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Calculation of indirect nuclear spin—spin coupling constants
within the regular approximation for relativistic effects
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Department of Theoretical Chemistry, t8Bborg University, Reutersgatan 2, S-41320¢borg, Sweden
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A new method for calculating the indirect nuclear spin—spin coupling constant within the regular
approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic
in the sense that it does not employ numeric integration for the evaluation of relativistic corrections
to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or
density functional theory. In the latter case, both pure and hybrid density functionals can be used for
the calculation of the quasirelativistic spin—spin coupling constants. The new method is used in
connection with the infinite-order regular approximation with modified metf@RAmMm) to
calculate the spin—spin coupling constants for molecules containing heavy elements. The
importance of including exact exchange into the density functional calculations is demonstrated.
© 2004 American Institute of Physic§DOI: 10.1063/1.1752876

I. INTRODUCTION the total SSCC® (b) Spin—spin coupling information is
transferred between the coupled nuclei essentially by ex-
Schange interactions. A satisfactory description of exchange

documented in dozens of monographs and review articfes. interactionsoifGtherefore essential .for a reliable calculation of
During the last ten years, quantum chemistry has taken thitahej' SSCC%-' (© A correct desF:r|pt|on (_)f the FC _term re-
into account by focusing on the development of methods foflUires basis sets with stesfunctions having a maximum in
calculating NMR parameters such as chemical shieldihgs the core region to dgscnbe the contact interactions, which
or spin—spin coupling constant$SCC3.° The reliable  'ead to spin polarization at the surface of the nucféuté(d)
prediction of SSCCs on a routine basis represented for marij? the case of spin—spin coupling involving one or two heavy
years a major obstade’ however this has been solved in tH’éJClei, there is a need for relativistic corrections eSpeCia“y of
last decade. Quantum chemistry can offer now a spectrum dhe FC term to obtain a reasonable description of spin polar-
reliable methods that make it possible to predict the indirecization at the contact surface of the nucf&i?®
isotropic SSCCs for nontrivial molecules with satisfying ac-  Additional requirements concef®) the use of basis sets
curacy. These methods range from MCSG$econd order with augmented basis functions to obtain reliable paramag-
polarization propagator approximatiqBOPPA,’ equation  netic spin—orbit(PSO and spin—dipole(SD) terms [the
of motion coupled clusteEOM—CQ? to projected coupled fourth Ramsay term, the diamagnetic spin—ofBiBO) de-
cluster theory with all single and double excitationspends on the zeroth rather than the first order density distri-
(CCSD.® Even more important than the wave function bution and is computationally not so demanding) the
theory (WFT)-based methods for calculating SSCCs are thevibrational corrections of the SSC¢ and (g) the consider-
density functional theoryDFT)-based method¥:*Whereas ation of solvent effect8® The latter two requirements con-
earlier DFT work?*®was based on finite perturbation theory, cern the comparison of calculated and measured SSCCs.
which led to a number of calculational problefghe more Recent quantum chemical work on SSCCs has focused
recent work focuses on coupled perturbed DIEP—-DFT) on requirementga), (b), (c), (e), (f), and(g). However, if one
and a completely analytical formulation of the SSEE" s concerned with the inclusion of relativistic effects into the
CP-DFT predictions of SSCCs have proven in many caseSSCC calculations, only a few quantum-chemical methods
to be reliable and, because of its favorable cost/efficiencyre available. First principles SSCC calculations were carried
ratio, CP-DFT is the method of choice for calculating SS-out for tetrahydrides Mg (M=C, Si, Ge, Sn, and Ptby
CCs of larger molecules. Enevoldseret al?? employing the four-component relativis-
There are four basic ingredients, which have to be contic Dirac—Hartree—FockDHF) approach. Because no elec-
sidered for obtaining reliable SSCC&) The method used tron correlation is included within this approach, the calcu-
must account for a considerable amount of long-range eleqated values of the SSCCs are far from the experimentally
tron correlation to lead to reasonable singlet—triplet splittingsneasured oné?. Furthermore, because this is a four-
essential for the calculation of the Fermi conté€€) term  component method, the computational demands are very
of the SSCC. A lack of long-range correlation could lead tonigh and the application of this approach is limited to rela-
singlef[ft.riplet instabiIiFies or quasi-instabilities, whiph causeiively small molecules. A quasirelativistic computational
an artificial exaggeration of the FC term and by this also Ofscheme, which incorporates electron correlation by means of
DFT was developed by Autschbach and Zie§levithin the
aElectronic mail: filatov@theoc.gu.se zeroth-order regular approximatid@ORA)?® to the exact

Nuclear magnetic resonan@@MR) spectroscopy is one
of the most important experimental tools in chemistry as i
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relativistic Hamiltonian. Although this computational where yy is the nuclear gyromagnetic ratio. The reduced
scheme has been successfully applied to study the SSCCsimdirect nuclear SSCCK g can be calculated as the deriva-
molecules containing heavy atorffsthe implementation of tive of the total molecular energy with respect to the nuclear
the ZORA method is based on the use of numeric integratiomagnetic momentg., and ug [see Eq(2)],

for the calculation of the Hamiltonian matrix elemefit$®

Altho.ugh such a proqedure is acceptaple for' the use of pure KAB:& o E(ua,mp "")|#A=MB=---=0' 2
density functionals, it precludes the inclusion of HF ex- Ma oMB

change(such as in hybrid HF/DFT functiongldnto the The symbole denotes a tensor product akg g is the re-
ZORA SSCC calculations because the inclusion of the HFduced spin—spin coupling tensor. For the purpose of relating
exchange would require the development of analytic techthe tensor propertK o5 to the measured indirect isotropic
niques for the calculation of the Hamiltonian matrix ele- SSCCJ,g, the tensorl,g is defined

ments. In view of the fact that the spin—spin coupling mecha-
nism strongly depends on exchange interactidr§,it is
desirable that a DFT method for calculating relativistic

SSCCs is able to use both pure and hybrid exchange fungf the NMR spectrum of a compound is measured in solution

tionals. o _ or the gas phase, rapid rotations about arbitrarily oriented
Recently, we have develop€d® a new computational molecular rotation axes lead to an averaging over the differ-

procedure for the calculation of the Hamiltonian matrix ele'ent Components OjAB with the resu“‘ that On'y the isotropic

ments within the regular approximation for relativistic ef- part(4) of the second rank tensdﬁ) can be determined from
fects. The new procedure is fully analytic and thus it can behe measured NMR spectra,

applied in the context of both WFT and DFT calculations.
With the use of the new procedure, quasirelativistic compu-
tational schemes more accurate than ZORA, such as infinite-
order regular approximatioflORA)* and infinite-order 1
regular approximation with modified metridORAmMmM),%® Kag==trKag. (4b)

can be installed easily within the standard quantum-chemical 3

codes designed for nonrelativistic calculations. This is pos- o ) )

sible, because the new approach does not employ any nefy Nonrelativistic theory of spin—spin

molecular integrals besides those already available in th8°Up|'ng constants: Ramsey’s theory

nonrelativistic calculatioR®?° Currently, the calculation of Considem independent electrons moving in the external
the analytic gradientderivative of the total energy with re- electrostatic potentia¥(r). The nonrelativistic quantum mo-
spect nuclear coordinatés for geometry optimizations and tion of these electrons is described by the Sdimger equa-

the analytic calculation of static electric propertieis pos-  tion, which for convenience can be represented according to
sible. The IORAmMmM method has much weaker gauge deperthe following>3

dence than IORA and is the method of choice in these

JAB:E YaYeKag - (3

1
JAB=§trJAB, (4a)

calculations?®#93132 AW =(T+V(r)¥=|> i(a.pi)Z+V(r) W=EWV,

In the present work, the formalism presented in our ear- r2m
lier investigation&?°31will be extended to the calculation ®)
of NMR SSCCs. The derivation will be carried out in a gen-wherep;= —iV; is the linear momentum operator of tith

eral way so that the corresponding formalism can be appliedlectron ando is the vector of the Pauli matrices
both within WFT and within DFT. Results of the current =(oy,0,,0,).%

work will be presented in the following way: In Sec. I, the The external magnetic fiel8(r)=VXxA(r) due to the
theory of calculating the indirect isotropic SSCCs is briefly vector potentialA(r) couples to the linear momentum of the
presented. Then, the IORA/IORAmMmM formalism is describedelectrons through

and extended to the calculation of SSCCs. The working for- _

mulas for calculating the quasirelativistic SSCCs are given ™= Pt AT ®)
for both WFT and DFT. In Sec. Ill, the implementation of The vector potential(r) caused by the magnetic nuclei is
the algorithm for calculating the quasirelativistic SSCCs will given by

be described. Finally, in Sec. IV the results of benchmark

SSCC calculations will be discussed where special emphasis A(r)= 32 'U“N_Xr’\' 7)
is given to a balanced use of exact and DFT exchange. c2N ra

wherery=r—Ry is the position of an electron with respect

to theNth nucleus ana is the velocity of light. Substituting
Il. THEORY OF NMR SPIN-SPIN (6) and(7) into the Hamiltonian of Eq(5), the Schrdinger—
COUPLING CONSTANTS Pauli equation for the electrons in a magnetic field is
derived®® According to Eq.(2), one obtains the reduced in-
direct spin—spin coupling tens@8) by differentiating with
respect to the nuclear magnetic moments of the coupled
un="i NN (1)  nuclei,

The nuclear magnetic momenty is related to the
nuclear spiny via Eq. (1),
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aZ
(KAB),BQZW<‘I’(MA,MB,

&ZH(/’LAI/’LB!"')

I pn) pd(1B) o Y= =

:(q/(O)|
=0

=PI (AREr)) gl W)+ 2(W O (AR5 g+ (i) g (R0 )| @),

In Eq. (8), the one-electron operatofszg(r), hi%qr),

h%“(r) and h3"(r) correspond to the four Ramsey terms

DSO, PSO, FC, and SD of the SSEGwhich are defined in
Eq. (9),

<ﬁ2§°<r>)ﬁa=§ 5’*“(rA’rB:i—rgA)“(rB)ﬁ, (@
(h3%Qr)) 5= —é%, (9b)
(A= a0, (99
<H§D<r>>B=%(3%— ‘r’—g) (9

where the subscripta and 8 denote the Cartesian compo-
nents of a tensor or a vector.

| WOy +2(¢O)

Spin—spin coupling constants 11409
---)|H(MA1MB,---)|\I’(MAaMB,---)>|MA:MB:~--:0
(QH((/;(A,/.;B,...) |\I,E:LB)>
malp up=wpg==0
)
[
p(N=2 [4y,4(I* (13

andV,(r) is the so-called exchange-correlation potenfial.
For the standard exchange—correlation density functionals,
V,.(r) does not depend on the external magnetic field ex-
plicitly. Thus, the first-order perturbed wave functigff~e

can be constructed from the perturbed spin—orbitals
#“8"X(r), which are the solutions of Eq14),

i,o

(M3 V(T = €0 9%(r) + (hg+ V(1) — )y (1) =o0.

| (14
In Eg. (14), X denotes the Ramsey perturbatiorX (
=PSO,FC,SD) and/ﬁ(r) is the first-order variation of the
potential V(r) due to the distortion of the spin—orbitals by
perturbationX.

occ

oV(r)

X _ () Xepryy 77 gyt
(VA(r))lg 1’20_ f(lpjvg (r ))ﬁ(s(lpj(:t/;TA),X(rr))ﬁ r

(15

Since the PSO term generates purely imaginary variations of

!

Wave function® () is a solution of the field-free Schro  the spin—orbitals, there is no net change of the density due to
dinger equation and the first order perturbed wave functiorperturbationX=PSO. When pure density functionals are
W(#8) contains the response of the many-body wave functiorused V5%qr)=0 and Eq(14) is solved in one step. The FC
to the different perturbations generated by the presence efnd SD perturbation generate spin-polarization and, by this,
the magnetic moment of nucle@ a nonzero potentiaV/X(r). Accordingly, Eq.(15) is solved
iteratively even when pure density functionals are employed.
In the case of hybrid density functionals, which blend a frac-
tion of Hartree—FockHF) exchange with DFT exchangé,

Eq. (15 must be solved iteratively for all three perturbations.
A more detailed description of the nonrelativistic KS formal-
ism for the calculation of SSCCs can be found elsewhere.

Jd
\I’(MB): %‘I}(/’LAYMB!"')|/_LA=}LB=...=O

= jr(#e),PSOL \p(up).FC 4 App(1p),SD. (10)
Within the Kohn—Sham(KS) DFT*® the M-electron

wave function is represented by a single Slater determinant

(11,

B. Methodology of the quasirelativistic methods

IORA and IORAMmM

. . . . The matrix IORAmmM(or IORA) Kohn—Sham equations
where functionsy; ,(r;) are the spin—orbitals, which depend in the one-electron (@ approximatiof® are given b
on the positiorr; and the spinr of theith electron. The KS P 9 y

Wys= (M)~ Y2det g o(r) ¢ o (1) -], (11

wave functionWg is the solution of a Schoinger-type
equation with the electrostatic potential defined in E®),

a4V, 12

r

V(r):Vn(r)+f

where V,(r) is the potential due to the nuclei(r) is the
electron density13) at the positiorr,

Eq. (16),252°
(ST (U (Vy b T+W) (U A(S9)+ 3+ Vo),

:S(:i,ofi,av (16)

where V,, is the matrix of the electron—nuclear attraction
integrals(x,,|Vn(r)|x.) (x.. basis functionsC; ,, column
vector of expansion coefficients of the spin—orbital,), J
is the matrix of the classical Coulomb repulsion operator
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[second term in Eq(12)], and V,. is the matrix of the
exchange-correlation potentid,.. The matrix U (quasi-
relativistic wave function normalizations given by

1
U=S+—C2(T+aw+bWT*1W) (17

2m
(parametersa andb for IORA: a=2, b=1; for IORAmMm:
a=$%, b=12).229T is the matrix of the Kinetic energy opera-
tor (2m) (o -p)?, S the overlap matrix, and matri¥/ in
Egs.(16) and(17) the solution of Eq(18),

W=Wy+W,T 1w, (18
which is given in
Wl=wy1-T71 (19

The matrixW, in Egs.(18) and(19) is calculated in the &
approximation according to

(Xul (- P)Vn(o-P)|x,). (20

1
ol i
Note that only the electron—nuclear attraction potentials
used in Eq.(20). Although in the actual IORA/IORAMmM

calculations, the scalar relativisticSR) approximation is

M. Filatov and D. Cremer

magnetic moments. The dependence on the magnetic field
due to the vector potentidl) is introduced into matrice$
andW, via the minimal coupling prescriptio(®6).

The total IORA/IORAMmM DFT energy is given by

EIORA/IORAmm

oF tr(P((SYHT(U YTV, + T+ W)

X(UT¥3)(82))

p(r)p(r’)
*zf =

whereP is the density matrix in the basis of functiogg ,

drdr'+E., (21

P=CnC". (22)

In EqQ. (22), n is the diagonal matrix of spin—orbital occupa-
tion numbers andC is the (orthogonal matrix constructed
from the column vector€; ,. Equation(21) differs from the
corresponding nonrelativistic DFT expression only in the use
of the relativistically corrected one-electron Hamiltonian for
the calculation of the one-electron part of the total DFT en-
ergy [first term on the right-hand side of Eq1)].

With the use of the standard density functionals, the KS
exchange—correlation energy does not depend explicitly on
the magnetic field of the nuclei. Thus, differentiating the total

used, i.e., all spin-dependent relativistic corrections are nesnergy(21) with respect to the nuclear magnetic moments

glected, the spin-dependence is retained in ([26) for the

yields Eq.(23) for the reduced indirect spin—spin coupling

purpose of introducing the magnetic field due to the nucleatensor,

K aEL?FﬁNIORAmm(MA 1B - -)’
B VTN 7 P B
=g 1 g o Pl izt ol g e e
U apma) g I UB) o I pa) g(UB) o N pa)p/ |\ d(mp)a
e | e e e P o R Ll e
I uB)a ' A pa)g)\ d(1p)q N up)a)\ I 1p)p ' A pa)p)\ (1) a
Vsl o P o+ M stz |
I(p)a) \ I 1p)p ' I(pn) g 1B) o I pn) g B) o
o | s ) i i | @
' App) gl \dme)o) \dme)e) \dpalgl))’
|
where the matrice& (renormalization on the nonrelativistic JH oT o, oT o1
metric andH (unrenormalized regular Hamiltonipare de- =
fined in Egs.(24) and(25), respectively, A pnlp I unlg A unlp
— 11~ 12g1/2 -1 0 —1
G=U"Y25l2 (24 +WW, a(MA)BWO (26)
H=V,+T+W. (25

With the use of Eq(33) from Ref. 29, the derivative of The derivative of the kinetic energy matrix is merely the
the matrix H with respect to a component of the nuclear sum of the matrices of the operatorﬁso hFC, andh
magnetic moment,)  is given by Egs. (9b)—(9d). The corresponding integrals are readlly
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available in any nonrelativistic code designed for the nonrelativistic SSCC calcul&tibime derivatives of thew,
matrix are derived in Appendix A. Substituting the respective derivatives into(Zg), one obtains Eq(27) for the first
derivative of the matrixd with respect to componeniu(y) ; of the nuclear magnetic moment,

oH i
EPp =i HRSO+H HEG+ HRD— WT L HESH HES + HRD) T W+ ﬁ(WT‘1HK§ﬁQN51W+WW51HK§BOT_1W)
3 - - B B 1 B - - B
+ 5 (WT THEG W, 'W+ WW o tHEST 1W)+%(WT THA W0 "W —WW g tHR ;T w)

+WW g H(W5P)a sWo 'W. (27
In Eq. (27), HR%, HL, andHR", are the matrices of the operatol@b), (9¢), and (90), respectively, and the matrices

(W§D)a 5 and (H*) 5 are defined in EqYA8) and (AL0) of Appendix A.
For the second derivativé?H/d( ) s9( 1) o . EQ. (28) can be derived,

O T WT ! T T-w+ww, ! Wy W w
AN pa)gd(pp)e  I(1p)gd(UB)a I pa) g(UB) o O 9 pma)gd(pp)e  °
owr | T T AT TG T
Npgle  Hualg Huapg  dup)e U)o YINY:
aT oW, L aW, MWy . W,
+ T wr ! T 'w-ww 1{ . + Wyt
A ) g I g)a O lo(up)e ° dualg dpma)g ° d(mp)a
MWy . W, MWy _. W, _
- W, tww — W, tww W, 'w
Apg)e ° O ANun)pg dHpap ° © Aug)a) °
W, aT AW,
—le[—wlwrl + Wy twT 1 }T-lw
O [o(up)e ° Apa) g Nua)g ° I uB)a
AW, aT W,
—WT—l[ T ww,t + T—1WW‘1—}W‘1W, 28
(g a O dua)g  Ima)g O d(ug)al ° 8
|
where the second derivative of the kinetic energy matrix is 92
DSO P N E——
meEeSIyHAB,Ba_ and _the second derlvat|ve_ of thé, matrix is I(1e) () 5
(W59 5 defined in Eq(A6) of Appendix A.
The derivative of the renormalization mati@& is given _ |y § U2
in Eq. (29) [cf. Eq. (36) in Ref. 29, - I(18) o0 11a) g
_ Ul/Z( J Ul/Z) Ul/Z( J Ul/2>
I pp)a AYONF:
’ G=—U‘1/2<—U1’2)G (29
I uB)a I 1B a _UIIZ( ? U1/2)U1/2( J U”ZHG (30)
I pp) g I uB)a '

where the derivatives of the square-root matii%’ are cal-  where the second derivatives of the square-root mattx
culated via Eq(B1) in Appendix B. Differentiating Eq(29) are calculated via EqB9) derived in Appendix B.

with respect to fua) 5 leads to Eq.(30) for the second de- Next, we consider the magnitude of the terms in the
rivative of the renormalization matris, IORA/IORAMmM expressioni23) for the SSCC. The deriva-
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tive of the density matrix, which is obtained by solving the vanish at the two extreme@) tight and (b) diffuse basis
matrix version of Eq(14), is of the same order of magnitude functions because one of the prefactowd ~* or ngl
(in powers of 1¢2) as the corresponding perturbation opera-vanishes at these extremes. Third, the fifth term in @)
tor. Thus, the first two terms in E¢23) are of the order of vanishes at both extremés) and(b) because in such a case
1/c*. Because the derivative of the relativistic normalizationone of the factordVT ~* or WW* turns to a unit matrix
matrix U defined in Eq.(17) with respect to the nuclear and another converges to zero. Consequently, this term can
magnetic moment is of the orderct/ the third, fourth, and be neglected in the final expression. Fourth, the contribution
fifth term in Eq.(23) are of the order tP and the last term  of the last term, W(S)D)A,B, is dominated by the matrix ele-
is of the order 1¢. The second derivative of the renormal- ments with steep basis functions and because of the prefac-
ization matrixG, Eq. (30), is of the order 1®, because the tors ngl should vanish. Although, the fourth term con-
second derivative of the matrik is of the order of 1d>  tains these prefactors as well, this term should be retained in
multiplied by the order of the second derivative of the matrixthe final formula, because the divergent FC operator com-
H (1/c?). This establishes a hierarchy of terms in the quapensates for the vanishing prefactfW,* and this term
sirelativistic indirect nuclear SSC@3) and reveals that the makes a finite contribution to the derivative. Considering all
first two terms in Eq(23) should be sufficient for an accu- simplifications, we obtain Eq34) for the first derivative of
rate calculation of this property. the matrix H with respect to a component of the nuclear
Although nearly all molecular integrals necessary to cal-magnetic moment,
culate the first and the second derivatives of the métraxe
readily available in the standard nonrelativistic quantum-

chemical codes designed for the SSCC calcu!eft‘?am,fur— JH =HEG—WT ~THES, T w
ther simplification of Eqs(27) and (28) is possible. Note, I pp) g ’ ’
that nearly all terms in these equations contain fadtérs * 3
or WW,, 1. Inspection of Eq(19) for matrix W shows that in + 4—(WT*1H,F\FBW5 w
those cases where the elements of the makfixare larger m
than.the elements of thg kinetic energy mafrixmatrix W is +WW51H,FfBT’1W)
dominated by the kinetic energy, that is
+i(HRS—WT ~THEST ~tw)

This situation occurs for tight basis functions which deter-
mine the shape of the atomic and molecular orbitals in th&vhere we separated the FC, PSO, and SD contributions.

vicinity of the nuclei. Thus, in the deep core regions of at-  |n the case of the second derivative of the quasirelativ-
oms, Eqs(32) apply, istic Hamiltonian as given by Eq28), all terms after the
third one can be neglected. Indeed, the fourth and the fifth
WT 1= —1 for [Wo|>|T], (329  terms vanish for both tight and diffuse basis set functions,
1 because the prefactov¥T ~* andWW , * converge to a unit
WW, 10 for [Wo|s|T|. (32D matrix or vanish. Thus, the terms in the square brackets ei-

ther compensate one another or vanish due to the vanishing
refactors. The last two terms will vanish because one of the
refactors WT ~% or WW %, vanishes for tight or diffuse

basis functions. As is knowH,the major contribution to the

DSO term results from the core densities at the coupling

nuclei. The third term in Eq.(28) is large only when

WT =0 for [Wo|<|T], (338 ww;'—1, i.e., for the diffuse basis set functions. Conse-

WWo ol for |Wol<|T]. (33b) quently, the third te'rm'can aI;o be neglected and only the

first two terms survive in the final formula,

For diffuse basis functions, the elements of ihg matrix
are small compared to the elements of the kinetic energ
matrix. Consequently, thé/ matrix is dominated by th&/,
matrix and the following relationships hold:

With the use of the Gaussian-type functioftSTF), the

switching between these two regimé32) and (33), occurs 92H

when the exponential parameter is of the order a W=HR§%Q—WT‘1HE§%QT‘1W. (35)

~(97/8) (c*/Z?), where Z is the charge of the atomic Ka)po\kla

nucleus. That is, for heavy nucleZ &£50), the switching to

(32 occurs already for moderately tight basis set functiondn this connection it has to be stressed that the DSO term is

(a<5%x10°). more important for the anisotropic rather than isotropic
For the first derivative of the quasirelativistic Hamil- SSCC and rarely contributes more than 1 S| unit

tonian, Eqs(27), (32), and(33) have important implications. (10°T2J™1) to the latter:®

First of all, for tight basis functions, which are used to de- Equations(34) and (35 can be combined to yield Eq.

scribe the behavior of the wave function close to the nucleus;36), which represents our final working equation for the

the second term in Eq27) compensates the first term ex- calculation of relativistically corrected indirect nuclear

actly. Second, the third term on the right-hand side musS§SCC,
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oo =0 555, | [y |
(Kag)ga=tr I pa)p I UB) o

( P )GT
' I pa)p

+Hi(HRS = WT THHESIT W) + HRD, - WT HHRO T 'w

+1r

Ao e
I pa) gd(1g) o

3
=t Ha— WT THRSGT W+ m(WT—1H§?BW51W+WW51HE\?BT—1W)

G| +tr(PG'(HRa %~ WT “*HRE %, T *W)G).

(36)

The final equation{36) takes into account the effect of rela- effect of spin—orbit interactions. Pointlike nuclei were used
tivity on the corresponding nonrelativistic operators, but ne-4n the calculation of the electron—nuclear attraction potential
glects changes of the quasirelativistic wave function metricduring the wave function optimization. As was pointed out
under the influence of the external figlehagnetic field due by Autschbach and Ziegléf, this leads to an artificial in-
to the nuclear magnetic momeénin the nonrelativistic limit, crease of the electron density at the nuclear position and,
that is in the limit ofc—o, the factorWT ~! in Eq. (36) therefore, more realistic models of a finite-size nucleus
vanishes and the standard non-relativistic formalism is reshould be employed. Note, that all relativistic four-
covered in Eq(36). component calculations cited héte employ extended
The formulas derived for the SSCC tensor are applicableiuclear models, simulated, e.g., by a Gaussian-type distribu-
to both WFT and DFT. Indeed, the effect of relativiye.,  tion of nuclear charge. However, the calculation of the
finite velocity of light) is incorporated into the one-electron electron—nuclear attraction based on the potential of ex-
part of the Hamiltonian only. Thus, E¢36) as well as its  tended nuclei is currently not implemented in our program.
complete version Eq23) can be used in the standard WFT  The benchmark calculations with the IORAMmM/CP—HF/
calculations provided that the derivative of the density ma-SSCC and IORAMmM/CP—-DFT/SSCC methods summarized
trix dP/d(ua) g is available. in Sec. IV are organized as follows. First, the results of qua-
sirelativistic IORAmMmM and nonrelativistic calculations of
Il IMPLEMENTATION AND DETAILS 1K \_n carried out at the HF Ieyel for tetrahydrides Midf
OF CALCULATIONS the group IV elements MC, Si, Ge,_ Sn, and Pb are pre-
sented and compared with the available results of the full
The computational scheme described in the precedinépur-component DHF and nonrelativistic HF calculatiéfs.
section was programmed and implemented into the Next, one-bond SSCCs are calculated for the following
COLOGNE 2004suite of quantum-chemical prograrfisThe set of molecules: CH SiH,, GeH,, SnH,, PbH,,
implementation is straightforward because all molecular inPbHCHs)3, PH(CH3) 4, Cd(CHg),, Hg(CHg),,
tegrals needed for the quasirelativistic calculation of SSCC#$Ig(CH;)Cl, Hg(CH3)Br, Hg(CHs)Il, and HJCN),. For
are already available from the nonrelativistic formalismthese molecules measured values of SSCCs are
implemented earlie! Since only the one-electron part of the available?®=*® The calculations are carried out within the
molecular Hamiltonian is modified in the IORAmm calcula- framework of DFT with different density functionals em-
tions, the cost of these calculations is essentially the same @doyed. The density functionals vary from pure functionals
the cost of the corresponding nonrelativistic calculationssuch as BLYP® to hybrid functionals with increasing frac-
The quasirelativistic formalism implemented can be em-ions of the HF exchange such as B3LYRP0% of HF
ployed at the HF and DFT level of theory using in the latterexchang®® and BHHLYP (50% of HF exchange’’
case pure or hybrid exchange—correlation functionals. For light elements, the following Huzinaga basis sets
To the best of our knowledge this is the first implemen-were used: Hydrogen §@.p)/[3slp], carbon and nitrogen
tation of a quasirelativistic computational scheme for the cal{9s5p1d)/[5s4pld], silicon and chlorine (196p2d)/
culation of indirect nuclear SSCCs, which can apply hybrid[ 7s6p2d].%* For bromine and iodine atoms, the cc-pVDZ
functionals within the framework of DFT. Because of this, basis set of Dunnimj and the TZVpp basis set of Ahlrichs
the role of the exchange functional and its influence on thend May® were employed. These basis sets were recon-
quasirelativistic value of the SSCC in dependence of thdracted(see below similar to the Huzinaga basis sets into
mixing of DFT and exact exchange can be studied in thi§9s8p4d] and[10s10p7d1f] basis sets. Since we do not
work for the first time. We coin the new methods IORAmMm/ calculate the SSCCs between bromine/iodine and other ele-
CP-HF/SSCC and IORAMmM/CP-DFT/SSC@ORAMM  ments, the use of these basis sets is acceptable.
with coupled perturbed HF or coupled perturbed DFT for  Since the Huzinaga basis sets are not specifically de-
SSCC calculationsto simplify the notation. signed for the calculation of SSCCs, they were adjusted for
In the present work, we report the results of pilot this purpose in the following way: For hydrogen, two steep
IORAMM/CP—-HF/SSCC and IORAMmM/CP-DFT/SSCC cal-stype primitive GTFs were added in geometric progression
culations. The quasirelativistic wave function was optimizedusing the ratio of the two steepestype GTFs from the
at the scalar-relativistic IORAmm level, i.e., excluding the original basis set. For carbon and silicon, one tighype
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TABLE I. Spin—spin coupling constant& (M,H) calculated for a series of MHmolecules at the nonrelativ-
istic CP—HF/SSCC and IORAmMmM/CP—-HF/SSCC levels of théory.

Molecule Contribution IORAMM 4-RPA Nonrel. RPA
CH, DSO 0.05 0.05
PSO 0.40 0.40
FC 52.54 52.34
SD —-0.04 —-0.04
Total 52.95 52.6 52.74 52.4
SiH, DSO 0.02 0.02
PSO -0.21 -0.21
FC 104.05 101.90
SD —0.06 —0.06
Total 103.80 104.4 101.65 102.4
GeH, DSO 0.02 0.02
PSO —0.70 -0.70
FC 300.07 264.44
SD —0.15 -0.12
Total 299.24 294.8 263.63 262.7
SnH, DSO —0.01 -0.01
PSO —-1.28 —-1.30
FC 601.89 431.75
SD —0.23 -0.12
Total 600.37 588.3 430.33 430.5
PbH, DSO 0.03 0.02
PSO —-2.17 —2.38
FC 2083.17 719.54
SD —-1.27 —-0.40
Total 2079.76 1819.0 716.78 711.4

2All values in Sl units (16° T2 J71). See text for details on basis sets and geometries used in the calculations.
PFour-component RPA results from Ref. 22,
°Nonrelativistic RPA results from Ref. 22.

primitive GTF was added and the two steepestpe primi-  rest of stype primitive GTFs, including the most tight
tive GTFs were split off from the most tiglgtype con-  sfunction, remained uncontracted. Thetype primitive
tracted GTF of the original set. This amended Huzinaga basi&TFs #1 to #4, #5 and #6, and #7 and #8 were contracted
set enables one to reproduce the results of the large basigto three GTFs, with the rest of the functions remaining
nonrelativistic HF calculations of SSCCs in tetrahydridesuncontracted. The first fivé-type primitives were contracted
CH, and SiH, with reasonable accuradgee Table)l to one GTF. The most diffuse polarizindttype primitive

For germanium, the cc-pVDZ basis set of Dunifngas  function was dropped from the tin basis set due to the linear
recontracted and amended as follows: The original basis selependence problem. A similar contraction pattern was used
was decontracted completely. The most tight primiswgpe  for iodine with the difference that the most tigkttype
GTF was left uncontracted. Theetype primitive GTFs #2 to  primitive function was contracted with the first GTF. Finally,
#5 were contracted to one GTF and the same was done fane steeps-type primitive function was added to the tin basis
the primitive GTFs #6 and #7. The remainisgype primi-  set. The described basis set enables one to reproduce the
tive GTFs were left uncontracted. Tpetype primitive GTFs  SSCC between Sn and H in Spldbtained by a large basis
#1 to #3 and #4 and #5 were contracted to two GTFs. Theet nonrelativistic HF calculatiéAwith reasonable accuracy
remainingp-type primitive functions remained uncontracted. (see Table)l
The three firstd-type primitive functions were contracted For cadmium, g 15s10p6d1f] basis set was derived
into one GTF and the remaining three were left uncontractedrom the Cd basis set of Grop¥rby again first decontract-
This contraction scheme is similar to that of the Huzinagang the original basis set. Thetype primitive functions #4
basis and was also used for the bromine basigvsi¢h the  and #5, and #6 to #8 were contracted to two GTFs. The rest
only difference that the most tiglsttype primitive function  of the stype primitive GTFs remained uncontracted includ-
was not split off for the lattgr Finally, one tightstype ing the three most tighs-functions. Thep-type primitive
primitive function with the exponential parameter obtainedfunctions #1 to #4, #5 and #6, and #7 and #8 were contracted
in a geometric progression was added. The resultingo three GTFs. Tha-type primitive functions #1 to #3 and
[11s8p4d] Ge basis set reproduces the nonrelativistic HF#4 and #5 were contracted to two GTFs. The basis set ob-
values for the SSCCs of GgHRef. 22 in a reasonable way. tained was augmented with one diffusg/pe function, three

For tin, the TZVpp basis set of Ahlrichs and Mdwas  diffuse p-type functions and one diffusd-type function,
employed. The original basis set was completely reconwhere the exponential factors follow an even-tempered se-
tracted and amended to becomg18s10p6d1f] basis set: quence with the ratio 2.5. Finally, origype primitive GTF
The s-type primitive functions #2 to #5, #6 to #8, #9 and was added and its exponential factor set equal to 7/5 of the
#10, and #11 and #12 were contracted into four GTFs. Thexponential factor of the most diffuskGTF.
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For mercury and lead,17s11p7d3f] basis sets were The quasirelativistic IORAMM/CP—-HF/SSCC results
constructed again using the basis sets of Gropen as startimdso agree reasonably with the 4-RPA SSCC values of
points® The original basis sets were decontracted toEnevoldseret al??for the light elements C, Si, and Ge. The
(19s14p10d5f) and (1%16p10d5f) sets, respectively. For deviation from the 4-RPA values is larger for the heavier
both elements, thetype primitives #4 and #5, and #6 to #8 atoms Sn and Phl2 and 261 Sl units, Table because of
were contracted to two GTFs. The remainisitype primi-  the following reasons: First, the effect of spin—orbit cou-
tive GTFs remained uncontracted. Thetype primitive  pling, which leads to a FC—PSO correction, is not included
GTFs #1 to #4, #5 to #7, and #8 and #9 were contracted tin the IORAmm values. Although for SnH this correction
threep-GTFs. Thed-type primitives #1 to #3, #4 and #5, and is small®® ca. 1% (4.7 S| unit$ of the total nonrelativistic
#7 and #8 were contracted to thrdeGTFs. The first four SSCC, for lead tetrahydride the FC—PSO correction consti-
f-type primitives were contracted into orfdunction. For tutes ca. 10%(79.3 Sl unit$ of the total nonrelativistic
both atoms, the most diffusé:type primitive function was SSCC® making the total SSCC substantially smaller. Sec-
removed due to orthogonality problems. The basis sets olbnd, in the relativistic four-component calculatidisthe
tained were augmented with one diffuseandf-type func-  wave function was optimized using nuclei of finite size
tion, two diffused-type functions, and for lea@nercury one  whereas in the IORAMM/CP—HF/SSCC calculations point
(threg diffuse p-type functiorts), thus vyielding a nuclei are employed. The use of the pointlike nucleus artifi-
[17s11p7d3f] basis set for both elements. When combinedcially increases the electron density at the nucleus thus lead-
with the [5s1p] basis set for hydrogerisee abovg the ing to larger values of the SSCE$Given these factors, the
[17s11p7d3f] basis set reproduced the nonrelativistic HF agreement of the IORAMM/CP—HF/SSCC one-bond values
value? of the Pb—H SSCC in PhHwith reasonable accuracy with the reference values is satisfactory even for the heaviest
(see Table)l element in Table I.

The molecular geometries were taken for Mehd tri- Table Il summarizes the results of DFT calculations car-
methyl plumbane from Ref. 22, for dimethylmercury from ried out with the use of purBLYP) and hybrid(B3LYP and
Ref. 55, for methylmercui§) halides from Ref. 56, and for BHHLYP) density functionals. In all molecules presented in
mercuryll) dicyanide from Ref. 57. The molecular geom- Taple |1, the FC contribution dominates the SSCC. The DSO
etries of dimethylcadmium and tetramethyllead were optiterm is extremely small and never exceeds 0.2 SI unit. The
mized using the IORAMM/B3LYP method. In these optimi- pSO and SD terms are also small. For the molecules in Table
zations, the aug-cc-pVDZ basis sétwere used for the light || the PSO and SD term do not contribute more than 10% to
atoms and the basis sets described above were used for i total SSCC.

heavy atoms. All calculations employed basis set with Car-  gjmilar to the molecules of Table I, relativity has the

tesian rather than spherical functions. largest impact on the FC coupling term. The FC coupling is
mediated by spin polarization aftype electrons. These are
IV. RESULTS AND DISCUSSION the electrons that experience the largest relativistic effect.

In this section, the results of IORAMM/CP—HF/SSCC Relativity results in the contraction of the atonsishells and
and IORAMmM/CP-DFT/SSCC calculations of the indirecta subsequent stabilization of the energies of the atomic
nuclear SSCCs for a set of molecules containing heavy as-orbitals. This leads to an enhancement of the weight of the
oms are presented and discussed. Firstlkhg  constants valences-type orbitals in the molecular orbitals and conse-
in tetrahydrides MK of group IV elements M-C, Si, Ge, quently to an increase in the FC coupling term. The atomic
Sn, and Pb are calculated with the nonrelativistic HF anddrbitals with nonzero orbital angular momentuiexperience
quasirelativistic IORAMmM/HF methods. The results are com-a much weaker relativistic influence. Accordingly, the PSO
pared in Table | with the corresponding values of non-and SD coupling terms, which both depend on the orbitals
relativistic and full four-component relativistic DHF calcula- with nonzerol, vary only slightly as a result of relativity
tions carried out by Enevoldse al?? using large basis sets. Where one has to consider that the SSCCs of saturated mol-

The nonrelativistic CP—HF SSCCK,,_ are in good ecules have anyway rather small noncontact terms.
agreement with the nonrelativistic RRfgandom phase ap- Apart from relativity, electron correlation plays an im-
proximation: synonym for CP—HFresults confirming that portant role for the accurate calculation of NMR SSCCs. For
the basis set decontraction/contraction pattern used in thigstance, at the nonrelativistic level, the inclusion of correla-
work is both economic and effective. The FC contributiontion leads to a 16% to 24% reducti¢as compared to the HF
completely dominates the SSCC in all cases so that the disalculation of the absolute value of the SSC&To the best
cussion can focus on this Ramsey term. of our knowledge, relativistic four-component correlated cal-

The FC contribution experiences the largest influence otulations of nuclear SSCCs were not carried out so far. The
relativity. Because our quasirelativistic calculations are caronly attempt to incorporate the effect of electron correlation
ried out at the scalar-relativistic level of approximati@e., into four-component relativistic calculations of SSCCs was
all spin-dependent relativistic effects such as spin—orbit inthe scaling of the 4-RPA valu&swith the ratio of the SSCCs
teractions are neglectgdthe contraction of the atomic calculated at the nonrelativistic RPA level and at the level of
s-shells is the main reason for the enhanced FC couplinghe correlated method SOPP&econd order polarization
term in the total SSCC. The same conclusion was drawn bpropagator approagchThe SSCCs obtained in this way by
Enevoldseret al?? on the basis of the four-component RPA Enevoldsenet al?? for tetrahydrides of the group IV ele-
(4-RPA, i.e., coupled-perturbed DHhlEalculations. ments are reported in the last column of Table Il. Compari-
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TABLE II. One-bond indirect nuclear spin—spin coupling constattior molecules with and without heavy atoms calculated at the CP—DFT/SSCC and
IORAMM/CP-DFT/SSCC levels of thedty.

IORAMmM/CP—DFT/SSCC CP-DFT/SSCC

Molecule Coupling Expt. BHHLYP B3LYP BLYP BHHLYP B3LYP BLYP Ref. value
CH, C-H 41.% 47.4 44.2 445 473 44.1 44.4 435
SiH, Si—H 84.3 93.2 87.9 87.5 91.4 86.2 85.9 88.2
GeH, Ge-H 232 261 240 235 232 215 211 237
SnH, Sn—H 429 499 448 430 367 335 325 459
PbH, Pb—H (1035;1115° 1601 1370 1272 603 546 519 1383318
Ph(CH5)H Pb—H 949 1469 1210 1089 614 543 521 166878"
PH(CH;) 4 Pb—C 396 863 357 78 560 363 268 —19¢
Cd(CHg), Cd-C 798 909 701 581 736 584 494
Hg(CH;), Hg-C 1287 1690 1176 935 1038 802 683 g7
Hg(CH,)Cl Hg—C 263T 3269 2307 1899 1755 1382 1224 1955
Hg(CH5)Br Hg-C 2568 3324 2301 1876 1775 1388 1226 1978
Hg(CHy)I Hg-C 2393 3195 2179 1759 1714 1338 1180 1827
Hg(CN), Hg-C 5778 6074 4886 4149 2773 2439 2233 4h08

3All values in Sl units (16° T2 J71). See text for details on basis sets and geometries used in the calculations.
bTaken from Ref. 40.

‘Scaled relativistic four-component RPA results from Ref. 22.

“Taken from Ref. 41.

€Taken from Ref. 42.

Taken from Ref. 43.

9The values estimated in Refs. 22 and 23 on the basis of the experimental SSCCs for methyl-substituted plumbanes.
"ZORA/GGA results from Ref. 23.

'Unscaled relativistic four-component RPA results from Ref. 22.

ITaken from Ref. 44.

“Taken from Ref. 45.

"Taken from Ref. 46.

"Taken from Ref. 47.

"Taken from Refs. 46 and 48.

son of these scaled 4-RPA values with the 4-RPA vafues meric values of the SSCCs. Although an increase of the frac-
cited in Table | suggests increased importance of electrotion of exact exchange improves the agreement of the
correlation for the relativistic SSCCs. nonrelativistic SSCCs with measured ones, the match be-
DFT takes electron correlation into account via the dentween the BHHLYP results and the experimental SSCCs is
sity functionals. It has been demonstrated that electron coffar from being satisfactory. At the quasirelativistic I ORAmMm/
relation enters the DFT calculation not only via the correla-CP—-DFT/SSCC level, the match between the calculated and
tion functional, but alsqand probably more effectivelwia  the experimental SSCCs is considerably improved. On aver-
the exchange functional. In the latter, the self-interaction erage, BLYP underestimates the experimental SSCiBs
ror (SIE; incomplete cancellation of the electron self-slope of the BLYP linear regression line is 0.71B3LYP
interaction energy as contained in the Coulomb term by thepproaches the ideéstatistical correlation with the experi-
self-exchange energy provided by the exchange funcfionamental SSCCs bettdslope 0.844 and BHHLYP overesti-
mimics long-range correlatiof?~%? Because the HF ex- mates the measured SSC@ope 1.08% Obviously, there
change energy is perfectly self-interaction-free, mixing inexists an optimal HF/DFT mixing parameter, slightly larger
some HF exchange as in hybrid functionals, reduces the Slihan that in B3LYP as can be inferred from Fig. 1 and Table

in the KS calculation and enables one to tuaébeit in a  Il. However, since the data base of the SSCCs compared in
nonspecific waythe amount of long-range electron correla- the present work is too small and, more importantly, because
tion covered by the KS calculation. the experimental SSCCs are not corrected for rovibrational

The calculations reported in Table 1l were carried outand environmental effects, we did not take any attempt to
with the BLYP, B3LYP, and BHHLYP functional thus in- determine such an optimal mixing parameter for hybrid den-
creasing exact exchange from 0 to 20 and 50%. The resulsty functionals. Nevertheless, the possibility of defining
of the DFT calculations carried out with these functionals atsuch a parameter does exist as is evidenced by the analysis
the IORAMmM/CP-DFT/SSCC and at the nonrelativistic CP—presented in Fig. 1.

DFT/SSCC level of theory are reported in columns four

through nine of Table Il. Figure 1 shows these results in

graphic form giving calculated SSCCs as a function of meay, concLUSIONS
sured ones for each of the methods employed.

As becomes obvious from Table Il and Fig. 1, the non- A simple and computationally inexpensive quasi-
relativistic calculations are not able to reproduce correct nurelativistic method for calculating nuclear SSCCs in mol-
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FIG. 1. Linear regression analysidashed linesbetween calculated and measured SSG&sIORAMM/BHHLYP, (b) IORAMmM/B3LYP, (c) IORAmMm/
BLYP, (d) nonrelativistic BHHLYP,(e) nonrelativistic B3LYP, andf) nonrelativistic BLYP results. The solid line bisecting the angle between the axes denotes
the ideal correlation between calculated and measured SSCC values. Calculated SSCCs from Table Il are indicated by filled circles.

ecules containing heavy elements is presented. The methaudit in this paper reveals that the IORAMmM/CP—-HF/SSCC
is based on the IORAmMM approximation, which enables onéormalism is suitable for the calculation of SSCCs. Although
to carry out either conventional WFT or DFT calculations tothe present implementation employs the scalar-relativistic
determine molecular equilibrium geometries and electric reapproximation(i.e., spin—orbit interaction is negleciethus
sponse properties of heavy atom molecules. The presentissing certain terms such as FC—PSO coupling term in the
work extends the IORAmm formalism to the SSCC as newexpression for the SSCC, the overall agreement with the re-
second-order response property thus extending the applicaults of the four-component relativistic calculations is good.
bility of the method. This extension of IORAmMmM comprises The inclusion of relativistic effects via the IORAmm Hamil-
the IORAMM/CP—-HF/SSCC and IORAMmM/CP-DFT/SSCCtonian leads to a substantial incregsg to 100% in FC
methods. The formalism presented can also be applied tocoupling. The other contributio®S0O, PSO, and Sio the
ZORA and IORA, which however suffer from an erroneoustotal SSCC undergo only minor variations due to relativity.
gauge dependence much more than IORAmm does. At the IORAMmM/CP-DFT/SSCC level, the agreement
An important feature of the IORAmMmM method, in gen- between calculated and measured SSCCs depends on the
eral, and the IORAMM/CP-HF/SSCC and IORAmm/CP—density functional used. On average, BLYP tends to under-
DFT/SSCC methods presented in this paper especially is thastimate the calculated SSCCs, BHHLYP overestimates
they all can be easily implemented into existing nonrelativ-them, and B3LYP leads to an improvedlbeit nonperfegt
istic quantum-chemical codes. Indeed, there are no new mgerformance. The agreement with the experiment can be im-
lecular integrals that must be calculated in the IORAmmproved further by a slight increase in the HF/DFT exchange
calculation. The method employs only those integrals alreadynixing parameter that is used in the B3LYP functio(lbb-
available from the nonrelativistic calculation. Furthermore,ably from 20% to 30% However, making any reparametri-
the IORAmMmM calculation is as fast as the corresponding nonzation of the existing density functionals on these grounds
relativistic one. This opens up a possibility of investigatingwould require the knowledge of the rovibrational and envi-
relatively large molecular systems with the help of theronmental corrections to the measured SSCCs. Therefore,
IORAMmM methods. such a reparametrization was not attempted in the present
The investigation of the one-bond nuclear SSCCs carrieavork, however is subject of work in progress.
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An allotment of computer time at the National Super- In the presence of a magnetic field caused by the nuclear
computer Cente(NSC) at Linkoping is gratefully acknowl- magnetic moments, the elements of tWé, matrix (20)
edged. change as in EqAl),

(WE) = (x| (o m)\Vo(o-m)|x,)
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Xl 5 T 2 XX T Xl s 2 e X ) (A1)
4m-c N N 4m-c N N M v

where Eqgs(6) and(7) and the Dirac relationshipA2) were used,
(o-A)(o-B)=A-B+ic-AXB. (A2)

The first term on the right-hand side of E&\1) is the field-free matriX20). The next two terms make contributions to PSO
coupling as is obvious from EGA3),

\ NX \4 MNXTN
) 2 |XV> <X,u| . 2 3 'p|XV>

(Xulp:
U am?et N o3 am’c* N ord

Vi MNX N Vi MNXrN

E (x,lp 4V2 Pl (T, (x| é% =
Fam S (Wl B TP 3 “”r—?”lm
= o S (W0 (T 9l 5 3 5T i) 50 ol T 3,000 5 3 245 )
oS Wol (T 0l 53 e r“rjplxw%; (WoT )05 3 i r”iplm, (A3)

where the hermiticity property of the Ilinear momentum operator, resolution of the idenfity
=(2m)‘1EPT|VXP>(T‘1)M(VX,|, and vector algebra relationshgp(bxc)=(axb)-c were used. SubstitutingiV for the
linear momentum operator and differentiating with respect to a component of the nuclear magnetic moggnti¢ids
Eq. (A4),

(W5n 5= 5, (WoT HHEHHRET 1 Wo), (Ad)

H PSO

where is the matrix of the operatg®b).
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The next term in Eq(Al) vanishes in the first derivativénote, that the magnetic moments are set to zero upon
differentiation and contributes only to DSO coupling. Using the relationghigb)-(cxd)=(a-c)(b-d)—(a-d)(b-c) this term
can be transformed as in EGAS),

MNXTN Mm X (tnce o) (Pnerm) (e T (Pne )
<X,u| 2 62 3 2 |X> <X/.L| 2 62 2 3.3 3.3 |XV> (AS)
4m<c® N N M r 4m M rNfm NY]

which, upon differentiation with respect touf)s; and (ug), and use of the resolution of the identiti/
EPT|XP>(S_1),JT<XT|, leads to Eq(A6) for the contribution into the second derivative of the IORAMmM/IORA Hamiltonian.

(W53 ag.ga=— == (VoS "HRa e+ Han paS Vo). (A6)

822

In Eq. (A6), Hig%a is the matrix of the DSO coupling operat(@a andV, is the matrix of the electron—nuclear attraction
integrals.

The next two terms can be transformed according to(B@) noting that the following relationship holds for the nabla
operatorVxA=(VXA)—AXV and using the standard vector algebra relationships,

iV MNXTN iV MNXTN
pX + . X
<X/,L|0- p 4m2c4% r':il |Xl/> <X/L| 4m2040- % r':il p|Xv>
iV MNXT N iV MNX TN iV MNXT N
= .| px . X + . X
(Xulo-| P m204§N: 3 =l 7550 Y 3 Phea) Xl 3 5o Y 3 plx.)
MNXrN
=(Xul ((GXV V2 )IXJ
* am2ct N
N ((T’rN
= — | 1) =Xl —— V| Va1 |Ix.)- A7
(X,LI4 5 42 (un-0)| V rﬁ. )|X> (Xﬂl4mzc4§N: BN T ) X0 (A7)
Differentiation of (A7) with respect to fu) 5 yields Eq.(A8),
1 ra
((WSC+SD)A,B);LV:((WSC)A,ﬁ)p,V—’_((WSD)A,B)MVZW<XM|U,B \Y Vn_3 |XV>
A
(o-1p)
———— (x| Vsl Vi—Z5 | ) A8
4m2C4<X,u.| B n ri |X > ( )

The first term in Eq(A8), which makes correction to the Fermi-contact interactiowg‘f) AB) can be transformed further

as in Eq.(A9),

uvo
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r
((WSC)A,B) V:—<X |UB V-V |XV>
KV am2et "r3
(Vx| Voo 1)~ s Gl Vo] 1T )
= — — . T v _—— Top— | - v
amach Xk " Brf\ Xl ameed | v 'Bri X
Fa Fa
E (v x,)l g (VXD (T D,V oﬁ 3 2 <xﬂ 26
A
-1 Vn
J(VxINT )Tp<(VXp)|4m202-|(VXV)>
1 1 1 ra
:mp (WO),up(T )pT 2 <XT| & UB 3 |XV>+<XT|UB 3 | VXV)> 2m ~ <X,u|a-ﬁ 3
T r'a A

: |(VX7')>(T71)TP(WO)[JV

3
=H(WOT’1HK%+ HRT "W)., +

1
ﬁ(WoTilHﬁ,g_ Hﬁ,ﬁTilwo)W,

(A9)

where integration by parts, Gauss theorem and the resolutido these parameters at least through second order. The prob-

of the identity I—(2m) S, VX (T, (Vx| were
used. In Eq(A9) HA is the matrix of the FC operat@9c)
and the matrixH} B has the following elements:

X 1 ra

(HA,B)MV:_2<XM|O-B_3.|(VXV)>' (AlO)
C ra

The last term in Eq(Al) vanishes becaus®xXA=0 for any

constant vectoA.

APPENDIX B: SECOND DERIVATIVES
OF THE SQUARE-ROOT MATRIX

Let us consider a real symmetric matdxwith its ele-
ments depending on two parametarand 8. We assume that

lem is to obtain an algebraic expressions for the second de-
rivative of the square-root matri&*/2.

The first derivative of the elements of the square-root
matrix with respect to a parameter has been obtained in
Ref. 29 and readgcf. Eq. (43) therd

— 2 1/2 J
(CT( AL2 C)ij—(al —|—a” )~ 1(CT<0')0[ )C)ij,
(B1)

whereg;; are the eigenvalues of the matiéx andC are its
eigenvectors, see EB2).

a=C'AC. (B2)
Differentiating Eq.(B1) with respect to a parametg one

the elements of the matri& are differentiable with respect has Eq.(B3),

92 d
CT( Al/Z) C) ( _CT)< Al/Z)C + CT A1/2)< C) )
( Ba IERREY: ’ da B,
92 d d d
_ b2 o2y -1 | ot 2 At i -
el [(c [ogmarle] [ 75 el el el
— (a4 g}?%) 2 a1—1/2 J ZAlel +2 1 av ot Zale ctl=Alc (B3)
1 2 B G2 & B i da ij’
|
where we used Eq42) from Ref. 29 for the derivative of the ~ : 92
eigenvalues;; . Introducing the following notations: Apa=C (aﬁ&aA)C’ (B4b)
~ J J
Aa=CT(—A)C, (B4a) Ra:cT(—c), (B4o)
Ja Ja
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whereR,, is an antisymmetric matrix.e., R,= — RZ) and using the orthogonality of the eigenvect6r§.e., CC"'=C'C=1),

Eqg. (B3) can be transformed into E¢B5),

(:&%)ij = (ajlj/2+ a’?) 71(;&;;&)” - (ajlj/2+ a’? 71[(R,Bz‘a)ij - ('&aRB)ij 1+1[( Rﬁ'&i& i ('&ng,g)ij ]

12, 12 -2
— (& + &

Using Eq.(B1) and Eq.(B6) for the elements of the matrir,,

(Ra)ij= (1= 6ij) (g _aii)il(;‘a)ij

1 ~ ~ 1 ~ ~
58 A (AL + 58 A AR (AL |

(6i; denotes the Kronecker deltdhe following relationships can be obtained:

(Rg;&yz)ij - (ajlj/2+ a?) _l(Rﬁ;a)ij = Ek (1- i) (&) _1(;&5)ik(ajlj/2+ a

-3 (@ al?) (1 8y) (ay—a) " H(Apu(AL));

2

x 2 (8% 8 @i ) M A ALy

and

(ajlj/2+ &%/2)71(;\aRﬁ)ij - ('Z\ngﬁ)ij 5

X (ak2+ ) "1 (A ) i(Ag)y -

1]

Substituting(B7) and (B8) into (B5) one arrives at the final formula for the second derivatives of the square-root matrix, Eq.

(B9),

(A = (32 ) (Apa)i = 2 (@ a8 @i+ 3 (A A+ (Agi(Adig) |

Provided that the matriA is symmetric, the second deriva-
tive from Eq.(B9) is symmetric with respect to the permu-
tation of parametera and 8 and the permutation of indices
i andj.
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