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The impact of the self-interaction error on the density functional theory
description of dissociating radical cations: Ionic and covalent
dissociation limits

Jürgen Gräfenstein, Elfi Kraka, and Dieter Cremer
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~Received 2 September 2003; accepted 8 October 2003!

Self-interaction corrected density functional theory was used to determine the self-interaction error
for dissociating one-electron bonds. The self-interaction error of the unpaired electron mimics
nondynamic correlation effects that have no physical basis where these effects increase for
increasing separation distance. For short distances the magnitude of the self-interaction error takes
a minimum and increases then again for decreasingR. The position of the minimum of the
magnitude of the self-interaction error influences the equilibrium properties of the one-electron bond
in the radical cations H2

1 (1), B2H4
1 (2), and C2H6

1 (3), which differ significantly. These differences
are explained by hyperconjugative interactions in2 and 3 that are directly reflected by the
self-interaction error and its orbital contributions. The density functional theory description of the
dissociating radical cations suffers not only from the self-interaction error but also from the
simplified description of interelectronic exchange. The calculated differences between ionic and
covalent dissociation for1, 2, and3 provide an excellent criterion for determining the basic failures
of density functional theory, self-interaction corrected density functional theory, and other methods.
Pure electronic, orbital relaxation, and geometric relaxation contributions to the self-interaction
error are discussed. The relevance of these effects for the description of transition states and charge
transfer complexes is shown. Suggestions for the construction of new exchange-correlation
functionals are given. In this connection, the disadvantages of recently suggested self-interaction
error-free density functional theory methods are emphasized. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1630017#
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I. INTRODUCTION

In recent work,1–7 we have derived a number of tools
investigate the self-interaction error~SIE! of standard Kohn–
Sham density functional theory~KS-DFT! ~Refs. 8 and 9!
when carried out with the approximate functionals availa
today.10–40The SIE of DFT exchange~SIE-X! mimics long-
range correlation effects, which are responsible for~a! the
stability of restricted KS solutions and~b! help to describe
electron systems with considerable multireferen
character.1–7 This can be shown by calculating the changes
the one-electron density distribution caused by the SIE~Refs.
1–3! or alternatively investigating the structure of the e
change hole at typical positions in a molecule@e.g., at the
centroids of the localized molecular orbitals~LMOs! occu-
pied by core, bond, and lone pair electrons#.4–6 By splitting
the exchange hole into a self-interaction corrected~SIC! part
and a SIE part, into a self-exchange~intraelectronic! and an
interelectronic part or into orbital contributions, the implic
tions of the SIE for the description of electron correlation
it is accounted for by approximate exchange functionals
be demonstrated.4–6

First studies on the SIE of DFT reach back to early wo
by Fermi and Amaldi.29 The problems the SIE might caus
were already anticipated by Slater,30 however a first detailed
discussion of the SIE was given by Perdew and Zunge
1981.11 These authors introduced an orbital-dependent
5240021-9606/2004/120(2)/524/16/$22.00
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formalism, which is the basis of most SIE-free DFT inves
gations published until now.~For reviews on SIC-DFT, see
Refs. 1, 10, and 27.!

The SIE-X is a direct consequence of the localized ch
acter of the DFT exchange hole. It compensates for the
ference between the delocalized SIC-DFT hole, which
sembles the exact exchange hole, and the local D
exchange hole. This leads to the advantage of adding~in an
unspecified way! important long-range correlation effect
however leads also to serious drawbacks in the case of
electron systems:31–40 The dissociation of one and three
electron bonds is wrongly described. Reaction barriers
volving an odd number of electrons are underestimat
Bonding and electron distribution in charge transfer co
plexes can be wrongly predicted.32 In this work, we will
concentrate on the dissociation of one-electron bonds in r
cal cations and show that, although these systems have
already investigated by several authors,26~c!,31,33–40there are
still a number of open questions, which are essential for
understanding of bonding in these molecules in specific
the performance of DFT in general.

The dissociation of an odd-electron bond proceeds in
asymmetric fashion, i.e., the unpaired electron moves to
of the fragments so that a radical and a cation~one-electron
bonds! or a closed shell fragment and a radical cation~three-
electron bonds! are generated. For one-electron bonds t
phenomenon is known as charge-spin separation: for la
© 2004 American Institute of Physics
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distancesR between the fragments, the positive charge
concentrated at the ionic fragment and the spin density a
radicalic one.~For three-electron bonds, charge and spin
come concentrated at the same fragment.! This charge-spin
separation has led several authors33,38to the conclusion that a
correct quantum-chemical description of odd-electron-bo
breaking has to predict an ionic ground state~i.e., one ionic
and one neutral fragment! rather than a covalent one~i.e.,
two fragments with charge11/2 each! in the limit of a large
distance between the fragments. This means that at a ce
interaction distance the covalent ground state should bec
electronically unstable and bifurcate into two equivale
ionic ones.

Hartree–Fock~HF! calculations provide such a bifurca
tion, and it has been concluded that HF allows for a qual
tively correct description of dissociating radical cations38

Correlated wave-function methods tend to stabilize the co
lent state relative to the ionic one and reduce the charge
spin separation for a given interfragment distance. DFT c
culations, in distinction to HF, predict a covalent grou
state for all interfragment distances with a drastically
duced limit energy for large bond lengths.31,33,36–39The ionic
DFT state provides the correct limit energy for large int
fragment distances. However, this state is electronically
stable, which has been called ‘‘inverse symmetry breakin
in the literature.33

Chermette and co-workers38 pointed out that the DFT
dissociation curves for diatomic molecules may jump ba
and forth between the covalent and the ionic state for m
erate bond lengths~2–3 Å!. This was interpreted as a finge
print of an avoided crossing between the bonding cova
state and the ionic state. The authors argued that the bon
Sg and the antibondingSu state belong to the same irredu
ible representation, viz.S, with respect to theC`v symmetry
of the ionic states, which allows for an interaction betwe
these states and makes an avoided crossing possible. Fu
more, the authors suggested that the occurrence of
equivalent, and thus degenerate, ionic states may give ris
nondynamic correlation effects in the dissociating radi
cation and that the qualitatively incorrect DFT description
radical cations may be ascribed to the general limitations
DFT in describing nondynamic correlations.

The energy balance between the ionic and the cova
state is of crucial importance for an accurate description
odd-electron bond breaking. In the current paper, we w
therefore discuss this energy balance in detail for dissoc
ing one-electron-bonded radical cations and give an inter
tation for the different descriptions one obtains at differe
levels of theory with the focus on DFT methods. We w
calculate the SIE and its orbital contributions in depende
of the separation distance and we will show the following

~1! HF, DFT, and in general methods without a specific ty
of nondynamic electron correlation fail to describe d
sociation of one-electron bonds correctly. We will intr
duce criteria that provide a quantitative ordering of t
performance of different methods.

~2! We will show that SIC-DFT is the method with the be
performance, however we will also demonstrate that t
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP
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is the result of a serious artifact of DFT, which was
far overlooked: DFT suffers also from an oversimplifie
description of interelectronic exchange that together w
the SIE causes problems when describing the disso
tion of radical cations.

~3! We will further discuss the influence of geometry rela
ation on radical cation dissociation. Depending on t
fact whether the fragments become Jahn-Teller unsta
geometry relaxation is particularly strong and chang
the ideal dissociation behavior of the radical cation.

~4! The magnitude of the SIE increases not only for an
crease in the separation distanceR, but below a criticalR
value also for a decrease ofR. The criticalR value can
be predicted from the electronic structure of the radi
cation. It decides on the properties of the equilibriu
geometry calculated by DFT or SIC-DFT.

Although our discussion will focus just on the prototyp
radical cations H2

1 (1), B2H4
1 (2), and C2H6

1 (3), the obser-
vations made will be of direct consequence for the desc
tion of reactions involving an odd number of electrons. F
thermore, we will be able to draw conclusions on the b
way of curing DFT from the SIE.

The results obtained in this work will be presented in t
following way: In Sec. II, the basic theory of the SIE and t
SIC-DFT method used in this work are shortly describe
Details of the computations are given in Sec. III. In Sec.
the SIE of radical cations is decomposed in pure electro
orbital relaxation, and geometry relaxation effects. Investi
tion of its dependence onR supported by the analysis of th
exchange hole at differentR values leads to a clear insigh
into the performance of DFT in odd electron cases. Ionic a
covalent dissociation limits of radical cations are also d
cussed in Sec. IV and their relevance for different metho
are shown. Finally, in Sec. V the conclusions of this wo
especially with regard to the application of DFT in odd ele
tron cases are drawn.

II. BASIC THEORY OF THE SIE
AND THE SIC-DFT METHOD

In a one-electron system, the exchange energyEX ex-
actly cancels the Coulomb energyJ of the one electron, and
the correlation energyEC vanishes. Hence, for anya-spin
density %a that integrates to one, the following relation
must hold:

EX@%a,0#52J@%a#, ~1a!

EC@%a,0#50. ~1b!

The available approximate XC functionals violate one
both of conditions~1a!, ~1b! and contain thus a physicall
incorrect self-interaction of the electrons. Perdew and Zun
~PZ! ~Ref. 11! suggested to start from one of the availab
approximate XC functionals and to augment it by a SIC te
that cancels the self interaction orbital by orbital. The P
SIC-XC functional takes the form

EXC
correct5EXC

approx@%a ,%b#2EXC
SIE, ~2a!

EXC
SIE5EX

SIE1EC
SIE, ~2b!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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EX
SIE5 (

s5a,b
(
i 51

Ns

~EX@% is,0#1J@% is#!, ~2c!

EC
SIE5 (

s5a,b
(
i 51

Ns

EC@% is,0#, ~2d!

where% is(r )5uw is(r )u2 is the density that corresponds
the KS spin orbitalw is .

The inclusion of the SIC terms into the XC function
alters the KS equations in two ways: First, the KS operatoF̂
is augmented by an additional orbital-dependent term,

F̂ i
SIC~r !5F̂2F̂ i

SIE, ~3a!

F̂ i
SIE5E d3r 8

% i~r 8!

ur2r 8u
1V̂XC@% i ,0#. ~3b!

~We suppress the explicit spin indices here and in the follo
ing.! Second, contrary to the standard KS XC energy fu
tional, EXC

SIE is no longer invariant with respect to rotation
among the occupied orbitals. In addition to the usual
conditions

^wauF̂ i
SIEuw i&50, ~4a!

the KS orbitals in SIC-DFT have to obey Eq.~4b! ~see e.g.,
Ref. 17!:

^w j uF̂ i
SIE2F̂ j

SIEuw i&50 ~4b!

~indices i, j denote occupied, indicesa, b virtual orbitals!.
Equation~4b! implies that in SIC-DFT there is no longer an
freedom to represent the occupied KS orbitals in either
nonical or localized form; instead, this choice is stipulated
the energy minimization. As a rule, the optimal KS orbita
turn out to be localized.13

Solving Eqs.~4a! and ~4b! self-consistently is difficult
and time-consuming. A reasonable compromise in m
cases is to perform a standard KS-DFT calculation and
calculateEXC

SIE subsequently. KS-DFT gives no clue as to ho
the orbitals should be chosen to maximizeEXC

SIE ~and hence
minimize the total energy!. In self-consistent~SC! SIC-DFT
calculations, the optimal KS orbitals are localized in mo
cases, and thereforeEXC

SIE is usually calculated from localize
molecular orbitals~LMOs!. The resulting perturbative~P-!
SIC-DFT makes it possible to estimate the pure electro
effects of the SIE and SIC-DFT at relatively low comput
tional cost compared to a standard DFT calculation.

Both P-SIC-DFT and SC-SIC-DFT have been imp
mented in theCOLOGNE 2003program package.41 P-SIC-DFT
was implemented into an existing SCF code ofCOLOGNE

2003, which uses repeated diagonalization of the Fock mat
The orbital localization is done according to th
Foster–Boys42 criterion. For the implementation of SC-SIC
DFT, a repeated diagonalization of the Fock matrix is
inappropriate approach because, due to Eq.~4b!, the occu-
pied orbitals are not invariant with respect to internal ro
tions and, in addition, localized, i.e., essentially differe
from the canonical orbitals generated in standard KS-D
calculations. Therefore, the SC-SIC-DFT equations
solved with a univariate search method similar to that
Seeger and Pople.43 Both a scaled steepest-descent appro
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP
-
-

-
y

y
to

t

ic

-

.

n

-
t
T
e
f
h

and a conjugate-gradient approach44 were programmed and
implemented inCOLOGNE 2003.41 Test calculations showed
that the conjugate-gradient approach reduced the numbe
necessary iterations in a SC-SIC-DFT calculations by up
factor of 5.

III. COMPUTATIONAL DETAILS

Dissociation energiesDe , equilibrium bond distances
r e , harmonic vibration frequenciesve , and dissociation
curves were calculated for H2

1 (1), B2H4
1 (2), and

C2H6
1 (3), which are typical representatives for a large cla

of molecules with one-electron bonds. ValuesDe and the
dissociation curves were calculated relative to the energie
the fragments~i.e., not relative to a supermolecule!: De

5E(X2
1)2E(X•)2E(X1). The calculations were done a

different levels of theories. A series of standard-KS calcu
tions was performed to investigate the impact of the SIE
pure and hybrid DFT methods. We combined the Le
Yang–Parr~LYP! correlation functional45 with different mix-
tures of Becke 88~Ref. 46! and exact HF exchange increa
ing the latter by the factoraHF: pure Becke 88~B! exchange
(aHF50), Becke 3~B3! exchange47 (aHF50.2), Becke half-
and-half exchange48 (aHF50.5), and pure HF exchang
(aHF51). It should be noted that we used the stand
B3LYP functional, in which 19% of the LYP correlation en
ergy are replaced by the Vosko–Wilk–Nusair~VWN! func-
tional ~the functional referred to as functional III in Ref. 49!.

In addition to the standard DFT calculations, P-SI
BLYP and SC-SIC-BLYP calculations were carried out usi
the direct minimization procedure described in the previo
section. Finally, as a reference, we calculated equilibri
bond distances, dissociation energies, and binding curve
2 and3 at the CCSD~T! level of theory.50 When calculating
the dissociation curves of2 and3, the distanceR between the
heavy atoms was used as reaction coordinate and the g
etry of the molecule was reoptimized for eachR considered.
For the SC-SIC-DFT calculations, the correspondi
CCSD~T! geometries were used, otherwise all geometr
were optimized with the current method. Dunning’s valen
triple-zeta basis set cc-pVTZ~Ref. 51! was used for all cal-
culations except the SC-SIC calculations where we had
resort to Dunning’s valence double-zeta basis set cc-pV
~Ref. 51! to avoid convergence problems.

For P-SIC, SC-SIC, and CCSD~T!, analytical energy
gradients were not available. Therefore, the quantitiesr e and
De were determined by interpolating the calculated points
the dissociation curve with a cubic spline and calculating
minimum of this spline function. As for the impact of th
SIE on the vibrational spectrum, we evaluated the adiab
stretching frequenciesve

a(X–X) ~Ref. 52! ~X5H,B,C! for 1,
2, and 3 at all levels of theory used. The force consta
belonging to the adiabatic stretching frequency is the cur
ture of the dissociation curve atr e . For 1, the adiabatic
vibrational mode is identical with the harmonic vibration.
this case, a comparison of the calculated values of theve

a and
ve provides an insight into the numerical error brought ab
by the spline interpolation.

For the purpose of investigating the existence and sta
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ity of covalent and ionic states, each of these states
calculated for1, 2, and3 at a bond length of 10 Å with the
four DFT functionals mentioned above, additionally with H
and SC-SIC-BLYP. For3, the two states were calculated wi

FIG. 1. BLYP/cc-pVTZ geometries used for the stability investigations
the covalent and ionic states of B2H4

1 and C2H6
1 . Values in square bracket

refer to the CCSD~T!/cc-pVTZ geometries~see Sec. III for details!. Bond
lengths in Å, angles in deg.
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP
as

Slater ~S! exchange~Ref. 53! and the functional VWN5 of
Vosko, Wilk, and Nusair49 and SC-SIC-SVWN5 in addition
Stability tests54,55were performed for all methods except SC
SIC. In a first approach, CCSD~T!/cc-pVTZ-based geom-
etries were used in all SC-SIC calculations. These geo
etries were prepared in the following ways: For the ion
states, we started from the geometries of the neutral
ionic fragments, i.e., BH2 (4•) and BH2

1 (41) for 2, CH3 (5•)
and CH3

1 (51) for 3, and assembled these fragments a
distance of 10 Å between the heavy atoms using the ap
priate symmetry (C2v according to HBBH dihedral angles o
90° for 2, C3v in the staggered conformation for3!. For the
covalent states, we performed CCSD~T!/cc-pVTZ geometry
optimizations. The fragments in the covalent states w
forced to be planar, i.e., we adjusted the CCH and BBH bo
angles to exactly 90° to make the geometries consisten
those of the ionic states. The CCSD~T! geometries were
tested by numerical SC-SIC-DFT optimizations, which led
some unexpected results. CCSD~T! and SC-SIC-BLYP ge-
ometries are shown in Fig. 1. While SIC-DFT calculatio
were done withCOLOGNE 2003~Ref. 41! using the method
described above,ACES 2~Ref. 56! was used for the CCSD~T!
calculations, andGAUSSIAN 98 ~Ref. 57! for all other calcu-
lations.

IV. RESULTS AND DISCUSSION

Table I presents heavy atom dissociation energies, e
librium distances, and vibrational frequencies for1, 2, and3.
In Table II, the SIE calculated for the radical cations is p
titioned into a pure electronic, an orbital relaxation, and
geometry relaxation part using P-SIC and SC-SIC energ
for BLYP at fixed and optimized geometries.

A. Investigation of the self-interaction error

For the three radical cations, DFT overbinds the mole
lar cations by 4–5 kcal/mol. The overbinding decreases
the portion of exact exchange in the XC functional is i
creased. HFLYP, which exclusively contains exact exchan

f

dical

338
398
420
534
19
64
20

encies
TABLE I. Dissociation energies, equilibrium bond lengths, and harmonic vibrational frequencies for ra
cations1, 2, and3.a

1 2 3

De r e ve ve
a De r e ve ve

a De r e ve ve
a

BLYP 69.09 1.136 1881.8 1844 62.44 1.789 519.9 526 56.41 2.007 372.8
B3LYP 67.84 1.114 2003.6 1946 60.91 1.807 507.8 483 54.83 1.967 418.9
BH-HLYP 66.38 1.089 2140.1 2066 57.56 1.846 487.8 464 51.14 1.940 464.5
HFLYP 64.29 1.057 2335.8 2187 55.40 1.876 493.8 486 47.94 1.893 536.1
P-SIC-BLYP 64.36 1.046 2226 50.4 1.944 476 53.9 1.918 5
SC-SIC-BLYP 64.29 1.057 2187 54.6 1.922 535 56.5 1.944 5
CCSD~T!b 64.28 1.057 2187 58.24 1.830 523 52.48 1.931 5
Expt.c 64.42 1.052 2321

aP-SIC-BLYP calculations at BLYP geometries, SC-SIC-BLYP calculations at CCSD~T! geometries. SC-SIC
calculations done with Dunning’s cc-pVDZ basis set~Ref. 51!. All other calculations with Dunning’s cc-pVTZ
basis set~Ref. 51!. Energies in kcal/mol, bond distances in Å, frequencies in cm21. Theve values shown are
for the H–H, B–B, and C–C stretching vibrations, respectively. For an explanation of the adiabatic frequ
ve

a , see text and Ref. 52.
bFor 1, the UHF values are taken.
cFrom K. P. Huber and G. Herzberg,Constants of Diatomic Molecules~Van Nostrand Reinhold, New York,
1979!. TheDe value has been calculated from the experimentalD0 andv values.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 08 Ja
TABLE II. Decomposition of the self-interaction error~SIE! on the dissociation energies of the hydrog
radical cation ion~1!, the borane radical cation~2!, and the ethane radical cation~3!.a

Molecule Method Effect
SIE

molecule
SIE

fragments DDe De

1 BLYP 69.10
P-SIC pe 3.86 21.05 24.91 64.18

SC-SIC or 21.01 20.36 0.10 64.28
exact 64.42

2 BLYP 62.44
P-SIC pe 6.69 25.68

~25.68,0.25!
212.37 50.07

P-SIC, opt gr 21.80 21.47 20.33 50.40
SC-SIC or 213.36 29.89

~4.99,24.90!
3.47 53.54

SC-SIC, opt gr 21.32 20.26 21.06 54.60
exact 58.24

3 BLYP 56.41
P-SIC pe 60.97 57.51

~18.63,38.88!
23.46 52.95

P-SIC, opt gr 21.45 20.5 20.95 53.90
SC-SIC or 242.04 38.74

~20.14,218.60!
3.30 56.25

SC-SIC, opt gr 21.25 21.0 20.25 56.5
exact 52.48

aAll values in kcal/mol. Abbreviations denote the pure electronic~pe! effect, the orbital relaxation~or! effect,
and the geometry relaxation~gr! effect of the SIE.DDe gives the total SIE of molecule and fragments on t
dissociation energyDe . ExactDe values are taken from the experimental value for1 and the CCSD~T! values
for 2 and3 ~see Table I!. Numbers in parentheses denote the SIE for the ionic and radicalic fragment.
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underestimates the binding energies of2 and3 by 3.1 and 4.5
kcal/mol, respectively@with reference to the CCSD~T! val-
ues, see Table I#. The inclusion of SIC counteracts th
overbinding. P-SIC-BLYP reducesDe values by 4.9~1!, 12.4
~2!, and 3.5 kcal/mol~3! where the absolute effects on th
radical cation are considerably larger but are partially co
pensated by the SIEs of the fragments. The adjustment o
orbitals to the self-interaction corrected description is sign
cant for polyatomic radical cations: In the case of2 the De

value is increased again by 3.8 kcal/mol~thus compensating
the P-SIC effect onDe by almost 30%! whereas in the cas
of 3 the pure electronic effect is literally canceled by orbi
relaxation. Geometry relaxation leads only to small chan
both at the P-SIC and SC-SIC levels of theory~Table II!.

In summary, SIC-DFT improves only the dissociatio
energy of1 because SC-SIC-BLYP is identical with HF for
one-electron system such as1. SIC-DFT leads to no im-
provement in the case of radical cation3 and even deterio-
rates theDe value in the case of2. BLYP overestimates for1
and 3 the bond lengths~1.136 and 2.007 Å, Table I! by
nearly 0.1 Å@CCSD~T! values: 1.057 and 1.931 Å#, whereas
the BLYP bond length for2 ~1.789 Å! is too short by 0.04 Å
@CCSD~T!: 1.830 Å#. Increasing the portion of exact ex
change will decrease the bond length in1 and3 but increase
it in 2: HFLYP ~1.876 Å! gives too long a bond in2 and too
short one in3 ~1.893 Å!. P-SIC, in contrast, predicts to
short bonds in1 ~1.046 Å! and 3 ~1.918 Å! and too long a
bond in2 ~1.944 Å, Table I!. SC-SIC shows the same trend
however, the deviations of ther e values~1.057, 1.922, 1.944
Å! from the reference values are smaller than for P-SIC.

The vibrational frequencies follow the trends in the c
culated bond lengths in the way that an underestimation or e
n 2005 to 129.16.87.99. Redistribution subject to AIP
-
he
-

l
s

-

leads to exaggeration, an overestimation to a reduction of
stretching frequency. The behavior of2 is again opposite to
that of 1 and3: For 1 and3, the frequencies increase, for2
they decrease with increasing factoraHF. Comparingve and
ve

a for the standard-DFT calculations for2 and 3 one finds
that theve

a values correctly reflect trends in the vibration
frequencies. A caveat is however appropriate: Theve andve

a

values for1 ~which should be identical! differ by 60–150
cm21 due to numerical errors in the spline-interpolation pr
cedure used to calculateve

a , which has to be considere
when discussing the adiabatic stretching frequencies.

SIC-DFT fails to lead to a significant improvement
bothDe , r e , or ve

a values of radical cations~with more than
one electron!. It seems to approach the HFLYP or BH-HLY
values. However this does not guarantee an improvemen
the description of the equilibrium properties of the radic
cations.

1. Analysis of the SIE in dependence
of the separation distance

Figures 2~a!, 2~b!, and 2~c! show the dissociation curve
for 1, 2, and 3 in the range 1.4–5 Å. All methods give
qualitatively correct description around the equilibrium bo
distance, with the tendency of DFT to overbind the molec
lar cation. However, the DFT binding curves are qualitative
incorrect in the dissociation limit, as has been pointed
earlier.31,33,38 Instead of increasing monotonously towar
the limit of zero, the molecule passes an artificial transit
state, and for larger interaction distancesR the bond energy
decreases and converges slowly towards a limit, which m
even be below the bond energy at equilibrium. This incorr
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. Dissociation curves for H2
1 ~a!, B2H4

1 ~b!, and C2H6
1 ~c! calculated with DFT and wave-function methods. The SIE obtained with P-SIC-B

~P-SIE-B! and SC-SIC-BLYP~SC-SIE-B! is given relative to the SIEs of the fragments. Dunning’s cc-pVTZ basis set~Ref. 51! was used for all calculations
For details of the calculations, see text.
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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behavior is present for all pure and hybrid DFT exchan
functionals but becomes less distinct asaHF increases. The
transition state can be seen most clearly for1 @Fig. 2~a!# but
is also present for2 and3, where it occurs at larger interac
tion distances.

HFLYP as well as SC-SIC-BLYP give a qualitative
correct description of the dissociation. P-SIC-BLYP ov
compensates the error of BLYP, i.e., the supermolecule h
higher energy than the fragments for large interaction d
tances~Fig. 2!. However, the absolute energy difference b
tween supermolecule and fragments is smaller in the limi
largeR for P-SIC-BLYP than for standard BLYP. The P-SI
energies are calculated based on a BLYP description, w
predicts a covalent ground state even for largeR, hence,
supermolecule and fragments are described differen
which accounts for the energy difference. For SC-SIC,
contrast, one finds that the ground state becomes ionic
yond a certainR @defining a bifurcation point, at which a
broken symmetry~BS! solution describing an ionic supe
molecule state is lower in energy# for the two systems inves
tigated. This means that supermolecule and fragment are
scribed equivalently and thus have the same energy.

The fact that~i! the error in the description of the disso
ciation becomes smaller asaHF increases and~ii ! SC-SIC-
DFT remedies the error indicate that the deviation should
caused by the SIE. The behavior of the SIE for large bo
lengthsR between the fragments A and B can be rationaliz
with a simple estimation.12,36 Let %A

v and%B
v be the valence

densities for the case that the unpaired electron is localize
A or B, respectively. The valence density of the covale
state is then to a good approximation%cov

v 5(%A
v 1%B

v )/2. The
Coulomb self-interaction of the valence orbital for the ion
state is

JA5JB5
1

2 E d3r 1E d3r 2

1

r 12
%A

v ~r1!%A
v ~r2!, ~5!

wherer 125ur12r2u. For the covalent state, one will get

Jcov5
1

2
JA1

1

4R
~6!

if one assumes thatR is large compared to the spatial exte
of %A

v and%B
v . The Coulomb self-interaction of the valenc

orbital behaves differently for the ionic and covalent stat
While JA is asymptotically constant,Jcov contains a term
decaying as 1/4R resulting in an artificial Coulomb repulsio
between the two halves of the valence charge.

The pure-DFT self-exchange energies for the two sta
are

EA
X5EX@%A

v #, ~7a!

Ecov
X 52EX@ 1

2%A
v # ~7b!

5CEA
X . ~7c!

For LDA, C5221/3'0.79; for a gradient-corrected func
tional,C should be close to this value, hence,C.1/2 is to be
expected in all cases. As has been suggested Noodlema
co-workers54 and confirmed by Polo and co-workers,4,5 the
SIE is smaller in magnitude for a localized than a delocaliz
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orbital, in particular if a GGA functional is used. In the ion
state, all orbitals are localized, hence one can expect tha
magnitude of the SIE is small, i.e.,JA

DFT'JA . This assump-
tion gives

~8!

Hence, for largeR the SIE of the delocalized valence orbita
which makes the main contribution to the total SIE, conta
a negative constant term, which accounts for the underb
ing of radical cations in standard DFT, and a positive Co
lomb term, which accounts for the repulsion of the fragme
and the occurrence of an artificial transition state in the d
sociation curve. In Fig. 2, both the calculated P-SIE-B a
SC-SIE-B values are given as a function ofR. Both curves
are in agreement with Eq.~8! for large R. The SC-SIE-B
curve approaches for all radical cations the BLYP dissoc
tion curve and defines the limit for largeR, which is equal to
the self-repulsionJA of one electron multiplied by the nega
tive factor ~0.52C!. The P-SIE-B curve is below the SC
SIE-B ~the magnitude of the P-SIE contribution toDe is
always larger than that of the SC-SIE-B contribution! be-
cause of the missing orbital relaxation, which becomes lar
for increasingR. If a hybrid functional is used expression~8!
has to be multiplied by 12aHF, i.e., the qualitative behavio
of the binding curve remains unchanged but the SIE and
corresponding error in theDe values become smaller.

2. Exchange hole description of the SIE

In Fig. 3, the exchange hole of the single electron in1 is
shown for twoR values as calculated with HF and two DF
functionals. Exchange is equal to self-exchange~intraelec-
tronic exchange! in this case and the HF exchange hole c
responds to the negative density distribution of the sin
electron. The HF hole is delocalized and independent of
position of the electron, i.e., it is a static hole. The LDA ho
shown in Fig. 3~a! ~calculated with Slater exchange and u
ing the HF density to facilitate the comparison! is localized
at the position of the electron~in Fig. 3, this is the position of
nucleus H1!, spherically symmetric, and at its lowest poi
2r~r !. For a single electron the SIC-LDA hole is exact
equal to the HF exchange hole~provided the same density i
used to describe the holes!.

The difference between the LDA and the SIC-LDA ho
defines the SIE part of the hole, which is also shown in F
3~a!. It describes a long-range correlation effect: If the sing
electron is positioned at H1 a second electron is most lik
found at nucleus H2 thus separating two electrons by
internuclear distance@1 Å in Fig. 3~a!#. Hence, a nondy-
namic correlation effect is described by the LDA exchan
hole, which is not needed in the case of a single electron
that an artificial stabilization results for the radical cation.
is this stabilization, which lowers the DFT energy of th
radical cation and makes the covalent solution artificia
stable against any symmetry breaking leading to the io
solution.

In Fig. 3~b!, the GGA exchange hole calculated for th
PW91 exchange functional~for Becke 88 exchange an ex
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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change hole is not defined! is shown. Although details of the
exchange hole are now different compared to the LDA
change hole~for a detailed discussion of the differences, s
Ref. 5!, the general conclusion with regard to the SIE ho
remain the same: It describes a nondynamic correlation
fect as if a second electron would be present.

FIG. 3. Graphical representation of the exchange hole calculated
H2

1 (2Sg) along the bond axis at the HF, LDA~SVWN5!, and GGA
~PW91PW91! level of theory for separation distances of 1~a! and 5 Å ~c!.
The reference electron is positioned at H1. For one electron the HF
change hole is equal to the SIC-DFT exchange hole. The SIE part o
DFT exchange hole is given as the difference between DFT and SIC-
exchange hole. All calculations with a cc-pVTZ basis set at the experime
geometry.
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP
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At 3.5 Å, the HF exchange hole of the covalent state
1 is delocalized over the whole internuclear separation d
tance@Fig. 3~c!#. The LDA and the GGA holes become iden
tical because the densities of the two atoms resemble thos
isolated atoms, which give for LDA and GGA the same e
change hole provided the reference electron is located a
nucleus where the reduced gradient vanishes. The SIE
scribes now an even stronger long range correlation ef
~the virtual second electron is separated over a larger
tanceR!, which leads to stronger stabilization. The form
the SIE hole converges to a limit that can be anticipated fr
the form of the SIE hole at 3.5 Å and this limit is given i
Eq. ~8! for R→` as (0.52C)JA . Since JA is the self-
repulsion part, which at the HF level is equal to the negat
self-exchange part, the SIE hole atR5` must be the nega
tive of the HF exchange hole~provided the same density i
used for the construction of the exchange holes!. This means
that the DFT dissociation curves in Fig. 2 converge to
2aHF)(0.52C)JA .

3. The SIE at short separation distances

Exchange and SIE hole atR51 Å @Figs. 3~a! and 3~b!#
reveal that one can no longer speak of two separated neg
charges of 0.5e. Equations~5!–~8! hold for R values that are
large enough so that the two fragments are well separa
For smallR values, the atomic densities penetrate each ot
a substantial bond density is present, and the SIE beh
differently than for largeR. This is reflected most clearly by
the SIE curves in Figs. 2~a!, 2~b!, and 2~c! in the R-range
close to the equilibrium distance whereEcov

SIE becomes less
positive than predicted by Eq.~8!. This implies a less nega
tive derivative dEcov

SIE/dR than given by21/(4R2) @see Eq.
~8!#. The derivative dEcov

SIE/dR becomes even zero and the
adopts positive values so that a maximum is found atR
'2.2 Å for 2 and at about 1.8 Å for3.

The deviations ofEcov
SIE from the expression in Eq.~8!

observed for smallR have two reasons. Figure 4~a! gives the
total SIE energy for2 and its orbital contributions calculate
at the P-SIC-BLYP level of theory. One sees that the SIE
the bond orbital determines largely the trend observed for
total P-SIE in Fig. 2~b!. For smallR, the spatial extent of
%A,B

v plays an increasing role for the SIE of the valence el
tron as anticipated from the form of the exchange ho
shown in Fig. 3. Equation~8! is no longer applicable. Sec
ond, one sees that the SIE of the X–H bond orbitals~X
5B,C! is no longer constant for smallR but becomes more
negative. Given that there are 8 or 12 electrons in X
bonds for2 and 3, respectively, the SIE of these orbita
dominates the total SIE for smallR.

An analysis of the geometry of2 reveals that the B–H
bond length increases and the HBH bond angles decreas
decreasingR: While for R53.0 Å, r (BH)51.176 Å and
/~HBH!5157.5°, atR51.8 Å one findsr (BH)51.192 Å
and/~HBH!5147.8°. This change of the bond length is d
to hyperconjugation effects in2 ~Scheme 1!: As R decreases,
a pseudo-p(BH2) orbital can interact with the empty 2pp
orbital at the other B atom. This leads to a stabilization of
BB bond and the observed elongation of the B–H bonds.
a consequence of hyperconjugation, the B–H bond orbi

or

x-
e
T
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become more delocalized, both directly through the hyp
conjugation and indirectly through the bond elongation.
addition, the decrease in the HBH bond angle require
further delocalization of the B–H bond orbitals to mainta
orthogonality.

FIG. 4. Orbital contributions to the SIE of~a! B2H4
1 and~b! C2H6

1 given as
a function of separation distanceR. Calculations at the P-SIC-BLYP/cc
pVTZ level of theory.
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP
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Generally, the SIE for an occupied orbital is more neg
tive the more delocalized this orbital is: The exact se
repulsion of an electron becomes large for a spherically s
metric orbital and small if the orbital is delocalized. The DF
expression forEX is essentially an integral over%, i.e., it is
relatively insensitive to the difference between a ‘‘compa
~i.e., nearly spherically symmetric! and an extended orbital
Thus, for a given X functional the SIE of an extended orbi
is more negative than that of a compact one. TheBECKE88

exchange functional46 is adjusted to noble-gas atoms, i.e
spherical charge distributions. Consequently it yields ne
tive SIEs for extended orbitals.5

In 3, only second order hyperconjugation involving th
occupied pseudo-p(CH3) orbitals and the pseudo-p* (CH3)
orbitals can take place. Second-order hyperconjugation
much weaker than first-order hyperconjugation and there
its effects become only significant at shorter X–X distan
Consequently, the impact ofR on the geometry of the frag
ments is smaller:r (CH)51.105 Å and/~HCH!5117.3° for
R51.8 Å, r (CH)51.101 Å and /~HCH!5119.8° for R
53.0 Å, and the direct delocalization of the X–H bond o
bitals caused by hyperconjugation is weaker than in the c
of 2. This explains that the maximum for the total SIE occu
at a smallerR value for 3 than for 2 @Figs. 4~a! and 4~b!#.
However, the SIE for3 becomes stronglyR-dependent be-
tween 1.4 and 1.6 Å. This behavior indicates a change in
orbital occupation: For smallR, the two degenerate C–C
antibonding pseudo-p(CH3) orbitals (1eg-symmetry! are the
HOMO’s. With increasing distanceR the 1eg-orbitals be-
come less C–C antibonding and are stabilized whereas
3ag orbital @s~CC!# is destabilized because of decreasi
bonding overlap. ForR values around the equilibrium bon
length and above, the unpaired electron is in the 3ag orbital.
For smallR, in contrast, it is in one of the degenerate 1eg

orbitals, which results in a Jahn-Teller distortion58 and even-
tually to a change of the SIE contributions of the C–H bo
orbitals.

The SIE for the X–H bond orbitals is different fora and
b spin. For largeR, the SIE of thea spin–orbitals is more
negative, for smallR, that of theb spin–orbitals becomes
more negative. In the first case, thea X–H bond orbitals
have to be orthogonal not only to each other but also to

First order hyperconjugation in B2H4
1 and second order hyperconjugation

C2H6
1 .
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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X–X bond orbital, which results to an additional delocaliz
tion ~due to orthogonalization tails! and to a more negative
SIE. In the second case, the hyperconjugation effects and
resulting delocalization is more efficient for theb than for
the a orbitals because delocalization the latter is limited
interelectronic exchange with the unpaired delocalizeda
electron of the X–X bond. This explains the difference in t
SIEs for smallR.

The behavior of the SIE aroundR5r e allows us to ex-
plain the deviations of the calculated DFT values forr e and
ve . If dEcov

SIE/dR.0 aroundR5r e , i.e., the SIE leads to an
extra stabilization for decreasingR, DFT will underestimate
r e , for dEcov

SIE/dR,0, i.e., the SIE leads to an extra stabiliz
tion for increasingR, r e will be overestimated. Indeed, w
find that DFT gives too larger e values for1 and 3 @weak
second order hyperconjugation and a dominance of the
expressed by Eq.~8!# and too small anr e value for2 ~strong
first order hyperconjugation and a SIE dominated by the
orbital contributions!. P-SIC overestimates the error made
standard DFT calculations whereas for SC-SIC-DFT t
overestimation is reduced by orbital relaxations.

The ve
a frequencies are directly related to the curvatu

of the dissociation curve atR5r e . The SIE is a concave
function of R at r e ~Fig. 2!, hence it makes the curvature o
the dissociation curve more negative, which should resu
an underestimation ofve values. This is confirmed for1 and
3 but not for2. This apparent contradiction can be resolv
by considering the bond lengths: For2, DFT underestimates
the bond lengths and shiftsr e into a region with a stronge
curvature of the dissociation curve. The effect of this sh
outweights the direct influence of the negative curvature
the SIE term. Conversely, for1 and3, DFT overestimates the
bond length, andr e is shifted into a region with a lowe
curvature of the dissociation curve, which results in a furt
underestimation of theve

a values.

B. Dissociation limits and the self-interaction error

In Table III, the relative energies and the electronic s
bilities of the covalent and ionic states of1, 2, and3 for an
interaction distance of 10 Å are listed. At the HF level
theory, the ionic state is lower in energy for both2 and3 than
the covalent one by 18.4 or 15.7 kcal/mol, respective
Radical cation1, on the contrary, does not have an ionic H
state ~a BS-UHF solution cannot exist!. The ionic ground
states are stable, while the covalent state is unstable
respect to a transition of the unpaired electron to either of
two fragments. Adding the LYP correlation functional to th
HF exchange gives a slight decrease of the energy splitt
~by 3.3 or 2.2 kcal/mol, respectively! to 15.1 and 13.5 kcal
mol ~Table III!, which does not change the picture qualit
tively. However, if the exchange is described partly or co
pletely by a DFT functional the covalent state will becom
the ground state, and the ionic state is destabilized m
strongly the smalleraHF is. The covalent state becomes ele
tronically stable, with the lowest eigenvalue of the Hess
increasing with decreasingaHF ~Table III!.

The ionic states, in contrast, are less stable electronic
and difficult to locate for UDFT. For1 and3, the ionic states
Downloaded 08 Jan 2005 to 129.16.87.99. Redistribution subject to AIP
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are electronically unstable, the smallestl decreasing with
decreasingaHF ~Table III!. The instability is related to an
excitation for the unpaired electron that, depending on
sign of the expansion coefficient, leads to the bonding or
antibonding covalent state of the molecule, respectiv
Molecule 2 behaves differently: the ionic states are sta
with the smallestl approximately independent ofaHF ~val-
ues between 0.046 and 0.052; Table III!. However, the ion-
icity of the ionic states of2 decreases asaHF decreases, and
at BLYP this state is nearly covalent. The exceptional beh
ior of 2 can be related to geometry effects. But before
consider this aspect, the correct dissociation limits of rad
cations in general will be discussed. As mentioned in
Introduction, there are misconceptions in the literatu
which we want to correct at this point.

1. Experimentally observed dissociation limits
and their correct quantum chemical description

In reality, the dissociation of a radical cation with a on
electron bond will always lead to a cationic and a neut
fragment rather than two fragments with charge11/2 each.
From this fact it has been concluded~see, e.g., Refs. 33 an
38! that the electronic ground state of a radical cation with
large~but still finite! bond length should be ionic, i.e., brea
the symmetry of the molecule if there is any. This is, ho
ever, not generally correct.

For a dissociating symmetric diatomic radical cation, t
ground state is always covalent. It consists of two equival
fragments with a charge of11/2, which also holds for the
first excited state. As the distance of the fragments increa
the excitation energy of the first excited state decreases
ponentially. The ground and first excited state can be su
imposed to form two equivalent ionic states. These io
states are, however, no eigenstates but quasistationary s
~with a lifetime that grows exponentially as the fragments
drawn apart! and an energy roughly halfway between t
energies of the two eigenstates.The asymmetric dissociatio
of a symmetric diatomic radical cation can thus not be e
plained from its electronic ground state alone. One has to
keep in mind that the dissociation is a dynamic proce
which cannot be described completely by a zeroth-or
Born–Oppenheimer approximation. At some distanceR, the
unpaired electron will get attached to one of the fragmen
Once this has happened it is unlikely that the electron tunn
to the other fragment, so that one is eventually left with
neutral and an ionic fragment. Hence, in reality the dissoc
tion will always take place nonadiabatically and asymme
cally.

The situation is different for polyatomic radical cation
provided that geometry relaxation leading to an ionic stat
taken into account. In this case, the ionic state will genera
have a lower energy than the covalent one due to symme
breaking geometry relaxations. If the system under consi
ation is asymmetric from the beginning as is the case for
MnO1 and MnO4

2 ions studied by Buijse and co-workers,18

the ground state and the first excited state of the radical
ion are no longer covalent: In the ground state, the unpa
electron is shifted toward the more electronegative fragm
in the excited state to the more electropositive one where
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 08 Ja
TABLE III. Energies, stabilities, and ionicities for the covalent and ionic states of radical cations1, 2, and3.a

Molecule Method Geom.b Ecov Eion2Ecov lcov l ion dc

1 HF 20.49982 0.000
BH-HLYP 20.54579 29.64 0.203 20.089 1.0000
B3LYP 20.57790 47.52 0.328 20.136 1.0000
BLYP 20.59440 60.77 0.389 20.176 1.0000

2 HF i 251.24008 218.40 20.048 0.050 1.0000
c 28.13 0.052d 1.0000

HFLYP i 251.55256 215.11 20.038 0.049d 1.0000
c 6.09 20.038 1.0000

BH-HLYP i 251.56842 3.27 0.096d 0.047d 0.4496
c 16.02 20.102 1.0000

B3LYP i 251.62313 4.60 0.177d 0.046d 0.2284
c 30.00 20.189 1.0000

BLYP i 251.59176 4.83 0.189d 0.050d 0.1679
c 37.45 20.246 1.0000

SC-SIC-BLYP i 251.52315 215.86 1.0000
c 1.44 1.0000

MP2 c 251.37692 0.10 1.0000
CISD c 251.39840 22.05

3 HF i 278.80041 215.72 20.091 0.101 1.0000
c 215.50

HFLYP i 279.31621 213.48 20.080 0.101 1.0000
c 213.41

BH-HLYP i 279.32604 15.17 0.089 20.097 1.0000
c 215.08

B3LYP i 279.40687 33.16 0.169 20.210 1.0000
c 33.26

BLYP i 279.36768 45.30 0.165 20.283 1.0000
c 45.40

SC-SIC-BLYP i 279.23899 21.45 1.0000
SVWN5 i 278.58976 47.00 0.166 20.293 1.0000
SC-SIC-SVWN5 i 279.60827 3.94 1.0000
MP2 c 279.11949 2.60 1.0000
CISD c 279.12381 24.95

aCalculations with Dunning’s cc-pVDZ basis set~Ref. 51! for SC-SIC calculations, otherwise with Dunning
cc-pVTZ basis set~Ref. 51!. CCSD~T! geometries modified as described in Sec. III were used. Thel values
are the lowest eigenvalues of the Hessian matrix. Absolute energies and Hessian eigenvalues in Hartr
relative energies in kcal/mol.

bGeometry at which the ionic state is calculated.c, geometry of the covalent state;i, geometry of the ionic state
cThe ionicity d is given asd5(qA2qB)/(qA1qB), whereqA andqB are the charges of the ionic and radical
parts, respectively.

dThese states have two~covalent! or one~ionic states! positive Hessian eigenvalues that are smaller than 0
Hartree. These eigenvalues are related tops→pp excitations for the unpaired electron. The values given
the table are the next-lowest eigenvalues.
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effect is more distinct the more the electronegativities of
fragment differ. Obviously, a covalent dissociation limit do
no longer exist for the ground state situation.

Both exact wave function theory~WFT! and exact KS-
DFT have to yield a covalent ground state for symme
molecules, as long as geometry relaxation is limited to t
of the covalent ground state. For bond lengths around
equilibrium value, the covalent ground state has a high e
tronic stability and is reproduced qualitatively correctly
approximate computational methods. For long interact
distances, the stability of the covalent state decays to z
and the covalent and the ionic states become nearly de
erate, consequently there is a continuum of nearly degene
quasistationary states that are partly ionic. This is shown
Fig. 5. There is no bifurcation from the covalent state in
two equivalent ionic states as has been asserted, e.g., in
33 and 38. The low variance of the total energy with resp
to the ionicity implies that even small inconsistencies
n 2005 to 129.16.87.99. Redistribution subject to AIP
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practical calculation schemes may influence the pict
qualitatively, yielding either a pair of equivalent ionic groun
states or a covalent ground state with a nonvanishing sta
ity, and that the predicted ground state depends on
method used.

2. Dissociation limits at the HF level

If all orbitals except that of the unpaired electron we
frozen, HF would show the same behavior as exact W
However, the UHF orbitals are flexible, which allows
simulate a specific correlation effect occurring in od
electron bonds: At the fragment where the unpaired elec
is to be found, the other electrons are more widely spr
into space than at the other fragment. The core orbitals
more diffuse at the fragment that contains the unpaired e
tron. For the ionic state, this is a simple orbital relaxati
effect, which is covered by BS-UHF. Consequently, UH
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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will incorrectly favor the ionic over the covalent state@see
Ref. 34~b! in this connection#. Consequently, there will be
two equivalent ionic ground states and the covalent state
become electronically unstable~see Fig. 5!. These effects
will be stronger the larger the bond length is, and the grou
state energy as a function of ionicity will bifurcate at som
finite bond length~but, to reiterate it, as an artifact of UH
rather than a feature of the real problem!.

It should be noted that the energy gain due to the sy
metry breaking may be very small. For instance, if Li2

1 at 20
Å internuclear distance is treated with HF and Popl
6-311(d) basis set,59 the energy gain is as small as 0.0
kcal/mol. At 10 Å internuclear distance, the remaining we
covalent binding still outweights the energy gain throu
symmetry breaking, and the covalent state is stable. Th
because for Li2 there are only weak nondynamic correlatio
effects between 1s and 2s electrons. For2 and3, in contrast,
BS-UHF covers relevant correlations, which is reflected
the energy gain of 8.1 and 15.7 kcal/mol, respectively, re
tive to the covalent state~at the covalent geometry!. The
covalent state~as well as the antibonding state! can be re-
garded as an ‘‘electronic transition state’’ that has to
passed when the unpaired electron is moved from one f
ment to the other with the wave function kept sing
determinantal.

3. Dissociation limits of WFT-based correlated
methods

The inclusion of correlations in a WFT method w
counteract the inconsistency that occurs at the HF level
the energy curve in dependence of the ionicity will beco
flatter. It will depend on the method used whether a cova
or an ionic ground state is favored: Methods that tend
exaggerate correlation effects, such as the second-o
Møller–Plesset method~MP2! ~Ref. 60! will tend to favor
the covalent ground state, whereas variational methods
as configuration interaction~CI! can be expected to favor th
ionic one. This is corroborated for2 and3 where MP2 yields
covalent ground states and energy splittings of 0.1 and
kcal/mol as compared to218.4 and215.7 kcal/mol, respec
tively, for HF ~see Table III!. CI with single and double

FIG. 5. Schematic representation of the exact, HF, and DFT description
the dissociation of radical cations with one-electron bonds.
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excitations~CISD! ~Ref. 61! yields ionic ground states with
energy splittings of22.0 and25.0 kcal/mol. High-levelab
initio methods based on a HF reference wave function w
give nearly identical results for a symmetric and a BS-UH
reference, besides, they will tend to reduce the ionicity of
wave function for a BS-UHF reference as can be seen e.g
Fig. 1 of Ref. 21 for the case of quadratic CISD~QCISD!.62

If correlation effects are incorporated by a DFT corre
tion functional as in HFLYP, the correlation functional wi
be insensitive to the unbalanced description of the cova
and ionic states. Besides, the DFT correlation functional d
not describe the nondynamic correlation effects between
unpaired electron and the paired ones. This is why the in
sion of the LYP correlation functional in HFLYP leaves th
predictions from HF essentially unchanged.

4. Dissociation limits at the DFT level of theory

If a BS-UDFT calculation is performed, the ionic stat
will be stabilized relative to the covalent state in the sa
way as for BS-UHF. However, this effect will be superim
posed and usually outweighed by the influence of the S
which was discussed above. Equation~4! shows that for
largeR, the SIE for the covalent state contains two terms,
R-independent one that favors the covalent state and a
proportional to 1/R that favors the ionic state. Usually th
first of these terms dominates, which implies that the co
lent state is the ground state and has non-vanishing stab
for any R ~called ‘‘inverse symmetry breaking’’ in Ref. 33!.

The SIE influences the bonding and the antibonding
valent states in the same way as is shown for the BL
description of1 in Fig. 2~a! ~the 2Sg and2Su state converge
to the same limit in the BLYP description!, i.e., DFT reflects
correctly that the excitation energy decreases exponent
with decreasingR. Consequently, the ionic state is abo
both the bonding and the antibonding state for large eno
R, i.e., it is a fictitious ‘‘electronic transition state’’ that has
be passed when the orbital of the unpaired electron is rot
from the bonding to the antibonding state. Just as with
‘‘electronic transition state’’ discussed for the HF solutio
this is an artifact of the calculation method with no count
part in reality. There is no support for the picture given
Ref. 38 that the localized state indicates an avoided cros
between the two covalent states. Such an avoided crossi
not possible for principal reasons. For allR values, the anti-
bonding state is above its bonding counterpart in energy

5. Dissociation limits predicted by SIC-DFT

For standard DFT, the possible energy gain caused
symmetry breaking is too small to compete with the stab
zation of the covalent state by the SIE. In SC-SIC-DFT,
SIE is eliminated. However, the inter-electronic exchange
still described with an approximate DFT functional. Th
question arises whether this DFT description influences
relative energies of ionic and covalent state. With an estim
tion similar to that for the SIE shown in Eqs.~5!–~8!, one
can indeed show that the DFT description of the interel
tronic exchange favors the covalent state.

of
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Let %A
c and%B

c be the core densities at the two fragmen
and gA

c and gB
c the corresponding density matrices;gA

v and
gB

v are the density matrices corresponding to the vale
electron densities%A

v and%B
v ~the unpaired electron in2 and

3!. The exact interelectronic exchange is given by

EX,inter
exact E d3r 1E d3r 2gA

v ~r1 ,r2!gA
c ~r1 ,r2!

1

r 12
2EX,intra,A

exact

~9!

both for the ionic and the covalent state. Here,EX,intra,A
exact is the

intraelectronic exchange for the core electrons in fragmen
which is independent of the position of the valence electr
The LDA interelectronic exchange energies for the coval
and the ionic state are

EX,inter,ion
DFT 52CXE d3r $@%A

v ~r !1%A
c ~r !#4/32%A

v ~r !4/3

1%B
c ~r !4/3%2EX,intra,A1B

DFT , ~10a!

EX,inter,cov
DFT 52CXE d3r H F1

2
%A

v (r )1%A
c (r )G4/3

2
1

2
%A

v (r )4/31F1

2
%B

v (r )1%B
c ~r !G4/3

2
1

2
%B

v (r )4/3J 2EX,intra,A1B
DFT , ~10b!

whereCX5(3/2)(3/4p)1/3. EX,intra,A1B
DFT is the intraelectronic

exchange for all core electrons in fragments A and B, wh
does not depend on the position of the bonding valence e
tron. Keeping in mind the symmetry between fragments
and B, this leads to

EX,inter,ion
DFT 2EX,inter,cov

DFT 52CXE d3r Fj~%A
v ~r !;%A

c ~r !!

1j~0;%A
c ~r !!

22jS 1

2
%A

v ~r !;%A
c ~r ! D G , ~11a!

where the functionj is defined as

j~x;y!5~x1y!4/32y4/3. ~11b!

For all positive values ofx, y, ]2j/]x2,0 for all x, i.e., j is
a concave function ofx, and it holds

j~x;y!1j~0;y!22j~x/2;y!,0 for all x,y.0. ~12!

Hence, the integrand in Eq.~11a! is always negative, and
consequentlyEX,inter

DFT is smaller in magnitude for the ioni
than for the covalent state. As a correct description sho
give the same interelectronic exchange energy for ionic
covalent state, this result shows that LDA overstabilizes
covalent state relative to the ionic one. As the LDA part
the main contribution to a GGA functional, the same sho
hold true for the GGA description. It is interesting to no
that the energy difference brought in by the DFT descript
of the interelectronic exchange is independent ofR, i.e., does
not give rise to an artificial transition state in the dissociat
curve or a Coulomb repulsion between the fragments.
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For SC-SIC-DFT the relative energy of covalent a
ionic state are governed by two opposing effects, which m
be of the same order of magnitude. The BS-SC-SIC desc
tion favors the ionic dissociation limit whereas at the sa
time the symmetry-adapted SC-SIC-DFT solution stabiliz
the covalent dissociation limit. Accordingly, the energy sp
ting between covalent and ionic states becomes relativ
small for SC-SIC-DFT~,1.5 kcal/mol for both2 and 3 if
BLYP is used, Table III!. One can no longer predict the en
ergy ordering of the two states because there is no c
rationale to predict which of the two factors is larger in ma
nitude for a given radical cation. In this sense, SC-SIC-D
allows, thanks to a fortuitous compensation of errors, a m
balanced description of the covalent and ionic state of o
electron-bonded molecules than either HF or DFT. Th
however, does not contradict the conclusion given above
SIC-DFT does not provide a real improvement relative
either HF or standard DFT.

6. Influence of geometry relaxation
on the dissociation limit

It remains to discuss the influence of geometry rela
ation on the dissociation limits. Figure 1 shows that for t
ionic state of2 the fragments have clearly different geom
etries in distinction to the case of3. These differences in
geometry can be explained with the Walsh counting rule58

41 has D`h symmetry and the electron configuratio
(1sg)2 (2sg)2 (2su)2. The 2su electrons are B–H bonding
and H–H antibonding, thus they favor a linear geometry
41. In 4•, the additional electron is in a 1pu orbital. The
linear form of the molecule becomes unstable due to a s
ond order Jahn-Teller effect and the radical adopts a b
form with a HBH bond angle of 128.5°. These geome
differences contribute essentially to the energy order
for 2.

For the purpose of separating electronic and geom
effects we calculated the ionic state of2 both at its optimized
geometry and at the geometry of the covalent state. The io
states calculated at the geometry of the covalent state are
HFLYP through BLYP, 20–33 kcal/mol higher in energ
than the same states calculated at their equilibrium geom
~‘‘ionic geometry’’!. For 3, in contrast, the energy differenc
of the ionic states at the covalent and ionic geometries i
most 0.22 kcal/mol~see Table III!, i.e., small compared to
the energy differences between the two states. As mentio
before for SC-SIC-BLYP, the covalent and ionic states w
be close to each other in energy if both states are calcul
at the covalent geometry; the absolute value of the ene
splitting is about 1.5 kcal/mol for both2 and3. The energy
ordering cannot be predicted and may also depend on
functional chosen as the SC-SIC-SVWN5 results for3 show.

Clearly, when discussing ionic and covalent dissociat
one has to consider the geometry relaxation effects in
fragments generated because these can favor an asymm
~symmetry broken! ionic dissociation. Since the geometr
relaxation effects are strong in the case of2 ionic dissocia-
tion approaches the covalent dissociation predicted by
DFT methods closely whereas in the case of3 it is 45 kcal/
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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mol ~BLYP, Table III! above the preferred covalent dissoc
tion.

7. The SIE of the fragments

So far, only the SIE of the dissociating supermolec
has been discussed. The SIE of the fragments is relati
small and compensates partly the SIE for the core elect
in the supermolecule. For5•, however, SIC-DFT leads to a
inconsistency between supermolecule and fragment: Rad
5• is planar, which is described correctly both by wav
function and standard DFT methods. The SIC-DFT grou
state form of5•, however, is pyramidal. P-SIC-BLYP/cc
pVDZ yields an energy 4.9 kcal/mol below that of the plan
form at a pyramidalization angle of 32.2°~Fig. 1!. This arti-
fact can be comprehended based on the different orbita
calization patterns for the two geometries: Whereas for p
nar5•, there are threesp2(C–H) orbitals and one~unpaired!
pp orbital, the unpaired orbital in the pyramidal form ge
partial s character and foursp3 hybrid orbitals are formed
Because of the rehybridization, the SIE per C–H bond
bital increases fromu23.8u to u24.6u kcal/mol, whilst the SIE
of the unpaired electron decreases fromu223.8u to u214.5u
kcal/mol. This is due to a lengthening of the C–H bon
~more expanded bond orbitals lead to a larger magnitud
the SIE! and the change from app to a sp3 orbital ~with
increasings-character the orbital becomes more compact
the magnitude of the SIE is reduced!. Together with small
changes in the SIE of the remaining orbitals, the total S
changes fromu232.5u ~planar! to u226.4 kcal/mol~pyrami-
dal!, i.e., the planar form is stabilized by 6.1 kcal/mol rel
tive to the pyramidal form at the BLYP level of theory. Ac
cordingly, the planar form becomes destabilized at P-S
BLYP leading to a barrier to planarity of 4.9 kcal/mol whe
changes in the nuclear repulsion energy play also a role.
SC-SIC-BLYP/cc-pVDZ//P-SIC-BLYP/cc-pVDZ, the stabili
zation energy of the pyramidal form is 5.6 kcal/mol.

Due to the additional stabilization of5•, theDe value for
3 reduces to 49.0 kcal/mol~P-SIC-BLYP! and 50.9 kcal/mol
~SC-SIC-BLYP!, respectively. The corrected value for SC
SIC is closer to the CCSD~T! reference value~52.5 kcal/mol,
Table I! than the original one. Still, the inconsistency f
fragment5• shows that the lack of unitary invariance in SIC
DFT may give rise to an unbalanced description e.g., of
actant and reaction products. This may be particularly pr
lematic when orbitals undergo a major rearrangement
e.g., in transition states, i.e., just in those cases where
application of SIC-DFT is most interesting otherwise.

V. CONCLUSIONS AND OUTLOOK

The proper description of dissociating radical catio
with one-electron bonds is subtle for two reasons:~i! As the
fragments are removed from each other, the energy dif
ence between the covalent and the ionic state of the mole
decreases exponentially, and even a relative small incon
tency in the calculational method used can influence the
sults qualitatively.~ii ! In the covalent state, the valence ele
tron, and consequently its exchange hole, is distributed o
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a large region in space. Several computational methods
particular standard KS-DFT fail to describe this extend
exchange hole correctly.

~1! In the correct description, the multitude of covalent, p
tially ionic, and ionic states~chargeq increasing from 0
to 1, see Fig. 5! must be quasidegenerate for large se
ration distanceR. A computational scheme that favor
either the covalent or the ionic ground state is errone
where the magnitude of the error can be directly deriv
from the energy difference between covalent and io
states. A quite common misconception in the literature
that, beyond a certainR, the ground state of the system
should always be ionic and, consequently, it is an adv
tage of a given computational method to predict the io
ground state~see e.g., Refs. 33 and 38!.

~2! It is possible that by geometry relaxations in the fra
ments the ground state will become ionic. For1, this
possibility is excluded and for3 the effect is small. If
geometry relaxation becomes strong because one of
fragments can undergo a second-order Jahn-Teller dis
tion, as found in the case of2, the correct description
will always favor the ionic state. However, as long
both states are considered at the same geometry an
curate method has to predict a covalent ground state w
a stability that decays to zero rapidly as the interact
distance increases. Our calculations show that this is
deed the case for CCSD~T!.

~3! The fact that UHF predicts even for a symmetric geo
etry an ionic ground state indicates that the treatmen
electron correlation in the ionic and the covalent state
not balanced, similar as it is the case with the RHF a
the UHF descriptions of a bond breaking.

~4a! KS-DFT with the approximate XC functionals in us
suffers from a large SIE caused by the exchange fu
tional. Investigation of the exchange hole shows that
larger R the SIE is due to the unpaired electron, f
which DFT exchange simulates long-range electron c
relation effects with a second electron in the same
bital that of course does not exist. This leads to an a
ficial stabilization increasing with distanceR to a limit
value that is equal to the self-exchange of one electr
For a bonded electron pair, the SIE can compens
lacking nondynamic Coulomb correlation between tw
electrons, but as soon as the electron number in the b
decreases the effect mimicked by the SIE becomes
perfluous and leads to a nonphysical description. T
maximum error will be found for the one-electron bon

~4b! The SIE exchange hole is related to the SIE energy
the electron density. In the covalent state, the SIE
decreased forR values larger than ther e by an artificial
self-repulsion potential between the two halves of t
electron, which can be approximated by the express
1/4R. With increasingR the artificial Coulomb repul-
sion potential decays to zero thus leading to the s
exchange of one electron and the maximum stabilizat
of the covalent state.

~5! It is shown for the first time that DFT interelectron
exchange leads to an additional stabilization of the co
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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lent state relative to the ionic states of the dissociat
radical cations. This error is still present in the SIC-DF
description of the radical cations.

~6! P-SIE and SC-SIE differ considerably where these d
ferences become larger for increasingR. P-SIC exagger-
ates the energy correction whereas SC-SIC reduces
effects of P-SIC via orbital relaxation. In general, t
SC-SIC-DFT orbitals are more contracted than the D
orbitals because the SIE leads to an expansion of
orbitals. It is important to note that SIC has to be trea
self-consistently. Perturbational SICs indeed correct
artificial Coulomb repulsion and reduce the energy
viation between supermolecule and fragments but do
yield the correct energy of the molecule at large bo
lengths.

~7! The SIE given as a function ofR has an inflection point
because SIE(R) is concave close to the equilibrium X–X
bond distance, however convex for largerR. The maxi-
mum of SIE(R) ~i.e., a SIE close to zero! found at a
critical R value typical of the radical cation investigate
is influenced by a maximum compensation betwe
Coulomb self-repulsion and self-exchange. ForR smaller
than the criticalR the SIE increases again in magnitud
It was shown that this is caused by the SIE contributio
of the XH bond orbitals which become more delocaliz
by first order~2! or second order hyperconjugation~3!.
Since the former effect is much stronger than the la
effect, the maximum of SIE(R) and the increase in th
magnitude of the SIE occurs at largerR for 2 than for3.
Accordingly, the equilibrium X–X distance of the latte
radical cation is affected by the SIE of the unpair
a-electron~DFT yields too long a X–X bond! whereas
for 2 the SIE is affected of the B–H electrons~DFT
yields too short a X–X distance!.

~8! The SIE of the excited~antibonding! covalent state in the
case of1 ~and probably also in the cases of2 and3! is of
the same magnitude as in the ground state. Therefore
excitation energies from ground to excited state are c
rectly described. Nevertheless the mixing betwe
ground and excited state does not necessarily lead
broken symmetry solution of ionic nature as at the H
level of theory. This is a result of the stabilization of th
covalent states by both SIE and interelectronic exchan

~9! In those cases where standard DFT leads to an ionic s
for large R it is described correctly, in particular if a
modern gradient-corrected functional is used. Using
energy difference between the higher lying ionic st
and the covalent state as an appropriate criterion for
accuracy of the method used, DFT yields large diff
ences, which decrease when more exact exchang
mixed to DFT exchange.

~10! SIC-DFT seems to lead to an improved description
radical cations with one-electron bonds as it predicts~a!
qualitatively correct dissociation curves and~b! a dis-
sociation limit, for which covalent and ionic states a
separated by just a few kcal/mol. We have shown in t
work that the latter point is the result of a fortuitou
cancellation of the error caused by interelectronic D
exchange~stabilizing the covalent state! and the extra
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correlation effects included by BS-SIC~stabilizing the
ionic state!. Otherwise, SIC-DFT fails to describe th
equilibrium properties of the radical cations correctly

~11! The fragment geometry of CH3
• is wrongly described by

SIC-DFT predicting a pyramidal rather than a plan
form. Utilizing the calculated orbital SIEs, we coul
explain this as a result of an unbalanced DFT desc
tion of planar and pyramidal form, which becomes o
vious when the SIE is corrected. This leads to an i
provement of the dissociation energy of3, reveals
however another shortcoming of SIC-DFT, whic
makes it use rather problematic.

The conclusions drawn for the radical cations are
rectly relevant for DFT descriptions of transition states a
charge transfer complexes involving an odd number of e
trons. In these cases, standard DFT will give a qualitativ
incorrect picture if the unpaired electron is distributed ov
two ore more atomic centers.63 Using a hybrid exchange
functional reduces the error, but even for BH-HLYP calc
lated energies may be wrong by several 10 kcal/mol. Th
are a number of efforts to introduce functionals that corr
for the SIE. SC-SIC-DFT suggested by Perdew and Zun
and programmed in this work is computationally demand
and abandons thus one of the main advantages of stan
DFT. A routine investigation of systems with delocalized u
paired electrons requires thus methods that correct the
while avoiding the computational drawbacks of Perdew
Zunger SC-SIC-DFT. The development of such methods
challenging task. One way may be to refine the availa
approximate XC functionals. As the local density, its gradie
and possibly Laplacian do not contain information on t
features of the system at large distances of the refere
point; this will require functionals that essentially differ from
the currently available ones. In view of the results obtain
in this work, the solution of the SIE problem cannot be
elimination without changing the correlation functional. Th
is because

~a! important long-range correlation effects are dele
also in those cases where they are needed;

~b! the interelectronic exchange error of DFT become
non-negligible problem.

It is a better solution to use directly exact exchange and
describe the long-range correlation effects via the correla
functional. A trivial way to accomplish this is to introduc
standard DFT exchange functionals into the correlation fu
tional. Perdew and Schmidt63 have suggested such a fun
tional, which may be most promising to correctly descri
both delocalized exchange holes and long-range correla
without giving up the simplicity of standard DFT.
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