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Calculation of indirect nuclear spin–spin coupling constants
within the regular approximation for relativistic effects

Michael Filatova) and Dieter Cremer
Department of Theoretical Chemistry, Go¨teborg University, Reutersgatan 2, S-41320 Go¨teborg, Sweden

~Received 10 March 2004; accepted 30 March 2004!

A new method for calculating the indirect nuclear spin–spin coupling constant within the regular
approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic
in the sense that it does not employ numeric integration for the evaluation of relativistic corrections
to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or
density functional theory. In the latter case, both pure and hybrid density functionals can be used for
the calculation of the quasirelativistic spin–spin coupling constants. The new method is used in
connection with the infinite-order regular approximation with modified metric~IORAmm! to
calculate the spin–spin coupling constants for molecules containing heavy elements. The
importance of including exact exchange into the density functional calculations is demonstrated.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1752876#
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I. INTRODUCTION

Nuclear magnetic resonance~NMR! spectroscopy is one
of the most important experimental tools in chemistry as
documented in dozens of monographs and review articles1–3

During the last ten years, quantum chemistry has taken
into account by focusing on the development of methods
calculating NMR parameters such as chemical shielding3,4

or spin–spin coupling constants~SSCCs!.5–11 The reliable
prediction of SSCCs on a routine basis represented for m
years a major obstacle, however this has been solved in
last decade. Quantum chemistry can offer now a spectrum
reliable methods that make it possible to predict the indir
isotropic SSCCs for nontrivial molecules with satisfying a
curacy. These methods range from MCSCF,6 second order
polarization propagator approximation~SOPPA!,7 equation
of motion coupled cluster~EOM–CC!8 to projected coupled
cluster theory with all single and double excitatio
~CCSD!.9 Even more important than the wave functio
theory ~WFT!-based methods for calculating SSCCs are
density functional theory~DFT!-based methods.10,11Whereas
earlier DFT work12,13was based on finite perturbation theor
which led to a number of calculational problems,14 the more
recent work focuses on coupled perturbed DFT~CP–DFT!
and a completely analytical formulation of the SSCC.10,11

CP–DFT predictions of SSCCs have proven in many ca
to be reliable and, because of its favorable cost/efficie
ratio, CP–DFT is the method of choice for calculating S
CCs of larger molecules.15

There are four basic ingredients, which have to be c
sidered for obtaining reliable SSCCs:~a! The method used
must account for a considerable amount of long-range e
tron correlation to lead to reasonable singlet–triplet splittin
essential for the calculation of the Fermi contact~FC! term
of the SSCC. A lack of long-range correlation could lead
singlet–triplet instabilities or quasi-instabilities, which cau
an artificial exaggeration of the FC term and by this also

a!Electronic mail: filatov@theoc.gu.se
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the total SSCC.10 ~b! Spin–spin coupling information is
transferred between the coupled nuclei essentially by
change interactions. A satisfactory description of excha
interactions is therefore essential for a reliable calculation
the SSCCs.10,16 ~c! A correct description of the FC term re
quires basis sets with steeps functions having a maximum in
the core region to describe the contact interactions, wh
lead to spin polarization at the surface of the nucleus.17,18 ~d!
In the case of spin–spin coupling involving one or two hea
nuclei, there is a need for relativistic corrections especially
the FC term to obtain a reasonable description of spin po
ization at the contact surface of the nuclei.19–23

Additional requirements concern~e! the use of basis set
with augmented basis functions to obtain reliable param
netic spin–orbit ~PSO! and spin–dipole~SD! terms @the
fourth Ramsay term, the diamagnetic spin–orbit~DSO! de-
pends on the zeroth rather than the first order density di
bution and is computationally not so demanding#; ~f! the
vibrational corrections of the SSCC,24 and ~g! the consider-
ation of solvent effects.25 The latter two requirements con
cern the comparison of calculated and measured SSCCs

Recent quantum chemical work on SSCCs has focu
on requirements~a!, ~b!, ~c!, ~e!, ~f!, and~g!. However, if one
is concerned with the inclusion of relativistic effects into t
SSCC calculations, only a few quantum-chemical meth
are available. First principles SSCC calculations were car
out for tetrahydrides MH4 ~M5C, Si, Ge, Sn, and Pb! by
Enevoldsenet al.22 employing the four-component relativis
tic Dirac–Hartree–Fock~DHF! approach. Because no ele
tron correlation is included within this approach, the calc
lated values of the SSCCs are far from the experiment
measured ones.22 Furthermore, because this is a fou
component method, the computational demands are v
high and the application of this approach is limited to re
tively small molecules. A quasirelativistic computation
scheme, which incorporates electron correlation by mean
DFT was developed by Autschbach and Ziegler23 within the
zeroth-order regular approximation~ZORA!26 to the exact
7 © 2004 American Institute of Physics
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relativistic Hamiltonian. Although this computationa
scheme has been successfully applied to study the SSCC
molecules containing heavy atoms,27 the implementation of
the ZORA method is based on the use of numeric integra
for the calculation of the Hamiltonian matrix elements.23,26

Although such a procedure is acceptable for the use of p
density functionals, it precludes the inclusion of HF e
change ~such as in hybrid HF/DFT functionals! into the
ZORA SSCC calculations because the inclusion of the
exchange would require the development of analytic te
niques for the calculation of the Hamiltonian matrix el
ments. In view of the fact that the spin–spin coupling mec
nism strongly depends on exchange interactions,10,16 it is
desirable that a DFT method for calculating relativis
SSCCs is able to use both pure and hybrid exchange f
tionals.

Recently, we have developed28,29 a new computationa
procedure for the calculation of the Hamiltonian matrix e
ments within the regular approximation for relativistic e
fects. The new procedure is fully analytic and thus it can
applied in the context of both WFT and DFT calculation
With the use of the new procedure, quasirelativistic com
tational schemes more accurate than ZORA, such as infin
order regular approximation~IORA!30 and infinite-order
regular approximation with modified metric~IORAmm!,28

can be installed easily within the standard quantum-chem
codes designed for nonrelativistic calculations. This is p
sible, because the new approach does not employ any
molecular integrals besides those already available in
nonrelativistic calculation.28,29 Currently, the calculation of
the analytic gradient~derivative of the total energy with re
spect nuclear coordinates!29 for geometry optimizations and
the analytic calculation of static electric properties31 is pos-
sible. The IORAmm method has much weaker gauge dep
dence than IORA and is the method of choice in the
calculations.28,29,31,32

In the present work, the formalism presented in our e
lier investigations28,29,31 will be extended to the calculatio
of NMR SSCCs. The derivation will be carried out in a ge
eral way so that the corresponding formalism can be app
both within WFT and within DFT. Results of the curre
work will be presented in the following way: In Sec. II, th
theory of calculating the indirect isotropic SSCCs is brie
presented. Then, the IORA/IORAmm formalism is describ
and extended to the calculation of SSCCs. The working
mulas for calculating the quasirelativistic SSCCs are giv
for both WFT and DFT. In Sec. III, the implementation
the algorithm for calculating the quasirelativistic SSCCs w
be described. Finally, in Sec. IV the results of benchm
SSCC calculations will be discussed where special emph
is given to a balanced use of exact and DFT exchange.

II. THEORY OF NMR SPIN–SPIN
COUPLING CONSTANTS

The nuclear magnetic momentmN is related to the
nuclear spinIN via Eq. ~1!,

mN5\gNIN , ~1!
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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where gN is the nuclear gyromagnetic ratio. The reduc
indirect nuclear SSCCsKAB can be calculated as the deriv
tive of the total molecular energy with respect to the nucl
magnetic momentsmA andmB @see Eq.~2!#,

KAB5
]

]mA
+

]

]mB
E~mA ,mB ,...!umA5mB5¯50 . ~2!

The symbol+ denotes a tensor product andKAB is the re-
duced spin–spin coupling tensor. For the purpose of rela
the tensor propertyKAB to the measured indirect isotropi
SSCCJAB , the tensorJAB is defined

JAB5
\

2p
gAgBKAB . ~3!

If the NMR spectrum of a compound is measured in solut
or the gas phase, rapid rotations about arbitrarily orien
molecular rotation axes lead to an averaging over the dif
ent components ofJAB with the result that only the isotropic
part~4! of the second rank tensor~3! can be determined from
the measured NMR spectra,

JAB5
1

3
tr JAB , ~4a!

KAB5
1

3
tr KAB . ~4b!

A. Nonrelativistic theory of spin–spin
coupling constants: Ramsey’s theory

ConsiderN independent electrons moving in the extern
electrostatic potentialV(r ). The nonrelativistic quantum mo
tion of these electrons is described by the Schro¨dinger equa-
tion, which for convenience can be represented accordin
the following:33

ĤC5~ T̂1V~r !!C5S (
i

1

2m
~s•pi !

21V~r ! DC5EC,

~5!

wherepi52 i¹i is the linear momentum operator of theith
electron ands is the vector of the Pauli matricess
5(sx ,sy ,sz).

34

The external magnetic fieldB~r !5¹3A~r ! due to the
vector potentialA~r ! couples to the linear momentum of th
electrons through

p i5pi1A~r i !. ~6!

The vector potentialA~r ! caused by the magnetic nuclei
given by

A~r !5
1

c2 (N
mN3rN

r N
3

, ~7!

whererN5r2RN is the position of an electron with respe
to theNth nucleus andc is the velocity of light. Substituting
~6! and~7! into the Hamiltonian of Eq.~5!, the Schro¨dinger–
Pauli equation for the electrons in a magnetic field
derived.33 According to Eq.~2!, one obtains the reduced in
direct spin–spin coupling tensor~8! by differentiating with
respect to the nuclear magnetic moments of the coup
nuclei,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~KAB!ba5
]2

]~mA!b]~mB!a
^C~mA ,mB ,...!uĤ~mA ,mB ,...!uC~mA ,mB ,...!&umA5mB5¯50

5^C~0!u
]2Ĥ~mA ,mB ,...!

]~mA!b]~mB!a
U

mA5mB5¯50

uC~0!&12^C~0!u
]Ĥ~mA ,mB ,...!

]~mA!b
U

mA5mB5¯50

uCa
~mB!

&

5^C~0!u(
i

~ ĥAB
DSO~r i !!bauC~0!&12^C~0!u(

i
~ i ~ ĥA

PSO~r i !!b1~ ĥA
FC~r i !!b1~ ĥA

SD~r i !!b!uCa
~mB!

&. ~8!
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In Eq. ~8!, the one-electron operatorsĥAB
DSO(r ), ĥA

PSO(r ),
ĥA

FC(r ) and ĥA
SD(r ) correspond to the four Ramsey term

DSO, PSO, FC, and SD of the SSCC,35 which are defined in
Eq. ~9!,

~ ĥAB
DSO~r !!ba5

1

c4

dba~rA"rB!2~r A!a~r B!b

r A
3r B

3
, ~9a!

~ ĥA
PSO~r !!b52

1

c2

~rA3¹!b

r A
3

, ~9b!

~ ĥA
FC~r !!b5

4p

3

1

c2
d~rA!sb , ~9c!

~ ĥA
SD~r !!b5

1

2c2 S 3
~s•rA!~r iA!b

r A
5

2
sb

r A
3 D , ~9d!

where the subscriptsa and b denote the Cartesian compo
nents of a tensor or a vector.

Wave functionC (0) is a solution of the field-free Schro¨-
dinger equation and the first order perturbed wave func
C(mB) contains the response of the many-body wave func
to the different perturbations generated by the presenc
the magnetic moment of nucleusB,

C~mB!5
]

]mB
C~mA ,mB ,...!umA5mB5...50

5 i C~mB!,PSO1C~mB!,FC1C~mB!,SD. ~10!

Within the Kohn–Sham~KS! DFT,36 the M-electron
wave function is represented by a single Slater determin
~11!,

CKS5~M ! !21/2detu¯c i ,s~r i !c i ,s8~r i !¯u, ~11!

where functionsc i ,s(r i) are the spin–orbitals, which depen
on the positionr i and the spins of the ith electron. The KS
wave functionCKS is the solution of a Schro¨dinger-type
equation with the electrostatic potential defined in Eq.~12!,

V~r !5Vn~r !1E r~r 8!

ur2r 8u
dr 81Vxc~r ! ~12!

where Vn(r ) is the potential due to the nuclei,r~r ! is the
electron density~13! at the positionr ,
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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j ,s

uc j ,s~r !u2 ~13!

andVxc(r ) is the so-called exchange-correlation potentia36

For the standard exchange–correlation density function
Vxc(r ) does not depend on the external magnetic field
plicitly. Thus, the first-order perturbed wave functionC(mB)

can be constructed from the perturbed spin–orbit
c i ,s

(mB),X(r ), which are the solutions of Eq.~14!,

~ ĥA
X1VA

X~r !2eA
X!c i ,s

~0!~r !1~ ĥ01V~r !2e~0!!c i ,s
~mB!,X

~r !50.
~14!

In Eq. ~14!, X denotes the Ramsey perturbation (X
5PSO,FC,SD) andVA

X(r ) is the first-order variation of the
potentialV(r ) due to the distortion of the spin–orbitals b
perturbationX.

~VA
X~r !!b5(

j ,s

occ E ~c j ,s
~mA!,X

~r 8!!b

dV~r !

d~c j ,s
~mA!,X

~r 8!!b

dr 8.

~15!

Since the PSO term generates purely imaginary variation
the spin–orbitals, there is no net change of the density du
perturbationX5PSO. When pure density functionals a
used,VA

PSO(r )50 and Eq.~14! is solved in one step. The FC
and SD perturbation generate spin-polarization and, by t
a nonzero potentialVA

X(r ). Accordingly, Eq.~15! is solved
iteratively even when pure density functionals are employ
In the case of hybrid density functionals, which blend a fra
tion of Hartree–Fock~HF! exchange with DFT exchange,37

Eq. ~15! must be solved iteratively for all three perturbation
A more detailed description of the nonrelativistic KS forma
ism for the calculation of SSCCs can be found elsewher10

B. Methodology of the quasirelativistic methods
IORA and IORAmm

The matrix IORAmm~or IORA! Kohn–Sham equations
in the one-electron (1ē) approximation38 are given by
Eq. ~16!,28,29

~~S1/2!†~U21/2!†~Vn1T1W!~U21/2!~S1/2!1J1Vxc!Ci ,s

5SCi ,se i ,s , ~16!

where Vn is the matrix of the electron–nuclear attractio
integrals^xmuVn(r )uxn& (xm , basis functions;Ci ,s , column
vector of expansion coefficients of the spin–orbitalc i ,s), J
is the matrix of the classical Coulomb repulsion opera
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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@second term in Eq.~12!#, and Vxc is the matrix of the
exchange-correlation potentialVxc . The matrix U ~quasi-
relativistic wave function normalization! is given by

U5S1
1

2mc2
~T1aW1bWT21W! ~17!

~parametersa and b for IORA: a52, b51; for IORAmm:
a5 3

2, b5 1
2).

28,29T is the matrix of the kinetic energy opera
tor (2m)21(s•p)2, S the overlap matrix, and matrixW in
Eqs.~16! and ~17! the solution of Eq.~18!,

W5W01W0T21W, ~18!

which is given in

W215W0
212T21. ~19!

The matrixW0 in Eqs.~18! and ~19! is calculated in the 1ē
approximation according to

~W0!mn5
1

4m2c2
^xmu~s•p!Vn~s•p!uxn&. ~20!

Note that only the electron–nuclear attraction potentialVn is
used in Eq.~20!. Although in the actual IORA/IORAmm
calculations, the scalar relativistic~SR! approximation is
used, i.e., all spin-dependent relativistic corrections are
glected, the spin-dependence is retained in Eq.~20! for the
purpose of introducing the magnetic field due to the nucl
c

f
ar
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magnetic moments. The dependence on the magnetic
due to the vector potential~7! is introduced into matricesT
andW0 via the minimal coupling prescription~6!.

The total IORA/IORAmm DFT energy is given by

EDFT
IORA/IORAmm5tr~P~~S1/2!†~U21/2!†~Vn1T1W!

3~U21/2!~S1/2!!!

1
1

2 E r~r !r~r 8!

ur2r 8u
dr dr 81Exc , ~21!

whereP is the density matrix in the basis of functionsxm ,

P5CnC†. ~22!

In Eq. ~22!, n is the diagonal matrix of spin–orbital occupa
tion numbers andC is the ~orthogonal! matrix constructed
from the column vectorsCi ,s . Equation~21! differs from the
corresponding nonrelativistic DFT expression only in the u
of the relativistically corrected one-electron Hamiltonian f
the calculation of the one-electron part of the total DFT e
ergy @first term on the right-hand side of Eq.~21!#.

With the use of the standard density functionals, the
exchange–correlation energy does not depend explicitly
the magnetic field of the nuclei. Thus, differentiating the to
energy~21! with respect to the nuclear magnetic momen
yields Eq.~23! for the reduced indirect spin–spin couplin
tensor,
~KAB!ba5
]EDFT

IORA/IORAmm~mA ,mB ,...!

]~mA!b]~mB!a
U

mA5mB5...50

5trS S ]P

]~mA!b
D S G†S ]H

]~mB!a
DGD D1trS PS G†S ]2H

]~mA!b]~mB!a
DGD D1trS S ]P

]~mA!b
D S S ]G†

]~mB!a
DHG

1G†HS ]G

]~mB!a
D D D1trS PS S ]G†

]~mA!b
D S ]H

]~mB!a
D1S ]G†

]~mB!a
D S ]H

]~mA!b
D DGD1trS PG†S S ]H

]~mA!b
D S ]G

]~mB!a
D

1S ]H

]~mB!a
D S ]G

]~mA!b
D D D1trS PS S ]2G†

]~mA!b]~mB!a
DHG1G†HS ]2G

]~mA!b]~mB!a
D D D

1trS PS S ]G†

]~mA!b
DHS ]G

]~mB!a
D1S ]G†

]~mB!a
DHS ]G

]~mA!b
D D D , ~23!
ily
where the matricesG ~renormalization on the nonrelativisti
metric! andH ~unrenormalized regular Hamiltonian! are de-
fined in Eqs.~24! and ~25!, respectively,

G5U21/2S1/2, ~24!

H5Vn1T1W. ~25!

With the use of Eq.~33! from Ref. 29, the derivative o
the matrix H with respect to a component of the nucle
magnetic moment (mA)b is given by
]H

]~mA!b
5

]T

]~mA!b
2WT21

]T

]~mA!b
T21W

1WW0
21 ]W0

]~mA!b
W0

21W. ~26!

The derivative of the kinetic energy matrixT is merely the
sum of the matrices of the operatorsi ĥA

PSO, ĥA
FC, andĥA

SD in
Eqs. ~9b!–~9d!. The corresponding integrals are read
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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available in any nonrelativistic code designed for the nonrelativistic SSCC calculation.10 The derivatives of theW0

matrix are derived in Appendix A. Substituting the respective derivatives into Eq.~26!, one obtains Eq.~27! for the first
derivative of the matrixH with respect to component (mA)b of the nuclear magnetic moment,

]H

]~mA!b
5 iHA,b

PSO1HA,b
FC 1HA,b

SD 2WT21~ iHA,b
PSO1HA,b

FC 1HA,b
SD !T21W1

i

2m
~WT21HA,b

PSOW0
21W1WW0

21HA,b
PSOT21W!

1
3

4m
~WT21HA,b

FC W0
21W1WW0

21HA,b
FC T21W!1

1

2m
~WT21HA,b

X W0
21W2WW0

21HA,b
X T21W!

1WW0
21~W0

SD!A,bW0
21W. ~27!

In Eq. ~27!, HA,b
PSO, HA,b

FC , and HA,b
SD are the matrices of the operators~9b!, ~9c!, and ~9d!, respectively, and the matrice

(W0
SD)A,b and (HX)A,b are defined in Eqs.~A8! and ~A10! of Appendix A.
For the second derivative,]2H/](mA)b](mB)a , Eq. ~28! can be derived,

]2H

]~mA!b]~mB!a
5

]2T

]~mA!b]~mB!a
2WT21

]2T

]~mA!b]~mB!a
T21W1WW0

21 ]2W0

]~mA!b]~mB!a
W0

21W

1WT21F ]T

]~mB!a
T21

]T

]~mA!b
1

]T

]~mA!b
T21

]T

]~mB!a
1

]T

]~mB!a
T21WT21

]T

]~mA!b

1
]T

]~mA!b
T21WT21

]T

]~mB!a
GT21W2WW0

21F ]W0

]~mB!a
W0

21 ]W0

]~mA!b
1

]W0

]~mA!b
W0

21 ]W0

]~mB!a

2
]W0

]~mB!a
W0

21WW0
21 ]W0

]~mA!b
2

]W0

]~mA!b
W0

21WW0
21 ]W0

]~mB!a
GW0

21W

2WW0
21F ]W0

]~mB!a
W0

21WT21
]T

]~mA!b
1

]W0

]~mA!b
W0

21WT21
]T

]~mB!a
GT21W

2WT21F ]T

]~mB!a
T21WW0

21 ]W0

]~mA!b
1

]T

]~mA!b
T21WW0

21 ]W0

]~mB!a
GW0

21W, ~28!
i

he
-

where the second derivative of the kinetic energy matrix
merelyHAB,ba

DSO and the second derivative of theW0 matrix is
(W0

DSO)AB defined in Eq.~A6! of Appendix A.
The derivative of the renormalization matrixG is given

in Eq. ~29! @cf. Eq. ~36! in Ref. 29#,

]

]~mB!a
G52U21/2S ]

]~mB!a
U1/2DG, ~29!

where the derivatives of the square-root matrixU1/2 are cal-
culated via Eq.~B1! in Appendix B. Differentiating Eq.~29!
with respect to (mA)b leads to Eq.~30! for the second de-
rivative of the renormalization matrixG,
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
s ]2

]~mB!a]~mA!b
G

52FU21/2S ]2

]~mB!a]~mA!b
U1/2D

2U21/2S ]

]~mB!a
U1/2DU21/2S ]

]~mA!b
U1/2D

2U21/2S ]

]~mA!b
U1/2DU21/2S ]

]~mB!a
U1/2D GG, ~30!

where the second derivatives of the square-root matrixU1/2

are calculated via Eq.~B9! derived in Appendix B.
Next, we consider the magnitude of the terms in t

IORA/IORAmm expression~23! for the SSCC. The deriva
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tive of the density matrix, which is obtained by solving th
matrix version of Eq.~14!, is of the same order of magnitud
~in powers of 1/c2) as the corresponding perturbation ope
tor. Thus, the first two terms in Eq.~23! are of the order of
1/c4. Because the derivative of the relativistic normalizati
matrix U defined in Eq.~17! with respect to the nuclea
magnetic moment is of the order 1/c4, the third, fourth, and
fifth term in Eq.~23! are of the order 1/c6 and the last term
is of the order 1/c8. The second derivative of the renorma
ization matrixG, Eq. ~30!, is of the order 1/c6, because the
second derivative of the matrixU is of the order of 1/c2

multiplied by the order of the second derivative of the mat
H (1/c4). This establishes a hierarchy of terms in the qu
sirelativistic indirect nuclear SSCC~23! and reveals that the
first two terms in Eq.~23! should be sufficient for an accu
rate calculation of this property.

Although nearly all molecular integrals necessary to c
culate the first and the second derivatives of the matrixH are
readily available in the standard nonrelativistic quantu
chemical codes designed for the SSCC calculation,10 a fur-
ther simplification of Eqs.~27! and ~28! is possible. Note,
that nearly all terms in these equations contain factorsWT21

or WW0
21. Inspection of Eq.~19! for matrix W shows that in

those cases where the elements of the matrixW0 are larger
than the elements of the kinetic energy matrixT, matrixW is
dominated by the kinetic energy, that is

W→2T for uW0u@uTu. ~31!

This situation occurs for tight basis functions which det
mine the shape of the atomic and molecular orbitals in
vicinity of the nuclei. Thus, in the deep core regions of
oms, Eqs.~32! apply,

WT21→2I for uW0u@uTu, ~32a!

WW0
21→0 for uW0u@uTu. ~32b!

For diffuse basis functions, the elements of theW0 matrix
are small compared to the elements of the kinetic ene
matrix. Consequently, theW matrix is dominated by theW0

matrix and the following relationships hold:

WT21→0 for uW0u!uTu, ~33a!

WW0
21→I for uW0u!uTu. ~33b!

With the use of the Gaussian-type functions~GTF!, the
switching between these two regimes,~32! and ~33!, occurs
when the exponential parametera is of the order a
;(9p/8) (c4/Z2), where Z is the charge of the atomi
nucleus. That is, for heavy nuclei (Z>50), the switching to
~32! occurs already for moderately tight basis set functio
(a<53105).

For the first derivative of the quasirelativistic Ham
tonian, Eqs.~27!, ~32!, and~33! have important implications
First of all, for tight basis functions, which are used to d
scribe the behavior of the wave function close to the nucle
the second term in Eq.~27! compensates the first term e
actly. Second, the third term on the right-hand side m
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vanish at the two extremes~a! tight and ~b! diffuse basis
functions because one of the prefactorsWT21 or WW0

21

vanishes at these extremes. Third, the fifth term in Eq.~27!
vanishes at both extremes~a! and~b! because in such a cas
one of the factorsWT21 or WW0

21 turns to a unit matrix
and another converges to zero. Consequently, this term
be neglected in the final expression. Fourth, the contribu
of the last term, (W0

SD)A,b , is dominated by the matrix ele
ments with steep basis functions and because of the pre
tors WW0

21 should vanish. Although, the fourth term con
tains these prefactors as well, this term should be retaine
the final formula, because the divergent FC operator co
pensates for the vanishing prefactorWW0

21 and this term
makes a finite contribution to the derivative. Considering
simplifications, we obtain Eq.~34! for the first derivative of
the matrix H with respect to a component of the nucle
magnetic moment,

]H

]~mA!b
5HA,b

FC 2WT21HA,b
FC T21W

1
3

4m
~WT21HA,b

FC W0
21W

1WW0
21HA,b

FC T21W!

1 i ~HA,b
PSO2WT21HA,b

PSOT21W!

1HA,b
SD 2WT21HA,b

SD T21W, ~34!

where we separated the FC, PSO, and SD contributions
In the case of the second derivative of the quasirela

istic Hamiltonian as given by Eq.~28!, all terms after the
third one can be neglected. Indeed, the fourth and the
terms vanish for both tight and diffuse basis set functio
because the prefactorsWT21 andWW0

21 converge to a unit
matrix or vanish. Thus, the terms in the square brackets
ther compensate one another or vanish due to the vanis
prefactors. The last two terms will vanish because one of
prefactors,WT21 or WW0

21, vanishes for tight or diffuse
basis functions. As is known,10 the major contribution to the
DSO term results from the core densities at the coupl
nuclei. The third term in Eq.~28! is large only when
WW0

21→I , i.e., for the diffuse basis set functions. Cons
quently, the third term can also be neglected and only
first two terms survive in the final formula,

]2H

]~mA!b]~mB!a
5HAB,ba

DSO 2WT21HAB,ba
DSO T21W. ~35!

In this connection it has to be stressed that the DSO term
more important for the anisotropic rather than isotrop
SSCC and rarely contributes more than 1 SI u
(1019T2 J21) to the latter.10

Equations~34! and ~35! can be combined to yield Eq
~36!, which represents our final working equation for th
calculation of relativistically corrected indirect nucle
SSCC,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~KAB!ba5trS S ]P

]~mA!b
D S G†S ]H

]~mB!a
DGD D1trS PS G†S ]2H

]~mA!b]~mB!a
DGD D

5trS S ]P

]~mA!b
DG†S HA,b

FC 2WT21HA,b
FC T21W1

3

4m
~WT21HA,b

FC W0
21W1WW0

21HA,b
FC T21W!

1 i ~HA,b
PSO2WT21HA,b

PSOT21W!1HA,b
SD 2WT21HA,b

SD T21WDGD1tr~PG†~HAB,ba
DSO 2WT21HAB,ba

DSO T21W!G!.

~36!
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The final equation~36! takes into account the effect of rela
tivity on the corresponding nonrelativistic operators, but n
glects changes of the quasirelativistic wave function me
under the influence of the external field~magnetic field due
to the nuclear magnetic moment!. In the nonrelativistic limit,
that is in the limit ofc→`, the factorWT21 in Eq. ~36!
vanishes and the standard non-relativistic formalism is
covered in Eq.~36!.

The formulas derived for the SSCC tensor are applica
to both WFT and DFT. Indeed, the effect of relativity~i.e.,
finite velocity of light! is incorporated into the one-electro
part of the Hamiltonian only. Thus, Eq.~36! as well as its
complete version Eq.~23! can be used in the standard WF
calculations provided that the derivative of the density m
trix ]P/](mA)b is available.

III. IMPLEMENTATION AND DETAILS
OF CALCULATIONS

The computational scheme described in the preced
section was programmed and implemented into
COLOGNE 2004suite of quantum-chemical programs.39 The
implementation is straightforward because all molecular
tegrals needed for the quasirelativistic calculation of SSC
are already available from the nonrelativistic formalis
implemented earlier.10 Since only the one-electron part of th
molecular Hamiltonian is modified in the IORAmm calcul
tions, the cost of these calculations is essentially the sam
the cost of the corresponding nonrelativistic calculatio
The quasirelativistic formalism implemented can be e
ployed at the HF and DFT level of theory using in the lat
case pure or hybrid exchange–correlation functionals.

To the best of our knowledge this is the first impleme
tation of a quasirelativistic computational scheme for the c
culation of indirect nuclear SSCCs, which can apply hyb
functionals within the framework of DFT. Because of th
the role of the exchange functional and its influence on
quasirelativistic value of the SSCC in dependence of
mixing of DFT and exact exchange can be studied in t
work for the first time. We coin the new methods IORAmm
CP–HF/SSCC and IORAmm/CP–DFT/SSCC~IORAmm
with coupled perturbed HF or coupled perturbed DFT
SSCC calculations! to simplify the notation.

In the present work, we report the results of pil
IORAmm/CP–HF/SSCC and IORAmm/CP–DFT/SSCC c
culations. The quasirelativistic wave function was optimiz
at the scalar-relativistic IORAmm level, i.e., excluding t
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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effect of spin–orbit interactions. Pointlike nuclei were us
in the calculation of the electron–nuclear attraction poten
during the wave function optimization. As was pointed o
by Autschbach and Ziegler,23 this leads to an artificial in-
crease of the electron density at the nuclear position a
therefore, more realistic models of a finite-size nucle
should be employed. Note, that all relativistic fou
component calculations cited here22 employ extended
nuclear models, simulated, e.g., by a Gaussian-type distr
tion of nuclear charge. However, the calculation of t
electron–nuclear attraction based on the potential of
tended nuclei is currently not implemented in our program

The benchmark calculations with the IORAmm/CP–H
SSCC and IORAmm/CP–DFT/SSCC methods summari
in Sec. IV are organized as follows. First, the results of q
sirelativistic IORAmm and nonrelativistic calculations o
1KM–H carried out at the HF level for tetrahydrides MH4 of
the group IV elements M5C, Si, Ge, Sn, and Pb are pre
sented and compared with the available results of the
four-component DHF and nonrelativistic HF calculations.22

Next, one-bond SSCCs are calculated for the followi
set of molecules: CH4, SiH4 , GeH4, SnH4, PbH4,
PbH~CH3)3 , Pb~CH3)4 , Cd~CH3)2 , Hg~CH3)2 ,
Hg~CH3)Cl, Hg~CH3)Br, Hg~CH3)I, and Hg~CN)2 . For
these molecules measured values of SSCCs
available.40–48 The calculations are carried out within th
framework of DFT with different density functionals em
ployed. The density functionals vary from pure functiona
such as BLYP49 to hybrid functionals with increasing frac
tions of the HF exchange such as B3LYP~20% of HF
exchange!50 and BHHLYP~50% of HF exchange!.37

For light elements, the following Huzinaga basis se
were used: Hydrogen (5s1p)/@3s1p#, carbon and nitrogen
(9s5p1d)/@5s4p1d#, silicon and chlorine (11s6p2d)/
@7s6p2d#.51 For bromine and iodine atoms, the cc-pVD
basis set of Dunning52 and the TZVpp basis set of Ahlrich
and May53 were employed. These basis sets were rec
tracted~see below! similar to the Huzinaga basis sets in
@9s8p4d# and @10s10p7d1 f # basis sets. Since we do no
calculate the SSCCs between bromine/iodine and other
ments, the use of these basis sets is acceptable.

Since the Huzinaga basis sets are not specifically
signed for the calculation of SSCCs, they were adjusted
this purpose in the following way: For hydrogen, two ste
s-type primitive GTFs were added in geometric progress
using the ratio of the two steepests-type GTFs from the
original basis set. For carbon and silicon, one tights-type
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Spin–spin coupling constants1K(M,H) calculated for a series of MH4 molecules at the nonrelativ
istic CP–HF/SSCC and IORAmm/CP–HF/SSCC levels of theory.a

Molecule Contribution IORAmm 4-RPAb Nonrel. RPAc

CH4 DSO 0.05 0.05
PSO 0.40 0.40
FC 52.54 52.34
SD 20.04 20.04

Total 52.95 52.6 52.74 52.4
SiH4 DSO 0.02 0.02

PSO 20.21 20.21
FC 104.05 101.90
SD 20.06 20.06

Total 103.80 104.4 101.65 102.4
GeH4 DSO 0.02 0.02

PSO 20.70 20.70
FC 300.07 264.44
SD 20.15 20.12

Total 299.24 294.8 263.63 262.7
SnH4 DSO 20.01 20.01

PSO 21.28 21.30
FC 601.89 431.75
SD 20.23 20.12

Total 600.37 588.3 430.33 430.5
PbH4 DSO 0.03 0.02

PSO 22.17 22.38
FC 2083.17 719.54
SD 21.27 20.40

Total 2079.76 1819.0 716.78 711.4

aAll values in SI units (1019 T2 J21). See text for details on basis sets and geometries used in the calcula
bFour-component RPA results from Ref. 22.
cNonrelativistic RPA results from Ref. 22.
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primitive GTF was added and the two steepests-type primi-
tive GTFs were split off from the most tights-type con-
tracted GTF of the original set. This amended Huzinaga b
set enables one to reproduce the results of the large b
nonrelativistic HF calculations of SSCCs in tetrahydrid
CH4 and SiH4 with reasonable accuracy~see Table I!.

For germanium, the cc-pVDZ basis set of Dunning52 was
recontracted and amended as follows: The original basis
was decontracted completely. The most tight primitives-type
GTF was left uncontracted. Thes-type primitive GTFs #2 to
#5 were contracted to one GTF and the same was done
the primitive GTFs #6 and #7. The remainings-type primi-
tive GTFs were left uncontracted. Thep-type primitive GTFs
#1 to #3 and #4 and #5 were contracted to two GTFs. T
remainingp-type primitive functions remained uncontracte
The three firstd-type primitive functions were contracte
into one GTF and the remaining three were left uncontrac
This contraction scheme is similar to that of the Huzina
basis and was also used for the bromine basis set~with the
only difference that the most tights-type primitive function
was not split off for the latter!. Finally, one tights-type
primitive function with the exponential parameter obtain
in a geometric progression was added. The resul
@11s8p4d# Ge basis set reproduces the nonrelativistic
values for the SSCCs of GeH4 ~Ref. 22! in a reasonable way

For tin, the TZVpp basis set of Ahlrichs and May53 was
employed. The original basis set was completely rec
tracted and amended to become a@13s10p6d1 f # basis set:
The s-type primitive functions #2 to #5, #6 to #8, #9 an
#10, and #11 and #12 were contracted into four GTFs.
n 2005 to 129.16.100.69. Redistribution subject to AIP
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rest of s-type primitive GTFs, including the most tigh
s-function, remained uncontracted. Thep-type primitive
GTFs #1 to #4, #5 and #6, and #7 and #8 were contrac
into three GTFs, with the rest of the functions remaini
uncontracted. The first fived-type primitives were contracted
to one GTF. The most diffuse polarizingd-type primitive
function was dropped from the tin basis set due to the lin
dependence problem. A similar contraction pattern was u
for iodine with the difference that the most tights-type
primitive function was contracted with the first GTF. Finall
one steeps-type primitive function was added to the tin bas
set. The described basis set enables one to reproduce
SSCC between Sn and H in SnH4 obtained by a large basi
set nonrelativistic HF calculation22 with reasonable accurac
~see Table I!.

For cadmium, a@15s10p6d1 f # basis set was derived
from the Cd basis set of Gropen54 by again first decontract
ing the original basis set. Thes-type primitive functions #4
and #5, and #6 to #8 were contracted to two GTFs. The
of the s-type primitive GTFs remained uncontracted inclu
ing the three most tights-functions. Thep-type primitive
functions #1 to #4, #5 and #6, and #7 and #8 were contra
to three GTFs. Thed-type primitive functions #1 to #3 and
#4 and #5 were contracted to two GTFs. The basis set
tained was augmented with one diffuses-type function, three
diffuse p-type functions and one diffused-type function,
where the exponential factors follow an even-tempered
quence with the ratio 2.5. Finally, onef-type primitive GTF
was added and its exponential factor set equal to 7/5 of
exponential factor of the most diffused-GTF.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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For mercury and lead,@17s11p7d3 f # basis sets were
constructed again using the basis sets of Gropen as sta
points.54 The original basis sets were decontracted
(19s14p10d5 f ) and (19s16p10d5 f ) sets, respectively. Fo
both elements, thes-type primitives #4 and #5, and #6 to #
were contracted to two GTFs. The remainings-type primi-
tive GTFs remained uncontracted. Thep-type primitive
GTFs #1 to #4, #5 to #7, and #8 and #9 were contracte
threep-GTFs. Thed-type primitives #1 to #3, #4 and #5, an
#7 and #8 were contracted to threed-GTFs. The first four
f-type primitives were contracted into onef-function. For
both atoms, the most diffused-type primitive function was
removed due to orthogonality problems. The basis sets
tained were augmented with one diffuses- and f-type func-
tion, two diffused-type functions, and for lead~mercury! one
~three! diffuse p-type function~s!, thus yielding a
@17s11p7d3 f # basis set for both elements. When combin
with the @5s1p# basis set for hydrogen~see above!, the
@17s11p7d3 f # basis set reproduced the nonrelativistic H
value22 of the Pb–H SSCC in PbH4 with reasonable accurac
~see Table I!.

The molecular geometries were taken for MH4 and tri-
methyl plumbane from Ref. 22, for dimethylmercury fro
Ref. 55, for methylmercury~II ! halides from Ref. 56, and fo
mercury~II ! dicyanide from Ref. 57. The molecular geom
etries of dimethylcadmium and tetramethyllead were o
mized using the IORAmm/B3LYP method. In these optim
zations, the aug-cc-pVDZ basis sets52 were used for the light
atoms and the basis sets described above were used fo
heavy atoms. All calculations employed basis set with C
tesian rather than spherical functions.

IV. RESULTS AND DISCUSSION

In this section, the results of IORAmm/CP–HF/SSC
and IORAmm/CP–DFT/SSCC calculations of the indire
nuclear SSCCs for a set of molecules containing heavy
oms are presented and discussed. First, the1KM–H constants
in tetrahydrides MH4 of group IV elements M5C, Si, Ge,
Sn, and Pb are calculated with the nonrelativistic HF a
quasirelativistic IORAmm/HF methods. The results are co
pared in Table I with the corresponding values of no
relativistic and full four-component relativistic DHF calcula
tions carried out by Enevoldsenet al.22 using large basis sets

The nonrelativistic CP–HF SSCCs1KM–H are in good
agreement with the nonrelativistic RPA~random phase ap
proximation: synonym for CP–HF! results confirming that
the basis set decontraction/contraction pattern used in
work is both economic and effective. The FC contributi
completely dominates the SSCC in all cases so that the
cussion can focus on this Ramsey term.

The FC contribution experiences the largest influence
relativity. Because our quasirelativistic calculations are c
ried out at the scalar-relativistic level of approximation~i.e.,
all spin-dependent relativistic effects such as spin–orbit
teractions are neglected!, the contraction of the atomic
s-shells is the main reason for the enhanced FC coup
term in the total SSCC. The same conclusion was drawn
Enevoldsenet al.22 on the basis of the four-component RP
~4-RPA, i.e., coupled-perturbed DHF! calculations.
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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The quasirelativistic IORAmm/CP–HF/SSCC resu
also agree reasonably with the 4-RPA SSCC values
Enevoldsenet al.22 for the light elements C, Si, and Ge. Th
deviation from the 4-RPA values is larger for the heav
atoms Sn and Pb~12 and 261 SI units, Table I! because of
the following reasons: First, the effect of spin–orbit co
pling, which leads to a FC–PSO correction, is not includ
in the IORAmm values. Although for SnH4, this correction
is small,58 ca. 1%~4.7 SI units! of the total nonrelativistic
SSCC, for lead tetrahydride the FC–PSO correction con
tutes ca. 10%~79.3 SI units! of the total nonrelativistic
SSCC59 making the total SSCC substantially smaller. Se
ond, in the relativistic four-component calculations,22 the
wave function was optimized using nuclei of finite siz
whereas in the IORAmm/CP–HF/SSCC calculations po
nuclei are employed. The use of the pointlike nucleus ar
cially increases the electron density at the nucleus thus le
ing to larger values of the SSCCs.23 Given these factors, the
agreement of the IORAmm/CP–HF/SSCC one-bond val
with the reference values is satisfactory even for the heav
element in Table I.

Table II summarizes the results of DFT calculations c
ried out with the use of pure~BLYP! and hybrid~B3LYP and
BHHLYP! density functionals. In all molecules presented
Table II, the FC contribution dominates the SSCC. The D
term is extremely small and never exceeds 0.2 SI unit. T
PSO and SD terms are also small. For the molecules in T
II, the PSO and SD term do not contribute more than 10%
the total SSCC.

Similar to the molecules of Table I, relativity has th
largest impact on the FC coupling term. The FC coupling
mediated by spin polarization ofs-type electrons. These ar
the electrons that experience the largest relativistic eff
Relativity results in the contraction of the atomics-shells and
a subsequent stabilization of the energies of the ato
s-orbitals. This leads to an enhancement of the weight of
valences-type orbitals in the molecular orbitals and cons
quently to an increase in the FC coupling term. The atom
orbitals with nonzero orbital angular momentuml experience
a much weaker relativistic influence. Accordingly, the PS
and SD coupling terms, which both depend on the orbit
with nonzerol, vary only slightly as a result of relativity
where one has to consider that the SSCCs of saturated
ecules have anyway rather small noncontact terms.

Apart from relativity, electron correlation plays an im
portant role for the accurate calculation of NMR SSCCs. F
instance, at the nonrelativistic level, the inclusion of corre
tion leads to a 16% to 24% reduction~as compared to the HF
calculation! of the absolute value of the SSCC.59 To the best
of our knowledge, relativistic four-component correlated c
culations of nuclear SSCCs were not carried out so far. T
only attempt to incorporate the effect of electron correlat
into four-component relativistic calculations of SSCCs w
the scaling of the 4-RPA values22 with the ratio of the SSCCs
calculated at the nonrelativistic RPA level and at the level
the correlated method SOPPA~second order polarization
propagator approach!. The SSCCs obtained in this way b
Enevoldsenet al.22 for tetrahydrides of the group IV ele
ments are reported in the last column of Table II. Compa
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. One-bond indirect nuclear spin–spin coupling constantsK for molecules with and without heavy atoms calculated at the CP–DFT/SSCC
IORAmm/CP–DFT/SSCC levels of theory.a

Molecule Coupling Expt.

IORAmm/CP–DFT/SSCC CP–DFT/SSCC

Ref. valueBHHLYP B3LYP BLYP BHHLYP B3LYP BLYP

CH4 C–H 41.5b 47.4 44.2 44.5 47.3 44.1 44.4 43.5c

SiH4 Si–H 84.3d 93.2 87.9 87.5 91.4 86.2 85.9 88.2c

GeH4 Ge–H 232e 261 240 235 232 215 211 237c

SnH4 Sn–H 429f 499 448 430 367 335 325 459c

PbH4 Pb–H ~1035;1115!g 1601 1370 1272 603 546 519 1383c; 1318h

Pb~CH3)3H Pb–H 949f 1469 1210 1089 614 543 521 1668i; 978h

Pb~CH3)4 Pb–C 396j 863 357 78 560 363 268 2198c

Cd~CH3)2 Cd–C 798k 909 701 581 736 584 494
Hg~CH3)2 Hg–C 1287l 1690 1176 935 1038 802 683 827h

Hg~CH3)Cl Hg–C 2631m 3269 2307 1899 1755 1382 1224 1955h

Hg~CH3)Br Hg–C 2563m 3324 2301 1876 1775 1388 1226 1978h

Hg~CH3)I Hg–C 2393m 3195 2179 1759 1714 1338 1180 1827h

Hg~CN)2 Hg–C 5778n 6074 4886 4149 2773 2439 2233 4408h

aAll values in SI units (1019 T2 J21). See text for details on basis sets and geometries used in the calculations.
bTaken from Ref. 40.
cScaled relativistic four-component RPA results from Ref. 22.
dTaken from Ref. 41.
eTaken from Ref. 42.
fTaken from Ref. 43.
gThe values estimated in Refs. 22 and 23 on the basis of the experimental SSCCs for methyl-substituted plumbanes.
hZORA/GGA results from Ref. 23.
iUnscaled relativistic four-component RPA results from Ref. 22.
jTaken from Ref. 44.
kTaken from Ref. 45.
lTaken from Ref. 46.
mTaken from Ref. 47.
nTaken from Refs. 46 and 48.
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son of these scaled 4-RPA values with the 4-RPA value22

cited in Table I suggests increased importance of elec
correlation for the relativistic SSCCs.

DFT takes electron correlation into account via the d
sity functionals. It has been demonstrated that electron
relation enters the DFT calculation not only via the corre
tion functional, but also~and probably more effectively! via
the exchange functional. In the latter, the self-interaction
ror ~SIE; incomplete cancellation of the electron se
interaction energy as contained in the Coulomb term by
self-exchange energy provided by the exchange functio!
mimics long-range correlation.60–62 Because the HF ex
change energy is perfectly self-interaction-free, mixing
some HF exchange as in hybrid functionals, reduces the
in the KS calculation and enables one to tune~albeit in a
nonspecific way! the amount of long-range electron correl
tion covered by the KS calculation.

The calculations reported in Table II were carried o
with the BLYP, B3LYP, and BHHLYP functional thus in
creasing exact exchange from 0 to 20 and 50%. The res
of the DFT calculations carried out with these functionals
the IORAmm/CP–DFT/SSCC and at the nonrelativistic C
DFT/SSCC level of theory are reported in columns fo
through nine of Table II. Figure 1 shows these results
graphic form giving calculated SSCCs as a function of m
sured ones for each of the methods employed.

As becomes obvious from Table II and Fig. 1, the no
relativistic calculations are not able to reproduce correct
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meric values of the SSCCs. Although an increase of the fr
tion of exact exchange improves the agreement of
nonrelativistic SSCCs with measured ones, the match
tween the BHHLYP results and the experimental SSCC
far from being satisfactory. At the quasirelativistic IORAmm
CP–DFT/SSCC level, the match between the calculated
the experimental SSCCs is considerably improved. On a
age, BLYP underestimates the experimental SSCCs~the
slope of the BLYP linear regression line is 0.712!, B3LYP
approaches the ideal~statistical! correlation with the experi-
mental SSCCs better~slope 0.844!, and BHHLYP overesti-
mates the measured SSCCs~slope 1.084!. Obviously, there
exists an optimal HF/DFT mixing parameter, slightly larg
than that in B3LYP as can be inferred from Fig. 1 and Ta
II. However, since the data base of the SSCCs compare
the present work is too small and, more importantly, beca
the experimental SSCCs are not corrected for rovibratio
and environmental effects, we did not take any attemp
determine such an optimal mixing parameter for hybrid d
sity functionals. Nevertheless, the possibility of defini
such a parameter does exist as is evidenced by the ana
presented in Fig. 1.

V. CONCLUSIONS

A simple and computationally inexpensive qua
relativistic method for calculating nuclear SSCCs in m
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Linear regression analysis~dashed lines! between calculated and measured SSCCs:~a! IORAmm/BHHLYP, ~b! IORAmm/B3LYP, ~c! IORAmm/
BLYP, ~d! nonrelativistic BHHLYP,~e! nonrelativistic B3LYP, and~f! nonrelativistic BLYP results. The solid line bisecting the angle between the axes de
the ideal correlation between calculated and measured SSCC values. Calculated SSCCs from Table II are indicated by filled circles.
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vi-
fore,
sent
ecules containing heavy elements is presented. The me
is based on the IORAmm approximation, which enables
to carry out either conventional WFT or DFT calculations
determine molecular equilibrium geometries and electric
sponse properties of heavy atom molecules. The pre
work extends the IORAmm formalism to the SSCC as n
second-order response property thus extending the app
bility of the method. This extension of IORAmm compris
the IORAmm/CP–HF/SSCC and IORAmm/CP–DFT/SSC
methods. The formalism presented can also be applie
ZORA and IORA, which however suffer from an erroneo
gauge dependence much more than IORAmm does.

An important feature of the IORAmm method, in ge
eral, and the IORAmm/CP–HF/SSCC and IORAmm/C
DFT/SSCC methods presented in this paper especially is
they all can be easily implemented into existing nonrela
istic quantum-chemical codes. Indeed, there are no new
lecular integrals that must be calculated in the IORAm
calculation. The method employs only those integrals alre
available from the nonrelativistic calculation. Furthermo
the IORAmm calculation is as fast as the corresponding n
relativistic one. This opens up a possibility of investigati
relatively large molecular systems with the help of t
IORAmm methods.

The investigation of the one-bond nuclear SSCCs car
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out in this paper reveals that the IORAmm/CP–HF/SS
formalism is suitable for the calculation of SSCCs. Althou
the present implementation employs the scalar-relativi
approximation~i.e., spin–orbit interaction is neglected! thus
missing certain terms such as FC–PSO coupling term in
expression for the SSCC, the overall agreement with the
sults of the four-component relativistic calculations is goo
The inclusion of relativistic effects via the IORAmm Hami
tonian leads to a substantial increase~up to 100%! in FC
coupling. The other contributions~DSO, PSO, and SD! to the
total SSCC undergo only minor variations due to relativit

At the IORAmm/CP–DFT/SSCC level, the agreeme
between calculated and measured SSCCs depends o
density functional used. On average, BLYP tends to und
estimate the calculated SSCCs, BHHLYP overestima
them, and B3LYP leads to an improved~albeit nonperfect!
performance. The agreement with the experiment can be
proved further by a slight increase in the HF/DFT exchan
mixing parameter that is used in the B3LYP functional~prob-
ably from 20% to 30%!. However, making any reparametr
zation of the existing density functionals on these groun
would require the knowledge of the rovibrational and en
ronmental corrections to the measured SSCCs. There
such a reparametrization was not attempted in the pre
work, however is subject of work in progress.
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APPENDIX A: DERIVATIVES OF THE W 0 MATRIX

In the presence of a magnetic field caused by the nuc
magnetic moments, the elements of theW0 matrix ~20!
change as in Eq.~A1!,
O

~W0
~m!!mn5^xmu

1

4m2c2
~s•p!Vn~s•p!uxn&

5~Ŵ0
~0!!mn1^xmup•

Vn

4m2c4 (N
mN3rN

r N
3

uxn&1^xmu
Vn

4m2c4 (N
mN3rN

r N
3

•puxn&

1^xmu
Vn

4m2c6 (N
mN3rN

r N
3

•(
M

mM3r M

r M
3

uxn&1^xmus•p3
iVn

4m2c4 (N
mN3rN

r N
3

uxn&

1^xmu
iVn

4m2c4
s•(

N

mN3rN

r N
3

3puxn&1^xmu
iVn

4m2c6
s•(

N

mN3rN

r N
3

3(
M

mM3r M

r M
3

uxn&, ~A1!

where Eqs.~6! and ~7! and the Dirac relationship~A2! were used,

~s•A!~s•B!5A•B1 is•A3B. ~A2!

The first term on the right-hand side of Eq.~A1! is the field-free matrix~20!. The next two terms make contributions to PS
coupling as is obvious from Eq.~A3!,

^xmup•
Vn

4m2c4 (N
mN3rN

r N
3

uxn&1^xmu
Vn

4m2c4 (N
mN3rN

r N
3

•puxn&

5^xmup•
Vn

4m2c4 (N
mN3rN

r N
3

uxn&1^xnup•
Vn

4m2c4 (N
mN3rN

r N
3

uxm&

5
1

2m(
r,t

^xmup
Vn

4m2c2
•puxr&~T21!rt^~pxt!u•

1

c2 (N
mN3rN

r N
3

uxn&

1
1

2m(
r,t

^xnup
Vn

4m2c2
•puxt&~T21!tr^~pxr!u•

1

c2 (N
mN3rN

r N
3

uxm&

5
1

2m(
r,t

~W0!mr~T21!rt^xtu
1

c2 (N
mN3rN

r N
3

•puxn&1
1

2m(
r,t

~W0!nt~T21!tr^xru
1

c2 (N
mN3rN

r N
3

•puxm&

5
1

2m(
r,t

~W0!mr~T21!rt^xtu
1

c2 (N mN•
rN3p

r N
3

uxn&1
1

2m(
r,t

~W0!nt~T21!tr^xru
1

c2 (N mN•
rN3p

r N
3

uxm&, ~A3!

where the hermiticity property of the linear momentum operator, resolution of the identityÎ
5(2m)21(rtu¹xr&(T

21)rt^¹xtu, and vector algebra relationshipa•~b3c!5~a3b!•c were used. Substituting2 i¹ for the
linear momentum operator and differentiating with respect to a component of the nuclear magnetic moment (mA)b yields
Eq. ~A4!,

~W0
PSO!A,b5

i

2m
~W0T21HA,b

PSO1HA,b
PSOT21W0!, ~A4!

whereHA,b
PSO is the matrix of the operator~9b!.
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The next term in Eq.~A1! vanishes in the first derivative~note, that the magnetic moments are set to zero u
differentiation! and contributes only to DSO coupling. Using the relationship~a3b!•~c3d!5~a•c!~b•d!2~a•d!~b•c! this term
can be transformed as in Eq.~A5!,

^xmu
Vn

4m2c6 (N
mN3rN

r N
3

•(
M

mM3r M

r M
3

uxn&5^xmu
Vn

4m2c6 (N (
M

S ~mN•mM !~rN"r M !

r N
3 r M

3
2

~mN•r M !~rN•mM !

r N
3 r M

3 D uxn& ~A5!

which, upon differentiation with respect to (mA)b and (mB)a and use of the resolution of the identityÎ
5(rtuxr&(S

21)rt^xtu , leads to Eq.~A6! for the contribution into the second derivative of the IORAmm/IORA Hamiltoni

~W0
DSO!AB,ba52

1

8m2c2
~VnS21HAB,ba

DSO 1HAB,ba
DSO S21Vn!. ~A6!

In Eq. ~A6!, HAB,ba
DSO is the matrix of the DSO coupling operator~9a! andVn is the matrix of the electron–nuclear attractio

integrals.
The next two terms can be transformed according to Eq.~A7! noting that the following relationship holds for the nab

operator¹3A5~¹3A!2A3¹ and using the standard vector algebra relationships,

^xmus•p3
iVn

4m2c4 (N
mN3rN

r N
3

uxn&1^xmu
iVn

4m2c4
s•(

N

mN3rN

r N
3

3puxn&

5^xmus•S p3
iVn

4m2c4 (N
mN3rN

r N
3 D uxn&2^xmu

iVn

4m2c4
s•(

N

mN3rN

r N
3

3puxn&1^xmu
iVn

4m2c4
s•(

N

mN3rN

r N
3

3puxn&

5^xmu
1

4m2c4 S ~s3¹!•S Vn(
N

mN3rN

r N
3 D D uxn&

5^xmu
1

4m2c4 (N ~mN•s!S ¹•S Vn

rN

r N
3 D D uxn&2^xmu

1

4m2c4 (N S mN•¹S Vn

~s•rN

r N
3 D D uxn& . ~A7!

Differentiation of ~A7! with respect to (mA)b yields Eq.~A8!,

~~W0
FC1SD!A,b!mn5~~W0

FC!A,b!mn1~~W0
SD!A,b!mn5

1

4m2c4
^xmusbS ¹•S Vn

rA

r A
3 D D uxn&

2
1

4m2c4
^xmu¹bS Vn

~s•rA!

r A
3 D uxn&. ~A8!

The first term in Eq.~A8!, which makes correction to the Fermi-contact interaction, ((W0
FC)A,b)mn , can be transformed furthe

as in Eq.~A9!,
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~~W0
FC!A,b!mn5

1
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3 D D uxn&

52
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rA

r A
3 D •u~¹xn!&

52
1

2m(
rt

^~¹xm!u
Vn
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3
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1

2m(
rt
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1

c2
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rA

r A
3

•u~¹xt!&~T21!tr^~¹xr!u
Vn
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5
1

2m(
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~W0!mr~T21!rt

1

c2 S ^xtuS ¹•sb

rA

r A
3 D uxn&1^xtusb

rA

r A
3
•u~¹xn!& D 2

1

2m(
rt

1

c2
^xmusb

rA

r A
3

•u~¹xt!&~T21!tr~W0!rn

5
3

4m
~W0T21HA,b

FC 1HA,b
FC T21W0!mn1

1

2m
~W0T21HA,b

X 2HA,b
X T21W0!mn , ~A9!
ti

t
t

rob-
de-

ot
where integration by parts, Gauss theorem and the resolu
of the identity Î 5(2m)21(rtu¹xr&(T

21)rt^¹xtu were
used. In Eq.~A9!, HA,b

FC is the matrix of the FC operator~9c!
and the matrixHA,b

X has the following elements:

~HA,b
X !mn5

1

c2
^xmusb

rA

r A
3
•u~¹xn!&. ~A10!

The last term in Eq.~A1! vanishes becauseA3A50 for any
constant vectorA.

APPENDIX B: SECOND DERIVATIVES
OF THE SQUARE-ROOT MATRIX

Let us consider a real symmetric matrixA with its ele-
ments depending on two parametersa andb. We assume tha
the elements of the matrixA are differentiable with respec
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
onto these parameters at least through second order. The p
lem is to obtain an algebraic expressions for the second
rivative of the square-root matrixA1/2.

The first derivative of the elements of the square-ro
matrix with respect to a parametera has been obtained in
Ref. 29 and reads@cf. Eq. ~43! there#

S C†S ]

]a
A1/2D CD

i j

5~aj j
1/21ai i

1/2!21S C†S ]

]a
AD CD

i j

,

~B1!

whereai i are the eigenvalues of the matrixA andC are its
eigenvectors, see Eq.~B2!.

a5C†AC. ~B2!

Differentiating Eq.~B1! with respect to a parameterb one
has Eq.~B3!,
S C†S ]2

]b]a
A1/2D CD

i j

1S S ]

]b
C†D S ]

]a
A1/2D CD

i j

1S C†S ]

]a
A1/2D S ]

]b
CD D

i j

5~aj j
1/21ai i

1/2!21F S C†S ]2

]b]a
AD CD

i j

1S S ]

]b
C†D S ]

]a
AD CD

i j

1S C†S ]

]a
AD S ]

]b
CD D

i j
G

2~aj j
1/21ai i

1/2!22F1

2
ai i

21/2S C†S ]

]b
AD CD

i i

1
1

2
aj j

21/2S C†S ]

]b
AD CD

j j
G S C†S ]

]a
AD CD

i j

, ~B3!
where we used Eq.~42! from Ref. 29 for the derivative of the
eigenvalueai i . Introducing the following notations:

Ãa5C†S ]

]a
AD C, ~B4a!
Ãba5C†S ]2

]b]a
AD C, ~B4b!

Ra5C†S ]

]a
CD , ~B4c!
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whereRa is an antisymmetric matrix~i.e., Ra52Ra
†) and using the orthogonality of the eigenvectorsC ~i.e., CC†5C†C5I ),

Eq. ~B3! can be transformed into Eq.~B5!,

~Ãba
1/2! i j 5~aj j

1/21ai i
1/2!21~Ãba! i j 2~aj j

1/21ai i
1/2!21@~RbÃa! i j 2~ÃaRb! i j #1@~RbÃa

1/2! i j 2~Ãa
1/2Rb! i j #

2~aj j
1/21ai i

1/2!22F1

2
aj j

21/2~Ãb! j j ~Ãa! i j 1
1

2
ai i

21/2~Ãb! i i ~Ãa! i j G . ~B5!

Using Eq.~B1! and Eq.~B6! for the elements of the matrixRa @cf. Eq. ~40! in Ref. 29#,

~Ra! i j 5~12d i j !~aj j 2ai i !
21~Ãa! i j ~B6!

(d i j denotes the Kronecker delta!, the following relationships can be obtained:

~RbÃa
1/2! i j 2~aj j

1/21ai i
1/2!21~RbÃa! i j 5(

k
~12d ik!~akk2ai i !

21~Ãb! ik~aj j
1/21ai i

1/2!21~Ãa!k j

5(
l

~aj j
1/21ai i

1/2!21~12d i l !~al l 2ai i !
21~Ãb! i l ~Ãa! l j

5
1

2
ai i

21/2~aj j
1/21ai i

1/2!22~Ãb! i i ~Ãa! i j 2~aj j
1/21ai i

1/2!21

3(
k

~ai i
1/21akk

1/2!21~akk
1/21aj j

1/2!21~Ãb! ik~Ãa!k j ~B7!

and

~aj j
1/21ai i

1/2!21~ÃaRb! i j 2~Ãa
1/2Rb! i j 5

1

2
aj j

21/2~aj j
1/21ai i

1/2!22~Ãb! j j ~Ãa! i j 2~aj j
1/21ai i

1/2!21(
k

~ai i
1/21akk

1/2!21

3~akk
1/21aj j

1/2!21~Ãa! ik~Ãb!k j . ~B8!

Substituting~B7! and~B8! into ~B5! one arrives at the final formula for the second derivatives of the square-root matrix
~B9!,

~Ãba
1/2! i j 5~aj j

1/21ai i
1/2!21F ~Ãba! i j 2(

k
~ai i

1/21akk
1/2!21~akk

1/21aj j
1/2!21~~Ãa! ik~Ãb!k j1~Ãb! ik~Ãa!k j!G . ~B9!
-
-

s

s

s

.

Re
.

ke

M

r,
,

r, J.

, and

r, J.

.

de

r,
.

Provided that the matrixA is symmetric, the second deriva
tive from Eq. ~B9! is symmetric with respect to the permu
tation of parametersa andb and the permutation of indice
i and j.
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