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The structures ofi-benzyne and its fluorinated derivative, tetrafluordsenzyne, were investigated
using coupled cluster methods including triple excitatig@CSD(T) and CCSDT, different
reference wave functiongspin-restricted Hartree—Fock, spin-unrestricted Hartree—Fock, and
Brueckne), and different basis set6-31Gd,p) and correlation-consistent valence triple-zeta
(cc-pVT2)]. The inclusion of triple excitations in conjunction witlh and f-type polarization
functions is paramount to correctly describe through-bond delocalization of the monocyclic form. At
the highest level of theory, the C1-C3 distance of the minimum energy formbenzyne is 2.0 A

and the profile of the potential energy surface along the C1-C3 distance is that of an asymmetric,
single well, in agreement with previous density-functional theory and coupled cluster studies. In
addition, the calculated CCSD) fundamental frequencies are in excellent agreement with the
measured infrared frequencies, thus confirming the monocyclic formtadénzyne. For tetrafluoro-
m-benzyne, however, the increased eclipsing strain between the ring-exterddi@ds stabilizes

the bicycld3.1.0hexatriene form: the C1-C3 distance is calculated at the GTB2-pVTZ level

to be approximately 1.75 A, which is in the range of elongated CC bonds. Computed harmonic
vibrational frequencies compare reasonably well with the experimental neon-matrix difference
spectrum and provide further evidence for the existence of a bicyclic forrB0@ American
Institute of Physicg DOI: 10.1063/1.1888570

I. INTRODUCTION was one of the productsTheoretical calculations using
coupled cluster theory supported this conclusion: the coupled
cluster singles and doubles method with perturbative triples

ngCCSI:IT)] (Ref. 18 and the 6-31@&, p) basis séf predicts
a monocyclic structurdstructure 1 of Fig. L whose har-

anonic vibrational spectrum shows good agreement with the
experimental infrared difference spectrirraka and Cre-

1,3-Didehydrobenzene (commonly  known as
m-benzyne, see Fig.)Jand its derivatives provide excellent
examples of the often symbiotic relationship between theo
and experimentn-Benzynes are stable only at low tempera-
tures and can be characterized by matrix isolation infrare
spectroscop%ﬁ7 and quantum chemical calculations can re-

produce the measured spectrum provided they also correct[()€": USing the same level of theory, predicted a C1-C3 bond
describe the molecule’s geometry and electronideéngth of ca. 2.0 A and a relatively weak biradical character

structure®'®Hence, agreement between measured and caff just 20%"° These investigations were later repeated by
culated infrared spectra is synonymous with identificationdeneratingm-benzyne from other precursors, and in each
and structural characterization. Although this strategy ofcase the same infrared spectrum was obsetved.
combining theory and experiment promises useful insight —Several authors have also performed density-functional
into the electronic structure of labile compounds not ametheory(DFT) (Ref. 20 and wave-function-based calculations
nable to other structural investigations, it is easily hamperedo explore the potential energy surfa¢BES along the
by complicating factors that may make the comparison probm-benzyne C1-C3 distan¢&™® At smaller values of
lematic. These may have to do with the experimental condis(C1-C3 a second structure, bicy¢®1.0hexatriene
tions (e.g., low resolution of the measured spectra, limited(structure 2 of Fig. Lmay be located, which, despite its high
detection range, presence of other molecules in the matrixing strain resulting from the existence of a cyclopropenyl
etc) or the limitations of the theoretical descriptide.g.,  unit and two inverted carbon atomi€1 and C3, is remark-
multireference effects, basis set incompleteness). ¢kor a  ably stable relative to the open form. However, whether the
recent review of many of the issues hampering theoreticainonocyclic or bicyclic structure is most stable depends
descriptions of benzyne diradicals, see Ref) 17. heavily on the type of method used, and the choice of density
Marquardt, Sander, and Kraka carried out the photolytiGunctional, wave function, basis set, correlation correction,
destruction of[2,2Jmetaparacyclophane-2,9-dione trapped etc. can have a dramatic effect on the shape of the PES.
in an argon matrix at 10 K and hypothesized tirabenzyne  among density functionals, in particular, the restricted three-
parameter exchange functional of Becke plus the correlation
dElectronic mail: crawdad@vt.edu functional of Lee, Yang, and PafRB3LYP) functionaf*?2
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v 7 both m-benzyne forms and leading to a large amplitude vi-
C2 C2 .
AN s bration?(3) Can one assess the answers to these two ques-
I Ol AR tions via a comparison of measured and calculated infrared
HiE e g H,acs\cs/"‘~Ha vibrational spectra ofn-benzyne?
e Lo Some of these questions have been investigated in the
1 2 past. For example, the most extensive studyndienzyne to

R date is that of Winkler and Sand€who used both DFT and
wave-function-based methods to investigate the PES along
the C1-C3 distance. They found that pure functionals based
on the generalized gradient approximati@®GA) such as
I n BLYP were superior to hybrid functionals such as B3LYP for
FIG. 1. Possible structural forms of-benzyne: a monocyclic singlet biradi- m'benZyn? pecause theV produc?ed energy prOf'leS that more
cal (1) vs a bicyclic closed-shell singlép); the o-allylic structure of Win-  closely mimicked those from higher level coupled cluster
kler and Sande(Ref. 13 (1) vs ac-delocalized structurél). In structure 2, theory. However. Kraka. Cremer. and co-workers have
the ring denotes ther system, which remains essentially intéatlative to . ' ' .
benzeng after the formation of the C1-C3 bond. In structure |, the dotted Shpwn that this I.S due to the_ fact that BL_YP mCIUde.S nonspe-
line indicates the presence ofthrough-bond coupling between C1-C3 and Cific, nondynamical correlation effects via the semilocal ex-
C1-C2/C2-C3. For structure Il, the circle indicates the delocalizeys-  change functiondl?2%2®=3!In this way the stability of the
tem, the dashed hexagon through-bond delocalization, and the coupled ar- tricted BLYP soluti . tificially i d d
rows a strong degree of spin coupling leaving little, but still finite biradical res I’!C e solu '_0” IS artmcially increased an e.m u_n'
character. restricted BLYP solution suppressed so that zero biradical
character is enforced for amy-benzyne form. B3LYP, which

predicts the bicyclic structure to be the most stable, wherea%Ontalns only a reduced amount of nondynamical electron

the RBLYP functionzi223 prefers the monocyclic structure, correlation, has an unrestricted solution in the case of

and an extensive discussion exists in the literature over th@-benzyne that is higher in energy than the restricted solu-

most appropriate choice of method for biradickté*—>* tion for the bicyclic form. _

Wenk and Sander recently reported the generation of Standard DFT with the approximate exchange-
tetrafluorom-benzyne in solid neon at 3 K identified by its correlation functionals in use today fails to describe the mul-
corresponding infrared difference spectrtifidust as for the  ticonfigurational character af-benzyne. The use of BLYP
parent i'n_benzyne, density functional calculations give and other GGA functionals in a sense dnguiseS the true pI‘Ob—
widely varying results depending on the choice of functional.lem by predicting a perfect coupling of the single electrons
Based upon their previous studiesrofbenzyne, Wenk and (via peripheral delocalization or an unlikely long CC bond
Sander concluded that the RB3LYP functional overestimateslose to 2 A. Accordingly, the reactivity of a typical closed
the interaction between the radical centers. They thereforshell system rather than a molecule with some biradical char-
preferred the RBLYP functional, which predicts a monocy-acter is predicted. More reliable results can only be obtained
clic structure. if a two-configurational approach such as the restricted en-

However, Hess has recently disputed the conclusions afemble Kohn—Sham approach is used with a hybrid func-
these investigations,and has suggested that still higher lev- tional to exclude at least partly the nondynamic correlation
els of theory should be applied to finally lay to rest the quesintroduced through the exchange functioffaBut even a
tion of m'benzyne,s structure. Indeed, the Var|ab|l|ty of com- two_configurationai DFT approach has to be Verified Wlth a
puted results from coupled cluster theory with respect to thenethod that works without any assumptions and approxima-
choice reference determina_nt, an important aspect for relaté¢hns and is known to provide reliable results in the case of
compounds such as 1,4-didehydrobenzéaieo known as  piragicals. Clearly coupled cluster is such a method.
p-benzyng™ has not yet been examined fm—benzyr_1e or The objective of the present work is to reconsider the
tetrafluorom-benzyne.  Furthermore,  calculated infrared ability of various single-determinant-reference coupled clus-

spectra have been exclusively based on the harmonic Ak method®?® in the prediction of the structure of

proximation combined with various scaling procedures to .
. . L2l m-benzyne and tetrafluonm-benzyne. We have examined
simulate the true fundamental infrared vibrational frequen-,

cies of the compounﬂf“lo'leIthough this approach is com- the influence of the reference molecular orbitdipin-

mon in quantum chemistfy, it makes spectra comparison restricted, spin-unrestricte_d, or Bruecknen the_ predicted
more a qualitative rather than the needed quantitative exeflUCtUre, as well as basis-set effects and higher levels of
cise. dynamic electron correlation. We have computed energy pro-

Several other questions must be answered in connectigHeS Of both molecules using structural optimizations at
with the m-benzyne(and tetrafluoran-benzyng problem:  coupled cluster levels of theory with varying basis sets. In
(1) What level of theory is required to obtain the most reli- @ddition, we have considered the potential importance of an-
able description of the twan-benzyne forms, or, equiva- harmonicity on the vibrational spectrum af-benzyne by
lently, how can one obtain a reliable description of the PES:omputing the fundamental vibrational transition wave num-
along the C1-C3 distancé2) What is the shape of this PES bers. These results provide, among other things, reliable ref-
profile: a double well, a simple single well, a strongly asym-erence data for comparison to more approximate methods,
metric single well, or a broad, flat single-well embeddingsuch as DFT.
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TABLE I. Optimized geometrical parameters mtbenzyne(bond distances in angstroms, angles in degrees, and enerdigs in

6-31Qd,p) cc-pVTZ
CCsD CCsnT) CCSDT CCsD ccso)

RHF UHF Brueckner RHF UHF Brueckner RHF RHF RHF
r(C,—Cy) 1.563 1.563 1.561 2.106 2.088 2.105 2.093 1.551 2.026
r(C,—Cy) 1.351 1.351 1.351 1.377 1.372 1.377 1.376 1.343 1.364
r(Cs—C,) 1.384 1.384 1.384 1.383 1.379 1.383 1.384 1.376 1.372
r(C4—Cs) 1.411 1.411 1.411 1.405 1.401 1.405 1.406 1.404 1.398
r(C,—H) 1.080 1.080 1.080 1.078 1.078 1.078 1.079 1.074 1.072
r(Cs—H) 1.077 1.077 1.077 1.082 1.082 1.082 1.083 1.071 1.076
r(Cs—H) 1.083 1.083 1.083 1.086 1.086 1.086 1.087 1.078 1.080
0(C,—C,-Cy)  70.7 70.7 70.6 99.8 99.1 99.7 99.0 70.5 95.9
6(C3—C4,—~Cs)  107.7 107.7 107.7 117.3 117.0 117.3 117.1 107.7 116.7
0(C4—Cs—Cs)  111.9 111.9 111.9 114.5 114.5 114.5 114.3 111.7 113.4
6(Cs—C,—H)  126.3 126.3 126.3 120.5 120.6 120.6 120.6 126.3 120.7
Energy -230.221066 -230.221066 -230.219548 -230.268076 -230.266229 -230.268097 -230.237040 -230.490523 -230.550092
I. COMPUTATIONAL APPROACH levels of theory, and theslcore electrons on carbon and

fluorine were frozen at the full CCSDT level. All calculations
We have investigated the structuresrofbenzyne and were performed using thecesii program systerrr’i".3
tetrafluorom-benzyne at the CCS&;*’ ccsoT),*®* and
full CCSDT levels of theory®*° In order to identify poten- Ill. RESULTS AND DISCUSSION: M-BENZYNE

tial problems associated with the underlying molecular or- a6 | symmarizes coupled cluster predictions of the
bital deﬁ_nmons, we utilized three types of_ reference determ"structure of mbenzyne. With the CCSD/6-316,p)
nants with the CC methods: spin-restricted Hartree—FocClg,eihod, all three reference determinants—RHF, UHF, and
(RHP), .'splnA-lu‘grestrlctedl Hartree—Fo¢lHF), and Brueck-  geckner—predict a bicyclic structure as the global mini-
ner orbitals.”"* Two basis sets were used in this study: theyym on the PES, with a C1-C3 distance of 1.56/k this
Pople-type split-valence 6-31G,p) basis sety and the  geometry, there is no true UHF wave function, i.e., the RHF
larger correlation-consistent valence triple-zeta basi¢cset  geterminant is stable to spin-symmetry breaking. Thus, the
pVTZ) developed by Dunning, which corresponds to a RHF-CCSD and UHF-CCSD structures given in Table | are
(10s5p2d1f/5s2pld)/[4s3p2d1f/3s2pld] basis. identical) However, triple excitations produce a dramatic
Optimized geometries were obtained using analytic enchange inm-benzyne’s predicted structure: the CAQSD'6
ergy gradients at the CCSD and CGSDlevels of theory  -31G(d, p) level of theory predicts a monocyclic structure as
with the RHF (Refs. 44-4Y and UHF (Ref. 48 reference the global minimum, with C1-C3 distances of 2.11, 2.09,
determinants, as well as at the CCD level with Bruecknemnd 2.11 A, respectively, with the RHF, UHF, and Brueckner
orbitals*? Finite differences of energies were used to obtainreference determinants. This qualitative difference continues
gradients at the full CCSDT and B-CQD levels. Energy at the full RHF-CCSDT level of theory, which gives a
profiles of m-benzyne and tetrafluonm-benzyne were ob- C1-C3 distance of 2.09 A. We observed similar trends using
tained from optimized structures with constrained C1-C3he larger cc-pVTZ basis set, as reported for the RHF-CCSD
distances. and RHF-CCSD) levels of theory in Table I. If we consider
Harmonic vibrational frequencies were determined usinghe fact that the larger cc-pVTZ basis set reduces the C1-C3
analytic energy second derivatives at the CCSD andlistance by 0.08 A, we predict that a value of ca. 2.013 A
CCSDT) levels of theory with the RHF and UHF reference would be obtained at the CCSDT/cc-pVTZ level of theory.
functions?®~>* numerical differentiation of analytic gradients
at the B-CCD levef? and numerical differentiation of ener- A. Electronic structure of ~ m-Benzyne

gies at the B-CCD) level. Infrared absorption intensities Figure 2a) presents the RHF-CCSD and RHF-CQ$D
were computed for all methods for which at least analyticenergy profiles of-benzyne(relative to the minimum at the
energy gradients were available. RHF-CG¥Pfundamental  given level of theory as a function of the C1-C3 distance,
vibrational frequencies afr-benzyne were determined using where all other geometrical parameters were optimized.
second-order vibrational perturbation theory with cubic andrhese diagrams illustrate clearly the difference in predicted
semidiagonal quartic force constants computed via finite difstructures, with the CCSD minimum at 1.56 A and the
ferences of analytic second derivatives using the method deeCSI(T) minimum at 2.11 A, and with a noticeable “shoul-
scribed by Stanton, Lopreore, and Garfss. der” on both profiles.

T, andT, excitation amplitudes were monitored as diag- ~ CCSD provides an accurate account of pair correlation
nostics of the quality of the coupled cluster wave functionsin the singles and double space, and it should therefore cor-
All electrons were correlated at the CCSD and CCBD rectly describe the degree of through-space pairing between
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the single electrons at C1 and C3. However, it includes onlyhrough-bond delocalization is correctly assessed. This is
disconnected three-electron correlation effects so thatonfirmed by Fig. #), which gives the self-consistent field
through-bond interactions of the single electrons ardRHF) (left-handy axis) and correlation contributiongight-
underestimatedf:>® Accordingly, it exaggerates the impor- handy axis) to the total energies. We note that the RHF
tance of forming a C1-C3 bond and wrongly predicts theenergy profiles are identical, indicating that the differing
existence of a bicyclic form. Both basis sets udéd  shapes of the CCSD and CCED surfaces are due entirely
31G(d,p) and cc-pVTZ predict an asymmetric PES with a to electron correlation effects. The shapes of the CCSD and
shoulder at the position of the open form. The larger basis se€CSIO(T) correlation energy curves in Fig(l8 are similar,
stabilizes the bicyclic form stronger relative to the open formbut the steeper slope of the latter leads to a shift in the mini-
(4-5 kcal/mol higher in energythan the smaller basis set mum to a larger C1-C3 distance shown in the total energy
(2—-3 kcal/ma). profile given in Fig. 2a). There is also a clear change in the
CCSOT), on the other hand, gives a more balanced acCCSOT) PES when using the larger cc-pVTZ basis set. The
count of both pairwise and connected three-electron correlashoulder at the position of the bicyclic form is lowered sig-
tion effects so that the stabilization of the open form bynificantly from 3.2 to 1.6 kcal/mol, which leads to a shift of
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the minimum from 2.11 to 2.05 AFig. 2@@)]. Clearly, the for the bicyclic versus the monocyclic form, because a

correct PES profile along the C1-C3 distance corresponds tmonocyclic structure with delocalized single electrons is eas-
an asymmetric, single-minimum potential. This result is con-ly polarizable and can react either as an electrophile or as a
firmed by UHF-and Brueckner-CCS$D) calculations that do  nucleophile.

not significantly change the shape of the PES profile.

C. The infrared spectrum of m-benzyne

B. Biradical character of m-benzyne Marquardtet al. reportedm-benzyne’s infraredIR) dif-

. o ference spectrum from the isolated photolytic decomposition
What is the biradical character of the reference wavey [2,2Jmetaparacyclophane-2,9-dione in solid argon at

function in the two most important regions of the energy,q i 13 1apje || includes experimental IR vibrational data
profiles described above—the bicyclic region for which on,1teq by Sander, and theoretical vibrational frequencies
CCSD predicts a minimum and the monocyclic region pre-jatermined by CCSD/ and CC8D/6-31G(d, p). The latter
ferred by CCSDT)? One measurement of such multirefer- are in agreement with those given by Marquaedital.l'4
ence character is the size of tffe cluster amplitudes. Fer Among the totally symmetric modes, only three directly af-
short C1-C3 distances, the maximImRHF-CCSD ampli- ot the C1-C3 distances, (C1-C2—-C3 bending w, (out-
tude is 0.09.(As noted earlier, UHF-CCSD gives identical of-phase breathing of C1-C2—C3 and C4—C5\,Gfd ws

results in this case because the RHF wave function is Spir{'Cl—CZICB—CZ symmetric stretchinglowever, onlyws is
stable) For longer C1-C3 distances, on the other hand, th@,mhted to have any significant intensity. Again we find
maximum RHF-CCSDT, amplitude increases to 0.2%0 & hat for hoth CCSD and CCSID) methods the computed IR

double excitation from the highest occupied molecular oroq encies are invariant with respect to choice of reference
bital (HOMO) to the lowest unoccupied molecular orbital determinant. This is in contrast tp-benzyne for which

(LUMO)] clearly indicating greater biradical character in the oo\ fordet al. found that the RHF reference wave function
reference function(UHF-CCSD gives nearly identical val- suffered from MO instabilities, leading to dramatic shifts in

ues) As a second measure of biradical character in the wavg, o computed vibrational frequenci"é?sl.:igures 3a) and 3b)

function, we have also computed natural orbital occupation,e comparisons of the experimental IR vibrational spectrum
numbers(NOON). For the RHF-CCSD wave function in the vs those determined by theory in the 500—1600crange.

short C1-C3 regiotii.e., the bicyclic structune the HOMQ The CCSD spectrum shown in Fig(aB includes nine ab-
and LUMO NOON values are 1.92 and 0.07, respectivelyg,niion peaks within this range, three of which cannot be

while in the long C1-C3 regiod.e., the monocyclic struc- aiched to any of the peaks in the experimental difference

ture) the va!ues are 1.75 and 0.24, in agreement with thpspectrum. Furthermore, the CCSR vibrational mode at
results obtained by Kraka and CrenfiéAgain, we see that 1493 et does not reasonably fit with any of the experi-

the biradical character increases with the C1-C3 distance, 35antal absorption peaks.
expected, though, its magnitude is significantly smaller than 11,4 CCSDT) infrared spectrunfiFig. 3(b)], on the other
for p-benzyne, with HOMO and LUMO NOON values of panq  accounts for all the experimental absorption peaks

1.18 and 0.82, respectiv'eglf/. Foc ) within this range and correctly reproduces the relative inten-
We note also that Winkler and Santieconcluded via a  gjijeg a5 well. Due to the somewhat anharmonic nature of the
natural bond-orbital analysis that-benzyne’s monocyclic PES(vide supra, we also calculated CCSD) fundamental
structure should not be described as a biradical but rather quencies as reported in Table Ill. Most of the shifts are
o-allylic structure(Fig. 1, structure )l referring .to the fact small (less than 50 ci#) and most are negative, except for
that the tvyo single electrens can Qelocallze f_rom ,thethe 545, 743, and 818 crhharmonic frequencies, which lie
al-symmetr!cal C1-C3 bonding orbital into the am'bond'ng_slightly below the corresponding experimental fundamentals
CZ‘H7_°rt?'ta'- The eame authors ShO_W’ however, that th_'%t 547, 751, and 824 ci respectively. In nearly every case,
delqcallzatlon effect is mugh et'ronger in Fhe case O,f the Diy,q computed fundamentals align superbly with the experi-
cyclic compound aqd that elgnlfleant centrlbunons arise frommental infrared absorption peaks, as illustrated in Fig).3
the through-bond interactions involving-bonds C1-C2, 1,5 pased on the above evidence, we agree with Marquardt
C2-C3, C4-C5, and C5-C6. Hence, structure Il of Fig. 1oy o) 1 kraka et al,’® and Sandeet al? that the infrared

may provide a more realistic description of the electronicSpectrum clearly identifies the monocyclic structure of
situation, which is characterized by increased pairing of th‘?n—benzyne.

single electrons caused by their delocalization through the
whole o framework of the ring. Representation Il is also to
be preferred as it illustrates explicitly the partial biradical
character and does not conflict with the fact that a partial
allene structurdéformula ) should cause a widening of the Table IV summarizes coupled cluster predictions of the
C1-C2-C3 anglérelative to benzenewhere the opposite is structure of tetrafluoror-benzyne. At the CCSD/6-
actually the case. 31G(d, p) level of theory, all three reference functions pre-
The reduced biradical characterrofbenzyne is the rea- dict a nominally bicyclic structure, with C1-C3 distances
son that the molecule has a relatively low tendency to abangstroms of 1.621 (RHF), 1.600 (UHF), and 1.617
stract hydrogen atontS.Instead it undergoes reactions with (Brueckne), though we note thatl) the agreement among
nucleophiles, which of course does not imply a preferencehe orbital choices is significantly poorer fogf; than for

IV. RESULTS AND DISCUSSION: TETRAFLUORO-
{W-BENZYNE
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CCSD/6-31G(d,p) =em=n==
Argon, 10K e

Normalized intensity (km/mol)

' FIG. 3. RHF-CCSD and CCSD) in-

J ' ! ! J ' ' T ' j T frared  vibrational  spectra  for
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 m-benzyne using a 6-31@,p) basis.
@ cm™! The experimental infrared difference
spectrum reported by Marquarelt al.
(Ref. 1) is compared tda) the CCSD
harmonic infrared spectrum antb)
the CCSDOT) harmonic and funda-
mental infrared spectra.

CCSD(T)/6-31G(d,p) Harmonic ====sss
CCSD(T)/6~31G(d,p) Fundamental
Argon, 10K em—

Normalized intensity (km/mol)
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(b)

m-benzyne and(2) the C1-C3 distance in €, is into the o (C2—F7 orbital; (b) At the same time, the in-
0._04—0.05A longer than im-_ben_zyne_(Cf. Table ). Ag_ain, plane lone pair of F7 can donate density into the C1-C3
triple excitations lead to a widening in the C1-C3 distanceantibonding orbital, thus hindering the formation of a shorter
ranging from 0.08-0.12 A, depending on the choice of ref-c1_c3 hond{c) The m-donor capacity of F7 also stabilizes
erence, but much smaller than that observedidsenzyne, Athe bicyclic structure because it supports a resonance struc-
Loét Wehézh égg;;g%gggnce shifts by more than 0.5 A6 in which ther system of them-benzyne splits into an

w . » . aromatic allyl anion unit and a nonaromates opposed to

Clearly, the steric repulsion of the substituents F8, F9, . . . .

fa\nnaromat@ cyclopropenylium cation(We also note that

and F10 is sufficient to overcome all electronic factors tha
favor a C1-C3 distance of 2 A or larger. Indeed, it is likely the m-donor effects of F8, F9, and F10 serve to somewhat

that this distance would be even shorter if the substituent F@ffset the effect of F7 and destabilize the bicyclic form.

at C2 did not destabilize the C1-C3 interactions. We ratio-  Figure 4 presents RHF-CCSD/ and RHF-CG$D6-
nalize these results as follow&) The inductive effect of 31G(d,p) energy profiles of tetrafluorox-benzyne(relative
fluorine withdraws electron density out of the C1-C3 regionto the minimum-energy structure at each level of the¢ay/a
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TABLE lll. Anharmonicities and fundamental vibrational frequencies compassing open and bicyclic forms as extreme cases, the
(cm™) of m-benzyne computed at the RHF-CCAD/6-31G(d, p) level of 6-313d, p) basis is clearly too small to provide an accurate

theory. description. The shape of the PES is significantly basis-set
Anharmonicity Fundamental Argon, 10°K dependent, as shown i|_’1 Fig. 4, which also plots RHF-
CCSOT)/cc-pVTZ energies computed at the same RHF-
() -20.3 366.1 CCSIOT)/6-31Gd,p) constrained structures. With the
wy(ay) 0.9 849.6 larger basis set, the outer minimum disappears, leaving only
“’381; _;i'z 1832“: a single minimum with a C1-C3 distance at approximately
@A ' ' 1.75 A, comparable to the RHF-CC$SD inner minimum
ws(ay) -33.6 1420.6 14020.15 : . .
wulay) 465 1660.1 with the 6-31Gd, p) basis set. Clearly, the minimum energy
wr(ay) _133.3 3076.9 30370.05 structure of tetrafluorm_benzyne corresponds more to th.at
wg(ay) 1382 3117.3 of a bicycld3.1.0hexatriene than to that of a monocyclic
wg(dy) -146.1 3143.0 structure considering the fact that C—C distances of 1.75 A
w010(y) 1.9 498.5 should still provide some weak bonding. In addition, we note
w11(3y) 5.2 829.8 that this distance is significantly shorter than that given by
wyo(by) 55 550.0 5471.00 BLYP/6-311++Gd,p) (1.909 A
w14(by) -22.8 951.9 9360.25
wr4by) -24.6 1127.1
w15(by) -19.8 1264.6
Ziigg :igg 1233:2 A. The infrared spectrum of tetrafluoro- ~ m-benzyne
w15(by) -30.9 1513.0 14860.15 Wenk and Sander used UV photolysis of 1,3-diiodo-
w1o(by) ~155.1 3095.5 2,4,5,6-tetrafluorobenzene in solid neon at 3 K and recorded
“’20(22) 82‘2 iggé an infrared difference spectrum that they subsequently as-
w2n(by) ' ' signed to tetrafluoroa-benzyne based in part on DFT
wz2b) 69 7504 751043 calculations>® Table V compares the experimental results of
wps(by) 17.9 836.0 8240.20 ' P P

(D) 329 950.6 Wenk and Sander to the CCSD/ and CQ$pP6-31Gd,p)
harmonic vibrational frequencies associated with the opti-
mized structures given in Table IV. Among the totally sym-
metric modesw, (C1-C2—C3 bending w, (ring breathing,
function of the C1-C3 distance, where all geometrical paand ws (C1-C2/C3-C2 symmetric stretchindirectly affect
rameters were optimized. As fon-benzyne[cf. Fig. 2a)],  the C1-C3 distance, but onlys is computed to have signifi-
the CCSD level clearly favors the bicyclic structure with cant intensity(lt is also worth noting that the relative inten-
only a slight shoulder as the C1-C3 distance increases. Hovsity of ws is significantly higher than in the parent
ever, the CCSDI) level produces a very flat PES, with a m-benzyne, for which the mode has a similar C—C stretching
minuscule barrier of only 0.07 kcal/mol separating the innerstructure). The computed infrared frequencies vary little with
minimum at C1-C3=1.744 A and an outer minimum atrespect to the choice of reference determingatt most
C1-C3=1.981 A, similar to that found fan-benzyne. Al- 50 cni?l), though the variation is somewhat larger than for
though this result could support the hypothesis that the truexrbenzyne. Figures(8)-5(c) are comparisons of the experi-
structure is characterized by a large amplitude vibration enmental IR vibrational spectrum vs those determined by

*Reference 1.

TABLE IV. Optimized geometrical parameters of tetrafluonesenzyne(bond distances in angstroms, angles in degrees, and enerdgigsdomputed with
the 6-31Gd, p) basis set.

CCsD CCsDT) ccsom)?

RHF UHF Brueckner RHF UHF Brueckner RHF
r(C;—Cy) 1.621 1.600 1.617 1.744 1.680 1.753 1.981
r(C,—Cy) 1.344 1.334 1.335 1.338 1.337 1.339 1.348
r(C3—Cy) 1.367 1.364 1.368 1.370 1.367 1.371 1.375
r(C4—Cs) 1.404 1.400 1.405 1.405 1.403 1.406 1.401
r(C,—F) 1.317 1.317 1.318 1.325 1.324 1.326 1.330
r(C,—P 1.341 1.342 1.342 1.344 1.345 1.345 1.344
r(Cs—F 1.329 1.329 1.330 1.333 1.332 1.334 1.336
0(C,—C—Cy) 74.8 74.8 74.6 81.3 77.9 81.8 94.5
A(C3—C,—Cs) 109.1 109.1 109.0 111.6 110.2 111.8 115.7
0(C,—C5—Cy) 111.8 111.8 111.8 112.0 1121 112.1 1135
0(C3—Cy—F) 127.0 127.3 127.1 125.3 126.2 125.2 122.7
Energy -626.231418 -626.230 941 -626.192 360 -626.290 841 -626.289 857 -626.292 003 -626.290 948

*Quter” minimum-energy structure described in the text.
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‘-'&i,,_ / CCSOT) C1-C3 energy profiles for
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g 51 % 7 - Structural parameters were optimized
% K /7 for fixed C1-C3 distances at the
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theory in the 400-2100 crh range for the RHF-CCSD, (2) Basis set and anharmonicity corrections are often
inner-RHF-CCSDT), and outer-RHF-CCSQ@) structures, simulated by using a scaling factor of 0.96 for CGSLY
respectively. 6-31Qd, p) frequencies;*°a particularly useful technique in

The CCSD frequencies compare reasonably well, excepghe high-frequency range to approach experimental values
for one additional low-frequency line in the 400—700¢m from above. In the case of the CCED) spectrum calculated
range and two low-intensity lines between 1200 andfor C1-C3=1.744 A this would lead to an improvement be-
1400 cnt. In addition, the intensity of the line at 2031 ¢cn  tween theory and experiment for the bands between 1500
is much too large, assuming it should compare to the experiand 1830 crit!, but not in the case of the CC$D spectrum
mental line at 1818 cit. The CCSIMT) data compare some- calculated for C1-C3=1.981 A.
what better with experiment, apart from the low-intensity  (3) For the bicyclic structure, the banak, which is the
line at 1443 cm' for the inner minimumFig. 5b)] and a  only totally symmetric band that leads to a reduction of the
missing low-frequency, low-intensity line near 500 ¢nfor ~ C1-C3 distance, is one of the most intense transitions ac-
the outer minimum{Fig. 5(c)]. The highest-frequency line cording CCSIT) calculations at C1-C3=1.744 A, but is
compares better to experiment in position for both sets osignificantly reduced in intensity at C1—-C3=1.981 A. In the
CCSOT) data, but are too high in intensity, just as for experimental spectrum this is indeed the most intense band
CCSD. (cf. Table V).

If one considers the substantial basis-set dependence of We conclude that the infrared spectrum does indeed sug-
the structures in Table IV and the CC8D energy profile in  gest a bicyclic structure with a relatively long C1-C3 bond
Fig. 4, as well as the need for anharmonicity corrections irof approximately 1.75 A. It is beyond the computational pos-
the high-frequency rangéf. Table Ill for the parent mol- sibilities presently available to determine if measured infra-
ecule, then the accuracy of the CCED/6-313d,p) level  red spectrum confirms a large amplitude vibration involving
of theory cannot be considered the final authority on thews.
structure of tetrafluoron-benzyne. Indeed, additional
CCSOT)/cc-pVTZ data, which were not feasible in the B. Biradical character of tetrafluoro- ~ m-benzyne
present work due to computational limitations, will be nec- L
essary to finally resolve this issue. However, there are three 1€ biradical character of the tetrafluarebenzyne
reasons that suggest that the experimental spectrum suppoREictures, as estimated by the magnitudes offthand T,

a bicyclic rather than monocyclic form. cluster amplitudes, is rather small. For the CCSD/
6-31Gd,p) structure T;(max=0.03 and T,(max =0.08.

(1) For the CCSDT) spectrum calculated at C1-C3 (UHF-CCSD gives a similar maximurfi,, and a somewhat
=1.744 A all measured infrared bands can be assigned. It isrger maximumT, of 0.08) For the RHF-CCSDT)/
more than likely that the “extra” low-intensity lines sug- 6-31Gd,p) structure with C1-C3=1.75 A, these values are
gested by theory cannot be resolved in the experimentaimilar: T;(maxX=0.03 andT,(max=0.11. The HOMO and
spectrum. In addition, the infrared band at 1500 tfwhich  LUMO NOON values for each structure are comparable:
is missing in the CCSO) spectrum calculated for C1-C3 CCSD=1.92/0.07, CCSD)=1.89/0.09. Hence, tetrafluoro-
=1.981 A] mustbelong to the difference infrared spectrum m-benzyne is best described as a bicyclic structure with an
of tetrafluorom-benzyne. elongated C1-C3 bond.
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FIG. 5. RHF-CCSD and RHF-
CCSOT) harmonic vibrational spectra
for tetrafluorom-benzyne using a 6
-31G(d, p) basis. The experimental in-
frared difference spectrum reported by
Wenk and Sande(Refs. 5 and Bis
compared to(a) the CCSD spectrum,
(b) the CCSOT) spectrum for the in-
ner minimum, and(c) the CCSOT)
spectrum for the outer minimum.
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In addition, the calculated singlet-tripleT) splitting of ~ crease in the ST splitting suggests that in Betate the
tetrafluorom-benzyne is in line with the above description. single electrons are more strongly coupled either by through-
At CCSD(T)/6-31Gd,p), we obtain a value of space orthrough-bond coupling, which in the latter case im-
26.8 kcal/mol(in favor of the singlet which is 7 kcal/mol  plies a shorter 1,3-distance.
larger than that calculated for-benzyne(20 kcal/mol com- We note that bicyclicm-benzyne structures have also
pared to an experimental value of 21 kcal/MplAn in-  been discussed by Cramer and co-workerd for various
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