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The regular approximation to the normalized elimination of the small compdhE$Q in the
modified Dirac equation has been developed and presented in matrix form. The matrix form of the
infinite-order regular approximatiothORA) expressions, obtained [Rilatov and Cremer, J. Chem.
Phys. 118 6741(2003] using the resolution of the identity, is the exact matrix representation and
corresponds to the zeroth-order regular approximation to NBEEESC-ZORA. Because IORA
(=NESC-ZORA is a variationally stable method, it was used as a suitable starting point for the
development of the second-order regular approximation to NEEESC-SORA. As shown for
hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies
from the fifth-order Douglas—Kroll approximation, which is much more computationally demanding
than NESC-SORA. For the application of IORANESC-ZORA and NESC-SORA to
many-electron systems, the number of the two-electron integrals that need to be evadiemischl

to the number of the two-electron integrals of a full Dirac—Hartree—Fock calcu)atias drastically
reduced by using the resolution of the identity technique. An approximation was derived, which
requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this
approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals
deviates from the energy calculated with the exact integrals by less tlat03 hartree units.
NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical
program. Their application is comparable in cost with that of nonrelativistic methods. The methods
can be run with density functional theory and any wave function method. NESC-SORA has the
advantage that it does not imply a picture change20®5 American Institute of Physics

[DOI: 10.1063/1.1844298

I. INTRODUCTION ing the regular approximation is the assumption of a strong
electron binding potential in such a way that the explicit
For the majority of all elements of the periodic table, theenergy dependence on the relativistic transformation opera-
inclusion of relativistic effects is important for obtaining ac- tors can be disregarded and instead be taken into account in
curate quantum mechanical descriptions of their propertiea perturbational fashiofr> Because in atoms and mol-
either in atomic or molecular formi> This is especially true ecules, the electrons move in the strong Coulomb potential
for compounds containing heavy elements, where relativityof the nuclei, this assumption seems to be well suited for
makes sizablgisometimes even dominatingontributions  atomic and molecular calculations. The development of the
not only with regard to their physical propertiJE‘éf5 such as  regular approximation is made usually in terms of operators
magnetic response properties, but also with regard to chemiather than matrice§° This route leads to an algebraic ex-
cal bonding and chemical reactivity’ Although substantial pression for the regular Hamiltonian operator, which con-
progress has been made in the field of rigorous fourtains the full atomic or molecular potential in the
component relativistic calculations based on the Diracdenominatof° Therefore, for a long time, any wave func-
HamiItonian‘?’G these calculations still remain prohibitively tion based quantum-chemica| description using the relativis-
COStly even for medium-sized molecular SyStemS. Thereforqic Hamiltonian in the regu|ar approximation required te-
there is a growing demand for simple yet accurate approXigious numeric quadratur€s as the only way for the
mate relativistic all-electron methods that can be eaSily in'eva|uation of needed matrix elements over basis set func-
stalled within the existing quantum-chemical program pack+jons.
ages and that can be used routinely in calculations on larger, A more efficient alternative was provided by us in form
chemically interesting molecules. of the matrix ZORA (zeroth-order regular approximatipn
The all-electron methods derived from the S0-and matrix IORA (infinite-order regular approximation
called regular approximation to the exact relativistic gpproachet?***® For these methods, any numeric quadra-
Hamiltoniar{ ™ furnish perhaps the most promising tools in tyres are avoided by the analytic evaluation of the matrix
relativistic quantum chemistry. The starting point for deriv- elements of the regular Hamiltonian utilizing the resolution
of the identity(RI) as defined by a given finite basis set. This
¥Electronic mail: filatov@theoc.gu.se leads to a simple and efficient algorithm, which can be actu-
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ally used within the context of both density functional theory With the use of Eq.(2), the so-calledkinetic balance
and wave function theoryWFT). On first sight, one may conditiorf’ is embedded into the modified Dirac equation
consider the use of the RI as a useful mathematical trickl). Therefore, the same basis $gt can be used to expand
rather than as a methodological extension of the regular aphe large and pseudolarge components of the modified Dirac
proximation with a specific physical meaning. In this work, wave function, which leads to the following set of matrix
however, we will demonstrate that, if the development of theequations for the expansion coefficients, dendfetiowing
regular approximation is carried out within the matrix repre-Dyall) A andB, respectivelyl.6

sentation of the exact relativistic equations, modified accord-

ing to DyaII,16 the same analytic formulas can be obtained TB + VA =SAE, (33
for the matrix ZORA and matrix IORA as published in our 1

previous work without requiring at any stage the use of TA +(W,-T)B=—STBE. (3b)
the RI. 2m¢c

It is the primary objective of the present paper to de-|n Eq. (3), A andB are the matrices of the expansion coef-
velop the connection between the regular approximation anflcients for the large and pseudolarge componehtand V
the method of the normalized elimination of the smallare the matrices of the kinetic and of the potential energy
componenf (NESQ from the Dirac equatioft’! The NESC  gperators, respectivels is the overlap matrix, and/y is the
method corresponds to the projection of the Dirac Hamil-matrix of the operatofop)V(r)(o-p)/(4mPc?), used in our
tonian onto a set of positive-ener¢slectronig states, which previous works+*®
guarantees its variational stabiliy. The solution of the The elimination of the small component in E) is
NESC method is the same as that of the Dirac equafion. achieved by the use of a general nonunitary transformation

Thus, connecting the regular approximation and NESGnatrix U, which connects the expansion coefficients matrices
means that the regular approximation is directly connected ta andB via Eq. (4),

the Dirac equation. An advantage of NESC is that this
method is formulated in matrix forrf, which permits the B=UA. (4)
formulation of the r_egular appro_ximation within WFT, i.e.,_ i By requiring that the proper normalization of the modified
a form perfectly suited for atomic and molecular calculationspjrac wave function is retained, i.e.,

with finite basis sets.

The current paper comprises beside the Introduction  ptga +
three additional sections: In Sec. Il, the NESC method is
briefly described. The relationship between the regular ap-
proximation and NESC is presented in Sec. Il for the case OP
a single electron whereas it is extended to the many-electron (T +V/)A =SAE, (6)
case in Sec. IV. NESC-ZORA and NESC-SORgecond- - o .
order regular approximatioremerge out of this work, which Where the modified kinetic energy, potential energy, and
are applied to a series of hydrogenlike and heliumlike atomi@Verlap matrices are defined in E@),
ions. Results of these calculations are compared with the

1CZBTTB =1, (5)

ne obtains the NESC equati¢®)

TouMT+TU-UT
exact relativistic values. Finally, Sec. IV describes an algo- T=UT+TU-UTU, (73
rithm which largely simplifies the calculation of ~ .
relativistically-corrected two-electron integrals. V=V+UWoU, (7b)
~ 1,
Il. NORMALIZED ELIMINATION S=S+5 oUTU. (70)

OF THE SMALL COMPONENT

For a single electron moving in the potential fial¢r), The matrixU satisfies Eq(8)

: . i ) B 1
the Dirac equation, modified according to Dyall, redds U= T‘l(T FUWU - chzuTTUAEA _1)
Td +V(r)¥ =EV¥, (18

~ 1 -
:T'l(T+U*W U——UTTUS'lH), 8

0 2m02 ( )
whereH=T+V and the relationship€a) and (9b) for the

whereT andp are the usual kinetic energy and linear mo- eigenvector#\ of a matrixH normalized on a metri§ were
mentum operatorsn is the electron mass,velocity of light, used in the second line of E(B),
and o is the vector of Pauli matricés.The functionW is

“ 1 =
T+ 55(0 pIVI) ~El(e p@ =Td, (b

the large component of the Dirac wave function and the A1=ATS, (99
pseudolarge compones, is connected to the small compo- B B
nentWg of the Dirac wave function via E0[2),16 H =SAEATS. (9b)
Pz (o- p)q) ) The system of Eq96) and (8) is solved iteratively starting
ST 2me & with some suitable guess faf.

Downloaded 14 May 2007 to 193.175.8.27. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



064104-3 Relativistic quantum theory J. Chem. Phys. 122, 064104 (2005)

It has been showhi that the NESC method corresponds lowest-order regularly approximated operatdf®, which
to the projection of the Dirac Hamiltonian onto a set of upon substituting into Eq.3a) yields Eq.(16),
positive-energy eigenstates, which guarantees its variational 1 _ _
stability. In this respect, the NESC method represents a vi- [TT-Wo™T +VJA=(T +W+V)A =SAE. (16)
able alternative to other techniquésg., the Douglas—Kroll Equation(16) is nothing else than the matrix ZORA equa-
approacﬁl) that project the full set of solutions of the Dirac tion. One must, however, realize that the large component
equation onto the manifold of positive-energglectroni¢  eigenvectorsA are normalized by the conditiof5). If this
states. However, the metr®in Eq. (6) varies from iteration constraint is lifted, the large component will be improperly
to iteration so that, in the many-electron case, the twoformalized on the nonrelativistic metric. In this respect, the
electron integrals must be tediously recalculated at eacmatrix ZORA equation is the lowest-order regular approxi-
iteration*® mation to the equation for the unnormalized elimination of

the small component, henceforth called UESC-ZORA. In the

IORA equation(14), the proper normalization for the large-
IIl. REGULAR APPROXIMATION TO NESC cpmponent wave f_un_ction is approximated on t_he ri_ght-hand

side. Therefore, this is the lowest-order approximation to the

For the purpose of simplifying the solution of the NESC normalized theory.
equations, we assume that the dependence of matix the Let us now consider the iterative solution of E¢®.and
energy eigenvalueg is weak and that the last term on the (8) using Eq.(11) as starting guess. The zeroth-order Hamil-
right-hand side of Eq(8) can be neglected. After some alge- tonianH© and the zeroth-order metr&® are given by the
bra, the following equation for matrik/© is obtained with  terms in parentheses on the left-hand gitis) and the right-
these assumptions: hand side(rhs) of Eq. (12), respectively. From Eq(8) it

(UOYIT — (UOYITY© + (U(O))TWOU(O) -0, (10) follows that the next approximation to the operatbis

where the superscript O denotes the zeroth-order approxima-  y@ =T T(T - W,)™'T
tion of U (with respect to the energy eigenvaluesSquation

(10) is solved byU© in Eq. (11), 1 5
U= (T - Wo)_lT. (11) - WT(T - Wo)_lT(T - WO)_lT(S(O))_lH ©
B o e NESC sl —uo ek, ap
[T(T-Wp T +VIA where
- {s+ ansz(T ~Wo) T (T —WO)‘lT]AE. (12) HO=T(T-Wp T +V (18)
Using the fact that for two symmetric matricsandY the and
following relationship holds” Y0=-g+ 102(U(°))TTU(°). (19)
XT=YHl=y(y-X)ty -v, (13)
Eq. (12) can be transformed to E¢L4), Therefore, the next approximation to the NESC Hamiltonian

is
1

2mc?

(T +W+V)A:[S+ (T+2W+WT‘1W)]AE,

H© ("S'(O))—l(U(O))T

1
H@=HO -
(2mc)?

XT(T = W) TTUO(S9)1HO, (20)

(14)

where matrixW is the solution of Eq(15):
W =W+ WoT W, (15) The .sup('erscript .2, used in Eq20), emphasizes that the
Hamiltonian matrixH® has second-order dependence on the
In Eq. (14), the IORA matrix equation derived in our previ- |owest-order Hamiltoniadd®© and, consequently, on the ei-
ous works**° utilizing the RI can be easily recognized. This genvaluesE'©. For the new metric, one has EQ1),
proofs that(a) the use of the Rl is actually not needed dhyd
that the previously derived matrix IORA equation is the ex- '@ ='g0 _

HOSO)HUO)T(T - W™

act lowest-order regular approximation to the matrix Dirac (2mc)?
equation. 1
It is interesting to see what would happen if one started XTUO© - (ZmC,_)Z(U(O))TT(T - Wy tTu®©

from the modified Dirac equatiofB3) directly, rather than

from the NESC equatiori6). In the spirit of the regular 2O0-114(0) 1 )

approximatiorf *? the right-hand side of Eq(3b), which X(ST)THT+ (chz)sH

leads to the energy dependence of the opetaidtq. (4), is 3 _

set to zero. Immediately, one arrives at E@l) for the X (SLUO) (YO TTUOQUOSO)-IHO  (21)
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TABLE I. Ground state energigén hartree units of hydrogenlike atomic ions calculated with different qua-
sirelativistic methods and compared with the exd@itac) energies.

Method z=20" 40 60 80 100 120
Dirac equation -201.076523 -817.807498 -1895.68236 -3532.19215 -5930.1984 -9710.7835
ZORA -202.158829 -836.011368 -1996.45087 -3898.86916 -7054.8079 -13096.9617
IORA -201.082194 -818.171957 -1899.90000 -3536.90102 -6042.5850 -10089.4142
DK1° -201.341494 -823.894221 -1934.20284 -3686.44868 -6472.4026 -12132.6799
NESC-SORA  -201.076522 -817.807633 -1895.68972 -3532.31224 -5940.2749 -9 718.0099
DK2° -201.072538 -817.615772 -1893.89764 -3523.32484 -5006.1918 -9 694.0960
DKs5* -201.076523 -817.808095 -1895.70282 -3532.46147 -5941.5285 -9 730.9684
DK6" -201.07652 -817.80738 189567684 -3532.10121 -5938.3145 -9 703.6645

*Nuclear charge.

PFirst-order Douglas—Kroll methogRef. 29.
‘Second-order Douglas—Kroll meth¢Ref. 22.
9Fifth-order Douglas—Kroll metho(Ref. 22.
®Sixth-order Douglas—Kroll methotRef. 23.

which again has second-order dependence on the zeroth- A serious disadvantage of the ZORA and IORA methods
order Hamiltonian. Consequently, iterating the NESC equais their lack of gauge invarian@e™! If a constant shiftA is
tions (6) and(8) once, leads consistently to the second-ordermadded to the potential,

(in terms of the zeroth-order eigenvalle®rrection to the _

Hamiltonian and wave functign metric. Therefore, the Va(r) =V(r) +4, (22)
method whereH® and S@ are used represents the second-then the eigenvalues of a gauge invariant method should be
order regular approximation to the NESC equation, henceshifted by exactly the same amoukt For IORA, the gauge

forth called NESC-SORA for brevity. shift error (GSB is*°
The recurrent iteration of Eq$6) and(8) can be contin- (EORA)2p
ued, which will ultimately lead to the exact solution of the ~ Ep " —EXRA+A ~ - A (23

NESC equations. This, however, may not be necessary, be-
cause already at the NESC-SORA level results of high accuwhich is small compared to the gauge dependence of
racy are obtained. Table | summarizes relativistic energiegORA 2*°

for a series of hydrogenlike atomic ions calculated with the EZORA\
ZORA, IORA, and NESC-SORA and compares these ener- E§0RA_ E§0RA+ A=~ 20 , (24)
gies with the exact solutions of the Dirac equation and with 2m¢

the results chlj_bZtSained with the  Douglas-KrollDK)  however, still large enough to induce a considerable distor-
approximatior.”"* For the calculations, a basis set of 50 jon of the molecular geometry if the method is applied in

primitive sétzype Gaussian functions taken from the work of jqjecylar calculations The NESC-SORA method reduces
Wolf et al““ was employed. the GSE further,

Calculated IORA energieéwhich can be alternatively NESC-SORAS
considered as being determined with the zeroth-order reguIeENEsc.SORA_ ENESC-SORAL A  _ (Eo %A (25)
approximation to NESC, i.e., NESC-ZORAand NESC- ° A 8mec®

SORA energies show rapid and smooth convergence from . . _ . . .
below to the exact Dirac energies. The convergence frorr'inaklng it of orderO(c™®). This can be illustrated with the

below is consistent with the fact, proven by Dy’é’lthat for numeric values of GSE calculated for hydrogenlike fermium
any trial wave function, NESC provides a lower bound to the(ZZO:F;LgO) {)ct)r .thedgfaug(ihshllf%:h—lgo Zartr]?e u;nts. GSEt of
exact(Dirac) energy. In terms of numerical accuracy, IORAt 153%8?385 ;OT ele —_tan S(';§Eo E(q]; ), ?gg:n St
performs much better than the lowest-order DK method 0 : artree - units, 0 0

DK1. In turn, NESC-SORA performs better than the nextg'égé ggg Ear:ree ur_1tits Tr;r.\d. GSE" of NI(ESC_SOF;A o
Douglas—Kroll approximation DK2, which is the method of artree units. This 1s really weax gauge depen-

comparable computational complexity. In fact, NESC-soradence, which would not lead to notlc_eable distortions of mo-
lecular geometrﬂi.l However, even this weak gauge depen-

outperforms the fifth-order DK method DK5, in terms of . .

numerical accuracy and performs as good as the much mo gnee can be eliminated co_mpletely with th_e use of the
demanding DK6 method. Note that for the construction ofgauge-mdezeendence correction developed in our recent
the Hamiltonian operator matrix in DK5 and DK6 888 and publication:
7832 matrix multiplications are requirédwhich makes the
implementation of these methods a nontrivial and tediougy, \ANY-ELECTRON CASE
task. Furthermore, the Douglas—Kroll approach suffers from

erratic (oscillating and slow convergené%z23 to the exact For a system of many electrons, the self-consistent field
energy whereas the convergence of the regular approximaéramers-restrictezé NESC equation, which employs the
tions to NESC is rapid and monotorfic. Coulomb two-electron operator, reais
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T T - e~ 1
(T+V+2J-K)A =SAE, (26) F:T+v+(23LL-KLL)+o<?>, (30)

where the kinetic energy and the metric matriesndS are

defined in Eq.(7), the matrixV [see Eq.(7)] is calculated Eq.(29) can be transformed to E¢31),
using the electron-nuclear attraction potential, and elements

of the Coulomb and exchange matrices are given in A= " 1 = 1
16 =T~ - . i
Eq. (27), U=T7T+U'WyU 2mC2U TUSH|+0O 2/
3= 2 (EHRND (273 (31)
K\

where the two-electron terms with tii¥c™?) dependence are
s placed outside the parentheses. If the latter terms are ne-
Kuvzg (BA[KD) + (K]\D)D . (27D glected, an equation identical to E@) results and all deri-
vations undertaken in the preceding section can be applied to
In Eq. (27), D is the density matrix constructed from the the set of Eqs(26) and (31). The neglected two-electron
eigenvectors of Eq(26), the transformed two-electron inte- terms of Eq.(31) make contributions of orded(c™*) to both
grals are given in Eq(28), and the bar over the basis func- the Hamiltonian and wave function metric. Furthermore,
tion symbol means that this is the time-reversal counterpatihese terms are much smaller in their magnitude than the
of the respective basis functién, one-electron terms of the same order it Hence, neglect-
ing them will not introduce any significant err@see below.

If one wants to implement the IORANESC-ZORA
method for the many-electron case, one will need to replace
the matrixU in Egs. (26)—(28) by the zeroth-order approxi-

(:U*V|HTHP)Up)\) + 14 2 mationU'®. Note that one has to calculate only the electron-
lém'c nuclear attraction potential to determin&® according to
w koA A A A Eq. (11). Implementation of NESC-SORA is achieved by the
XTEP % UnUo Lol U U (28) (oo ot Eq(17) for UD, which leads to Eq20) and(21) for
. the one-electron part of the modified Fock oper&@nd the
In Eq. (28), the symbolll stands for the operatdtr-p), and  wave function metric, respectively.

~ o~ |~ 1 * ~ ~
(EHRN) = (i) + 555 2 (U, (HdTplk0) U,
0

U,., etc., are elements of the matiik which connects the The many-electron NESC-SORA algorithm described
large and pseudolarge components of the modified Dirawas programmed and tested by calculating the energies of a
wave function via. Eq(4). series of heliumlike atomic ions. These systems represent a
In the many-electron case, the matixsatisfies the fol-  stringent test for the approximations made because the rela-
lowing equation'® tivistic correction to the electron-electron interaction energy
is largest for the & electrons. Again, the basis set of 50
1 1 ~ \~ o . !
T- kSlu=(1- UTTUS|E primitive Gaussian-type functions was used as before for the
4méc? 2mc? hydrogenlike ions. The reference dat® reported in Table
1 II, were obtained by Dirac—Hartree—Fo@RHF) calculations
- (V + (23t -kt + 2mzc2‘]SL) that employed point charge nucleus for light elemei#s

=2, 10, and 18 (Ref. 279 and a nucleus of finite size for
(29)  heavier elementtZ=30 to 100.2% In the NESC-SORA cal-

culations, the extended nucleus is modeled by a Gaussian
whereF denotes the operator in parentheses on the left- hangharge distribution with the nuclear radii taken from the
side of Eq.(26), and the electron-electron interaction matri- compilation in Ref. 29.
cesJ, KM, K'S, andJ®" are defined in Eqg46) and (47) The comparison reveals that the NESC-SORA approach
of Ref. 16 and are not reproduced here for reasons of brevityerforms fairly well and even for the heaviest element con-
Through the dependence &n the matrixU depends on the sidered Fri#* the deviation from the reference value is just
orbital energies and varies from iteration to iteration of theca. 0.1% of the relativistic correction to the total energy. This
self-consistent field procedure. This leads to the necessity a§ a very good result considering the simplicity of the imple-
recalculating the modified two-electron integrals at each itimentation of the computational scheme. Indeed, in the one-
eration of the self-consistent fielECP cycle. In order to  electron part of the Fock operator of NESC-SORA, no de-
remove the energy dependencdffDyall considered a low pendence on the electron-electron interaction is present and
order approximation to NESC witky=1.2® However, this the wave function metric remains constant throughout the
approximation occurred to be variationally unstable and wa$SCF calculation. The quality of the results confirms also that
therefore abandonéd. the assumption made in Eq31) is sufficiently accurate.

For the purpose of applying the regular approximationimplementation of the one-electron part of NESC-SORA can

scheme, developed in the preceding section, we simplify thee achieved with the use of the molecular one-electron inte-
equation defining matri}J in the following way. Consider- grals available routinely in standard nonrelativistic program
ing that Eq.(30) holds codes.

Downloaded 14 May 2007 to 193.175.8.27. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



064104-6 M. Filatov and D. Cremer J. Chem. Phys. 122, 064104 (2005)

TABLE Il. Ground state energig@n hartree unitsof heliumlike atomic ions calculated with different quasire-
lativistic methods and compared with the Dirac—Hartree—H&¢#F) energies. See text for details on basis sets
and nuclear models.

NESC-SORA NESC-SORA NESC-SORA

Vaa DHF" (full 2e operatoy  (approximate 2 operatoy  (nonrelativistic 2 operatoy
2 -2.861813 -2.861813 -2.861781 -2.861 895

10 -93.982 799 -93.982 799 -93.976 746 -93.998 019
18 -314.200 163 -314.200 165 -314.163 208 -314.293 251
30 -892.051 699 -892.066 344 —-891.890 331 -892.513 199
40 -1 609.845 54 -1609.868 35 -1609.444 19 -1610.956 50
50 -2556.278 65 -2556.31251 -2555.47081 -2558.502 50
60 -3750.477 2% -3750.534 88 -3749.055 25 -3754.45541
70 -5219.57452 -5219.618 16 -5217.222 31 -5226.114 31
80 -7 002.382 84 -7002.70104 -6999.041 03 -7012.916 13
90 -9155.388 99 -9156.001 00 -9150.642 48 -9171.508 25

100 -11763.908% -11766.3628 -11758.7511 -11789.4219

*Nuclear charge.
PDHF results.
°From Ref. 27.
9From Ref. 28.

However, considerable computational complexity iswhereuv,,(r) is the Coulomb potential due to the charge
caused by the calculation of the modified two—electrondistributionXf((r)Xx(r). The last term on the rhs of E(33)
integrals:®?The matrixU® is constant during the iteration, is the two-electron Darwin term and is usually quite small.
which simplifies the calculation. Negative, however, is theFurthermore, in the full expressig28), the negative contri-
necessity of calculating a large number of auxiliary integralsoution of this term is partially compensated by the positive
in Eq. (28) (see second and third terms on the)rigese are  contribution of the third term on the rhs of E@8) depend-
the same integrals, which have to be calculated in standaridg onO(c ). Therefore, neglecting the two-electron Darwin
DHF calculations??® Therefore, it means little saving in term of orderO(c2) in the second term of Eq28) together
computational cost when approximating only the one-with the third term of Eq.(28) should lead to a better ap-
electron part of the many-electron Hamiltonian. The two-proximation than omitting the third term on the rhs of Eq.
electron part has to be simplified as well. (28) alone.

It has to be stressed that the second and the third term on  However, omitting the two-electron Darwin term in Eq.
the rhs of Eq(28) make significant contributions to the total (33) does not save much computational effort, because a
energy of a heavy atom. If these integrals are neglected, thuarge number of the additional integrals still need to be
making the computation of the two-electron part of theevaluated. A real simplification results when using the RI for
NESC-SORA Fock operator identical to that of the nonrela-the remaining two terms on the rhs of EQS).so For a given
tivistic case, the error for heaVy ions will increase by anbasis SetIX>, the |dent|ty Operatoi: can be represented ac-
order of magnituddsee last column in Table)ll Electron-  cording to Eq.(34),
electron repulsion is underestimated in this case, because the

large-component wave function, approximated in NESC- 1= xS X« (34)
SORA, is not normalized on the nonrelativistic metric and ) .
yields therefore, By inserting Eq.(34) between the operatots, (r) andV<in
Eq. (33), one obtains Eq(35),
tr(DS) <N, (32 1
whereN is the number of electrons. —(Puprl) = 2 (pr NS T,
Inspection of Eq(28) reveals that the third term on the P
rhs can be omitted without significant loss in accuracy be- + 2 T,AS™Y,,(pr]KN)
cause of its prefactor. Calculation of the integrals in the sec- p
ond term on the rhs q28) can be simplified in the following _
way. Let us first make a spin-free approximation, replacing - ET (urlkN) Yo+ Ep Youlprlih),  (38)

the I1 operator in Eq(28) with the linear momentum opera- o o
tor p. Then, the integralpu-pr|«\) can be represented ac- Where the definition of the kinetic energy operatdr*A2m)

cording to Eq.(33), (m, electron magswas used and a new matrik defined in
Eq. (36) was introduced.
“PV|KN) = rpv
(P - pr|KN) <pflvm( )lpw) 1 . .
== §<ILL|UK)\(r)|V2V> - §<V|UK)\(I')|V2/.L> X ) )
1 5 By inserting Eq.(35) into the reduced form of E428), one
+ 3|V o (ND]]w), (33)  obtains Eq(37),
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TABLE IIl. Comparison of ground state energiés hartree unitsof heli-
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which means that the use of RI does not lead to any notice-

umlike atomic ions calculated with the use of the exact two-electron inte-. -able error. Therefore, the results of NESC-SORA calcula-

grals in Eq.(28) [omitting the Drawin andD(c™) termg with the energies
calculated with the use of E¢39).

NESC-SORA
NESC-SORA (with approximate
a®  (with exact Zintegrals 2e integrals Errof®

-3749.055251616833 %.6@°
-6999.041 033115066 R.1&°
-11758.751133 105879 X BB°

60  -3749.055251615197
80 -6999.041033114926
100 -11758.751133100 899

*Nuclear charge.
®Error due to the use of approximate integrals.

(’[[17|7<X) (uv|kN) + E [UW(Tp|K)\)Xp,,

+ X (1pl kMU, ]+ =

2m c2
X E [U:'K(Mv| Tp)xp)\ + xer(/J’v| Tp)Up)\]i (37)
T
where the matriXX is defined in Eq(38),
X =1isTU=2YU. (39)

Using Eq.(37) for the modified two-electron integrals, the

Coulomb contribution to the Fock operator becomes

3=, + 39430, (399
3= 2 (uv[kN)D ., (39b)
K\
Ji?z 2 CZE (IU'V| K)\)RK)\! (39C)
b= LE (U X, + X U, ,)d (394)
/“}_chz - kv I N2Ag O N
where the matrixR is given in Eq.(40),
R=UDX"+XxD'U". (40)

For the exchange contribution ER7b) one has a similar

tions employing Eq(39) are reported in the fourth column of
Table II.

With the use of Eq.(39), the lowest-order relativistic
correction to the nonrelativistic electron-electron interaction
energy is taken into account. In this approximation, the two-
electron Darwin terms as well as the two-electron terms of
orderO(c™) in Eq. (28) are discarded. Compared to the last
column of Table II, which presents results of calculations
carried out with the nonrelativistic two-electron operalpy
only, this is a substantial improvement. It has to be empha-
sized that this improvement comes at no additional cost com-
pared to that of a nonrelativistic calculation. In passing, we
note that the same technique that was used in(Eg). to
evaluate the relativistic two-electron integrals of order
0O(c™®) can be used for the evaluation of tlc™) terms.
However, in this case, one would need to include the Darwin
terms as well, which would lead to a certain increase in the
computation time.

V. CONCLUSIONS

The regular approximation to the normalized elimination
of the small componefitin the modified Dirac equation has
been developed and presented in matrix form. A comparison
with the previously obtained IORA expressions reveals that
the matrix formulation of the IORA methogreviously de-
rived using the RI***°is in fact the exact matrix represen-
tation of this method. The IORA method, either in matrix
form™*° or in operator fornt® represents a low-order ap-
proximation to NESC, which when compared to another
low-order approximation to NESC, the so-called NEGC
=1) method®® has the advantage of being a variationally
stable method. Therefore, it represents a suitable starting
point for the development of improved NESC-based theo-
ries. It should be mentioned that the widely used ZORA
method® represents the UESC-ZORR.

In the next(second order, the regular approximation to
NESC, NESC-SORA, leads to a considerable improvement
relative to the IORA energies. In fact, the NESC-SORA re-
sults are closer to the exact Dirac energies, as documented
for a series of hydrogenlike ions, than the energies from the

expression, however with the difference that, due to the spinfifth-order Douglas—Kroll approximation DK%, which is

free approximation, the time-reversal part vanisheBhus,

much more computationally demanding than NESC-SORA.

the calculation of the two-electron part can be carried out alt also should be stressed that the implementation of the
essentially the same price as for the nonrelativistic calculaNESC-SORA method can be achieved with the use of only
tion. The most time consuming part of this calculation is thethose molecular integrals, which are routinely available in

evaluation of the two-electron integralav| «\), which has
to be done only once when using E§9).
Because the Rl was used in deriving E89), a question

any nonrelativistic quantum-chemical program.
The approach was extended to the many-electron case,
where a considerable reduction of the computational com-

about the accuracy of this approximation in comparison withplexity was achieved with the use of the one-electron ap-

the use of the exact two-electron integrals in E@R) and

(28) seems appropriate. In Table I, the results of the NESCWithin this approximatior?f,l'32

proximation in the relativistic transformation operatfﬁjrg.2
it is the nuclear attraction po-

SORA calculations carried out with the use of the exact intential only that is used in the relativistic transformations.

tegrals in Eq.(28) [omitting however theD(c™*) terms and

The two-electron terms neglected would mak®(@ ) con-

Darwin termg and the results of approximate calculationstribution to the transformed Hamiltonian. Thus, omitting
employing Eq.(39) are reported. The difference between thethese terms does not lead to noticeable errors. This is con-

two sets of calculations is less than<80™° hartree units,

firmed by the calculated energies of heliumlike atomic ions
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