need of determining SE

© 2012 American Institute of Physics
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values. An infinitesimally small change in the bonding situ-
ation leads to a better bond strength descriptor than any finite
or ultimate change in bonding because it does not imply any
electron density or geometry relaxation and leaves the chemi-
cal bond intact. Molecular vibrations probe chemical bonding
and, therefore, can be considered a possible source for reli-
able bond strength descriptors. Each K-atomic molecule pos-
sesses 3K — L normal mode vibrations (L: sum of translations
and rotations). These are characterized by normal mode fre-
quency w,, and normal mode force constant k,, which refer
to infinitesimally small changes in the positions of the nuclei
of the molecule during a normal mode vibration 1,. Hence,
these properties should be suitable dynamic descriptors of the
strength of the chemical bond.!!

There are two obstacles that have to be overcome before
using these vibrational properties as strength indicators. The
first has to do with the mass dependence of the frequencies.
For example, the molecules HH and DD possess the same
electronic structure and the same bond strength whereas their
vibrational frequencies strongly differ because of the differ-
ent reduced masses. For the purpose of eliminating the mass
dependence, one has to refer to vibrational force constants,
which are independent of the reduced masses and, thereby,
directly reflect the electronic factors determining the strength
of the chemical bond.'> '3

The second problem is more serious and concerns the de-
localized character of the normal vibrational modes.'> '3 It is
misleading to describe individual bonds of a molecule by a
specific normal vibrational mode. Accurate bond strength de-
scriptors are only obtained when referring to localized rather
than delocalized vibrational modes, where the former can be
associated with specific (diatomic) bond units. The vibra-
tional force constants of localized (or shortly local) vibra-
tional modes are the key for obtaining reliable bond strength
descriptors. Because of this, we will review in Sec. II how
local modes are determined either experimentally or com-
putationally. In Sec. III, it is proven that normal and local
vibrational modes are directly related, where the link be-
tween them is provided by the inverse force constant ma-
trix. Computational evidence for this proof is given for a
test set of 40 typical organic molecules. The relationship be-
tween local and normal vibrational modes will be explored in
Sec. IV by determining and analyzing the coupling between
vibrational modes. Conclusions of this work will be drawn in
Sec. V.

Il. DETERMINATION OF LOCAL
VIBRATIONAL MODES

There has been 60 years of work in vibrational spec-
troscopy which focused on the determination of unique lo-
cal vibrational modes that do not depend on the coordinates
used to describe the molecule and can be clearly associ-
ated with just one (diatomic, triatomic, etc.) fragment of the
molecule.'> 420 Most of this work has led to information on
local stretching modes in special cases such as the CH or NH
bonds'®?" without any possibility of generalization. In this
connection, it should be mentioned that the determination of
functional group frequencies for ketones, aldehydes, alkenes,
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alkanes, alcohols, etc. does not lead to local mode frequencies
because the functional group frequencies are always contam-
inated by coupling with other modes and are far from provid-
ing any quantitative measure of the bond strength.

McKean'® solved the problem of measuring local mode
frequencies in the case of CH stretching modes by exploiting
the dependence of the vibrational frequency on the reduced
masses. He synthesized isotopomers of a given molecule, in
which all CH bonds except the target bond were replaced by
CD bonds. The change in mass achieved by converting a CHj
or CH, group into a CD,H and CDH group decouples the re-
maining CH stretching mode from all CD stretching modes.
Due to isotope substitution, the CH stretching mode is largely
isolated, which means that it is not only decoupled from the
CD stretching vibrations but also from other stretching, bend-
ing, or torsional modes. Also, all Fermi resonances for the CH
stretching mode are suppressed. Hence McKean’s isolated CH
stretching modes can be considered to closely approximate
the true local modes, which was later confirmed by Larsson
and Cremer.”!

McKean prepared a large number of isotopomers to mea-
sure isolated CH stretching frequencies and to investigate
their dependence on geometric and electronic features of a
given molecule.?”>> He showed that, in this way, CH bonds
can be used as sensitive antenna or probes testing the proper-
ties of molecules. While his first work focused on CH bonds,
McKean and co-workers studied later other XH bonds (X: Si,
Ge, P, As).'%20 In addition, other authors used McKean’s ap-
proach to describe local XH stretching modes.?’~%°

Investigations involving bonds other than XH bonds
revealed the large difficulties experiment faces when a gener-
alization of McKean’s approach is attempted. For the purpose
of decoupling one internal stretching mode from other
stretching modes of the same type, the change in mass by
isotope substitution must be so large that it changes the mass
ratio significantly. Replacement of H by deuterium results in
a doubling of the mass and a satisfactory suppression of cou-
pling and Fermi resonances so that any residual coupling for
the isolated CH stretching modes is estimated to be less than
5 cm™!. For a CC bond, one would obtain a very small effect
if 12C is replaced by '3C or even '“C since the change in the
mass ratio is too small in these cases to play any significant
role in the localization of the CC stretching motion.

A generalization of McKean’s approach faces too many
difficulties to play any important role in the description of,
e.g., general AB bonds. The same holds for obtaining local
mode information from measured overtone spectra. Henry?°
has demonstrated that the higher overtones of an XH stretch-
ing mode can be reasonably well described with an anhar-
monic potential of a quasidiatomic molecule.?’ Higher over-
tones (Av < 3) of XH stretching modes reveal increasingly
local mode character. For overtones with Av = 5, 6, one ob-
serves one stretching band for each unique XH bond, even
if there are several symmetry equivalent XH bonds in the
molecule. This is a result of the fact that for overtones
with Av = 5, 6 the different linear combinations of symme-
try equivalent XH stretchings become effectively degener-
ate. Because of their low intensities, these overtone spectra
can only be recorded by intracavity dye laser photoacoustic
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spectroscopy, which limits the applicability of this technique
again to XH stretching modes.?”

Given this difficult experimental situation, theory has
made an important contribution. Cremer and co-workers>’-3*
were the first to demonstrate that local vibrational modes
can be determined in a similar way as normal vibrational
modes are determined. Konkoli and Cremer® proved that this
implies the calculation of adiabatically relaxed vibrational
modes, which are driven by changes in an associated inter-
nal coordinate. Therefore, the term adiabatic internal coordi-
nate modes (AICoMs) was coined to characterize the nature
of the local vibrational modes obtained. In this work, we will
use, for reasons of simplicity, the term local modes through-
out. The stretching force constants obtained by Konkoli and
Cremer for the local modes have been used to assess the
strength of CC** and CF bonds.*>3 It has been shown that
local vibrational frequencies can be derived from experimen-
tal frequencies®* and that normal vibrational modes can be
characterized in terms of the local modes.’*3! The validity
of the Badger rule’’ has been demonstrated for polyatomic
molecules by utilizing the local mode force constants.'? Also,
the local modes have been used to analyze and describe the
changes of the generalized vibrational modes of a reaction
complex along the reaction path of a chemical reaction.’$+?

Here, we use the term local modes in the strict sense of
its meaning as a mode driven by the displacement of just one
internal coordinate such as a bond length or a bond angle.
Of course, we can use also curvilinear coordinates such as
the puckering or deformation coordinates of an N-membered
ring,*>* which would lead to a local mode involving the dis-
placement of N-atoms. Yet another possible line of applica-
tion of the local modes is the use of symmetry coordinates as
leading parameters, for example involving all stretching dis-
placements of (a) given molecular group(s). This would lead
to delocalized vibrational modes similar to those obtained by
Reiher and co-workers.*>*’ These authors calculate unitarily
transformed normal modes associated with a given band in
the vibrational spectrum of a polymer where the criteria for
the transformation are inspired by those applied for the local-
ization of molecular orbitals. The authors speak in this case
of localized vibrational modes because the modes are local-
ized in just a few units of a polymer. Nevertheless, Reiher’s
modes are still delocalized within the polymer units and must
not be mistaken with the local vibrational modes discussed in
the current work. In passing on, we note that the frequencies
of the localized vibrational modes cannot be measured (be-
cause they fulfill just the task of mathematical tools to under-
stand measured vibrational spectra) whereas the frequencies
of the local modes can be measured as was already demon-
strated in selected cases.'®?! Therefore it is desirable to use
the terms local vibrational modes and localized normal vibra-
tional modes strictly separated and distinguish between them
as real and arbitrary vibrational modes.

In this work, we investigate the local vibrational modes
of Konkoli and Cremer? for the purpose of clarifying whether
they are unique, i.e., represent the only set of local vibrational
modes directly related to the normal vibrational modes. This
question is timely in view of the intensive work, which has
been done with so-called compliance constants. The latter
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have their roots in vibrational spectroscopy and are consid-
ered to provide a reliable measure of the bond strength.!>~17-48
They emerged when spectroscopists realized that the normal
mode force constants are coordinate dependent (i.e., change
with the choice of internal coordinates) and reflect the cou-
pling between vibrational modes (i.e., correspond to delocal-
ized rather than localized modes).'?> There were early sug-
gestions to use the inverse of the force constant matrix'# '3
because the inverse force constants are invariant under coor-
dinate transformations.'® Decius!’ invented the term compli-
ance constants for the inverse diagonal elements of the force
constant matrix F, (F~!); = I';, and showed that they repre-
sent meaningful molecular parameters.*’ Later it was shown
that bond compliance constants provide some measure of the
bond strength, which is not contaminated by contributions
from other bonds.>*3! On this basis an increasing number of
different bonding situations were investigated.*%30-6

In this work, local mode force constants and compliance
constants are compared with each other. It is shown that com-
pliance constants are the missing link between normal mode
and local mode force constants. By showing this, we provide
the proof that the local modes of Konkoli and Cremer®® are
the only local vibrational modes that are directly associated
with the (delocalized) normal vibrational modes and accord-
ingly they are unique. In this way, the work of Konkoli and
Cremer®-3? has to be seen as a useful extension of vibrational
spectroscopy.

lll. LOCAL VIBRATIONAL MODES

By solving the Euler-Lagrange equations for a vibrat-
ing molecule, the basic equation of vibrational spectroscopy
given by Eq. (1) is obtained,'?

FID = G 'DA, 2
where
G = BM !B, 3)

where F? is the force constant matrix, and D contains the nor-
mal mode vectors d,, (u =1, ..., Nyjp with Ny, =3K — L)
given as column vectors. Both matrices are expressed in terms
of internal coordinates q. Matrix G is the Wilson matrix'%>’
and matrix A is a diagonal matrix containing the vibrational
eigenvalues A, = 4m’c’w;, where w, represents the (har-
monic) vibrational frequency of mode d,, given in reciprocal
cm and c is the speed of light. The vibrational problem re-
quires the calculation of the analytical second derivatives of
the molecular energy with the help of quantumchemical meth-
ods and therefore it is solved in terms of Cartesian coordinates

L = MLA, “)

where f* is the force constant matrix, L collects the vibrational
eigenvectors 1, and M is the mass matrix of the molecule in
question. Matrix L is renormalized according to (’,LZN =1.
The force constant matrix can be written in three different
ways using either Cartesian coordinates, internal coordinates
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q, or normal coordinates Q,

Fi = C'f*C, o)
FQ = K = L'fL. (6)
Matrix C transforms normal modes from internal coordinate
space to Cartesian space®>
1, =Cd, @)
and is given by
Cc=M'BG™" ®)

The elements of the B matrix are defined by the partial
derivatives of internal coordinates with regard to Cartesian
coordinates.!? Matrices B and C are closely related,

BC=BM 'B'G'=GG ' =1 9)

Matrix B is used to convert from vibrational modes expressed
in Cartesian coordinates to modes expressed in internal coor-
dinates according to

D = BL. (10)

Konkoli and Cremer’® determined the local vibrational
modes directly from the Euler-Lagrange equations by setting
all masses equal to zero with the exception of those of the
molecular fragment (e.g., bond AB) carrying out a localized
vibration. They proved that this is equivalent to requiring
an adiabatic relaxation of the molecule after enforcing a
local displacement of atoms by changing a specific internal
coordinate as, e.g., a bond length in the case of a diatomic
molecular fragment (leading parameter principle).’® The

local modes obtained in this way take the form,*"
K'd
aj=— o (11)
dK-'d]

where the subscript i specifies an internal coordinate g; and
the local mode is expressed in terms of normal coordinates Q
associated with force constant matrix K of Eq. (6). Note that
d; is now a row vector of the matrix D. The local mode force
constant k") of mode i is obtained from Eq. (12),

kKD = aKa; = @K 'd)~". (12)

Local mode force constants, contrary to normal mode force
constants, have the advantage of being independent of
the choice of the coordinates to describe the molecule in
question. This relates them to the compliance constants I;.
In the following, we derive a simple relationship between k"
and ;.

Utilizing Eqgs. (5)—(7), the internal coordinate force con-
stant matrix can be written as

F¢ =D HL'FLD™! = (D KD (13)

Hence, the inverse force constant matrix, i.e., the compliance
matrix I'%, and its diagonal elements are given by

r! = (9! =pK'Df, (14)

(T, = 4K 'd/, (15)

J. Chem. Phys. 137, 084114 (2012)

which proves that in view of Eq. (12)
kD =1/, =1/}, (16)

i.e., the inverse of the local mode force constants of Konkoli
and Cremer” are the compliance constants of Decius.!”

This can be confirmed by starting directly from the
Konkoli-Cremer equation for the local vibrational modes,*
which implies a constrained minimization of the molecular
geometry for the situation that the internal displacement co-
ordinate g; leading the local mode of a molecular fragment ¢;
is set to a constant g7,

d [1 .
Eve [—qTF"q— ni(qi — q; )} =0 a7
qi L2
fori =1,2,..., Ny, where the harmonic approximation of
the potential V is used. This leads to the column vector 5
n =Fiq, (18)
q=F)"'np =Ty, (19)

or for a specific internal coordinate g;

i _ b =r!
gr (T b

where the constraint g; = g/ is used. The result is that the ratio
of the Langrange multiplier n;, which has the unit of a force,
and the displacement g; (in A) is equal to a constant, which
is the reciprocal of the compliance constant given in the units
of a force constant. From the work of Konkoli and Cremer,3°
one can prove that

(20)

B~ @K = k0, Q1)
i.e., again the local mode force constant k) of local mode
a; is equal to the reciprocal of the corresponding compliance
constant I';.

In Figure 1, 38 typical organic molecules augmented by
two H-bonded base pairs are shown, for which the local mode
force constants according to Konkoli and Cremer® and the
compliance constants according to Decius!” are calculated
using density functional theory at the B3LYP/6-31G(d,p)
level of theory.%*-6? Relevant data are listed in Table 1. The
stretching force constants range from 0.06 (H-bonding) to
20.3 mdyn/A (CN stretching in HCN, i.e., from very weak
to very strong bonding interactions. The data in Table I and
Figure 2(a) reveal that the local mode force constants order
different types of bonds according to their strength where
this order is in agreement with common chemical under-
standing of strength increase with bond order, orbital over-
lap, bond polarity, ring strain, or conjugation possibilities.
The same applies to the local mode bending force constants,
which increase with the stiffness of the bonds, the multiple
bond character of the two bonds involved, or ring strain (see
Figure 2(b)).

As shown in Figures 2(a) and 2(b), and in Table I the
correctness of Eq. (16) is fully confirmed. An accurate calcu-
lation of T exactly fulfills Eq. (16). When working with local
mode force constants and compliance constants, a number of
disadvantages of the latter become obvious:
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FIG. 1. Molecules investigated in this work.

® The compliance constants of Decius are not associated
with a vibrational mode. There are no compliance fre-
quencies or compliance masses. With the proof given
above, they can now be related to the local vibrational
modes of Konkoli and Cremer.’

e Since compliance constants are a measure for the
weakness of a bond (the larger their value, the weaker
is a bond), their usefulness as bond strength descrip-
tors is limited. It is difficult to associate certain types of
atom-atom interactions (electrostatic, dispersion, etc.)
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TABLE I. Comparison of bond lengths R, local mode force constants k,(zi), and local mode frequencies wff ) with compliance constants I'; for the bonds in
molecules 1-40 (see Figure 1). B3LYP/6-31G(d,p) calculations.

R kD wa r; R KD wa r;
No Bond [A] [mdyn/A] [em™!] [A/mdyn] No Bond [A] [mdyn/A] [em™!] [A/mdyn]
1.1 C-H 1.092 5.365 3129 0.186 23 C2-H 1.096 5.170 3072 0.193
2.1 C-H 1.096 5.178 3075 0.193 224 cl1-C2 1.539 3.916 1052 0.255
22 C-F 1.383 5.405 1117 0.185 25 c-C2 1.466 4.834 1169 0.207
3.1 C-0 1.418 4.908 1102 0.204 226 C=N 1.161 19.750 2278 0.051
3.2 C-H; 1.093 5.298 3110 0.189 23.1 C-H 1.087 5.521 3175 0.181
33 C-H, 1.101 4.946 3005 0.202 232 c=C 1.306 10.569 1729 0.095
34 O-H 0.965 8.150 3820 0.123 24.1 C-H 1.095 5.195 3080 0.192
4.1 C-H; 1.104 4798 2960 0.208 242 C-H, 1.065 6.488 3442 0.154
42 C-H, 1.095 5.211 3084 0.192 243 c-C 1.459 5.250 1219 0.190
43 C-N 1.464 4.426 1078 0.226 24.4 c=C 1.207 17.373 2217 0.058
4.4 N-H 1.017 6.783 3499 0.147 25.1 C-H 1.086 5.540 3180 0.181
5.1 C-H 1.089 5.445 3153 0.184 252 c-C 1.508 4.137 1082 0.242
52 c-Cl 1.803 2.903 743 0.344 26.1 C-H 1.090 5.366 3130 0.186
6.1 C-H 1.094 5.258 3098 0.190 26.2 c-C 1.469 5.349 1230 0.187
6.2 C-Si 1.888 2.738 744 0.365 26.3 c-0 1.430 4.068 1004 0.246
6.3 Si-H 1.488 2.838 2225 0.352 27.1 C-H, 1.087 5.477 3162 0.183
7.1 C-H 1.110 4.687 2925 0.213 272 C-H, 1.088 5.419 3145 0.185
72 Cc=0 1.207 13.612 1836 0.073 27.3 c-C 1.485 4769 1162 0.210
8.1 C-H. 1.099 5.062 3040 0.198 274 C-N 1.473 3.733 990 0.268
8.2 C-H, 1.094 5314 3115 0.188 27.5 N-H 1.019 6.734 3487 0.149
8.3 C=N 1.270 11.155 1712 0.090 28.1 C-H 1.086 5.538 3179 0.181
8.4 N-H 1.026 6.448 3412 0.155 28.2 c-C 1.481 4559 1136 0.219
9.1 C-H 1.069 6.346 3404 0.158 28.3 C-S 1.837 2,552 705 0.392
92 C=N 1.157 20.287 2308 0.049 29.1 Cl-H, 1.087 5.554 3184 0.180
10.1 C-H 1.095 5215 3085 0.192 29.2 CI-H, 1.085 5.636 3208 0.177
10.2 c-C 1.530 4.149 1083 0.241 29.3 C2-H, 1.090 5.429 3148 0.184
11.1 C-H; 1.095 5.237 3092 0.191 29.4 Cc1=C2 1.340 9.301 1622 0.108
112 C-H, 1.094 5.284 3106 0.189 29.5 Cc2-C2 1.457 5.153 1207 0.194
113 C-H, 1.097 5.096 3050 0.196 30.1 C-H 1.096 5.164 3070 0.194
11.4 c-C 1516 4.269 1099 0.234 30.2 c-C 1.461 5.242 1218 0.191
115 C-F 1.393 5.040 1079 0.198 30.3 c=C 1.209 17.153 2203 0.058
12.1 C-H, 1.097 5.148 3066 0.194 311 C-H 1.065 6.493 3443 0.154
12.2 C-H; 1.091 5.407 3142 0.185 312 Cc=C 1.212 16.679 2172 0.060
123 C-H, 1.114 4.540 2879 0.220 31.3 c-C 1.369 7.685 1474 0.130
12.4 c-C 1.507 4.081 1074 0.245 32.1 C2-H 1.080 5.828 3262 0.172
12.5 Cc=0 1.211 13.234 1810 0.076 322 Cl1-H 1.079 5.913 3286 0.169
13.1 C-H, 1.094 5.224 3088 0.191 32.3 Cc2-C2 1.435 5.573 1256 0.179
132 C-H; 1.089 5.485 3164 0.182 324 Cc1=C2 1.361 8.028 1507 0.125
133 c-C 1.507 4.268 1099 0.234 325 C1-0 1.364 5.589 1176 0.179
13.4 Cc-0 1.358 5.666 1184 0.176 33.1 C2-H 1.081 5.794 3252 0.173
135 Cc=0 1.210 12.933 1789 0.077 332 Cl1-H 1.080 5.847 3267 0.171
13.6 O-H 0.972 7.817 3741 0.128 333 C2-C2 1.425 5.808 1282 0.172
14.1 C-H 1.093 5.299 3110 0.189 334 C1=C2 1.378 7.376 1445 0.136
142 c-C 1.460 5.105 1202 0.196 33.5 CI-N 1.375 6.463 1303 0.155
143 C=N 1.160 19.820 2282 0.050 33.6 N-H 1.007 7.523 3685 0.133
15.1 C-H 1.087 5.572 3189 0.179 34.1 C1-0 1.345 5.881 1207 0.170
152 c=C 1.330 9.911 1674 0.101 342 C2-H 1.079 5.909 3284 0.169
16.1 C-H, 1.084 5.688 3222 0.176 343 C3-H 1.082 5.783 3249 0.173
16.2 C-H, 1.085 5.642 3209 0.177 34.4 Cc1=C2 1.360 8.024 1507 0.125
163 C-H, 1.084 5.688 3222 0.176 34.5 C2-C3 1.424 5.801 1281 0.172
16.4 c=C 1327 9.818 1667 0.102 34.6 C3-N 1313 8.232 1470 0.121
16.5 c-cl 1.752 3.320 794 0.301 34.7 O-N 1.399 3.713 919 0.269
17.1 C-H 1.082 5.757 3242 0.174 35.1 C-H 1.082 5.816 3258 0.172
17.2 c=C 1314 9.815 1666 0.102 352 c=C 1.335 9.469 1637 0.106
17.3 Cc=0 1.171 16.290 2008 0.061 35.3 c-C 1.491 4.268 1099 0.234
18.1 C-H 1.066 6.472 3437 0.155 354 C=0 1.198 13.595 1835 0.074
182 c=C 1.205 17.645 2234 0.057 35.5 Cc-0 1394 3.835 975 0.261
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TABLE 1. (Continued.)
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R o wa I R o wa I

No Bond [A] [mdyn/A] [em™!] [A/mdyn] No Bond [A] [mdyn/A] [em™!] [A/mdyn]
19.1 C1-H, 1.096 5.178 3074 0.193 36.1 C2-H 1.084 5.679 3220 0.176
19.2 Cl-H; 1.095 5217 3086 0.192 36.2 Cl1-H 1.081 5.827 3261 0.172
19.3 C2-H 1.098 5.088 3048 0.197 36.3 C2-C2 1.430 5.690 1269 0.176
19.4 C1-C2 1.532 4.066 1072 0.246 36.4 Cl1=C2 1.367 7.657 1472 0.131
20.1 C-H, 1.096 5.100 3051 0.196 36.5 C-S 1.736 3.653 843 0.274
20.2 C-H; 1.091 5.421 3146 0.184 37.1 C-H 1.097 5.115 3026 0.199
20.3 c-C 1.520 3.853 1044 0.260 372 C-H 1.100 5.016 3056 0.196
20.4 C=0 1216 12.777 1779 0.078 373 c-C 1.537 3.923 1054 0.255
21.1 C3-H, 1.088 5.539 3180 0.181 38.1 C-H 1.086 5.564 3187 0.180
21.2 C3-H, 1.085 5.651 3212 0.177 382 c-C 1.396 6.600 1366 0.152
21.3 C2-H, 1.087 5.574 3190 0.179 39.1 (N)O4...Hr 1.923 0.178 564 5.618
21.4 C1-H, 1.114 4.555 2884 0.220 39.2 Hy...Or 2.798 0.059 326 16.949
21.5 C2=C3 1.337 9.410 1632 0.106 39.3 Ny4...Hr 1.796 0.280 713 3.571
21.6 C1-C2 1.475 4577 1138 0.218 40.1 Og...He(N) 1.748 0.274 699 3.650
21.7 C1=0 1215 12.719 1774 0.079 402 (N)Hg...O¢ 1.902 0.250 667 4.000
22.1 Cl-H; 1.093 5.299 3110 0.189 403 Hg...N¢ 1.895 0.467 921 2.141
222 C1-H, 1.093 5319 3116 0.188

with increasing I'; values. This is the reason why
chemists did not use compliance constants for a long
time. One has tried to rectify this problem by using the
inverse of the compliance constants as local force con-
stants. However, this implies that the inverse of the di-
agonal elements of the inverse normal mode force con-
stant matrix is a local mode force constant, which has
never been proven. Equation (16) provides this proof.

® A significant problem with the interpretation of the
compliance matrix I' are the existence of off-diagonal
elements, the meaning of which and their relevance
for the diagonal elements is not known. On the diag-
onal of T, there are sometimes small compliance con-
stants between atoms that are separated by many A,
thus erroneously suggesting strong non-covalent inter-
actions. The occurrence of these terms led Baker and
Pulay to the conclusion that compliance constants can-
not be used to accurately describe the strength of weak
bonds.> For the local mode force constants this prob-
lem does not exist because they are driven by one inter-
nal coordinate each (leading parameter principle), are
not associated with off-diagonal elements, and lead to
meaningful values associated with meaningful molec-
ular internal coordinates.

® The determination of compliance constants implies the
calculation of an inverse matrix. This requires more
computational work and leads to reduced accuracy in
the compliance constants compared to that of the local
mode force constants.

The proof leading to Eq. (16) and the discussion of the
properties of compliance constants have two important impli-
cations. (1) The AICoM local vibrational modes of Konkoli
and Cremer>” are the only local modes that are directly related
to the normal vibrational modes of a molecule. This follows
from the fact that they can be directly connected via matrix
I' = F'. (ii) The compliance constants are superfluous as

bond descriptors because the local mode force constants al-
ready fulfill this task and there is no reason for working with
the less accurate and more costly to calculate reciprocal of a
force constant for the purpose of describing the weakness of a
chemical bond. In the following, we will clarify the relation-
ship between local and vibrational modes.

IV. AN ADIABATIC CONNECTION SCHEME
FOR RELATING LOCAL TO NORMAL
VIBRATIONAL MODES

For the purpose of relating local vibrational modes to nor-
mal modes, one has to express the force constants matrix in
terms of local mode force constants according to

F = A'KA, (22)
where A collects the local mode vectors of Eq. (11), 1. e.,
A =K 'DI[(DK'DH,]"! (23)

(subscript d denotes the diagonal terms of the matrix product).
The diagonal part of F* contains the local mode force con-
stants k%) whereas the off-diagonal elements provide a link
to the normal vibrational modes. By using a scaling factor A,
the matrix F* could be written as F 4+ AF4, i.e., as the sum
of a diagonal part F and an off-diagonal part F¢. For A =0
the local mode force constant matrix (having on the diagonal
the k) values) and for » = 1 the normal mode constant ma-
trix (expressed in local modes) would be obtained. With this
objective in mind and using Eq. (13), Eq. (2) is re-written as

ATKAA™) =F“A™") = (F4 + AFY)(A™)
= (A'/D'G'DA)AHA. (24)

Equation (24) reveals that partitioning into a diagonal and an
off-diagonal part (as done for the force constant matrix) re-
quires the same for matrix G~!, which is not possible.
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FIG.2. Correlation of inverse compliance constants I'; with local mode force
constants k,(f) . (a) Bond stretching force constants (see Table I); (b) Angle
bending force constants. B3LYP/6-31G(d,p) calculations.

However, this objective can be reached with the help of
compliance matrix I'? expressed in terms of internal coordi-
nates as defined in Eq. (14). Then, Eq. (2) can be rewritten as

(ry"'p = G™'DA. (25)
Next, Eq. (25) is rearranged to Eq. (26)
G(%)"'D = DA,
GI(T)~'D] = T[(T)"'DJA,
GR =TYRA, (26)

J. Chem. Phys. 137, 084114 (2012)

where a new eigenvector matrix R is introduced,
R=T%)"'D=FD=DHK (27)

By partitioning matrices I'? and G into diagonal (T'} and G,)
and off-diagonal (I'? and G,) parts and introducing the scal-
ing factor A (0 < A < 1), Eq. (26) becomes

(Ga + 1Go)R;, = (T + AT)R; A, (28)

where R and A depend on A. Equation (28) is the basis for an
adiabatic connection scheme, which relates local vibrational
modes to normal vibrational modes in terms of their eigenval-
ues (frequencies) and eigenvectors (mode vectors).

For A = 0, the adiabatic frequencies are obtained by

G4Ry = T/RyA,, (29)

where matrix A, contains the local mode frequencies on its
diagonal (in form of the product 47r>c?w?). This can be shown
in the following way:

A= Gu(T]) ! = GufK0]
= [Gi,i X k‘(ll)] = [47T2C2(a)a)l‘2]7 (30)

where symbol [ ] denotes a diagonal matrix. For the diagonal
part of Eq. (28), each local mode force constant £ is asso-
ciated with just one internal coordinate. The corresponding
local mode vector is orthonormal, i.e., it is a unit vector of
length N,;, with 1 at the position of the internal coordinate
leading the local mode.

For increasing X, coupling between the modes is intro-
duced and the resulting mode vectors are no longer orthog-
onal. They are expressed in terms of normal coordinates and
collected in matrix A. Matrix A is related to R by the follow-
ing equation:

A=R'(T%) " =R [k]. (31)
Furthermore, it holds that

A=D'T(r8) " =7 (14 1) (%)

=D 'I+D'TY (%), (32)
which implies that
DA =T (T%) ", (33)

i.e., normal mode vectors and local mode vectors are con-
nected via the compliance matrix.

If the scaling factor A is increased stepwise from O to 1
(under the premise that the number of internal coordinates
is equal to the number of vibrations: N, = Ny;), vibra-
tional couplings between the local modes are switched on
that lead, in the case of A = 1, to the normal mode vibra-
tions of Eq. (2). In Figures 3(b) and 3(c), the adiabatic con-
nection scheme is graphically displayed for 10 of the 12 vi-
brational modes of methanol. The corresponding frequencies
are given in Table II together with the coupling frequencies,
leading from local mode frequencies to normal mode fre-
quencies as obtained at the B3LYP/6-31G(dp) level of theory.
The 12 internal coordinates used for methanol are indi-
cated in Figure 3(a), which for the purpose of fulfilling the
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FIG. 3. (a) The 12 internal coordinates (nine of them are unique) used to
describe the geometry of methanol. (b), (c) Adiabatic connection scheme re-
lating local mode frequencies (left) with normal mode frequencies (right).
The highest and the lowest frequency are not shown. B3LYP/6-31G(d,p) cal-
culations.

requirement N,,-, = N,;; also have to contain symmetry-
equivalent internal coordinates. The application of Eq. (28)
requires resolving all avoided crossings, which is handled
by applying the diabatic mode ordering (DMO) algorithm
of Konkoli, Kraka, and Cremer.”> The DMO algorithm is
based on overlap between the vibrational mode vectors of
consecutive A-steps rather than symmetry criteria (therefore
the characterization as being diabatic*). By decreasing the
step-length AA to 0.01 or even smaller, DMO can correctly
resolve any avoided crossing of vibrational eigenstates for
increasing A.

At an avoided crossing the mode character is switched
or distributed between the modes depending on the type of

J. Chem. Phys. 137, 084114 (2012)

avoided crossing. The resulting mode character can be de-
termined by a decomposition of normal vibrational modes
in terms of local modes as was first shown by Konkoli and
Cremer.?! In Table I, this decomposition is given in the last
column and can be used to identify multiple couplings be-
tween different modes. For methanol, there is one avoided
crossing involving modes 6 and 8, which both have A’ symme-
try (see Figure 3(c)) for A close to 1. Mode 6 starts as a pure
H,CO bending mode but after the avoided crossing is slightly
dominated by H;CH, bending character (41% compared to
38% H,CO bending character, see Table II). The frequency
of mode 8 is pushed above that of mode 7 and also adopts
mixed character (64% H;CH, + 23% H,CO character) due to
the avoided crossing. Another avoided crossing at A = 0.8 be-
tween modes 2 and 3 leads to a mixing of CO stretching and
COH bending character (see Table II). Since mode 3 has al-
ready obtained some H;CO and H,CO + H/ CO character in
avoided crossings with modes 5 and 6 at A close to zero, it
passes some of this character to mode 2, which becomes in
this way a mixture of five different local vibrational modes
(see Table II).

The change in the mode frequencies for increasing scal-
ing parameter reflects the coupling between local modes lead-
ing to the normal vibrational modes. It is justified to consider
the difference wepypy = w(A = 1) — w(A = 0) as a coupling
frequency, which reflects the changes in the local mode fre-
quency w, = w(A = 0) caused by mode-mode coupling. When
adding the sum of coupling frequencies to the sum of local
mode frequencies, the zero-point energy (ZPE) is recovered
(see Table II). Large couplings are obtained when the start-
ing frequencies are close or identical and the mass ratio of the
vibrating atoms is comparable. For example, there are large
coupling frequencies ranging from 106 to 203 cm~! for the
ABH bending modes close to 1300 cm~! with A = C and
B = O (or vice versa; see Figure 3(c) and Table II). How-
ever, for HCH bending (1500 cm™") the 12 times larger mass
of the central atom acts as a wall and effectively suppresses
mode-mode coupling between H;CH, and H;CH bending
(Figure 3(b)). Diagrams as the one in Figures 3(b) and 3(c)
help to specify true electronic effects in a molecule via the
local mode force constants (or frequencies) and to analyze
the normal mode properties as a result of both electronic
and kinematic effects involving mode-mode coupling. How-
ever, they do not detail the coupling between vibrational
modes because they are cumulative quantities. These details
are obtained from the adiabatic connection scheme or the de-
composition of normal vibrational modes in terms of local
modes.*!

For the purpose of getting meaningful local mode
results, it is advisable to keep Nj,-« = Ny, and to use for a
K-atomic acyclic molecule K-1 bonds, K-2 bond angles, and
K-3 dihedral angles (cyclic molecule: K bonds, K-3 bond
angles, K-3 puckering coordinates*) where the angles are
defined for directly bonded atoms to obtain a meaningful pa-
rameter set. The inclusion of non-bonded distances within a
molecule often does not lead to useful results. However, non-
bonded interactions between molecules such as H-bonding
can be probed in a meaningful way by local mode force
constants.
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TABLE II. Vibrational analysis of methanol (B3LYP/6-31G(dp) calculations).*

Wq Wy WDcoup
Type [em™1] " [em™!] [em™1] Character of normal mode & in terms of local mode contributions
w,(OH) 3829.42 12 3835.01 5.59 99.9% OH
w,(CH;) 3067.83 11 3088.05 20.22 83.1% CH;, 16.4% (CH, + CH,)
wq(CH,) 3030.35 10 3059.08 28.73 99.6% (CH, + CH,)
wq(CH,) 3030.35 9 3003.83 —26.52 83.6% (CH, + CH,), 16.1% CH;
w,(H;CH,) 1501.92 8 1518.85 16.93 64.4% (H;CH, + H;CH,), 23.0% (H,CO + H,,CO), 10.1% H;CO, 1.0% COH
wq(H;CH)) 1501.92 7 1513.54 11.62 91.6% (H;CH, + H;CH)), 7.0% (H,CO + H,CO)
w,(H,CO) 1297.84 4 1187.46 —110.38 95.2% (H,CO + H,,CO), 4.4% (H;CH, + H;CH,)
w,(H],CO) 1297.84 6 1501.29 203.45 41.4% (H;CH, + H;CH)), 37.6% (H,CO + H, CO), 18.4% H;CO, 2.2% CO
w,(H; CO) 1279.42 5 1382.09 102.67 67.8% COH, 24.8% H;CO, 6.2% (H,CO + H,CO)
w,(COH) 1258.43 3 1110.76 — 147.67 52.1% CO, 10.6% COH, 29.4% H;CO, 7.6% (H,CO + H,CO)
w4(CO) 1094.16 2 1034.51 —59.65 39.5% CO, 25.3% COH, 19.7% H;CO, 14.6% (H,CO + H,CO)
w,(H; COH) 345.62 1 292.69 —5293 99.6% H; COH
ZPE 32.22 32.20 —0.02

2The zero poin energy (ZPE; in kcal/mol) is added to verify that the sum of local mode frequencies enhanced by the sum of coupling frequencies equals the sum of normal mode

frequencies.

V. CONCLUSIONS

In this work, we have proven that the local vibrational
modes first presented by Konkoli and Cremer are the true
counterparts of the delocalized normal vibrational modes. The
proof given here is based on the fact that the compliance con-
stants of Decius,!” which are obtained from the inverse force
constant matrix in internal coordinates, are directly related to
the local mode force constants. Hence, the compliance matrix
of Decius provides the missing link between normal and local
vibrational modes. We have verified the theoretically derived
relationship k) = 1/ T'; for stretching and bending force con-
stants for a set of 40 typical organic molecules (Figure 1)
calculated with two different approaches (using the Konkoli-
Cremer program for the k") constants and a new program de-
veloped in this work for the I'; constants).

The compliance matrix I' provides the possibility of re-
lating local mode frequencies directly to the normal mode
frequencies via the adiabatic connection scheme given by
Eq. (28). One obtains correlation diagrams that reveal the cou-
pling between local vibrational modes, where the coupling
can be expressed in terms of cumulative coupling frequen-
cies. The sum of local mode and coupling frequency is always
identical to the corresponding normal mode frequency. De-
tailed information about the coupling mechanism is given by
the decomposition of the normal vibrational modes in terms
of local modes.

Local mode force constants provide an exact measure of
the relative intrinsic strength of different bonds and, there-
fore, are perfectly suited to discuss the electronic structure
and bonding in molecules. This is true for weak atom-atom
interactions (e.g., H-bonding) as well as strong triple bonds
(e.g., as in nitriles). In this connection it is advantageous that
local mode frequencies and force constants can be derived
from experimental frequencies, as was demonstrated by Cre-
mer and co-workers.** The use of compliance constants has
become superfluous in view of the results presented in this
work.
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