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Convergence problems of meta-GGA (generalized gradient approximation) XC (exchange and
correlation) functionals containing a self-interaction correction term are traced back to a singularity
of the latter that occurs at critical points of the electron density. This is demonstrated for the bond
critical point of equilibrium and stretched H,. A simple remedy is suggested that cures meta-XC
functionals such as VSXC, TPSS, M05, M06, and their derivatives without extra cost. © 2007
American Institute of Physics. [DOI: 10.1063/1.2800011]

I. INTRODUCTION

Density-functional theory' (DFT) calculations using
meta-GGA (generalized gradient approximation) functionals
(see, e.g., Refs. 2—-6) for the exchange and correlation (XC)
energy have attracted intense interest recently. We report
here that calculations with commonly used meta-GGA XC
functionals such as VSXC, TPSS,’ PKZB,! Mo5,’
MO05-2X.,> or MO6-L (Ref. 6) can lead to convergence prob-
lems in the self-consistent-field (SCF) iteration caused by a
singularity in the self-interaction correction term containing
the kinetic energy density. These problems in turn influence
the structure optimization, which can lead to erroneous ge-
ometries. We observed this problem first for the M05 XC
(Ref. 5) description of the H, molecule. Calculation of the
dissociation curve for either ground or excited states leads to
erratic results unless an extremely fine benchmark grid is
used for the numerical integration of the XC terms. In the
case mentioned, the iteration converges properly for certain
values of the bond distance R=R(H,H), whereas it diverges
altogether or converges to an incorrect configuration, e.g.,
the (10,)? configuration, for other R values. The conver-
gence or divergence behavior in dependence on R follows no
clear pattern. In the course of the investigation, we found
that similar problems for other meta-GGA functionals are
encountered for molecules which are generally considered as
typical benchmark cases.

For the practicability of an XC functional, it is problem-
atic when convergence problems occur already for simple
reference systems. A detailed analysis reveals that these con-
vergence problems are related to the equal-spin part of the
correlation energy in the meta-GGA functional considered.
Based on this analysis, we suggest in the present work a
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modification of the functionals that improves their numerical
stability in SCF iterations while leaving the resulting XC
energies essentially unchanged. The suggested modification
is easy to implement for the functionals under consideration
and does not imply a substantial extra computational cost.

The paper is organized as follows. In Sec. II, we present
the analysis of the convergence problems and describe a
remedy of the XC functionals so that the singularity prob-
lems vanish. Section III summarizes the computational de-
tails of this work and in Sec. IV a number of molecules are
described for which the meta-GGA XC functionals men-
tioned above lead to erratic results. Section V presents a brief
summary.

Il. THEORY

In the meta-GGA functionals under investigation, the
correlation energy is decomposed into an equal-spin and an
opposite-spin component. The expression for the equal-spin
correlation for spin orientation o (o=« or B) contains the
factor

Yo
D,=1-—Y 1
7 4p,7, (18)
Yo=1Vpol% (1b)
oceC
TO':E |V(Pio-23 (10)

L

for the elimination of self-interaction errors in the correlation
energy. We note that 7,=0 implies y,=0 but not vice versa.
At positions where only one electron of spin o is present
(called “one-electron positions™ in the following),
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Vo= 405y, )

so that D, and the contribution to the correlation energy
become zero.

The Kohn-Sham (KS) matrix elements used in the SCF
iterations depend on the derivatives of D, with respect to p,,,
v, and 7,, where the latter are

D 1

= = B (33)
e  4PeTs
Dy Yy
—r- 3b
Iy dpyTs (30)

Note that at one-electron positions, dD/d7,=1/7, because
of Eq. (2). If p, has a stationary point that is a one-electron
position as, e.g., the bond center of the H, molecule, then
7,=0 at this point (provided that p,# 0 at this point). Also,
for small distances x from the stationary point, y,%x?, 7,
«x?. Consequently, both derivatives dD,/dy, and dD,/d7,
have a 1/x? singularity at that point. The elements u, v of the
XC parts of the Fock matrices are given by Eq. (4),

XCo _ a_f (?_f
F;w _f {3PU¢M¢V+(2t9’yanU
of
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v paf) V() + 2LV 9,7 4, |,

(4)

where f gives the functional dependence of the XC energy
density on p,, VY, VYso» and 7, respectively, and 7y .
=Vp,Vp,. The singularities in dD,/ 7y, and dD,/ It also
occur in df/dy,, and df/d7,. Despite the presence of these
1/x* singularities at the stationary point, this integral still
converges. However, when integrating numerically, the inte-
gral is replaced by a finite sum of the form

Fﬁf"* 2 ["‘]iA3”i, (5)

+

!

where A’r; is the finite volume element and the dots repre-
sent all terms in the square brackets of Eq. (4) evaluated at
the grid point r;. If r; happens to be close to the stationary
point in p,, then the value of [---]; will be large, and the
contribution of volume element i to Fﬁf” will be exagger-
ated. This exaggeration will be more serious the larger A’r,
is, i.e., the coarser the integration grid is. The exaggerated
terms in the KS matrix, in turn, cause the convergence prob-
lems mentioned. That is, the use of the meta-GGA function-
als under consideration can lead to convergence problems if
the system in question has a stationary point in its density p,
that is a one-electron position for o (unless this point is in a
nodal surface of p,). Thus, if there is only one electron for
one of the spin orientation o, then any stationary point in p,,
can cause convergence problems of the kind observed. This
is in line with the observations made for the H, and other
molecules as will be described in Sec. I'V.

The analysis of the convergence problems leads to two
conclusions with regard to their properties: First, the prob-
lems occur when a point of the integration grid is close to a
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stationary point of p, as, e.g., the bond center of H,. This
explains the erratic occurrence of the convergence problems.
If, for instance, one performs a potential-energy scan for H,
by increasing R=R(H,H) in very small steps, the conver-
gence problems will occur every time if one of the grid
points passes the bond center. For usual production grids, the
radial distance between neighboring grid points in the va-
lence region is of the order of 0.1 bohr radii. That is, R
intervals with proper SCF convergence and with conver-
gence problems would alternate on a scale of about 0.1 bohr.
A production potential energy scan with a step length of
0.1 bohr or more will then scan the two kinds of intervals in
random order thus leading to an erratic description. A geom-
etry optimization will abort if one of the intermediate geom-
etries belongs to an R interval with convergence problems.

Second, the convergence behavior for a given system
may depend not only on the current geometry and the level
of theory used (i.e., XC functional and integration grid) but
also on the algorithm and parameters used for the SCF itera-
tion.

It is easy to predict under which circumstances the con-
vergence problems should not occur. If bonding and anti-
bonding orbitals are occupied, as in the case of the He,
dimer, 7,>0 will hold everywhere in the molecule, includ-
ing the bond center, and the singularity in the KS matrix will
be suppressed. Likewise, core electrons will largely suppress
the occurrence of singularities. For the Li, dimer, for in-
stance, the core electrons will generate a small but significant
positive 7, value at the bond center, which prevents the KS
matrix elements from becoming singular. It might thus ap-
pear that the convergence problems appear only for a small
class of molecules and are of minor importance. However, on
the one hand, it will be a potential source of problems if an
XC functional behaves erratically even for simple molecules,
which in addition are often needed as references in chemical
investigations. Besides, the convergence problems can also
occur for molecules with heavier atoms if the core electrons
are described by effective core potentials (ECPs). Thus, it is
desirable to remedy the convergence problems by a suitable
modification of the functionals.

The numerical problem mentioned affects only the de-
rivatives of D, (and eventually the KS matrix) rather than
the values of D, (and thus eventually the equal spin correla-
tion density) itself. More specifically, the values of D, for
physically relevant sets of values p,, 7v,, and 7, are reason-
able. The problems arise from the behavior of D, for un-
physical sets of values (e.g., 7,=0 but y,# 0), which are not
relevant for the calculation of the correlation energy itself
but are probed during the calculation of the derivatives of
D,,. That is, if the SCF iteration converges to the proper state,
the calculated energy will be reliable. Consequently, a modi-
fication of the functionals has to be done in a way that the
values of D, for physically relevant cases are changed as
little as possible, whereas the singular behavior of the deriva-
tives has to be suppressed. In other words, the improvement
of the meta-GGA XC functionals from Refs. 2-6 given
above should not modify the calculated XC energy values for
those cases where the functionals from Refs. 2—6 in their
original form work properly in the SCF iteration.
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TABLE 1. Absolute energies of Hz(]E;T) in Hartree calculated for different distances R(H,H) with different
integration grids at M05/6-311++(2p) using the unmodified and modified MO5 functional. The (75,302),
(99,590), and (96,32,64) grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R(H,H) given in bohr units. Equilibrium bond distance of 1.403 bohr
units.

MO5 Modified MO5 (a=10"* a.u.)
R E(75,302) E(99,590) E(96,32,64) E(75,302) E(99,590) E(96,32,64)
1.0 7.95538830 —1.11821722 -1.11821722 -1.11821694 -1.11821722 -1.11821722
1.1 -1.14399561 —-1.14399596 —-1.14399598 —-1.14399561 —-1.14399596  —1.143 99598
1.2 —1.15896660 —1.15896660 —-1.15896660 —1.15896660 —1.15896660 —1.158 966 60
1.3 -1.16641633 -1.16641608 -1.16641607 -1.16641633 -1.16641608 —1.16641607
14  -1.16859457 —-1.16859440 —-1.16859441 —-1.16859457 —-1.16859440 —1.16859441
1.5 -1.16704692 —-1.16704705 -1.16704707 -1.16704692 -1.16704705 —1.16704707
1.6 -1.16283930 -1.16283956 —-1.16283957 -1.16283930 -1.16283956 —1.16283957
1.7 -1.15671507  Not converged -1.15671529 -1.15671507 -1.15671529 —1.15671529
1.8 8.198 001 81  —1.14920897 -1.14920896 -1.14920873 -1.14920897 —1.149208 96
1.9 -1.140724 11 —1.14072446  -1.14072446 -1.14072411 -1.14072446 —1.140724 46
2.0 7.688 319 07 7.68829990 —1.13158219 —1.13158184 —1.13158219 -1.13158219
2.1 —1.12204346  —-1.12204362 -1.12204363 -1.12204346 -1.12204362 -1.122043 63
22 -1.11232210 -1.11232187 -1.11232187 -1.11232210 -1.11232187 -1.11232187
2.3 -1.10258717 -1.10258657 -1.10258657 -1.10258717 -1.10258657 —1.10258657
24 -1.09296898 —1.092968 11  —-1.092968 11 -1.09296898 —-1.092968 11 —-1.092968 11
2.5 -1.08356250 —-1.08356193 -1.08356192 -1.08356250 —-1.08356193 —1.08356192

As the analysis reveals that the convergence problems
arise from one-electron positions, the contributions to the
equal-spin correlation energy have to vanish anyway, i.e.,
D,=0. An obvious solution to the problem is thus to exclude
all grid points from the numerical integration for which 7, is
below a certain threshold. However, such cutoff procedures
can give rise to new problems, e.g., discontinuities in
potential-energy surfaces and energy gradients and, conse-
quently, problems in geometry optimizations. A more appro-
priate approach is to modify the expression for D, in a way
that the value of the equal-spin correlation is essentially un-
affected, however, the singularities in dD,/dvy,, and dD,/ d,
are eliminated. This can be accomplished by replacing D, by
D

o

molecules employing Pople’s 6-311++G(2d,2p) basis set.”
For heavy atom systems, we used also the Stuttgart/Dresden
ECP10SDF effective core potential and the corresponding
basis sets.'” The following integration grids were used: (i) an
Euler-MacLaurin/Lebedev (75,302) integration grid,“’12 cor-
responding to fine production grids in modern quantum-
chemistry packages, (ii) an Euler-MacLaurin/Lebedev
(99,590) grid, corresponding to ultrafine production grids,
and (iii) an Euler-MacLaurin/spherical (96,32,64) grid, char-
acteristic for a benchmark grid.

Test calculations for H, and H,O were performed to de-
termine the optimal parameter a in Eq. (6). This value was
then applied for all other molecules investigated.

For all molecules investigated, we performed geometry
scans with both the unmodified and the modified meta-GGA

- 2,2 6
D,=(1-¢"/*)D,. © functionals mentioned above, employing the three grids
=Ty where we focus in this work on the results obtained for the

Here, a is a parameter responsible for damping irregularities
in the value of D,. For 7,>a, 50200, i.e., the correlation
energy contribution is not affected by 7. Only for small 7,
(with reference to a) does T, influence the value of D,.
Small 7, values are indicative of one-electron positions
where equal-spin electron correlation is not present anyway.
One can easily verify that 7, eliminates the 1/, singulari-
ties in dD/dvy, and oD/ d7, given in Eqgs. (3a) and (3b).

The parameter @ must be chosen large enough to safely
suppress the singularities in dD/ dvy,, and dD /7, but small
enough to avoid an impact of the equal-spin correlation en-
ergy. We determined the factor a by a series of test calcula-
tions, which are described and discussed in the following
sections.

lll. COMPUTATIONAL DETAILS

We implemented the modified MOS5 functional into the
program package COLOGNE07® and tested it for a number of

MO5 functional. Similar observations and results were ob-
tained for the other functionals.

IV. RESULTS

Table I lists results for potential energy scans of H, with
R varying from 1 to 2.5 bohrs in steps of 0.1 bohr, employ-
ing both the unmodified and the modified MO5 functionals
and the three integration grids described in Sec. III. For the
unmodified functional and the (75,302) grid, one obtains un-
reasonable energy values above 7 hartrees for 1.0, 1.8, and
2.0 bohrs, indicating that the SCF procedure converges to an
incorrect state. For the finer (99,590) grid, the energy is un-
reasonable for R=2.0 bohrs (7.688 hartree); besides, the
SCF procedure diverges for R=1.7 bohr. For the (96,32,64)
reference grid, all energy values are in the interval of
—1.169 to —1.083 hartree, i.e., an interval about 5 kcal/mol
above the ground-state energy, indicating that there are no
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TABLE II. Absolute energies of H;’(zE;) in Hartree calculated for different distances R(H,H) with different
integration grids at M05/6-311++(2p) using the unmodified and modified MO5 functional. The (75,302),
(99,590), and (96,32,64) grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R(H,H) given in bohr units. Equilibrium bond distance of 2.092 bohr
units.

MO5 Modified MO5 (a=10"* a.u.)

R E(75,302) E(99,590) E(96,32,64) E(75,302) E(99,590) E(96,32,64)

1.0 -0.44959941 -0.44910180 —-0.44910167 —-0.44959935 -0.44910176 -0.449101 67
1.1 378031301 —-0.49424801 —0.49424813 -0.49449298 -0.49424799 -0.49424813
1.2 -0.52736025 -0.52730511 -0.52730498 -0.52736017 -0.52730511 —0.527 30498
1.3 -0.55152800 -0.55160250 -0.55160222 -0.55152792 -0.55160236 —0.55160222
14  -0.56929570 —-0.56945127 —-0.56945123 -0.56929552 -0.56945127 -0.56945123
1.5 -0.58227887 -0.58248614 -0.58248611 -0.58227887 -0.58248614 —-0.58248611
1.6 -0.59164228 -0.59187945 —-0.59187941 -0.59164220 -0.59187945 -0.59187941
1.7 -0.598 233 57 3.62494700 -0.59847944 -0.59823357 -0.59847949 -0.598479 44
1.8 390384971 -0.602908 15 —-0.602908 10 -0.60267402 -0.60290815 —-0.602908 10
1.9 -0.60543032 -0.60563590 -0.60563587 -0.60543032 -0.60563590 -0.605 635 87
2.0 3.635 116 80 3.636 13033  -0.60703296 -0.60686789 -0.60703298 -0.607 032 96
2.1  -0.60727899 -0.60739801 -0.60739800 -0.60727899 -0.60739801 —0.607 398 00
2.2 —0.606 896 75 3.644 32185 -0.60697231 -0.60689675 -0.60697232 —0.606972 31
23  -0.60590673 —0.60594875 -0.60594873 -0.60590673 —0.60594875 —0.60594873
24  -0.60445878 —-0.60447934 -0.60447932 -0.60445877 -0.60447933 —0.604 479 31
2.5 -0.60267728 —-0.60268640 —-0.60268638 -0.60267728 -0.60268640 —0.602 686 38

convergence problems and one obtains a smooth dissociation
curve for the (96,32,64) grid. In those cases where no con-
vergence problems occur, the energy values for a given R
value and different grids agree within 107° hartree. The re-
sults for the unmodified functional confirm that the MOS5
functional leads to erratic convergence behavior for the H,
molecule. Noteworthy is that one may obtain convergence
problems for a finer grid [R=1.7 bohrs and (99,590) grid] in
cases where a coarser grid provides a convergent SCF pro-
cedure.

The modified M0S5 functional (a=10"* a.u., Table I) pro-
vides smooth dissociation curves for all three grids. In those
cases where the original M05 functional leads to SCF con-
vergence, the unmodified and modified MOS functionals pro-

vide energies differing by less than 1077 hartree. In line with
this fact, the three grids used will provide energies differing
at most by 107 hartree for a given geometry if the modified
MOS5 functional is used.

The results for H, demonstrate that the modified M05
functional eliminates the convergence problems observed for
the original MO5 functional in the case of H,. In addition, the
results from the unmodified and modified MO5 functionals
agree, i.e., the modification does not generate any undesir-
able changes in the behavior of the M0O5 functional.

The convergence problems described should occur in all
molecules with only one electron for one of the spin orien-
tations. We have verified this hypothesis by performing po-
tential scans for molecules such as Hj (Table II), He%+ (Table

TABLE III. Absolute energies of He%*(lig) in Hartree calculated for different distances R(He,He) with dif-
ferent integration grids at M05/6-311++(2p) using the unmodified and modified MO5 functional. The
(75,302), (99,590), and (96,32,64) grids correspond to fine production grids, very fine production grids, and
benchmark grids in standard DFT programs. R=R(He,He) given in bohr units. Equilibrium bond distance of
1.327 bohr units.

MO05 Modified MO5 (a=10"* a.u.)

R E(75,302) E(99,590) E(96,32,64) E(75,302) E(99,590) E(96,32,64)

1.0 -3.59310816 Not converged -3.59351229 -3.59310817 -3.59351241 -3.59351229
1.1 -3.64495294 -3.64531024 -3.64531017 -3.64495294 -3.64531025 -3.64531017
1.2 =3.67051990 -3.67076846 -3.67076844 -3.67051990 -3.67076846 -3.670768 44
1.3 448377546 -3.67943986 -3.67943985 -3.67929466 -3.67943986 —3.67943985
14 =-3.67750224  -3.67760518 -3.67760512 -3.67750224 -3.67760518 -3.677605 12
1.5 -3.66923485 -3.66935407 -3.66935404 -3.66923485 -3.66935408 -3.669 35404
1.6 -3.65719882 -3.65735468 -3.65735473 -3.65719882 -3.65735468 -3.65735473
1.7 -3.64321677 -3.64341553 -3.64341529 -3.64321677 -3.64341553 -3.64341529
1.8 -3.62857309 -3.628 79134  -3.62879262 -3.62857309 -3.62879134 -3.62879262
1.9 -3.61404025 -3.61429311 -3.61429072 -3.61404025 -3.61429311 -3.61429072
2.0 -=3.60019346 -3.60036989 -3.60037149 -3.60019345 -3.60036987 -3.60037147
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TABLE IV. Absolute energies of Hi('A}) in Hartree calculated for different distances R(H,H) with different
integration grids at M05/6-311++(2p) using the unmodified and modified MO5 functional. The (75,302),
(99,590), and (96,32,64) grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R(H,H) given in bohr units. Equilibrium bond distance of 1.542 bohr
units.

MO5 Modified MO5 (a=10"* a.u.)
R E(75,302) E(99,590) E(96,32,64) E(75,302) E(99,590) E(96,32,64)
1.0 -1.12729415 -1.12709812 -1.12709612 -1.12729415 -1.12709812 —1.127096 12
1.1 -1.21163638 -1.21160614 -1.21160454 —-1.21163638 —1.21160614 —1.211604 53
1.2 -1.26764502 -1.26771284 -1.26771056 -1.26764502 -1.26771309 —1.26771055
1.3 -1.30384093 -1.30396531 -1.30396122 -1.30384092 -1.30396512 -1.30396122
14 -1.32601288 7.88096226 -1.32616419 -1.32601287 -1.32616716 —1.32616418
1.5 -1.33815229 7.82335956 —-1.33832731 -1.33815229 —-1.33832876 —1.33832731
1.6 —1.34298779 7.924988 87 —-1.34318041 —1.34298754 —-1.34318163 —1.34318041
1.7 -1.34258780 —-1.34278615 —1.34278458 —1.34258751 —1.34278589 —1.34278458
1.8 5.264 00793 -1.33866038 —-1.33865901 —1.33847727 -1.33866023 —1.33865901
1.9 6.597368 13 —-1.33188097 -1.33187988 -1.33173119 -1.33188089 —1.33187988
2.0 6.839 897 06 6.266 74289 -1.32316268 -1.32305631 -1.32316343 —-1.32316268
2.1 -1.31295321 -1.31301967 -1.31301887 —-1.31295293 -1.31301934 -1.31301887
2.2 6.679 55785 —-1.30185938 —-1.30185802 -1.30182305 -1.30185823 —1.30185802
23 -1.28999837 -1.29001369 -1.29001252 -1.28999737 -1.29001241 —-1.29001251
24  —-1.27774537 -1.27774877 —-1.27774767 -1.27774391 —-1.27774721 —1.277747 65
2.5 5.576 056 88  —1.26527856 —-1.26527788 —1.26528009 —-1.26527696 —1.26527782

III), and HY (Table IV). In analogy to the case of H,, one
finds spurious cases of convergence to an incorrect state or
SCF divergence for the (75,302) and (99,590) grids. Only for
the (96,32,64) grid do convergence problems not arise. In
line with the observations made for H, (Table I), the modi-
fication of the MOS5 functional satisfactorily corrects the er-
roneous convergence behavior in all cases.

Systems containing alkali atoms should be prone to the
same convergence problems if described with pseudopoten-
tials. For the purpose of testing this hypothesis, we per-
formed a potential-energy scan for the Na dimer described
with the Stuttgart/Dresden SDF ECP and the corresponding
valence basis set.'’ Table V shows the absolute energies for
R values in the range from 6.0 to 8.0 bohrs. Indeed, for the

TABLE V. Absolute energies of Naz(]E;) in Hartree calculated for different distances #(Na,Na) with different
integration grids at MO5/ECP10SDF using the unmodified and modified MO5 functional. The (75,302),
(99,590), and (96,32,64) grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R(H,H) given in bohr units. Equilibrium distance: 6.067 bohr units for
(75,302) grid, 6.079 bohr units for (99,590) grid, and 6.049 bohr units for (96,32,64) grid.

MO05 Modified MO5 (a=10"* a.u.)

R E(75,302) E(99.509) E(96,32,64) E(75,302) E(99,509) E(96,32,64)
6.0 -0.38368070 —-0.38344181 —0.38365158 —0.38368070 -0.38344181 -0.38365158
6.1 -0.38369427 -0.38347042 —0.38365068 —0.38369427 -0.38347042 -0.383 650 68
6.2 -0.38363454 -0.38340455 —0.38355461 -0.38363454 -0.38340455 -0.38355461
6.3 -0.38347931 -0.38325374 —0.38337666 —0.38347931 -0.38325374 —0.38337666
6.4 -0.38321882 0.03773923 —0.38312187 -0.38321882 -0.38302176 -0.38312187
6.5 -0.38288660 —0.38271574 -0.38279535 -0.38288660 —-0.38271574 —-0.38279535
6.6 032572590 -0.38234672 -0.38240719 -0.38251271 -0.38234672 —0.382407 19
6.7 -0.04547468 -0.38191876 —0.38196316 —0.38208459 -0.38191876 —0.381963 16
6.8 -0.38158370 -0.38143373 —0.38146617 -0.38158370 -0.38143373 -0.381466 17
6.9 -0.38102494 0.08476681 —-0.38092218 -0.38102494 -0.38090138 -0.380922 18
7.0 -0.38043946 -0.09498997 —0.38033651 -0.38043946 -0.38032970 —0.38033651
7.1 0.14722093  Not converged -0.37971189 -0.37983401 -0.37971753 —0.37971189
7.2 Not converged Not converged -0.37905219 -0.37918878 —-0.37906694 -0.37905219
7.3 0.221 227 18 0.191 66141 -0.37836117 -0.37849679 -0.37838816 -0.378361 17
7.4 0.237 14500 Not converged —0.37764072 -0.37777523 -0.37768478 —0.377 64072
7.5 0.099 827 68 023582710 —0.37689324 -0.37704289 -0.37695194 -0.376893 24
7.6 0.095 785 15 021935501 —-0.37612300 -0.37629998 -0.37619172 -0.376 123 00
7.7 0.198 903 72 021976512 —0.37533110 -0.37552828 -0.37541374 -0.37533110
7.8 0.252 009 59 023402953 —0.37451690 -0.37472142 -0.37461899 -0.37451690
7.9  Not converged 0.057 85251 —0.37368213 -0.37389345 -0.37380028 -0.37368213
8.0 0.105 663 01 0.19926056  -0.37283152 -0.37305575 -0.37295986 -0.37283152
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TABLE VI. Energy, geometry, dipole moment, and harmonic frequencies for H,O calculated at M05/6-311
++(2d,2p) with the unmodified and modified M0O5 XC functional (Ref. 5). Calculations done with Pople’s
6-311++G(2d,2p) basis set (Ref. 9) and a (75,302) Euler/MacLaurin Lebedev grid (Refs. 11 and 12), unless

stated otherwise.

a E r(OH) /. (HOH) " v v, V3
(au.) (auw.) (A) (deg) (D) (cm™) (cm™) (cm™)
00 -76.422 552 1 0.9564 105.00 1.9619 1601.72 3898.04 4021.97
0* -76.422 5355 0.9563 105.00 1.9616 1597.11 3895.14 4017.55
107 -76.422 5339 0.9563 105.00 1.9616 1597.12 3895.14 4017.55
1073 -76.422 5262 0.9563 105.00 1.9617 1597.13 3895.14 4017.55
1072 -76.422769 2 0.9563 105.00 1.9621 1595.93 3895.01 4017.42
107! -76.426702 5 0.9572 105.20 1.9535 1581.30 3879.53 4002.79
1 -76.4369413 0.9567 105.33 1.9834 1572.70 3882.66 4006.39

“Unmodified M05 functional.
°(96,32,64) spherical grid (benchmark grid).

(75,302) and (99,590) grids, one finds convergence to spuri-
ous states for selected R values, which are remedied by the
modification of the MO05 functional. It should be noted that
the convergence problems for the Na dimer follow a pattern:
While in the region around the equilibrium, there are prob-
lems only for selected R values [R=6.6, 6.7 bohrs for
(75,302) grid, R=6.4 bohrs for (99,590) grid], all calcula-
tions converge incorrectly or not at all for R>7.1 bohrs and
the (75,302) grid and R>6.8 bohrs and the (99,590) grid.
This behavior can be rationalized keeping in mind that the
Na dimer is bound weakly and the highest occupied molecu-
lar orbital-lowest unoccupied molecular orbital energy dif-
ference is small and decreases rapidly with increasing R.
Thus, for large R, the SCF procedure is sensitive to pertur-
bations as, e.g., the spurious large contributions to the KS
matrices discussed in this work. As an aside, we note that the
total energies and equilibrium bond distance for Na, show a
non-negligible variation with the grid size (see Table VI).
This dependency reflects the insufficient resolution of com-
monly used production grids for meta-GGA calculations on
weakly bound complexes.13

Similar problems were found in this work for K, and
higher alkali dimers A,, as well as their cations when de-
scribed by pseudopotentials. One will come across the same
problem for dynamical simulations of A,, clusters, despite the
presence of occupied antibonding orbitals, due to the tempo-
rary formation of A, or A] fragments. In the case of the
all-electron investigation of the Li, dimer, SCF convergence
problems do not occur since the core electrons generate a
small but significant positive 7, value at the bond center,
which prevents the KS matrix elements from becoming sin-
gular.

V. CONCLUSIONS

We have analyzed a convergence problem occurring for
meta-GGA functionals such as VSXC,2 TPSS,3 PKZB,4

MOS,5 MOS-ZX,5 or M06-L.° The problem was traced back to
the way the self-interaction terms were eliminated in the
equal-spin part of the correlation energy. We suggest a modi-
fied way for this elimination that avoids singularities in the
KS matrix elements and resulting convergence problems,
whereas leaving the XC energy values essentially un-
changed. The modification suggested does not imply any
substantial additional computational costs. In the case of the
PKZB (Ref. 3) and TPSS (Ref. 4) functionals, an expression
similar to D, is used for the self-interaction elimination,
which has to be improved in the way described above.
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