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Convergence problems of meta-GGA �generalized gradient approximation� XC �exchange and
correlation� functionals containing a self-interaction correction term are traced back to a singularity
of the latter that occurs at critical points of the electron density. This is demonstrated for the bond
critical point of equilibrium and stretched H2. A simple remedy is suggested that cures meta-XC
functionals such as VSXC, TPSS, M05, M06, and their derivatives without extra cost. © 2007
American Institute of Physics. �DOI: 10.1063/1.2800011�

I. INTRODUCTION

Density-functional theory1 �DFT� calculations using
meta-GGA �generalized gradient approximation� functionals
�see, e.g., Refs. 2–6� for the exchange and correlation �XC�
energy have attracted intense interest recently. We report
here that calculations with commonly used meta-GGA XC
functionals such as VSXC,2 TPSS,3 PKZB,4 M05,5

M05-2X,5 or M06-L �Ref. 6� can lead to convergence prob-
lems in the self-consistent-field �SCF� iteration caused by a
singularity in the self-interaction correction term containing
the kinetic energy density. These problems in turn influence
the structure optimization, which can lead to erroneous ge-
ometries. We observed this problem first for the M05 XC
�Ref. 5� description of the H2 molecule. Calculation of the
dissociation curve for either ground or excited states leads to
erratic results unless an extremely fine benchmark grid is
used for the numerical integration of the XC terms. In the
case mentioned, the iteration converges properly for certain
values of the bond distance R=R�H,H�, whereas it diverges
altogether or converges to an incorrect configuration, e.g.,
the �1�u�2 configuration, for other R values. The conver-
gence or divergence behavior in dependence on R follows no
clear pattern. In the course of the investigation, we found
that similar problems for other meta-GGA functionals are
encountered for molecules which are generally considered as
typical benchmark cases.

For the practicability of an XC functional, it is problem-
atic when convergence problems occur already for simple
reference systems. A detailed analysis reveals that these con-
vergence problems are related to the equal-spin part of the
correlation energy in the meta-GGA functional considered.
Based on this analysis, we suggest in the present work a

modification of the functionals that improves their numerical
stability in SCF iterations while leaving the resulting XC
energies essentially unchanged. The suggested modification
is easy to implement for the functionals under consideration
and does not imply a substantial extra computational cost.

The paper is organized as follows. In Sec. II, we present
the analysis of the convergence problems and describe a
remedy of the XC functionals so that the singularity prob-
lems vanish. Section III summarizes the computational de-
tails of this work and in Sec. IV a number of molecules are
described for which the meta-GGA XC functionals men-
tioned above lead to erratic results. Section V presents a brief
summary.

II. THEORY

In the meta-GGA functionals under investigation, the
correlation energy is decomposed into an equal-spin and an
opposite-spin component. The expression for the equal-spin
correlation for spin orientation � ��=� or �� contains the
factor

D� = 1 −
��

4����

, �1a�

�� = �����2, �1b�

�� = �
i

occ

���i��2, �1c�

for the elimination of self-interaction errors in the correlation
energy. We note that ��=0 implies ��=0 but not vice versa.
At positions where only one electron of spin � is present
�called “one-electron positions” in the following�,a�Electronic mail: dcremer@pacific.edu
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�� = 4����, �2�

so that D� and the contribution to the correlation energy
become zero.

The Kohn-Sham �KS� matrix elements used in the SCF
iterations depend on the derivatives of D� with respect to ��,
��, and ��, where the latter are

�D�

���

= −
1

4����

, �3a�

�D�

���

=
��

4����
2 . �3b�

Note that at one-electron positions, �D� /���=1 /�� because
of Eq. �2�. If �� has a stationary point that is a one-electron
position as, e.g., the bond center of the H2 molecule, then
��=0 at this point �provided that ���0 at this point�. Also,
for small distances x from the stationary point, ���x2, ��

�x2. Consequently, both derivatives �D� /��� and �D� /���

have a 1 /x2 singularity at that point. The elements 	, 
 of the
XC parts of the Fock matrices are given by Eq. �4�,7
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where f gives the functional dependence of the XC energy
density on ��, ��, ����, and ��, respectively, and ����
=�������. The singularities in �D� /��� and �D� /��� also
occur in �f /��� and �f /���. Despite the presence of these
1 /x2 singularities at the stationary point, this integral still
converges. However, when integrating numerically, the inte-
gral is replaced by a finite sum of the form

F	

XC� � �

i

�¯�i�
3ri, �5�

where �3ri is the finite volume element and the dots repre-
sent all terms in the square brackets of Eq. �4� evaluated at
the grid point ri. If ri happens to be close to the stationary
point in ��, then the value of �¯�i will be large, and the
contribution of volume element i to F	


XC� will be exagger-
ated. This exaggeration will be more serious the larger �3ri

is, i.e., the coarser the integration grid is. The exaggerated
terms in the KS matrix, in turn, cause the convergence prob-
lems mentioned. That is, the use of the meta-GGA function-
als under consideration can lead to convergence problems if
the system in question has a stationary point in its density ��

that is a one-electron position for � �unless this point is in a
nodal surface of ���. Thus, if there is only one electron for
one of the spin orientation �, then any stationary point in ��

can cause convergence problems of the kind observed. This
is in line with the observations made for the H2 and other
molecules as will be described in Sec. IV.

The analysis of the convergence problems leads to two
conclusions with regard to their properties: First, the prob-
lems occur when a point of the integration grid is close to a

stationary point of �� as, e.g., the bond center of H2. This
explains the erratic occurrence of the convergence problems.
If, for instance, one performs a potential-energy scan for H2

by increasing R=R�H,H� in very small steps, the conver-
gence problems will occur every time if one of the grid
points passes the bond center. For usual production grids, the
radial distance between neighboring grid points in the va-
lence region is of the order of 0.1 bohr radii. That is, R
intervals with proper SCF convergence and with conver-
gence problems would alternate on a scale of about 0.1 bohr.
A production potential energy scan with a step length of
0.1 bohr or more will then scan the two kinds of intervals in
random order thus leading to an erratic description. A geom-
etry optimization will abort if one of the intermediate geom-
etries belongs to an R interval with convergence problems.

Second, the convergence behavior for a given system
may depend not only on the current geometry and the level
of theory used �i.e., XC functional and integration grid� but
also on the algorithm and parameters used for the SCF itera-
tion.

It is easy to predict under which circumstances the con-
vergence problems should not occur. If bonding and anti-
bonding orbitals are occupied, as in the case of the He2

dimer, ��
0 will hold everywhere in the molecule, includ-
ing the bond center, and the singularity in the KS matrix will
be suppressed. Likewise, core electrons will largely suppress
the occurrence of singularities. For the Li2 dimer, for in-
stance, the core electrons will generate a small but significant
positive �� value at the bond center, which prevents the KS
matrix elements from becoming singular. It might thus ap-
pear that the convergence problems appear only for a small
class of molecules and are of minor importance. However, on
the one hand, it will be a potential source of problems if an
XC functional behaves erratically even for simple molecules,
which in addition are often needed as references in chemical
investigations. Besides, the convergence problems can also
occur for molecules with heavier atoms if the core electrons
are described by effective core potentials �ECPs�. Thus, it is
desirable to remedy the convergence problems by a suitable
modification of the functionals.

The numerical problem mentioned affects only the de-
rivatives of D� �and eventually the KS matrix� rather than
the values of D� �and thus eventually the equal spin correla-
tion density� itself. More specifically, the values of D� for
physically relevant sets of values ��, ��, and �� are reason-
able. The problems arise from the behavior of D� for un-
physical sets of values �e.g., ��=0 but ���0�, which are not
relevant for the calculation of the correlation energy itself
but are probed during the calculation of the derivatives of
D�. That is, if the SCF iteration converges to the proper state,
the calculated energy will be reliable. Consequently, a modi-
fication of the functionals has to be done in a way that the
values of D� for physically relevant cases are changed as
little as possible, whereas the singular behavior of the deriva-
tives has to be suppressed. In other words, the improvement
of the meta-GGA XC functionals from Refs. 2–6 given
above should not modify the calculated XC energy values for
those cases where the functionals from Refs. 2–6 in their
original form work properly in the SCF iteration.
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As the analysis reveals that the convergence problems
arise from one-electron positions, the contributions to the
equal-spin correlation energy have to vanish anyway, i.e.,
D�=0. An obvious solution to the problem is thus to exclude
all grid points from the numerical integration for which �� is
below a certain threshold. However, such cutoff procedures
can give rise to new problems, e.g., discontinuities in
potential-energy surfaces and energy gradients and, conse-
quently, problems in geometry optimizations. A more appro-
priate approach is to modify the expression for D� in a way
that the value of the equal-spin correlation is essentially un-
affected, however, the singularities in �D� /��� and �D� /���

are eliminated. This can be accomplished by replacing D� by
D̃�,

�6�

Here, a is a parameter responsible for damping irregularities
in the value of D�. For ���a, D̃��D�, i.e., the correlation
energy contribution is not affected by T�. Only for small ��

�with reference to a� does T� influence the value of D̃�.
Small �� values are indicative of one-electron positions
where equal-spin electron correlation is not present anyway.
One can easily verify that T� eliminates the 1 /�� singulari-
ties in �D� /��� and �D� /��� given in Eqs. �3a� and �3b�.

The parameter a must be chosen large enough to safely
suppress the singularities in �D� /��� and �D� /��� but small
enough to avoid an impact of the equal-spin correlation en-
ergy. We determined the factor a by a series of test calcula-
tions, which are described and discussed in the following
sections.

III. COMPUTATIONAL DETAILS

We implemented the modified M05 functional into the
program package COLOGNE07

8 and tested it for a number of

molecules employing Pople’s 6-311+ +G�2d ,2p� basis set.9

For heavy atom systems, we used also the Stuttgart/Dresden
ECP10SDF effective core potential and the corresponding
basis sets.10 The following integration grids were used: �i� an
Euler-MacLaurin/Lebedev �75,302� integration grid,11,12 cor-
responding to fine production grids in modern quantum-
chemistry packages, �ii� an Euler-MacLaurin/Lebedev
�99,590� grid, corresponding to ultrafine production grids,
and �iii� an Euler-MacLaurin/spherical �96,32,64� grid, char-
acteristic for a benchmark grid.

Test calculations for H2 and H2O were performed to de-
termine the optimal parameter a in Eq. �6�. This value was
then applied for all other molecules investigated.

For all molecules investigated, we performed geometry
scans with both the unmodified and the modified meta-GGA
functionals mentioned above, employing the three grids
where we focus in this work on the results obtained for the
M05 functional. Similar observations and results were ob-
tained for the other functionals.

IV. RESULTS

Table I lists results for potential energy scans of H2 with
R varying from 1 to 2.5 bohrs in steps of 0.1 bohr, employ-
ing both the unmodified and the modified M05 functionals
and the three integration grids described in Sec. III. For the
unmodified functional and the �75,302� grid, one obtains un-
reasonable energy values above 7 hartrees for 1.0, 1.8, and
2.0 bohrs, indicating that the SCF procedure converges to an
incorrect state. For the finer �99,590� grid, the energy is un-
reasonable for R=2.0 bohrs �7.688 hartree�; besides, the
SCF procedure diverges for R=1.7 bohr. For the �96,32,64�
reference grid, all energy values are in the interval of
−1.169 to −1.083 hartree, i.e., an interval about 5 kcal /mol
above the ground-state energy, indicating that there are no

TABLE I. Absolute energies of H2�1�g
+� in Hartree calculated for different distances R�H,H� with different

integration grids at M05 /6-311+ + �2p� using the unmodified and modified M05 functional. The �75,302�,
�99,590�, and �96,32,64� grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R�H,H� given in bohr units. Equilibrium bond distance of 1.403 bohr
units.

R

M05 Modified M05 �a=10−4 a.u.�

E�75,302� E�99,590� E�96,32,64� E�75,302� E�99,590� E�96,32,64�

1.0 7.955 388 30 −1.118 217 22 −1.118 217 22 −1.118 216 94 −1.118 217 22 −1.118 217 22
1.1 −1.143 995 61 −1.143 995 96 −1.143 995 98 −1.143 995 61 −1.143 995 96 −1.143 995 98
1.2 −1.158 966 60 −1.158 966 60 −1.158 966 60 −1.158 966 60 −1.158 966 60 −1.158 966 60
1.3 −1.166 416 33 −1.166 416 08 −1.166 416 07 −1.166 416 33 −1.166 416 08 −1.166 416 07
1.4 −1.168 594 57 −1.168 594 40 −1.168 594 41 −1.168 594 57 −1.168 594 40 −1.168 594 41
1.5 −1.167 046 92 −1.167 047 05 −1.167 047 07 −1.167 046 92 −1.167 047 05 −1.167 047 07
1.6 −1.162 839 30 −1.162 839 56 −1.162 839 57 −1.162 839 30 −1.162 839 56 −1.162 839 57
1.7 −1.156 715 07 Not converged −1.156 715 29 −1.156 715 07 −1.156 715 29 −1.156 715 29
1.8 8.198 001 81 −1.149 208 97 −1.149 208 96 −1.149 208 73 −1.149 208 97 −1.149 208 96
1.9 −1.140 724 11 −1.140 724 46 −1.140 724 46 −1.140 724 11 −1.140 724 46 −1.140 724 46
2.0 7.688 319 07 7.688 299 90 −1.131 582 19 −1.131 581 84 −1.131 582 19 −1.131 582 19
2.1 −1.122 043 46 −1.122 043 62 −1.122 043 63 −1.122 043 46 −1.122 043 62 −1.122 043 63
2.2 −1.112 322 10 −1.112 321 87 −1.112 321 87 −1.112 322 10 −1.112 321 87 −1.112 321 87
2.3 −1.102 587 17 −1.102 586 57 −1.102 586 57 −1.102 587 17 −1.102 586 57 −1.102 586 57
2.4 −1.092 968 98 −1.092 968 11 −1.092 968 11 −1.092 968 98 −1.092 968 11 −1.092 968 11
2.5 −1.083 562 50 −1.083 561 93 −1.083 561 92 −1.083 562 50 −1.083 561 93 −1.083 561 92
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convergence problems and one obtains a smooth dissociation
curve for the �96,32,64� grid. In those cases where no con-
vergence problems occur, the energy values for a given R
value and different grids agree within 10−6 hartree. The re-
sults for the unmodified functional confirm that the M05
functional leads to erratic convergence behavior for the H2

molecule. Noteworthy is that one may obtain convergence
problems for a finer grid �R=1.7 bohrs and �99,590� grid� in
cases where a coarser grid provides a convergent SCF pro-
cedure.

The modified M05 functional �a=10−4 a.u., Table I� pro-
vides smooth dissociation curves for all three grids. In those
cases where the original M05 functional leads to SCF con-
vergence, the unmodified and modified M05 functionals pro-

vide energies differing by less than 10−7 hartree. In line with
this fact, the three grids used will provide energies differing
at most by 10−6 hartree for a given geometry if the modified
M05 functional is used.

The results for H2 demonstrate that the modified M05
functional eliminates the convergence problems observed for
the original M05 functional in the case of H2. In addition, the
results from the unmodified and modified M05 functionals
agree, i.e., the modification does not generate any undesir-
able changes in the behavior of the M05 functional.

The convergence problems described should occur in all
molecules with only one electron for one of the spin orien-
tations. We have verified this hypothesis by performing po-
tential scans for molecules such as H2

+ �Table II�, He2
2+ �Table

TABLE II. Absolute energies of H2
+�2�g

+� in Hartree calculated for different distances R�H,H� with different
integration grids at M05 /6-311+ + �2p� using the unmodified and modified M05 functional. The �75,302�,
�99,590�, and �96,32,64� grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R�H,H� given in bohr units. Equilibrium bond distance of 2.092 bohr
units.

R

M05 Modified M05 �a=10−4 a.u.�

E�75,302� E�99,590� E�96,32,64� E�75,302� E�99,590� E�96,32,64�

1.0 −0.449 599 41 −0.449 101 80 −0.449 101 67 −0.449 599 35 −0.449 101 76 −0.449 101 67
1.1 3.780 313 01 −0.494 248 01 −0.494 248 13 −0.494 492 98 −0.494 247 99 −0.494 248 13
1.2 −0.527 360 25 −0.527 305 11 −0.527 304 98 −0.527 360 17 −0.527 305 11 −0.527 304 98
1.3 −0.551 528 00 −0.551 602 50 −0.551 602 22 −0.551 527 92 −0.551 602 36 −0.551 602 22
1.4 −0.569 295 70 −0.569 451 27 −0.569 451 23 −0.569 295 52 −0.569 451 27 −0.569 451 23
1.5 −0.582 278 87 −0.582 486 14 −0.582 486 11 −0.582 278 87 −0.582 486 14 −0.582 486 11
1.6 −0.591 642 28 −0.591 879 45 −0.591 879 41 −0.591 642 20 −0.591 879 45 −0.591 879 41
1.7 −0.598 233 57 3.624 947 00 −0.598 479 44 −0.598 233 57 −0.598 479 49 −0.598 479 44
1.8 3.903 849 71 −0.602 908 15 −0.602 908 10 −0.602 674 02 −0.602 908 15 −0.602 908 10
1.9 −0.605 430 32 −0.605 635 90 −0.605 635 87 −0.605 430 32 −0.605 635 90 −0.605 635 87
2.0 3.635 116 80 3.636 130 33 −0.607 032 96 −0.606 867 89 −0.607 032 98 −0.607 032 96
2.1 −0.607 278 99 −0.607 398 01 −0.607 398 00 −0.607 278 99 −0.607 398 01 −0.607 398 00
2.2 −0.606 896 75 3.644 321 85 −0.606 972 31 −0.606 896 75 −0.606 972 32 −0.606 972 31
2.3 −0.605 906 73 −0.605 948 75 −0.605 948 73 −0.605 906 73 −0.605 948 75 −0.605 948 73
2.4 −0.604 458 78 −0.604 479 34 −0.604 479 32 −0.604 458 77 −0.604 479 33 −0.604 479 31
2.5 −0.602 677 28 −0.602 686 40 −0.602 686 38 −0.602 677 28 −0.602 686 40 −0.602 686 38

TABLE III. Absolute energies of He2
2+�1�g

+� in Hartree calculated for different distances R�He,He� with dif-
ferent integration grids at M05 /6-311+ + �2p� using the unmodified and modified M05 functional. The
�75,302�, �99,590�, and �96,32,64� grids correspond to fine production grids, very fine production grids, and
benchmark grids in standard DFT programs. R=R�He,He� given in bohr units. Equilibrium bond distance of
1.327 bohr units.

R

M05 Modified M05 �a=10−4 a.u.�

E�75,302� E�99,590� E�96,32,64� E�75,302� E�99,590� E�96,32,64�

1.0 −3.593 108 16 Not converged −3.593 512 29 −3.593 108 17 −3.593 512 41 −3.593 512 29
1.1 −3.644 952 94 −3.645 310 24 −3.645 310 17 −3.644 952 94 −3.645 310 25 −3.645 310 17
1.2 −3.670 519 90 −3.670 768 46 −3.670 768 44 −3.670 519 90 −3.670 768 46 −3.670 768 44
1.3 4.483 775 46 −3.679 439 86 −3.679 439 85 −3.679 294 66 −3.679 439 86 −3.679 439 85
1.4 −3.677 502 24 −3.677 605 18 −3.677 605 12 −3.677 502 24 −3.677 605 18 −3.677 605 12
1.5 −3.669 234 85 −3.669 354 07 −3.669 354 04 −3.669 234 85 −3.669 354 08 −3.669 354 04
1.6 −3.657 198 82 −3.657 354 68 −3.657 354 73 −3.657 198 82 −3.657 354 68 −3.657 354 73
1.7 −3.643 216 77 −3.643 415 53 −3.643 415 29 −3.643 216 77 −3.643 415 53 −3.643 415 29
1.8 −3.628 573 09 −3.628 791 34 −3.628 792 62 −3.628 573 09 −3.628 791 34 −3.628 792 62
1.9 −3.614 040 25 −3.614 293 11 −3.614 290 72 −3.614 040 25 −3.614 293 11 −3.614 290 72
2.0 −3.600 193 46 −3.600 369 89 −3.600 371 49 −3.600 193 45 −3.600 369 87 −3.600 371 47
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III�, and H3
+ �Table IV�. In analogy to the case of H2, one

finds spurious cases of convergence to an incorrect state or
SCF divergence for the �75,302� and �99,590� grids. Only for
the �96,32,64� grid do convergence problems not arise. In
line with the observations made for H2 �Table I�, the modi-
fication of the M05 functional satisfactorily corrects the er-
roneous convergence behavior in all cases.

Systems containing alkali atoms should be prone to the
same convergence problems if described with pseudopoten-
tials. For the purpose of testing this hypothesis, we per-
formed a potential-energy scan for the Na dimer described
with the Stuttgart/Dresden SDF ECP and the corresponding
valence basis set.10 Table V shows the absolute energies for
R values in the range from 6.0 to 8.0 bohrs. Indeed, for the

TABLE V. Absolute energies of Na2�1�g
+� in Hartree calculated for different distances r�Na,Na� with different

integration grids at M05/ECP10SDF using the unmodified and modified M05 functional. The �75,302�,
�99,590�, and �96,32,64� grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R�H,H� given in bohr units. Equilibrium distance: 6.067 bohr units for
�75,302� grid, 6.079 bohr units for �99,590� grid, and 6.049 bohr units for �96,32,64� grid.

R

M05 Modified M05 �a=10−4 a.u.�

E�75,302� E�99,509� E�96,32,64� E�75,302� E�99,509� E�96,32,64�

6.0 −0.383 680 70 −0.383 441 81 −0.383 651 58 −0.383 680 70 −0.383 441 81 −0.383 651 58
6.1 −0.383 694 27 −0.383 470 42 −0.383 650 68 −0.383 694 27 −0.383 470 42 −0.383 650 68
6.2 −0.383 634 54 −0.383 404 55 −0.383 554 61 −0.383 634 54 −0.383 404 55 −0.383 554 61
6.3 −0.383 479 31 −0.383 253 74 −0.383 376 66 −0.383 479 31 −0.383 253 74 −0.383 376 66
6.4 −0.383 218 82 0.037 739 23 −0.383 121 87 −0.383 218 82 −0.383 021 76 −0.383 121 87
6.5 −0.382 886 60 −0.382 715 74 −0.382 795 35 −0.382 886 60 −0.382 715 74 −0.382 795 35
6.6 0.325 725 90 −0.382 346 72 −0.382 407 19 −0.382 512 71 −0.382 346 72 −0.382 407 19
6.7 −0.045 474 68 −0.381 918 76 −0.381 963 16 −0.382 084 59 −0.381 918 76 −0.381 963 16
6.8 −0.381 583 70 −0.381 433 73 −0.381 466 17 −0.381 583 70 −0.381 433 73 −0.381 466 17
6.9 −0.381 024 94 0.084 766 81 −0.380 922 18 −0.381 024 94 −0.380 901 38 −0.380 922 18
7.0 −0.380 439 46 −0.094 989 97 −0.380 336 51 −0.380 439 46 −0.380 329 70 −0.380 336 51
7.1 0.147 220 93 Not converged −0.379 711 89 −0.379 834 01 −0.379 717 53 −0.379 711 89
7.2 Not converged Not converged −0.379 052 19 −0.379 188 78 −0.379 066 94 −0.379 052 19
7.3 0.221 227 18 0.191 661 41 −0.378 361 17 −0.378 496 79 −0.378 388 16 −0.378 361 17
7.4 0.237 145 00 Not converged −0.377 640 72 −0.377 775 23 −0.377 684 78 −0.377 640 72
7.5 0.099 827 68 0.235 827 10 −0.376 893 24 −0.377 042 89 −0.376 951 94 −0.376 893 24
7.6 0.095 785 15 0.219 355 01 −0.376 123 00 −0.376 299 98 −0.376 191 72 −0.376 123 00
7.7 0.198 903 72 0.219 765 12 −0.375 331 10 −0.375 528 28 −0.375 413 74 −0.375 331 10
7.8 0.252 009 59 0.234 029 53 −0.374 516 90 −0.374 721 42 −0.374 618 99 −0.374 516 90
7.9 Not converged 0.057 852 51 −0.373 682 13 −0.373 893 45 −0.373 800 28 −0.373 682 13
8.0 0.105 663 01 0.199 260 56 −0.372 831 52 −0.373 055 75 −0.372 959 86 −0.372 831 52

TABLE IV. Absolute energies of H3
+�1A1�� in Hartree calculated for different distances R�H,H� with different

integration grids at M05 /6-311+ + �2p� using the unmodified and modified M05 functional. The �75,302�,
�99,590�, and �96,32,64� grids correspond to fine production grids, very fine production grids, and benchmark
grids in standard DFT programs. R=R�H,H� given in bohr units. Equilibrium bond distance of 1.542 bohr
units.

R

M05 Modified M05 �a=10−4 a.u.�

E�75,302� E�99,590� E�96,32,64� E�75,302� E�99,590� E�96,32,64�

1.0 −1.127 294 15 −1.127 098 12 −1.127 096 12 −1.127 294 15 −1.127 098 12 −1.127 096 12
1.1 −1.211 636 38 −1.211 606 14 −1.211 604 54 −1.211 636 38 −1.211 606 14 −1.211 604 53
1.2 −1.267 645 02 −1.267 712 84 −1.267 710 56 −1.267 645 02 −1.267 713 09 −1.267 710 55
1.3 −1.303 840 93 −1.303 965 31 −1.303 961 22 −1.303 840 92 −1.303 965 12 −1.303 961 22
1.4 −1.326 012 88 7.880 962 26 −1.326 164 19 −1.326 012 87 −1.326 167 16 −1.326 164 18
1.5 −1.338 152 29 7.823 359 56 −1.338 327 31 −1.338 152 29 −1.338 328 76 −1.338 327 31
1.6 −1.342 987 79 7.924 988 87 −1.343 180 41 −1.342 987 54 −1.343 181 63 −1.343 180 41
1.7 −1.342 587 80 −1.342 786 15 −1.342 784 58 −1.342 587 51 −1.342 785 89 −1.342 784 58
1.8 5.264 007 93 −1.338 660 38 −1.338 659 01 −1.338 477 27 −1.338 660 23 −1.338 659 01
1.9 6.597 368 13 −1.331 880 97 −1.331 879 88 −1.331 731 19 −1.331 880 89 −1.331 879 88
2.0 6.839 897 06 6.266 742 89 −1.323 162 68 −1.323 056 31 −1.323 163 43 −1.323 162 68
2.1 −1.312 953 21 −1.313 019 67 −1.313 018 87 −1.312 952 93 −1.313 019 34 −1.313 018 87
2.2 6.679 557 85 −1.301 859 38 −1.301 858 02 −1.301 823 05 −1.301 858 23 −1.301 858 02
2.3 −1.289 998 37 −1.290 013 69 −1.290 012 52 −1.289 997 37 −1.290 012 41 −1.290 012 51
2.4 −1.277 745 37 −1.277 748 77 −1.277 747 67 −1.277 743 91 −1.277 747 21 −1.277 747 65
2.5 5.576 056 88 −1.265 278 56 −1.265 277 88 −1.265 280 09 −1.265 276 96 −1.265 277 82
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�75,302� and �99,590� grids, one finds convergence to spuri-
ous states for selected R values, which are remedied by the
modification of the M05 functional. It should be noted that
the convergence problems for the Na dimer follow a pattern:
While in the region around the equilibrium, there are prob-
lems only for selected R values �R=6.6, 6.7 bohrs for
�75,302� grid, R=6.4 bohrs for �99,590� grid�, all calcula-
tions converge incorrectly or not at all for R
7.1 bohrs and
the �75,302� grid and R
6.8 bohrs and the �99,590� grid.
This behavior can be rationalized keeping in mind that the
Na dimer is bound weakly and the highest occupied molecu-
lar orbital–lowest unoccupied molecular orbital energy dif-
ference is small and decreases rapidly with increasing R.
Thus, for large R, the SCF procedure is sensitive to pertur-
bations as, e.g., the spurious large contributions to the KS
matrices discussed in this work. As an aside, we note that the
total energies and equilibrium bond distance for Na2 show a
non-negligible variation with the grid size �see Table VI�.
This dependency reflects the insufficient resolution of com-
monly used production grids for meta-GGA calculations on
weakly bound complexes.13

Similar problems were found in this work for K2 and
higher alkali dimers A2, as well as their cations when de-
scribed by pseudopotentials. One will come across the same
problem for dynamical simulations of An clusters, despite the
presence of occupied antibonding orbitals, due to the tempo-
rary formation of A2 or A3

+ fragments. In the case of the
all-electron investigation of the Li2 dimer, SCF convergence
problems do not occur since the core electrons generate a
small but significant positive �� value at the bond center,
which prevents the KS matrix elements from becoming sin-
gular.

V. CONCLUSIONS

We have analyzed a convergence problem occurring for
meta-GGA functionals such as VSXC,2 TPSS,3 PKZB,4

M05,5 M05-2X,5 or M06-L.6 The problem was traced back to
the way the self-interaction terms were eliminated in the
equal-spin part of the correlation energy. We suggest a modi-
fied way for this elimination that avoids singularities in the
KS matrix elements and resulting convergence problems,
whereas leaving the XC energy values essentially un-
changed. The modification suggested does not imply any
substantial additional computational costs. In the case of the
PKZB �Ref. 3� and TPSS �Ref. 4� functionals, an expression
similar to D� is used for the self-interaction elimination,
which has to be improved in the way described above.
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a
�a.u.�

E
�a.u.�

r�OH�
�Å�

��HOH�
�deg�

	
�D�


1

�cm−1�

2

�cm−1�

3

�cm−1�

0a,b −76.422 552 1 0.9564 105.00 1.9619 1601.72 3898.04 4021.97
0a −76.422 535 5 0.9563 105.00 1.9616 1597.11 3895.14 4017.55

10−4 −76.422 533 9 0.9563 105.00 1.9616 1597.12 3895.14 4017.55
10−3 −76.422 526 2 0.9563 105.00 1.9617 1597.13 3895.14 4017.55
10−2 −76.422 769 2 0.9563 105.00 1.9621 1595.93 3895.01 4017.42
10−1 −76.426 702 5 0.9572 105.20 1.9535 1581.30 3879.53 4002.79

1 −76.436 941 3 0.9567 105.33 1.9834 1572.70 3882.66 4006.39

aUnmodified M05 functional.
b�96,32,64� spherical grid �benchmark grid�.
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