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The regular approximation to the normalized elimination of the small componentsNESCd in the
modified Dirac equation has been developed and presented in matrix form. The matrix form of the
infinite-order regular approximationsIORAd expressions, obtained infFilatov and Cremer, J. Chem.
Phys. 118, 6741s2003dg using the resolution of the identity, is the exact matrix representation and
corresponds to the zeroth-order regular approximation to NESCsNESC-ZORAd. Because IORA
s=NESC-ZORAd is a variationally stable method, it was used as a suitable starting point for the
development of the second-order regular approximation to NESCsNESC-SORAd. As shown for
hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies
from the fifth-order Douglas–Kroll approximation, which is much more computationally demanding
than NESC-SORA. For the application of IORAs=NESC-ZORAd and NESC-SORA to
many-electron systems, the number of the two-electron integrals that need to be evaluatedsidentical
to the number of the two-electron integrals of a full Dirac–Hartree–Fock calculationd was drastically
reduced by using the resolution of the identity technique. An approximation was derived, which
requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this
approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals
deviates from the energy calculated with the exact integrals by less than 5310−9 hartree units.
NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical
program. Their application is comparable in cost with that of nonrelativistic methods. The methods
can be run with density functional theory and any wave function method. NESC-SORA has the
advantage that it does not imply a picture change. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1844298g

I. INTRODUCTION

For the majority of all elements of the periodic table, the
inclusion of relativistic effects is important for obtaining ac-
curate quantum mechanical descriptions of their properties
either in atomic or molecular form.1–3 This is especially true
for compounds containing heavy elements, where relativity
makes sizablessometimes even dominatingd contributions
not only with regard to their physical properties,1,4,5 such as
magnetic response properties, but also with regard to chemi-
cal bonding and chemical reactivity.1–3 Although substantial
progress has been made in the field of rigorous four-
component relativistic calculations based on the Dirac
Hamiltonian,5,6 these calculations still remain prohibitively
costly even for medium-sized molecular systems. Therefore,
there is a growing demand for simple yet accurate approxi-
mate relativistic all-electron methods that can be easily in-
stalled within the existing quantum-chemical program pack-
ages and that can be used routinely in calculations on larger,
chemically interesting molecules.

The all-electron methods derived from the so-
called regular approximation to the exact relativistic
Hamiltonian7–12 furnish perhaps the most promising tools in
relativistic quantum chemistry. The starting point for deriv-

ing the regular approximation is the assumption of a strong
electron binding potential in such a way that the explicit
energy dependence on the relativistic transformation opera-
tors can be disregarded and instead be taken into account in
a perturbational fashion.8–12 Because in atoms and mol-
ecules, the electrons move in the strong Coulomb potential
of the nuclei, this assumption seems to be well suited for
atomic and molecular calculations. The development of the
regular approximation is made usually in terms of operators
rather than matrices.8–10 This route leads to an algebraic ex-
pression for the regular Hamiltonian operator, which con-
tains the full atomic or molecular potential in the
denominator.8–10 Therefore, for a long time, any wave func-
tion based quantum-chemical description using the relativis-
tic Hamiltonian in the regular approximation required te-
dious numeric quadratures13 as the only way for the
evaluation of needed matrix elements over basis set func-
tions.

A more efficient alternative was provided by us in form
of the matrix ZORA szeroth-order regular approximationd
and matrix IORA sinfinite-order regular approximationd
approaches.12,14,15 For these methods, any numeric quadra-
tures are avoided by the analytic evaluation of the matrix
elements of the regular Hamiltonian utilizing the resolution
of the identitysRId as defined by a given finite basis set. This
leads to a simple and efficient algorithm, which can be actu-adElectronic mail: filatov@theoc.gu.se
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ally used within the context of both density functional theory
and wave function theorysWFTd. On first sight, one may
consider the use of the RI as a useful mathematical trick
rather than as a methodological extension of the regular ap-
proximation with a specific physical meaning. In this work,
however, we will demonstrate that, if the development of the
regular approximation is carried out within the matrix repre-
sentation of the exact relativistic equations, modified accord-
ing to Dyall,16 the same analytic formulas can be obtained
for the matrix ZORA and matrix IORA as published in our
previous work without requiring at any stage the use of
the RI.

It is the primary objective of the present paper to de-
velop the connection between the regular approximation and
the method of the normalized elimination of the small
component16 sNESCd from the Dirac equation.17 The NESC
method corresponds to the projection of the Dirac Hamil-
tonian onto a set of positive-energyselectronicd states, which
guarantees its variational stability.16 The solution of the
NESC method is the same as that of the Dirac equation.18

Thus, connecting the regular approximation and NESC
means that the regular approximation is directly connected to
the Dirac equation. An advantage of NESC is that this
method is formulated in matrix form,16 which permits the
formulation of the regular approximation within WFT, i.e., in
a form perfectly suited for atomic and molecular calculations
with finite basis sets.

The current paper comprises beside the Introduction
three additional sections: In Sec. II, the NESC method is
briefly described. The relationship between the regular ap-
proximation and NESC is presented in Sec. III for the case of
a single electron whereas it is extended to the many-electron
case in Sec. IV. NESC-ZORA and NESC-SORAssecond-
order regular approximationd emerge out of this work, which
are applied to a series of hydrogenlike and heliumlike atomic
ions. Results of these calculations are compared with the
exact relativistic values. Finally, Sec. IV describes an algo-
rithm which largely simplifies the calculation of
relativistically-corrected two-electron integrals.

II. NORMALIZED ELIMINATION
OF THE SMALL COMPONENT

For a single electron moving in the potential fieldVsr d,
the Dirac equation, modified according to Dyall, reads16

T̂FL + Vsr dCL = ECL, s1ad

T̂CL +
1

4m2c2ss ·pdfVsr d − Egss ·pdFL = T̂FL, s1bd

where T̂ and p are the usual kinetic energy and linear mo-
mentum operators,m is the electron mass,c velocity of light,
and s is the vector of Pauli matrices.19 The functionCL is
the large component of the Dirac wave function and the
pseudolarge componentFL is connected to the small compo-
nentCS of the Dirac wave function via Eq.s2d,16

CS=
ss ·pd
2mc

FL. s2d

With the use of Eq.s2d, the so-calledkinetic balance
condition20 is embedded into the modified Dirac equation
s1d. Therefore, the same basis setuxl can be used to expand
the large and pseudolarge components of the modified Dirac
wave function, which leads to the following set of matrix
equations for the expansion coefficients, denotedsfollowing
Dyalld A andB, respectively:16

TB + VA = SAE, s3ad

TA + sW0 − TdB =
1

2mc2TBE . s3bd

In Eq. s3d, A andB are the matrices of the expansion coef-
ficients for the large and pseudolarge components,T andV
are the matrices of the kinetic and of the potential energy
operators, respectively,S is the overlap matrix, andW0 is the
matrix of the operatorss ·pdVsr dss ·pd / s4m2c2d, used in our
previous works.14,15

The elimination of the small component in Eq.s3d is
achieved by the use of a general nonunitary transformation
matrix U, which connects the expansion coefficients matrices
A andB via Eq. s4d,

B = UA . s4d

By requiring that the proper normalization of the modified
Dirac wave function is retained, i.e.,

A†SA +
1

2mc2B†TB = I , s5d

one obtains the NESC equations6d

sT̃ + ṼdA = S̃AE , s6d

where the modified kinetic energy, potential energy, and
overlap matrices are defined in Eq.s7d,

T̃ = U†T + TU − U†TU , s7ad

Ṽ = V + U†W0U, s7bd

S̃= S+
1

2mc2U†TU . s7cd

The matrixU satisfies Eq.s8d

U = T−1ST̃ + U†W0U −
1

2mc2U†TUAEA −1D
= T−1ST̃ + U†W0U −

1

2mc2U†TUS̃−1HD , s8d

whereH =T̃ +Ṽ and the relationshipss9ad and s9bd for the

eigenvectorsA of a matrixH normalized on a metricS̃ were
used in the second line of Eq.s8d,

A−1 = A†S̃, s9ad

H = S̃AEA †S̃. s9bd

The system of Eqs.s6d and s8d is solved iteratively starting
with some suitable guess forU.
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It has been shown16 that the NESC method corresponds
to the projection of the Dirac Hamiltonian onto a set of
positive-energy eigenstates, which guarantees its variational
stability. In this respect, the NESC method represents a vi-
able alternative to other techniquesse.g., the Douglas–Kroll
approach21d that project the full set of solutions of the Dirac
equation onto the manifold of positive-energyselectronicd
states. However, the metricS̃ in Eq. s6d varies from iteration
to iteration so that, in the many-electron case, the two-
electron integrals must be tediously recalculated at each
iteration.16

III. REGULAR APPROXIMATION TO NESC

For the purpose of simplifying the solution of the NESC
equations, we assume that the dependence of matrixU on the
energy eigenvaluesE is weak and that the last term on the
right-hand side of Eq.s8d can be neglected. After some alge-
bra, the following equation for matrixUs0d is obtained with
these assumptions:

sUs0dd†T − sUs0dd†TU s0d + sUs0dd†W0U
s0d = 0, s10d

where the superscript 0 denotes the zeroth-order approxima-
tion of U swith respect to the energy eigenvaluesd. Equation
s10d is solved byUs0d in Eq. s11d,

Us0d = sT − W0d−1T . s11d

Substitution of Eq.s11d into the NESC equations6d yields
Eq. s12d as the zeroth-order approximation to NESC,

fTsT − W0d−1T + VgA

= FS+
1

2mc2TsT − W0d−1TsT − W0d−1TGAE . s12d

Using the fact that for two symmetric matricesX andY the
following relationship holds:11

sX−1 − Y−1d−1 = YsY − Xd−1Y − Y , s13d

Eq. s12d can be transformed to Eq.s14d,

sT + W + VdA = FS+
1

2mc2sT + 2W + WT −1WdGAE ,

s14d

where matrixW is the solution of Eq.s15d:

W = W0 + W0T
−1W . s15d

In Eq. s14d, the IORA matrix equation derived in our previ-
ous works14,15utilizing the RI can be easily recognized. This
proofs thatsad the use of the RI is actually not needed andsbd
that the previously derived matrix IORA equation is the ex-
act lowest-order regular approximation to the matrix Dirac
equation.

It is interesting to see what would happen if one started
from the modified Dirac equations3d directly, rather than
from the NESC equations6d. In the spirit of the regular
approximation,8–12 the right-hand side of Eq.s3bd, which
leads to the energy dependence of the operatorU, Eq. s4d, is
set to zero. Immediately, one arrives at Eq.s11d for the

lowest-order regularly approximated operatorUs0d, which
upon substituting into Eq.s3ad yields Eq.s16d,

fTsT − W0d−1T + VgA = sT + W + VdA = SAE. s16d

Equations16d is nothing else than the matrix ZORA equa-
tion. One must, however, realize that the large component
eigenvectorsA are normalized by the conditions5d. If this
constraint is lifted, the large component will be improperly
normalized on the nonrelativistic metric. In this respect, the
matrix ZORA equation is the lowest-order regular approxi-
mation to the equation for the unnormalized elimination of
the small component, henceforth called UESC-ZORA. In the
IORA equations14d, the proper normalization for the large-
component wave function is approximated on the right-hand
side. Therefore, this is the lowest-order approximation to the
normalized theory.

Let us now consider the iterative solution of Eqs.s6d and
s8d using Eq.s11d as starting guess. The zeroth-order Hamil-

tonianH s0d and the zeroth-order metricS̃s0d are given by the
terms in parentheses on the left-hand sideslhsd and the right-
hand sidesrhsd of Eq. s12d, respectively. From Eq.s8d it
follows that the next approximation to the operatorU is

Us1d = T−1FTsT − W0d−1T

−
1

2mc2TsT − W0d−1TsT − W0d−1TsS̃s0dd−1H s0dG
= Us0d −

1

2mc2Us0dUs0dsS̃s0dd−1H s0d, s17d

where

H s0d = TsT − W0d−1T + V s18d

and

S̃s0d = S+
1

2mc2sUs0dd†TU s0d. s19d

Therefore, the next approximation to the NESC Hamiltonian
is

H s2d = H s0d −
1

s2mc2d2H s0dsS̃s0dd−1sUs0dd†

3TsT − W0d−1TU s0dsS̃s0dd−1H s0d. s20d

The superscript 2, used in Eq.s20d, emphasizes that the
Hamiltonian matrixH s2d has second-order dependence on the
lowest-order HamiltonianH s0d and, consequently, on the ei-
genvaluesEs0d. For the new metric, one has Eq.s21d,

S̃s2d = S̃s0d −
1

s2mc2d2H s0dsS̃s0dd−1sUs0dd†TsT − W0d−1

3TU s0d −
1

s2mc2d2sUs0dd†TsT − W0d−1TU s0d

3sS̃s0dd−1H s0d +
1

s2mc2d3H s0d

3sS̃s0dd−1sUs0dd†sUs0dd†TU s0dUs0dsS̃s0dd−1H s0d, s21d
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which again has second-order dependence on the zeroth-
order Hamiltonian. Consequently, iterating the NESC equa-
tions s6d ands8d once, leads consistently to the second-order
sin terms of the zeroth-order eigenvaluesd correction to the
Hamiltonian and wave function metric. Therefore, the

method whereH s2d and S̃s2d are used represents the second-
order regular approximation to the NESC equation, hence-
forth called NESC-SORA for brevity.

The recurrent iteration of Eqs.s6d ands8d can be contin-
ued, which will ultimately lead to the exact solution of the
NESC equations. This, however, may not be necessary, be-
cause already at the NESC-SORA level results of high accu-
racy are obtained. Table I summarizes relativistic energies
for a series of hydrogenlike atomic ions calculated with the
ZORA, IORA, and NESC-SORA and compares these ener-
gies with the exact solutions of the Dirac equation and with
the results obtained with the Douglas–KrollsDKd
approximation.21–23 For the calculations, a basis set of 50
primitive s-type Gaussian functions taken from the work of
Wolf et al.22 was employed.

Calculated IORA energiesswhich can be alternatively
considered as being determined with the zeroth-order regular
approximation to NESC, i.e., NESC-ZORAd and NESC-
SORA energies show rapid and smooth convergence from
below to the exact Dirac energies. The convergence from
below is consistent with the fact, proven by Dyall,16 that, for
any trial wave function, NESC provides a lower bound to the
exactsDiracd energy. In terms of numerical accuracy, IORA
performs much better than the lowest-order DK method,
DK1. In turn, NESC-SORA performs better than the next
Douglas–Kroll approximation DK2, which is the method of
comparable computational complexity. In fact, NESC-SORA
outperforms the fifth-order DK method DK5, in terms of
numerical accuracy and performs as good as the much more
demanding DK6 method. Note that for the construction of
the Hamiltonian operator matrix in DK5 and DK6 888 and
7832 matrix multiplications are required,23 which makes the
implementation of these methods a nontrivial and tedious
task. Furthermore, the Douglas–Kroll approach suffers from
erratic soscillatingd and slow convergence22,23 to the exact
energy whereas the convergence of the regular approxima-
tions to NESC is rapid and monotonic.16

A serious disadvantage of the ZORA and IORA methods
is their lack of gauge invariance.8–11 If a constant shiftD is
added to the potential,

VDsr d = Vsr d + D, s22d

then the eigenvalues of a gauge invariant method should be
shifted by exactly the same amountD. For IORA, the gauge
shift error sGSEd is10

E0
IORA − ED

IORA + D < −
sE0

IORAd2D

4m2c4 , s23d

which is small compared to the gauge dependence of
ZORA,8,9

E0
ZORA − ED

ZORA + D <
E0

ZORAD

2mc2 , s24d

however, still large enough to induce a considerable distor-
tion of the molecular geometry if the method is applied in
molecular calculations.11 The NESC-SORA method reduces
the GSE further,

E0
NESC-SORA− ED

NESC-SORA+ D < −
sE0

NESC-SORAd3D

8m3c6 s25d

making it of orderOsc−6d. This can be illustrated with the
numeric values of GSE calculated for hydrogenlike fermium
sZ=100d for the gauge shiftD=−100 hartree units. GSE of
ZORA, obtained from the left-hand side of Eq.s24d, amounts
to 18.783 905 hartree units, GSE of IORA to
3.151 604 hartree units and GSE of NESC-SORA to
0.065 912 hartree units. This is really weak gauge depen-
dence, which would not lead to noticeable distortions of mo-
lecular geometry.11 However, even this weak gauge depen-
dence can be eliminated completely with the use of the
gauge-independence correction developed in our recent
publication.24

IV. MANY-ELECTRON CASE

For a system of many electrons, the self-consistent field
Kramers-restricted25 NESC equation, which employs the
Coulomb two-electron operator, reads16

TABLE I. Ground state energiessin hartree unitsd of hydrogenlike atomic ions calculated with different qua-
sirelativistic methods and compared with the exactsDiracd energies.

Method Z=20a 40 60 80 100 120

Dirac equation −201.076 523 −817.807 498 −1895.682 36 −3532.192 15 −5939.1984 −9 710.7835
ZORA −202.158 829 −836.011 368 −1996.450 87 −3898.869 16 −7054.8079 −13 096.9617
IORA −201.082 194 −818.171 957 −1899.900 00 −3536.901 02 −6042.5850 −10 089.4142
DK1b −201.341 494 −823.894 221 −1934.202 84 −3686.448 68 −6472.4026 −12 132.6799
NESC-SORA −201.076 522 −817.807 633 −1895.689 72 −3532.312 24 −5940.2749 −9 718.0099
DK2c −201.072 538 −817.615 772 −1893.897 64 −3523.324 84 −5906.1918 −9 694.0960
DK5d −201.076 523 −817.808 095 −1895.702 82 −3532.461 47 −5941.5285 −9 730.9684
DK6e −201.076 52 −817.807 38 −1895.676 84 −3532.101 21 −5938.3145 −9 703.6645

aNuclear charge.
bFirst-order Douglas–Kroll methodsRef. 22d.
cSecond-order Douglas–Kroll methodsRef. 22d.
dFifth-order Douglas–Kroll methodsRef. 22d.
eSixth-order Douglas–Kroll methodsRef. 23d.
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sT̃ + Ṽ + 2J̃ − K̃ dA = S̃AE , s26d

where the kinetic energy and the metric matricesT̃ andS̃ are

defined in Eq.s7d, the matrixṼ fsee Eq.s7dg is calculated
using the electron-nuclear attraction potential, and elements
of the Coulomb and exchange matrices are given in
Eq. s27d,16

J̃mn = o
kl

sm̃ñuk̃l̃dDkl, s27ad

K̃mn = o
kl

ssm̃l̃uk̃ñd + sm̃k̃̄ul̄˜ ñddDkl. s27bd

In Eq. s27d, D is the density matrix constructed from the
eigenvectors of Eq.s26d, the transformed two-electron inte-
grals are given in Eq.s28d, and the bar over the basis func-
tion symbol means that this is the time-reversal counterpart
of the respective basis function,25

sm̃ñuk̃l̃d = smnukld +
1

4m2c2o
tr

sUtm
* sP̂tP̂rukldUrn

+ Utk
* smnuP̂tP̂rdUrld +

1

16m4c4

3o
tr

o
zh

Utm
* Uzk

* sP̂tP̂ruP̂zP̂hdUrnUhl. s28d

In Eq. s28d, the symbolP̂ stands for the operatorss ·pd, and
Umn, etc., are elements of the matrixU, which connects the
large and pseudolarge components of the modified Dirac
wave function via. Eq.s4d.

In the many-electron case, the matrixU satisfies the fol-
lowing equation:16

ST −
1

4m2c2K LSDU = SI −
1

2mc2U†TUS̃−1DF̃

− SV + s2JLL − K LLd +
1

2m2c2JSLD ,

s29d

whereF̃ denotes the operator in parentheses on the left-hand
side of Eq.s26d, and the electron-electron interaction matri-
cesJLL, K LL, K LS, andJSL are defined in Eqs.s46d ands47d
of Ref. 16 and are not reproduced here for reasons of brevity.

Through the dependence onF̃, the matrixU depends on the
orbital energies and varies from iteration to iteration of the
self-consistent field procedure. This leads to the necessity of
recalculating the modified two-electron integrals at each it-
eration of the self-consistent fieldsSCFd cycle. In order to
remove the energy dependence ofU, Dyall considered a low
order approximation to NESC withU= I .26 However, this
approximation occurred to be variationally unstable and was
therefore abandoned.26

For the purpose of applying the regular approximation
scheme, developed in the preceding section, we simplify the
equation defining matrixU in the following way. Consider-
ing that Eq.s30d holds

F̃ = T̃ + Ṽ + s2JLL − K LLd + OS 1

c2D , s30d

Eq. s29d can be transformed to Eq.s31d,

U = T−1ST̃ + U†W0U −
1

2mc2U†TUS̃−1HD + OS 1

c2D ,

s31d

where the two-electron terms with theOsc−2d dependence are
placed outside the parentheses. If the latter terms are ne-
glected, an equation identical to Eq.s8d results and all deri-
vations undertaken in the preceding section can be applied to
the set of Eqs.s26d and s31d. The neglected two-electron
terms of Eq.s31d make contributions of orderOsc−4d to both
the Hamiltonian and wave function metric. Furthermore,
these terms are much smaller in their magnitude than the
one-electron terms of the same order in 1/c2. Hence, neglect-
ing them will not introduce any significant errorssee belowd.

If one wants to implement the IORAs=NESC-ZORAd
method for the many-electron case, one will need to replace
the matrixU in Eqs.s26d–s28d by the zeroth-order approxi-
mationUs0d. Note that one has to calculate only the electron-
nuclear attraction potential to determineUs0d according to
Eq. s11d. Implementation of NESC-SORA is achieved by the
use of Eq.s17d for Us1d, which leads to Eqs.s20d ands21d for

the one-electron part of the modified Fock operatorF̃ and the
wave function metric, respectively.

The many-electron NESC-SORA algorithm described
was programmed and tested by calculating the energies of a
series of heliumlike atomic ions. These systems represent a
stringent test for the approximations made because the rela-
tivistic correction to the electron-electron interaction energy
is largest for the 1s electrons. Again, the basis set of 50
primitive Gaussian-type functions was used as before for the
hydrogenlike ions. The reference data,27,28 reported in Table
II, were obtained by Dirac–Hartree–FocksDHFd calculations
that employed point charge nucleus for light elementssZ
=2, 10, and 18d sRef. 27d and a nucleus of finite size for
heavier elementssZ=30 to 100d.28 In the NESC-SORA cal-
culations, the extended nucleus is modeled by a Gaussian
charge distribution with the nuclear radii taken from the
compilation in Ref. 29.

The comparison reveals that the NESC-SORA approach
performs fairly well and even for the heaviest element con-
sidered Fm98+ the deviation from the reference value is just
ca. 0.1% of the relativistic correction to the total energy. This
is a very good result considering the simplicity of the imple-
mentation of the computational scheme. Indeed, in the one-
electron part of the Fock operator of NESC-SORA, no de-
pendence on the electron-electron interaction is present and
the wave function metric remains constant throughout the
SCF calculation. The quality of the results confirms also that
the assumption made in Eq.s31d is sufficiently accurate.
Implementation of the one-electron part of NESC-SORA can
be achieved with the use of the molecular one-electron inte-
grals available routinely in standard nonrelativistic program
codes.
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However, considerable computational complexity is
caused by the calculation of the modified two-electron
integrals.16,26The matrixUs1d is constant during the iteration,
which simplifies the calculation. Negative, however, is the
necessity of calculating a large number of auxiliary integrals
in Eq. s28d ssee second and third terms on the rhsd. These are
the same integrals, which have to be calculated in standard
DHF calculations.16,26 Therefore, it means little saving in
computational cost when approximating only the one-
electron part of the many-electron Hamiltonian. The two-
electron part has to be simplified as well.

It has to be stressed that the second and the third term on
the rhs of Eq.s28d make significant contributions to the total
energy of a heavy atom. If these integrals are neglected, thus
making the computation of the two-electron part of the
NESC-SORA Fock operator identical to that of the nonrela-
tivistic case, the error for heavy ions will increase by an
order of magnitudessee last column in Table IId. Electron-
electron repulsion is underestimated in this case, because the
large-component wave function, approximated in NESC-
SORA, is not normalized on the nonrelativistic metric and
yields therefore,

trsDSd , N, s32d

whereN is the number of electrons.
Inspection of Eq.s28d reveals that the third term on the

rhs can be omitted without significant loss in accuracy be-
cause of its prefactor. Calculation of the integrals in the sec-
ond term on the rhs ofs28d can be simplified in the following
way. Let us first make a spin-free approximation, replacing

the P̂ operator in Eq.s28d with the linear momentum opera-
tor p. Then, the integralspm ·pn ukld can be represented ac-
cording to Eq.s33d,

spm ·pnukld = kpmuvklsr dupnl

= − 1
2kmuvklsr du¹2nl − 1

2knuvklsr du¹2ml

+ 1
2kmuf¹2vklsr dgunl, s33d

where vklsr d is the Coulomb potential due to the charge
distributionxk

* sr dxlsr d. The last term on the rhs of Eq.s33d
is the two-electron Darwin term and is usually quite small.
Furthermore, in the full expressions28d, the negative contri-
bution of this term is partially compensated by the positive
contribution of the third term on the rhs of Eq.s28d depend-
ing onOsc−4d. Therefore, neglecting the two-electron Darwin
term of orderOsc−2d in the second term of Eq.s28d together
with the third term of Eq.s28d should lead to a better ap-
proximation than omitting the third term on the rhs of Eq.
s28d alone.

However, omitting the two-electron Darwin term in Eq.
s33d does not save much computational effort, because a
large number of the additional integrals still need to be
evaluated. A real simplification results when using the RI for
the remaining two terms on the rhs of Eq.s28d.30 For a given

basis setuxl, the identity operatorÎ can be represented ac-
cording to Eq.s34d,

Î = uxlS−1kxu. s34d

By inserting Eq.s34d between the operatorsvklsr d and¹2 in
Eq. s33d, one obtains Eq.s35d,

1

m
spm ·pnukld < o

t,r
smtukldsS−1dtrTrn

+ o
t,r

TmtsS−1dtrsrnukld

= o
t

smtukldYtn + o
r

Yrmsrnukld, s35d

where the definition of the kinetic energy operator −¹2/ s2md
sm, electron massd was used and a new matrixY defined in
Eq. s36d was introduced.

Y = S−1T . s36d

By inserting Eq.s35d into the reduced form of Eq.s28d, one
obtains Eq.s37d,

TABLE II. Ground state energiessin hartree unitsd of heliumlike atomic ions calculated with different quasire-
lativistic methods and compared with the Dirac–Hartree–FocksDHFd energies. See text for details on basis sets
and nuclear models.

Za DHFb
NESC-SORA

sfull 2ē operatord
NESC-SORA

sapproximate 2ē operatord
NESC-SORA

snonrelativistic 2ē operatord

2 −2.861 813c −2.861 813 −2.861 781 −2.861 895
10 −93.982 799c −93.982 799 −93.976 746 −93.998 019
18 −314.200 163c −314.200 165 −314.163 208 −314.293 251
30 −892.051 699d −892.066 344 −891.890 331 −892.513 199
40 −1 609.845 54d −1 609.868 35 −1 609.444 19 −1 610.956 50
50 −2 556.278 65d −2 556.312 51 −2 555.470 81 −2 558.502 50
60 −3 750.477 22d −3 750.534 88 −3 749.055 25 −3 754.455 41
70 −5 219.574 52d −5 219.618 16 −5 217.222 31 −5 226.114 31
80 −7 002.382 84d −7 002.701 04 −6 999.041 03 −7 012.916 13
90 −9 155.388 99d −9 156.001 00 −9 150.642 48 −9 171.508 25

100 −11 763.908 4d −11 766.362 8 −11 758.751 1 −11 789.421 9

aNuclear charge.
bDHF results.
cFrom Ref. 27.
dFrom Ref. 28.
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sm̃ñuk̃l̃d < smnukld +
1

2mc2o
tr

fUtm
* strukldXrn

+ Xtm
* strukldUrng +

1

2mc2

3o
tr

fUtk
* smnutrdXrl + Xtk

* smnutrdUrlg, s37d

where the matrixX is defined in Eq.s38d,

X = 1
2S−1TU = 1

2YU . s38d

Using Eq. s37d for the modified two-electron integrals, the
Coulomb contribution to the Fock operator becomes

J̃mn = Jmn + J̃mn
sad + J̃mn

sbd, s39ad

Jmn = o
kl

smnukldDkl, s39bd

J̃mn
sad =

1

2mc2o
kl

smnukldRkl, s39cd

J̃mn
sbd =

1

2mc2o
kl

sUkm
* Xln + Xkm

* UlndJkl, s39dd

where the matrixR is given in Eq.s40d,

R = UDX† + XD†U†. s40d

For the exchange contribution Eq.s27bd one has a similar
expression, however with the difference that, due to the spin-
free approximation, the time-reversal part vanishes.25 Thus,
the calculation of the two-electron part can be carried out at
essentially the same price as for the nonrelativistic calcula-
tion. The most time consuming part of this calculation is the
evaluation of the two-electron integralssmn ukld, which has
to be done only once when using Eq.s39d.

Because the RI was used in deriving Eq.s39d, a question
about the accuracy of this approximation in comparison with
the use of the exact two-electron integrals in Eqs.s33d and
s28d seems appropriate. In Table III, the results of the NESC-
SORA calculations carried out with the use of the exact in-
tegrals in Eq.s28d fomitting however theOsc−4d terms and
Darwin termsg and the results of approximate calculations
employing Eq.s39d are reported. The difference between the
two sets of calculations is less than 5310−9 hartree units,

which means that the use of RI does not lead to any notice-
able error. Therefore, the results of NESC-SORA calcula-
tions employing Eq.s39d are reported in the fourth column of
Table II.

With the use of Eq.s39d, the lowest-order relativistic
correction to the nonrelativistic electron-electron interaction
energy is taken into account. In this approximation, the two-
electron Darwin terms as well as the two-electron terms of
orderOsc−4d in Eq. s28d are discarded. Compared to the last
column of Table II, which presents results of calculations
carried out with the nonrelativistic two-electron operatorJmn

only, this is a substantial improvement. It has to be empha-
sized that this improvement comes at no additional cost com-
pared to that of a nonrelativistic calculation. In passing, we
note that the same technique that was used in Eq.s39d to
evaluate the relativistic two-electron integrals of order
Osc−2d can be used for the evaluation of theOsc−4d terms.
However, in this case, one would need to include the Darwin
terms as well, which would lead to a certain increase in the
computation time.

V. CONCLUSIONS

The regular approximation to the normalized elimination
of the small component16 in the modified Dirac equation has
been developed and presented in matrix form. A comparison
with the previously obtained IORA expressions reveals that
the matrix formulation of the IORA methodspreviously de-
rived using the RId,14,15 is in fact the exact matrix represen-
tation of this method. The IORA method, either in matrix
form14,15 or in operator form,10 represents a low-order ap-
proximation to NESC, which when compared to another
low-order approximation to NESC, the so-called NESCsU
= I d method,26 has the advantage of being a variationally
stable method. Therefore, it represents a suitable starting
point for the development of improved NESC-based theo-
ries. It should be mentioned that the widely used ZORA
method8,9 represents the UESC-ZORA.16

In the nextssecondd order, the regular approximation to
NESC, NESC-SORA, leads to a considerable improvement
relative to the IORA energies. In fact, the NESC-SORA re-
sults are closer to the exact Dirac energies, as documented
for a series of hydrogenlike ions, than the energies from the
fifth-order Douglas–Kroll approximation DK5,22 which is
much more computationally demanding than NESC-SORA.
It also should be stressed that the implementation of the
NESC-SORA method can be achieved with the use of only
those molecular integrals, which are routinely available in
any nonrelativistic quantum-chemical program.

The approach was extended to the many-electron case,
where a considerable reduction of the computational com-
plexity was achieved with the use of the one-electron ap-
proximation in the relativistic transformation operators.31,32

Within this approximation,31,32 it is the nuclear attraction po-
tential only that is used in the relativistic transformations.
The two-electron terms neglected would make aOsc−4d con-
tribution to the transformed Hamiltonian. Thus, omitting
these terms does not lead to noticeable errors. This is con-
firmed by the calculated energies of heliumlike atomic ions

TABLE III. Comparison of ground state energiessin hartree unitsd of heli-
umlike atomic ions calculated with the use of the exact two-electron inte-
grals in Eq.s28d fomitting the Drawin andOsc−4d termsg with the energies
calculated with the use of Eq.s39d.

aa
NESC-SORA

swith exact 2ē integralsd

NESC-SORA
swith approximate

2ē integralsd Errorb

60 −3 749.055 251 615 197 −3 749.055 251 616 833 1.64310−9

80 −6 999.041 033 114 926 −6 999.041 033 115 066 0.14310−9

100 −11 758.751 133 100 899 −11 758.751 133 105 879 4.98310−9

aNuclear charge.
bError due to the use of approximate integrals.
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with Z=2–100. The NESC-SORA ground state energies are
in very good agreement with the results of the exact DHF
calculations.

Application of IORA s=NESC-ZORAd and NESC-
SORA to larger many-electron systems is hindered by the
number of the two-electron integrals that need to be
evaluated.16,26 In a straightforward implementation, the same
number of the two-electron integrals as in the full DHF
method has to be evaluated.16,26However, with the use of the
RI technique,30 a drastic reduction in the number of integrals
to be calculated is achieved. Now only those two-electron
integrals, which would be evaluated in a nonrelativistic cal-
culation anyway are needed. Therefore, the computational
price of the new approximation is essentially the same as in
the nonrelativistic case. Again, no new types of integrals are
needed. Although the RI was used in developing this ap-
proximation, its accuracy is remarkable. In the calculations
of heliumlike ions, the total energy based on the approximate
integrals deviates from the energy calculated with the exact
integrals by less than 5310−9 hartree units.

One advantage of the NESC-SORA method over qua-
sirelativistic methods based on the Foldy–Wouthuysen
transformation,33 such as the Douglas–Kroll approach,21–23is
that there is no so-called picture change.4,34 The wavefunc-
tion in the NESC-SORA method is normalized on the rela-
tivistic metric and no renormalization to the nonrelativistic
metric is needed.16 This simplifies greatly the calculation of
molecular properties, where the picture change effects bring
in an unnecessary complication.4,34 Thus, the methodology
developed in the present paper shows great promise for mo-
lecular calculations which will be the subject of subsequent
papers.
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