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Standard density-functional theory integration grids have proven insufficient for the meta
generalized gradient approximation description of weakly bound complexes �E. R. Johnson et al.,
Chem. Phys. Lett. 394, 334 �2004��. This is caused by an insufficient radial resolution in the valence
region of frequently used standard grids. We present an algorithm for the construction of locally
augmented radial grids, which allows us to enhance the resolution of a given radial grid in a
specified region, thus increasing the accuracy of the standard grid in a cost-efficient way. Test
calculations with the Van Voorhis-Scuseria exchange and correlation functional for the Ar dimer
confirm that a suitably constructed, locally augmented radial grid with 100 points provides an
accuracy competitive to that of a 250-point nonaugmented grid. Time savings and possible
applications for locally augmented radial grids are discussed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2794038�

I. INTRODUCTION

Density-functional theory1 �DFT� calculations employ-
ing meta generalized gradient approximation �m-GGA� ex-
change and correlation2 �XC� functionals are a prospective
approach for an efficient computational description of a wide
class of chemical problems such as weakly bonded systems.
In DFT calculations, the XC terms are usually calculated by
numerical integration employing discrete integration grids.
In a recent study,3 Johnson et al. investigated the description
of several van der Waals complexes with a number of DFT
methods. It turned out that for m-GGA functionals, the stan-
dard integration grids used in modern quantum chemistry
packages are insufficient for an accurate calculation of the
XC terms, which resulted among others in qualitatively in-
correct dissociation curves for the Ar dimer. A correct de-
scription required integration grids containing 250 points for
radial integration, as compared to 75 or 99 points used in
standard grids, which leads to a substantial increase in com-
putation time.

The numerical integration of the XC term integration is
usually performed atom by atom in spherical coordinates
centered at the nuclei, with the three-dimensional integration
being broken down into a one-dimensional radial and a two-
dimensional angular integration. A variety of standard grids
are available for the radial4–11 and angular12 integrations
around a given atomic nucleus. The dimensioning of these
grids is a trade-off between numerical accuracy and compu-
tational efficiency. The elaborate adaptive integration
schemes11,13 start with coarse grids and increase the grid
resolution stepwise until the required accuracy is reached.

The accurate description of weakly bound complexes re-
quires a numerically accurate description of the valence re-
gion �i.e., the region outside the Slater atomic radius14�.
Standard integration grids4–11 are constructed in a way that
they provide a high numerical accuracy close to the nucleus
and a continuously decreasing one with increasing radius. If
the accuracy of such a grid is enlarged by adding more grid
points, the resolution of the grid will be uniformly increased
over the whole range of radii. In addition to the required
additional grid points in the outer valence region, one gener-
ates unnecessary additional grid points in the core region as
well as far away from the atom, which increases the numeri-
cal cost of the calculations. It would therefore be an attrac-
tive alternative to refine the integration grid just in those
regions where a higher numerical accuracy is required and
leave it essentially unchanged elsewhere. In the present pa-
per, we suggest an algorithm for the construction of such
locally augmented radial integration grids. The method al-
lows to increase the resolution of any standard integration
grid in a given range by a specified factor. The construction
of such locally augmented integration grids can be seen as a
counterpart to the construction of augmented basis sets,
where given standard basis sets are extended specifically in
those regions where an increased numerical accuracy is re-
quired �e.g., by adding diffuse functions�.

The present work is organized as follows. In Sec. II, we
present our algorithm for a local augmentation of radial in-
tegration grids whereas in Sec. III, the computational proce-
dures used are described. In Sec. IV, the performance of
locally augmented radial grids is tested for one of the cases
that was found especially problematic in Ref. 3, viz., the
description of the Ar dimer with the Van Voorhis-Scuseriaa�Electronic mail: jurgen.grafenstein@chem.gu.se
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exchange and correlation �VSXC� functional �2b�. Section V
presents conclusions and discusses other possible applica-
tions of locally augmented radial grids.

II. THEORY

In numerical integrations, the integral over the molecular
volume is usually partitioned into a sum of atomic integrals.
A number of partitioning schemes are available for this pur-
pose, of which the schemes by Becke4 and Stratmann et al.15

are used most widely today. Thus, we seek a quadrature for-
mula for the atomic integral at atom A,

IA =� d3rfA�r� , �1�

where the nucleus of A is located at r=0 and f�r� is an
atomic function, which may take large values and oscillate
rapidly for small r�r= �r�� whereas it takes small values and
decays relatively smoothly for r→�. �For brevity, we drop
the index A in Eq. �2� and in the following.� In spherical
coordinates, Eq. �1� takes the form

I = �
0

�

drr2 f̄�r� , �2a�

f̄�r� = �
0

2�

d��
0

�

d� sin �f�r,�,�� . �2b�

In production calculations, the angular integration in Eq. �2b�
is performed most efficiently by Lebedev quadrature,12

which treats the � and � integrations in one step. For bench-
mark calculations, if the required accuracy exceeds that of
the largest available Lebedev grids, the � and � integrations
have to be performed separately, see, e.g., Ref. 8.

The accuracy of the angular integration is determined by
the size of the integration grid used. There are two important
ways of improving the efficiency of the angular integration:
�i� One way is by varying the size of the angular grid in
dependence on r using large angular grids in the valence
region and smaller grids in the core and possibly the outer
valence region. By this angular pruning, one improves the
balance between radial and angular resolutions and avoids
costly calculations in regions where the integrand is nearly
spherically symmetric. �ii� A more advanced approach is the
adaptive grid generation, where, for each r, one starts with a
coarse angular grid and increases the size of the angular grid
until the required accuracy is reached. Such adaptive
schemes have been suggested by Köster and co-workers11 as
well as Pérez-Jordá et al.13 While Köster and co-workers11

used a fixed radial grid, in the scheme by Pérez-Jordá et al.13

the size of the radial grid is adapted as well, i.e., one starts
with a coarse radial grid, which is refined until the required
accuracy is reached.

For the construction of the radial integration grid, a va-
riety of algorithms have been suggested in the literature. All
of them can be decomposed into two steps: �i� The integra-
tion interval �0,�� is transformed to a finite interval of the
dimensionless variable t by a suitable variable transformation
R�t�. The integral I takes then the form

I = �
a

b

dtR��t�R2�t� f̄�R�t�� . �3�

�ii� In the second step, the integral in Eq. �3� is calculated
approximately by a numerical quadrature. Generally, a nu-
merical quadrature amounts to the approximation

�
a

b

dxF�x� � �
k=1

N

�k
NF��k

N� , �4�

where F is the function to be integrated, N is the order of the
quadrature scheme, and the values �k

N and �k
N are the grid

points and weights characteristic for the numerical quadra-
ture scheme used. Combining Eqs. �3� and �4�, one gets thus
the approximate expression for I

I � �
k=1

N

wk
Nf̄�rk

N� , �5a�

rk
N = R��k

N� , �5b�

wk
N = W��k

N��k
N, �5c�

W�x� = R2�x�R��x� , �5d�

i.e., a sum of the values of f at the grid points rk
N weighted

with factors wk
N. The augmentation procedure to be presented

in this work is easiest to formulate for trapezoidal integra-
tion. Therefore, the description in the following will be based
on the use of trapezoidal integration. The generalization to
arbitrary numerical quadrature schemes will be given at the
end of this section. For trapezoidal integration, which in the
current context is equivalent to the Euler-MacLaurin integra-
tion formula, it is useful to choose the interval �a ,b� in Eq.
�3� as �0,N+1�. Then, �k

N=k, �k
N	1, and Eqs. �5b� and �5c�

take the simple forms

rk
N = R�k� , �6a�

wk
N = W�k� , �6b�

with W�k� defined as in Eq. �5d�.
For both steps �i� and �ii�, a variety of algorithms are

available. Expressions for R�t� have been suggested, e.g., by
Becke,4 Murray et al.,5 Treutler and Ahlrichs,8 Mura and
Knowles,7 Gill and Chien,9 and Lindh et al.10 The function
R�t� has to be chosen in a way that a high resolution is
provided in the core and, to a lesser extent, in the valence
region of atom A to ensure an accurate integration but sparse
outside the atomic region of A to allow an economical cal-
culation. The resolution is controlled by the value of the
derivative R��t�: A small value of R��t� indicates that a given
interval for r is mapped onto a large interval of t, which
implies a high resolution; consequently, a large value of R��t�
implies a low resolution. In summary, R��t� should be small
where R�t� is small and large where R�t� is large.

The mth order Euler-MacLaurin �EMm� grid,5,6 which is
employed for the calculations in the present work, uses the
transformation
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REMm�t� = R0
tm

�N + 1 − t�m . �7�

The parameter R0 is a characteristic radius of atom A, e.g.,
the atomic radius according to the Slater rules.9 Generally,
any function R used in step �i� must contain at least one
characteristic length to facilitate the transformation from r to
the dimensionless variable t.

Eq. �7� implies

REMm� �t� = �N + 1�mR0
tm−1

�N + 1 − t�m+1 , �8�

i.e., REMm� �t� increases from 0 �t=0, i.e., r=0� to � �t=N+1,
i.e., r→�� as required. Following Murray et al.5 and Gill
et al.,6 we use m=2.

For step �ii�, various quadrature schemes are used as
alternatives to the trapezoidal rule. Becke4 and Treutler and
Ahlrichs8 used the Gauss-Chebyshev integration, whereas
Gill and Chien9 have developed a quadrature scheme ad-
justed to their choice of the transformation R�t�.

The overall resolution of a given radial grid can be easily
increased by increasing N. However, if the resolution needs
to be increased only in a limited interval of r or, equivalently,
t values, increasing N globally would be uneconomical.
Adaptive grid generators suggested by Pérez-Jordá et al.13

and Köster and co-workers11 let the size of the angular grid
increase locally but do not provide any possibility of locally
enhancing the radial resolution of the grid.

A possible way of increasing the local resolution of the
grid might be to modify the parameter R0 in Eq. �7� in a
suitable way. However, as we shall see in Sec. IV, such a
modification does not offer local resolution enhancement.
One might try to find a suitably modified function R that
accomplishes such an augmentation. Instead, we present a
more straightforward procedure, which can be applied sub-
sequently to any function R�t�. If the resolution of the grid is
to be enhanced by a factor of Q in the interval �N1 ,N2� for t
�0�N1�N2�N�, i.e., the interval �N1 ,N2� for t of the grid
should be augmented by

�N = int��Q − 1��N2 − N1�� �9a�

points, one will get a new grid with

Ñ = N + �N �9b�

points. This new grid is generated by a coordinate transfor-
mation t=T�	� that maps the interval �0,N+1� for t on the

interval �0, Ñ+1� for 	. The function T is chosen in a way
that the intervals �0,N1�, �N1 ,N2�, and �N2 ,N+1� for t are
approximately mapped on the intervals �0,N1�, �N1 ,N2

+�N�, and �N2+�N , Ñ+1� for 	 in a way that T��	��1 in
the first and third of the intervals and T��	��1/Q in the
second one. Apart from this, T��	� has to be continuous in
the integration domain. A suitable expression for T��	� is

T��	� = 1 − D
 1

e
�N1−	� + 1
−

1

e
�Ñ2−	�+1� , �10a�

Ñ2 = N2 + �N . �10b�

Here, the parameter 
 �
�0� can be chosen freely. Large 

values provide an abrupt transition and small 
 values a
smooth transition between nonaugmented and augmented re-
gions. The parameter D is approximately D�1−1/Q where
the exact value is stipulated by the boundary conditions for
T�	� �see Eq. �12b� below�. Integration of Eqs. �10a� and
�10b� gives

T�	� = 	 −
D



log
C

e
�N1−	� + 1

e
�Ñ2−	� + 1
� . �11�

The constants C and D follow from the boundary conditions
as

C =
e
Ñ2 + 1

e
N1 + 1
, �12a�

D =
�N


log
�e
�N1−Ñ−1� + 1��e
Ñ2 + 1�

�e
�Ñ2−Ñ−1� + 1��e
N1 + 1�

. �12b�

Then, the integral in Eq. �3� can be written as

I = �
0

Ñ+1
d	T��	�R��T�	��R2�T�	�� f̄�R�T�	��
 , �13�

which again can be calculated approximately by the trapezoi-
dal rule

I � �
k=1

Ñ

w̃k
Ñ f̄�r̃k

Ñ� , �14a�

w̃k
Ñ = T��k�W�tk� , �14b�

r̃k
Ñ = R�tk� , �14c�

tk = T�k� . �14d�

Equations �5d�, �9a�, �9b�, �11�, �12a�, �12b�, and �14a�–�14d�
provide a computational scheme for the construction and use
of a locally augmented radial grid starting from the radial
grid given by the transformation function R�t�.

There are situations where the augmentation interval
should stretch to the position of the nucleus �i.e., N1=0� or to
infinity �i.e., N2=N+1�. In these cases, the Fermi function

containing Ñ2 or N1, respectively, should not be present in
T��	�; instead, T��	� should take the form

T��	� = 1 −
d

e�
�Nx−	� + 1
, �15�

with a suitably chosen d, the upper �lower� signs being ap-
plicable to N1=0 �N2=N�, and

NX = �Ñ2 for N1 = 0

N1 for N2 = N .
� �16�

Equation �15� leads to the following modified form of T�	�:
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T�	� = �1 − d�	 ±
d



log�c�e�
�Nx−	� + 1�
 , �17�

with the constants

c =
1

e�
Nx + 1
, �18a�

d =
1

1 �
1


�Ñ + 1�
log�c�e�
�Nx−Ñ−1� + 1�


. �18b�

Equations �5d�, �9a�, �9b�, �14a�–�14d�, �17�, �18a�, and
�18b� form the set of working equations for this case.

Finally we give the counterpart to Eqs. �14a�–�14d� for
arbitrary quadrature schemes. In the literature, the �k

N and �k
N

values for quadrature schemes are usually given for a fixed
�i.e., N-independent� interval �a ,b�, e.g., �0,1� or �−1,1�.
Therefore, we assume here that a and b are independent of
N. To find the counterpart to Eqs. �14b�–�14d� for this case,
one has to subject the variables t and 	 to appropriate linear
transformations, which results in the set of equations

w̃k
Ñ =

Ñ + 1

N + 1
T��	k�W�tk��k

Ñ, �19a�

r̃k
Ñ = R�tk� , �19b�

tk = a +
b − a

N + 1
T�	k� , �19c�

	k =
Ñ + 1

b − a
��k

Ñ − a� . �19d�

These equations replace Eqs. �14b�–�14d� and are to be used
together with Eq. �14a�.

III. COMPUTATIONAL PROCEDURES AND
CONVENTIONS

The local augmentation according to Eqs. �11�, �12a�,
�12b�, and �14a�–�14d� was implemented in the COLOGNE07

program package16 for use with EMm/Lebedev �L� grids. We
calculated dissociation curves, dissociation energies �De val-
ues�, equilibrium bond lengths re, and harmonic vibration
frequencies �e for the Ar dimer. To provide comparability
with Ref. 3, we used the VSXC functional �2b� and the
6-31G�d� basis set.17 This basis set is too small to provide
reliable results for the Ar dimer but sufficient to assess the
stability of the numerical DFT integration �3b ,c�. Therefore,
we verified our final findings by calculations with Dunning’s
aug-cc-pVTZ basis set.18 For the XC integrations, we used
an augmented EM2/L grid, which is described in detail in
Sec. IV, and, for reference calculations, standard �75,302�,
�99,590�, �150,590�, and �250,590� EM2/L grids. For R0, a
value of 0.70 Å was used.6

In production calculations, angular pruning is used to
increase numerical efficiency.5,6 In the present work, we pro-
ceed in two steps. In the first step, we use unpruned integra-

tion grids to get a clear account of the radial grids. In the
second step, we repeat the calculations with the �250,590�
and �10075,590� grids applying angular pruning for the pur-
pose of testing which impact pruning has on the numerical
accuracy and the computational cost of calculations employ-
ing locally augmented grids. Reference 6 suggests a pruning
scheme for Ar where Lebedev grids of sizes of 6, 38, 86,
194, and 86, respectively, were used in the r intervals
�0,0.1R0�, �0.1R0 ,0.4R0�, �0.4R0 ,0.8R0�, �0.8R0 ,2.5R0�, and
�2.5R0 ,��, respectively. We modified this scheme in the way
that we kept the radial intervals but replaced the 194-point
grid by a 590-point grid and increased the grid size for the
other intervals proportionally. This recipe led to grid sizes of
18, 146, 302, 590, and 302 points, respectively.

An integration grid of insufficient size may give accurate
results by an accidental compensation of errors. In order to
detect such cases, for each N-point radial grid considered, we
repeated the geometry optimization with the correspond-
ing N+1, N+2, N+3, and N+4 point grids. For instance,
we repeated the calculation with �251,590�, �252,590�,
�253,590�, and �254,590� grids to assess the quality of the
�250,590� grid. The ranges �i.e., difference between maxi-
mum and minimum values� �De, �re, and ��e of the De, re,
and �e values obtained for such a series of five grids are used
to assess the reliability of the result for the N-point grid.

IV. RESULTS AND DISCUSSION

First, we calculated the dissociation curve of the Ar
dimer to get an initial assessment of the performance of the
locally augmented EM2/L grid. Figure 1 shows the dissocia-
tion curve of the Ar dimer for r�Ar,Ar� varying from
3.2 to 4.5 Å as calculated with different standard and aug-
EM2/L grids. For a standard �75,302� grid, the curve shows
substantial oscillations and multiple minima, in agreement
with the findings in Ref. 3. �Note that pruned grids are used
in Ref. 3; therefore, the dissociation curve in the present
work differs from that in Ref. 3.� For a �99,590� EM2/L grid,
the oscillations are less pronounced but still clearly visible.
In Ref. 3, it had been shown that a �250,590� EM2/L grid
provides a correct dissociation curve without spurious oscil-
lations. We therefore constructed an augmented �aug-�EM2/L

FIG. 1. Dissociation curve for the Ar dimer calculated with the VSXC
functional �2b� and the 6-31G�d , p� �Ref. 17� basis set using different stan-
dard and augmented DFT integration grids. See Sec. IV for a detailed de-
scription of the grids.
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grid that has the same radial resolution as the �250,590� grid
in the region between the two Ar atoms and a radial resolu-
tion comparable to the standard �75,302� grid in the core
region as well as far away from the atoms. For this purpose,
we chose Q=250/75=10/3. The interval boundaries N1 and
N2 were chosen to be 56% and 70% of 75+1, respectively,
i.e., after rounding, N1=38 and N2=66. This choice implies
that the augmentation region ranges from r=1.62R0

=1.13 Å to r=5.44R0=3.80 Å �see Eq. �7�� and provides an

aug-EM2 radial grid with Ñ=100, i.e., a grid just 40% the
size of the 250-point EM2 grid. We will in the following

denote augmented radial grids by ÑN, i.e., the present grid is
denoted as 10075. 
 was chosen as 50/ �N+1� after a series of
benchmark calculations.

Figure 1 reveals that the �10075,590� aug-EM2/L grid
provides a smooth dissociation curve without oscillations. A
reference calculation showed that this dissociation curve
agrees within 0.001 kcal/mol with the curve provided by the
�250,590� grid �not shown in Fig. 1�.

Figure 2 gives the radial resolution of the 10075 aug-
EM2 grid as compared to a 75-point and a 250-point EM2
grid, respectively. Here, the radial resolution at rk

N was deter-

mined as 2/ �rk+1
N −rk−1

N �, analogously for r̃k
Ñ. The graphs illus-

trate that the resolution of the 10075 aug-EM2 grid coincides
with that of the 75-point EM2 grid for r up to �0.9 Å, in-
creases continuously to that of the 250-point grid in a tran-
sition region up to �1.3 Å, coincides with that of the 250-
point grid up to r�3.2 Å, decreases continuously to that
of the 75-point grid in a second transition region up to
r�4.6 Å, and coincides with that of the 75-point grid above
that r value. It is noteworthy that the inner transition region
covers a smaller r interval �0.9, . . . ,1.3 Å� than the outer one
�3.2, . . . ,4.6 Å�. This is related to the fact that the original
transformation function R�t� provides a radial resolution that
decreases with r.

In Sec. II, we discussed the possibility of locally aug-
menting an EM2 grid by modifying R0. For the purpose of
testing this idea, we calculated the radial resolution of a 75-
point EM2 grid for R0 values of 0.5 and 0.9 Å. The results in
Fig. 2 reveal that a variation of R0 has only little impact on

the radial resolution of an EM2 grid in the valence region,
i.e., varying R0 is no appropriate way of locally augmenting
an EM2 radial grid.

A more stringent test of the performance of the aug-EM2
grid is given by the calculated bond energy, equilibrium bond
distance and, above all, harmonic vibration frequencies of
the Ar dimer. Table I lists calculated values for a variety
of integration grids. The calculation with the �250,590�
EM2/L grid yields De=0.715 kcal/mol, re=3.550 Å, and
�e=62.26 cm−1. The test calculations with the �251,590� to
�254,590� EM2/L grids give �De�10−3 kcal/mol, �re

�10−3 Å, and ��e=0.01 cm−1, respectively. These results
confirm that the �250,590� EM2/L grid allows reliable DFT
integrations in the present case, and the results calculated for
this grid will be used as reference in the following.

The �75,302� grid, together with the 6-31G�d , p� basis
set, yields a De value of 0.876 kcal/mol and re=3.956 Å
with �De and �re values of 0.13 kcal/mol and 0.246 Å, re-
spectively. A comparison with the dissociation curve �Fig. 1�
gives at hand that the geometry optimization converges to
different local minima depending on details of the integration
grid. The �e value of 165.3 cm−1 is too high by about
100 cm−1, with ��e=13.3 cm−1. The oscillations of the bond
energy exaggerate the curvature of the dissociation curve,
which accounts for the exaggeration of the �e values.

For the �99,590� grid, the same trends, though less pro-
nounced, can be observed as for the �75,302� grid: �De and
�re are 0.05 kcal/mol and 0.16 Å, respectively, �e is
100.3 cm−1, about 37 cm−1 above the reference value, and
��e amounts to 27 cm−1.

For a �150,590� EM2/L grid, one obtains De and re val-
ues that differ by just 0.002 kcal/mol and 0.001 Å, respec-

FIG. 2. Radial resolution vs distance from the nucleus for different aug-
mented and nonaugmented EM2 radial grids for the Ar atom. For the aug-
mented 10075 grid, N1=42, N2=53, and 
=50/ �75+1��0.6579 �see Sec. II
for details�. Unless otherwise stated, R0=0.7 Å for all grids.

TABLE I. Bond energy, equilibrium distance, and harmonic vibration fre-
quency for the Ar dimer. Calculations done with the VSXC functional �2b�
and the 6-31G�d , p� �Ref. 17� and aug-cc-pVTZ basis set �Ref. 18�, respec-
tively. De in kcal/mol, re=r�Ar,Ar� in Å, and � in cm−1. �De, �re, and ��e

indicate how much the calculated De, re, and �e values vary if the radial
resolution of the grids is varied between N and N+4. See end of Sec. III for
details. �De and �re values below 0.001 kcal/mol and 0.001 Å, respec-
tively, are not displayed. Ntot is the total number of grid points per atom.

Grida De �De re �re �e ��e Ntot

6-31G�d , p� basis set
�75,302� 0.876 0.130 3.596 0.246 165.26 13.27 22 650
�99,590� 0.728 0.045 3.631 0.157 100.33 27.03 58 410

�150,590� 0.716 0.002 3.551 0.008 66.84 9.31 88 500
�250,590� 0.715 3.550 62.26 0.01 147 500

�10075,590� 0.715 3.550 62.30 0.05 59 000
�250,590�P 0.713 3.550 61.69 0.15 62 768

�10075,590�P 0.713 3.550 61.71 0.13 29 420

aug-cc-pVTZ basis set
�75,302� 0.940 0.136 3.598 0.256 172.88 25.16 22 650

�250,590�P 0.755 3.575 0.001 54.95 0.18 62 768
�10075,590�P 0.755 3.575 0.001 55.00 0.30 29 420

a�N ,L� denotes an unpruned N-point Euler-Maclaurin �Refs. 5 and 6�/
L-point Lebedev �Ref. 12� gird; �ÑN ,L�, a grid with Ñ radial points gener-
ated by augmentation of an �N ,L� Euler-Maclaurin/Lebedev grid. The sub-
script P indicates that the grid has been angularly pruned as described in
Sec. III. See Sec. IV for details of the augmentation scheme.
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tively, from the reference value �Table I� and �De and �re

values of just 0.002 kcal/mol and 0.008 Å, whereas the vi-
bration frequency �66.8 cm−1� is 4 cm−1 larger than the ref-
erence value and ��e=9.3 cm−1. The �e and ��e values
indicate that a standard EM2 radial grid requires about 250
rather than 150 points to provide an accurate description of
the Ar dimer.

Our �10075,590� aug-EM2/L grid reproduces the refer-
ence values for De and re by less than 10−3 kcal/mol and
10−3 Å, respectively, and � by 0.04 cm−1. For the purpose of
determining �De, �re, and ��e, we constructed a series of
four aug-EM2/L grids starting from the �76,590� to �79,590�
EM2/L grids, respectively, in the same way as we con-
structed the �10075,590� aug-EM2/L grid. We obtained
�9976,590�, �10277,590�, �10378,590�, and �10679,590� aug-
EM2/L grids. The calculations with these grids yielded
�De�10−3 kcal/mol, �re�10−3 Å, and ��e=0.05 cm−1.
These results indicate that, for the problem investigated, the
�10075,590� aug-EM2/L grid provides the same accuracy as
the �250,590� EM2/L grid and is clearly superior to the
�larger� standard �150,590� EM2/L grid.

The calculations with the pruned �250,590� grid �pruning
is denoted with the subscript P in the following, see Table I�
show that pruning gives rise to a decrease of De by
2 cal/mol. The value for re changes by just 0.001 Å. �De

and �re are below 10−3 kcal/mol and 10−3 Å, respectively.
The �e value is decreased by about 0.5 cm−1; also, ��e in-
creases to 0.15 cm−1 as compared to 0.01 cm−1 for the
�250,590� grid. The changes in De and �e and the increase in
��e, although noticeable, are insignificant in practical appli-
cations. The �10075,590�P grid yields the same De and re

values as the �250,590�P grid and an �e value just 0.02 cm−1

lower, �De and �re values below 10−3 kcal/mol and 10−3 Å,
respectively, and a ��e of 0.13 cm−1. Thus, the 10075 radial
grid provides the same accuracy as the 250-point radial grid,
regardless whether angular pruning is applied or not.

It is instructive to discuss the numerical efficiency of the
aug-EM2 radial grids in connection with angular pruning.
The augmentation adds radial grid points just in the region
where the angular resolution is highest. In this way, the re-
duction of the radial grid size compared to a fine standard
EM2 grid is concentrated on regions where the angular reso-
lution is lower. Thus, one might suspect that the computa-
tional gain available by aug-EM2 grids is small. The right-
most column of Table I shows the sizes of the different grids
used. One finds that the �10075,590�P aug-EM2/L grid is just
47% the size of the �250,590�P EM2/L grid. The savings in
CPU time amount to 40% for the frequency calculation and
35% for a complete calculation comprising optimization and
frequency calculation. We remark that the �10075,590�P aug-
EM2/L grid is just 55% larger than a �75,590�P EM2/L grid
generated with our pruning scheme would be. In conclusion,
pruned aug-EM2/L grids provide a substantial computational
gain relative to pruned fine standard-EM2/L grids. One has
to keep in mind in this connection that the computational
cost for the extra coordinate transformation is negligible
compared to the savings in the numerical integration.

The calculations with the �75,302�, the �250,590�P, and
the �10075,590�P grids were repeated with the aug-cc-pVTZ

basis set. The results in Table I indicate that the calculation
with the �75,302� grids lead to the same problems as the
corresponding calculations with the 6-31G�d , p� basis set.
The results for the �250,590�P grid indicate an increase
of De by 0.042 kcal/mol to a value of 0.755 kcal/mol, an
increase of re by 0.025 Å to a value of 3.575 Å, and a de-
crease of �e by 7 cm−1 to a value of 55.0 cm−1, as compared
to the 6-31G�d , p� results. These significant changes cor-
roborate that the 6-31G�d , p� basis set is insufficient for a
description of weakly bound complexes. Replacing the
�250,590�P grid by the �10075,590�P grid leaves the De and
re as well as �De and �re values unchanged, increases �e by
0.05 cm−1, and increases ��e slightly from
0.18 to 0.30 cm−1. These results indicate that the aug-EM2
radial grids work properly with a large basis set containing
diffuse functions.

V. CONCLUSIONS

We have presented an algorithm that allows to augment
radial integration grids locally in regions where an increased
numerical accuracy is required. The algorithm can be applied
to any existing radial grid and provides an economical alter-
native to an overall refinement of the existing grid type by
increasing the total number of grid points. It is easy to imple-
ment and causes no substantial extra computational cost in
the grid generation. The new algorithm was tested for the
treatment of the Ar dimer with the VSXC functional �4b�. A
previous investigation3 had demonstrated that the standard
integration grids used in modern quantum-chemical program
packages provide a qualitatively incorrect dissociation curve
in this case. In this work, we show that a properly augmented
EM2 radial grid with 100 radial points provides a stable and
accurate description of this problem, whereas a nonaug-
mented EM2 grid requires 250 radial points for a stable
description,3 which allows savings in CPU time of 35%–
40%. It was shown that the aug-EM2 radial grids provide
accurate results in connection with angular pruning and work
properly for extended basis sets containing diffuse functions.
This result is encouraging and indicates that standard inte-
gration grids that are augmented in the outer valence region
provide an interesting alternative to large standard grids for
the treatment of weakly bound complexes with m-GGA
methods.

A possible direction for future work is the combination
of locally augmented radial grids with adaptive grid
generators13,11 to optimize the computational cost.

There are more potential applications for locally aug-
mented integration grids:

�1� Several problems, such as the determination of electric
field gradients in heavy atoms and the determination of
nuclear spin-spin coupling constants, require a high nu-
merical resolution in the region very close to the
nucleus. In these cases, a local augmentation of the
integration grid close to the nucleus �i.e., case N1=0 in
Eqs. �15�–�18�� can provide this accuracy in an efficient
way. By choosing a relatively small value of 
 in Eq.
�17�, it is possible to realize an enhancement of the
resolution that increases continuously as one ap-
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proaches the nucleus position. Such an augmentation of
the integration grid can be seen as a complement to the
augmentation of the basis set with compact functions as
suggested, e.g., in Ref. 19.

�2� Some years ago, numerical basis sets have been intro-
duced as an alternative to standard Gaussian- or Slater-
type basis sets �see, e.g., Ref. 20�. For numerical basis
sets, the values of the basis functions are given on a
discrete grid of points, and all energy contributions,
etc., are calculated by numerical integrations. The
proper choice of the grid is essential for a favorable
ration between numerical expenses and accuracy, and
locally augmented grids will be valuable if basis sets
for special purposes are to be constructed.
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