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Representation of the exact relativistic electronic Hamiltonian
within the regular approximation
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The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent
linear operators within the regular approximation. An effective relativistic Hamiltonian has been
obtained, which yields in lowest order directly the infinite-order regular approximation~IORA!
rather than the zeroth-order regular approximation method. Further perturbational expansion of the
exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based
on ordinary (IORAn) or double@ IORAn(2)# perturbation theory~n: order of expansion!, which
provide improved energies in atomic calculations. Energies calculated with IORA4 and IORA3~2!
are accurate up toc220. Furthermore, IORA is improved by using the IORA wave function to
calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The
outstanding performance of this new IORA method coined scaled IORA is documented in atomic
and molecular calculations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1623473#
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I. INTRODUCTION

The all-electron methods derived on the basis of
regular approximation~RA! to the exact relativistic Dirac
equation are among the most used computational tools
signed for a relativistic description of atomic and molecu
systems.1–16 The zeroth-order,1,2 first-order,2 and
infinite-order8 regular approximations~ZORA, FORA, and
IORA, respectively! as well as the expansions and modific
tions derived therefrom12,13 have proven to be very usefu
methods because they can lead to high accuracy result
molecules containing heavy atoms.

The concept of the regular approximation is based on
expansion of the exact Foldy–Wouthuysen transformatio17

of the Dirac Hamiltonian with respect to a parame
E/(2mc22V) that depends on both the energyE and the
potentialV.1,2,8 The use of a potential-dependent parame
leads to a perturbational expansion that does not posses
singularity problems typical of the standard expansion
terms of 1/c2 ~thus the name regular approximation!.1,2,8

However, prior to expansion, the exact relativistic Ham
tonian has to be brought into an energy-dependent fo
which is valid only as long as it operates on the exact re
tivistic eigenfunction.

At the lowest order in this expansion one obtains
ZORA Hamiltonian,1,2 which is bound from below3 and can
be used in~quasi!variational calculations. The ZORA eigen
values are lower than the exact relativistic energies1–3

Within the variational formalism, an improvement can
achieved8 by including the lowest order correction to th
metric, on which the relativistic wave function is normalize
This leads to the IORA method.8 ZORA and IORA are the
only ~quasi!variational methods within the regular approx
mation. Further improvement of the ZORA or IORA ener
can only be achieved perturbatively.2,8 This is not surprising,
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because, in the now standard approach to the regular
proximation, the exact relativistic Hamiltonian for electron
~positive-energy! states is represented in the energ
dependent form. The expansion of such a Hamiltonian
powers of the perturbational parameter will contain t
~power of! energy eigenvalue in all orders except the lowe

For the purpose of going beyond the ZORA and IOR
methods and of finding a way for a variational improveme
of the energy within the RA, one needs to know the exp
sion of the exact relativistic Hamiltonian in terms of line
energy-independent operators rather than energy eigen
ues. This goal cannot be achieved if one starts from
energy-dependent relativistic Hamiltonian. The energ
independent exact relativistic Hamiltonian for positive~elec-
tronic! energy states is not known in closed algebraic for
except for the trivial case of a free particle.17 The construc-
tion of an expansion of the exact Hamiltonian, only in term
of linear operators, has been attempted in ma
investigations,18–23 of which the one by Heullyet al.18 and
the one by Changet al.19 are commonly cited as the corne
stones of the RA. In both investigations, the ZORA Ham
tonian was obtained in the lowest order of the expans
~note that the terms regular approximation and ZORA w
suggested later by Baerendset al.2!. However, in these stud
ies the expansion of the exact Hamiltonian was either tr
cated at the low-order terms18 or pursued with the differen
goal of obtaining an effective relativistic Hamiltonian in th
recursive formĤeff5f(Ĥeff).19

In the present work, we report a derivation of a regu
expansion of the exact relativistic Hamiltonian for electron
states in terms of linear energy-independent operators. In
expansion, certain terms are summed up to infinite order
an expression for the effective energy-independent relati
tic Hamiltonian is derived. In the lowest order, the effecti
6 © 2003 American Institute of Physics
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11527J. Chem. Phys., Vol. 119, No. 22, 8 December 2003 Relativistic Hamiltonian
Hamiltonian thus obtained leads directly to the IORA rath
than the ZORA method. A perturbational expansion of
exact relativistic electronic energy based on the new ef
tive Hamiltonian is constructed and investigated. Formu
up to fourth order are derived, implemented in the IOR
approach, and tested for atomic calculations. Further
provements are gained by calculating with the IORA wa
function the Rayleigh quotient that, if minimized, would lea
to the exact formalism. The new quasirelativistic meth
which we shall call scaled IORA~SIORA!, is tested in
atomic and molecular calculations and is found to lead
considerable improvements in the relativistically correc
energies.

II. BASIC THEORY OF THE RELATIVISTIC
ELECTRONIC HAMILTONIAN

The Dirac equation for a single electron moving in
potentialV is given by24

ĤDc i
D5S V c~s"p!

c~s"p! V22mc2D S c i
L

c i
SD 5e i S c i

L

c i
SD . ~1!

In Eq. ~1!, s is the vector of the Pauli matricess
5(sx ,sy ,sz),

25 p52 i\¹ is the momentum operator,m is
the rest mass of electron, andc is the velocity of light. Equa-
tion ~1! describes simultaneously particle and antiparti
~i.e., electronic and positronic! states, which are, in genera
superpositions of the large-componentc i

L and the small-
componentc i

S wave functions. For the description of chem
cal systems, knowledge of electronic solutions of Eq.~1! is
sufficient and one usually proceeds with a decoupling of
two types of solutions from each other. In the most gene
case, this can be achieved with the help of a Fold
Wouthuysen~FW! transformation17 given in Eq.~2!, which,
upon applying to the Dirac HamiltonianĤD , leads17,20,21to a
partitioning into two Hermitian operatorsĤ1 and Ĥ2 for
electronic and positronic states, respectively,

ÛFWĤDÛFW
21~ÛFWc i

D!5S Ĥ1 0

0 Ĥ2
D S f i

FW

0 D5e i S f i
FW

0 D . ~2!

The unitary operatorÛFW, which carries out the FW trans
formation, has been described in many publications1,2,8,20,21

and its detailed form is not reproduced here for brevity. T
operator is parametrized in terms of another~non-Hermitian!
operatorX̂, which satisfies

c~s"p!52mc2X̂1@X̂,V#1X̂c~s"p!X̂ ~3!

and connects the large and the small components of the D
wave functionc i

D via the following:1,2,8,20,21

c i
S5X̂c i

L . ~4!

In the general case, the exact solution of Eq.~3! is not known
in a closed algebraic form and the same is true for the
eratorsÛFW and Ĥ1 . Perturbational expansions of the o
eratorsĤ1 and ÛFW suggested in the literature18,20–23 are
very complicated and one usually truncates these expans
at the lowest orders.
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It has been suggested21 that the use of a similarity trans
formation ~change of the basis set used to construct a lin
operator! carried out with the help of a non-Hermitian oper
tor ĝ,

ĝ5S 1 0

X̂ 1D , ĝ215S 1 0

2X̂ 1D , ~5!

results in simpler algebraic expressions for the transform
Dirac equation,

ĝ21ĤDĝ~ ĝ21c i
D!

5S V1c~s"p!X̂ c~s"p!

0 V2X̂c~s"p!22mc2D S c i
L

0 D
5e i S c i

L

0 D . ~6!

In Eq. ~6!, the small-component wave functionc i
S is elimi-

nated and the large-component wave function is a solutio
Eq. ~7! with the non-Hermitian effective HamiltonianL̂,
which has the positive-energy eigenvalues ofĤD as its ei-
genvalues, c i

L as its right eigenfunctions, and (c i
L)†

1(c i
S)†X̂ as its left eigenfunctions,

L̂c i
L5~V1c~s"p!X̂!c i

L5e ic i
L . ~7!

Rewriting Eq.~3! in form of Eq.~8! establishes a connectio
between the operatorX̂ and the effective HamiltonianL̂,

~2mc22V!X̂5c~s"p!2X̂V2X̂c~s"p!X̂

5c~s"p!2X̂L̂. ~8!

Considering the last term on the right-hand side of Eq.~8! as
a perturbation, a perturbational expansion of the effect
HamiltonianL̂ was obtained in Ref. 21, whereby it was dem
onstrated that to the lowest order inX̂L̂ the expansion leads
to the so-called ZORA~zeroth-order regular approximation!
Hamiltonian,ĤZORA ~see the following!. No attempts were
reported to go beyond the first order inX̂L̂, which corre-
sponds to the first-order regular approximation~FORA!.

As an alternative to the perturbational expansion one
use the iteration technique.19 This technique was used earlie
by Changet al.,19 with the primary objective to derive ex
pressions of the formĤeff5f(Ĥeff) for the effective relativis-
tic HamiltonianĤeff @see, e.g.,L̂ in Eq. ~7!#. The objective of
the present work is however to express the effective Ham
tonian L̂ in terms of simple operators such asL̂ (0) ~see the
following!, which were used in the perturbational analysis
Kutzelnigg.20,21

III. STRUCTURE OF THE EFFECTIVE
RELATIVISTIC HAMILTONIAN

OperatorsX̂ and L̂ can be represented by a set
coupled nonlinear equations,

X̂5Pc~s"p!2PX̂L̂, ~9a!

L̂5V1c~s"p!X̂, ~9b!

whereP is an abbreviation for the inverse of 2mc22V,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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P5
1

2mc22V
. ~10!

Then, starting fromX̂(0) in the following,

X̂~0!5Pc~s"p!, ~11!

one gets forL̂ (0),

L̂ ~0!5V1c~s"p!X̂~0!5V1c2~s"p!P~s"p!5ĤZORA, ~12!

which demonstrates thatL̂ (0) is identical to the~Hermitian!
ZORA HamiltonianĤZORA. SubstitutingL̂ (0) and X̂(0) into
Eq. ~9a!, one obtainsX̂(1), and fromX̂(1) one hasL̂ (1) via Eq.
~9b!, etc. In general, this iterative procedure can be written
in the following:

X̂~ l 11!5X̂~0!2PX̂~ l !L̂ ~ l !, ~13a!

L̂ ~ l 11!5L̂ ~0!2c~s"p!PX̂~ l !L̂ ~ l !, ~13b!

where the superscriptl marks the iteration step rather tha
the order of perturbation theory. Obviously, the exactL̂
should emerge atl 5`.

Fortunately, there is no need to investigateL̂ (`) to un-
ravel the structure of the effective HamiltonianL̂. The op-
t-

-
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s

erator L̂ (5) obtained after five iterations is presented in E
~A1!, where it is expressed in terms ofL̂ (0) and the operators
x̂ and x̂k defined in Eqs.~14! and ~15!, respectively,

x̂5c2~s"p!P2~s"p!5~s"p!
c2

~2mc22V!2
~s"p!, ~14!

x̂k5c2~s"p!Pk11~s"p!5~s"p!
c2

~2mc22V!k11
~s"p!. ~15!

One can conclude from Eq.~A1! that from iteration to
iteration a prefactor 12 x̂1 x̂22 x̂31¯ builds up in front of
the x̂k and L̂ (0) operators. Realizing that this prefactor sum
up to the operatorN̂21,

N̂21512 x̂1 x̂22 x̂31¯

5
1

11 x̂
5F11~s"p!

c2

~2mc22V!2
~s"p!G21

, ~16!

Eq. ~17! for the exact operatorL̂ can be inferred, where al
terms up to the fourth order inL̂ (0) are displayed. Generali
zation to fifth and higher order is straightforward albeit t
dious:
L̂5N̂21L̂ ~0!1N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!2N̂21x̂3N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!1N̂21x̂2N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!

1N̂21x̂2N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!1N̂21x̂4N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!

1N̂21x̂2N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!1N̂21x̂2N̂21L̂ ~0!N̂21x̂2N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!

1N̂21x̂2N̂21x̂2N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!1N̂21x̂2N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!

2N̂21x̂2N̂21x̂3N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!2N̂21x̂3N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!

2N̂21x̂2N̂21L̂ ~0!N̂21x̂3N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!2N̂21x̂3N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!N̂21L̂ ~0!

2N̂21x̂3N̂21L̂ ~0!N̂21L̂ ~0!N̂21x̂2N̂21L̂ ~0!N̂21L̂ ~0!1¯ . ~17!
-

i-
IV. PERTURBATIONAL TREATMENT
OF THE EFFECTIVE RELATIVISTIC HAMILTONIAN

Substituting Eq.~17! into Eq. ~7!, one has

L̂c i
L5~11N̂21Ẑ!N̂21L̂ ~0!c i

L5e ic i
L , ~18!

where the~non-Hermitian! operatorẐ ~for brevity not shown
explicitly! collects all terms after the first one on the righ
hand side of Eq.~17!. Note that the factorsN̂21 in front of
and N̂21L̂ (0) in back of each term in Eq.~17! were moved
outside of the operatorẐ. For further analysis, it is conve
nient to multiply Eq.~18! by the operatorN̂ from the left,
which leads to

~11ẐN̂21!L̂ ~0!c i
L5e i N̂c i

L . ~19!
Considering the termẐN̂21L̂ (0) as a perturbation, one ob
tains in the zeroth order Eq.~20!, which is identical to the
IORA equation@note thatL̂ (0) is identical toĤZORA andN̂ is
defined in Eq.~16!#,

L̂ ~0!c i
~0!5e i

~0!N̂c i
~0! , ~20!

wherec i
(0) denotes the IORA wave function, which approx

mates the large componentc i
L of the Dirac wave function.

By applying standard Rayleigh–Schro¨dinger perturba-
tion theory26 to Eq. ~19!, one obtains Eqs.~21! and ~22! for
the first- and second-order corrections toe i

(0) ,

e i
~1!5^c i

~0!uẐN̂21L̂ ~0!uc i
~0!&, ~21!

e i
~2!5(

kÞ i

^c i
~0!uẐN̂21L̂ ~0!uck

~0!&^ck
~0!uẐN̂21L̂ ~0!uc i

~0!&

e i
~0!2ek

~0!
.

~22!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Since the unperturbed wave functionc i
(0) is normalized on a

metric different from that used in standard Rayleigh
Schrödinger perturbation theory,26 the derivation of Eqs.~21!
and ~22! is outlined in Appendix B.

V. EVALUATION OF MATRIX ELEMENTS

For the purpose of representing the operatorẐ in matrix
form,27 we introduce a basis of~generally nonorthogonal!
functionsxm and express the wave functionsc i

(0) as

c i
~0!5(

m
xmCm i

~0! , ~23!

whereCm i
(0) denotes a set of expansion coefficients. Utilizi

the new basis, the resolution of the identity is given by27

(
m,n

uxm&Smn
21^xnu5 Î , ~24!
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
whereSmn
21 is an element of the inverse of the overlap mat

S with elementsSmn5^xmuxn&. The matrix of the inverse

operatorN̂21 is given by

^xmuN̂21uxm&5(
s,t

SmsNst
21Stn , ~25!

which follows from the operator identityN̂21N̂5 Î and
whereNst

21 denotes an element of the inverse of matrixN
with elementsNst5^xsuN̂uxt&. If one inserts the resolution
of the identity between the operators of Eq.~17! and uses Eq.

~25!, then, for the matrix representation of the operatorẐ,
Eq. ~26! will be obtained,
n
d

tains
Z5x2N21L ~0!2x3N21L ~0!N21L ~0!1x2N21x2N21L ~0!N21L ~0!1x2N21L ~0!N21x2N21L ~0!1x4N21L ~0!N21L ~0!N21L ~0!

1x2N21L ~0!N21x2N21L ~0!N21x2N21L ~0!1x2N21L ~0!N21x2N21x2N21L ~0!N21L ~0!

1x2N21x2N21L ~0!N21x2N21L ~0!N21L ~0!1x2N21x2N21L ~0!N21L ~0!N21x2N21L ~0!

2x2N21x3N21L ~0!N21L ~0!N21L ~0!2x3N21x2N21L ~0!N21L ~0!N21L ~0!2x2N21L ~0!N21x3N21L ~0!N21L ~0!

2x3N21L ~0!N21x2N21L ~0!N21L ~0!2x3N21L ~0!N21L ~0!N21x2N21L ~0!1¯, ~26!

wherexk denotes the matrix of the operatorx̂k andL (0) stands for the matrix of the operatorL̂ (0).
Equation~20! in matrix representation reads

L ~0!C~0!5NC~0!e= ~0!, ~27!

whereC(0) is the matrix composed from the column vectors of the expansion coefficientsCm i
(0) ande= (0) is the diagonal matrix

of the orbital energiese i
(0) . Just to remind, the matrixL (0) is identical to the matrixHZORA and we stick to the former notatio

merely for consistency with other formulas in the current paper. The matrixC(0) of the IORA orbital coefficients is normalize
by the following condition:

~C~0!!†NC~0!5I , ~28!

whereI is the unity matrix. From Eq.~28!, it follows that

N215C~0!~C~0!!†, ~29!

whereN21 is the inverse of the matrixN. From Eqs.~27! and ~28!, it also follows that

~C~0!!†L ~0!C~0!5e= ~0!. ~30!

Substituting Eqs.~29! and~30! into Eq. ~26! and converting the resulting equation back to the operator notation, one ob
Eq. ~31! for the matrix elements of the operatorẐN̂21L̂ (0),

^ck
~0!uẐN̂21L̂ ~0!uc i

~0!&5^ck
~0!ux̂2uc i

~0!&e i
~0!e i

~0!2^ck
~0!ux̂3uc i

~0!&e i
~0!e i

~0!e i
~0!1(

j
^ck

~0!ux̂2uc j
~0!&^c j

~0!ux̂2uc i
~0!&e i

~0!e i
~0!e i

~0!

1(
j

^ck
~0!ux̂2uc j

~0!&e j
~0!^c j

~0!ux̂2uc i
~0!&e i

~0!e i
~0!1^ck

~0!ux̂4uc i
~0!&e i

~0!e i
~0!e i

~0!e i
~0!

1(
j ,l

^ck
~0!ux̂2uc j

~0!&e j
~0!^c j

~0!ux̂2uc l
~0!&e l

~0!^c l
~0!ux̂2uc i

~0!&e i
~0!e i

~0!

1(
j ,l

^ck
~0!ux̂2uc j

~0!&e j
~0!^c j

~0!ux̂2uc l
~0!&^c l

~0!ux̂2uc i
~0!&e i

~0!e i
~0!e i

~0!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1(
j ,l

^ck
~0!ux̂2uc j

~0!&^c j
~0!ux̂2uc l

~0!&e l
~0!^c l

~0!ux̂2uc i
~0!&e i

~0!e i
~0!e i

~0!

1(
j ,l

^ck
~0!ux̂2uc j

~0!&^c j
~0!ux̂2uc l

~0!&e l
~0!e l

~0!^c l
~0!ux̂2uc i

~0!&e i
~0!e i

~0!

2(
j

^ck
~0!ux̂2uc j

~0!&^c j
~0!ux̂3uc i

~0!&e i
~0!e i

~0!e i
~0!e i

~0!2(
j

^ck
~0!ux̂3uc j

~0!&^c j
~0!ux̂2uc i

~0!&e i
~0!e i

~0!e i
~0!e i

~0!

2(
j

^ck
~0!ux̂2uc j

~0!&e j
~0!^c j

~0!ux̂3uc i
~0!&e i

~0!e i
~0!e i

~0!2(
j

^ck
~0!ux̂3uc j

~0!&e j
~0!^c j

~0!ux̂2uc i
~0!&e i

~0!e i
~0!e i

~0!

2(
j

^ck
~0!ux̂3uc j

~0!&e j
~0!e j

~0!^c j
~0!ux̂2uc i

~0!&e i
~0!e i

~0!1¯ . ~31!
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The next step requires the evaluation of integr
^c i

(0)ux̂kuc j
(0)&. Because thex̂k operators contain the potentia

V in the denominator, it may seem that these integrals ca
evaluated only by numeric quadratures. However, the us
the resolution of the following identity:

~2m!21(
m,n

u~s"p!xm&Tmn
21^~s"p!xnu5 Î , ~32!

whereT21 is the inverse of the matrix of the nonrelativist
kinetic energy operatort̂5(s"p)2/(2m), enables one to
evaluate the matrix elements of thex̂k operators analytically.
Inserting Eq.~32! between the factors 1/(2mc22V) in Eq.
~15! one arrives at Eq.~33! for the matrix of the operatorx̂k ,

xk5~2mc2!2kK ~T21K !k, ~33!

whereK is the matrix of the ZORA kinetic energy operat
K̂5(s"p)@c2/(2mc22V)#(s"p). Using the matrix repre-
sentation for operatorsx̂k one can easily calculate the inte
grals in Eq.~31! according to

^c i
~0!ux̂kuc j

~0!&5~Ci
~0!!†xkCj

~0!

5~2mc2!2k~Ci
~0!!†K ~T21K !kCj

~0! . ~34!

The algorithm for the analytic calculation of the ZORA k
netic energy matrixK was developed earlier12,13 and is rep-
resented as follows:

K5T1~W0
212T21!21, ~35!

where W0 represents the matrix of the operator (s"p)
3@V/(4m2c2)#(s"p), which can be easily calculated wit
the use of the standard nonrelativistic quantum-chem
codes. A somewhat easier way of calculating the matrixK is
based on the fact that for two symmetric matricesA andB
the following holds:

~A212B21!215B~B2A!21B2B, ~36!

which leads to Eq.~37! for the matrixK ,

K5T~T2W0!21T. ~37!

Equation~37! requires that only a single matrix is inverte
rather than three as in Eq.~35!.
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VI. EXPANSION OF THE DIRAC EIGENENERGY
IN TERMS OF THE IORA EIGENVALUES

Having developed an algorithm for calculating the m
trix elements in Eq.~31!, the first- and second-order corre
tions to the IORA energy as given in Eqs.~21! and~22! can
be calculated. Because the expression for the expecta
value of the operatorẐN̂21L̂ (0), Eq.~31!, is infinitely long, it
should be subjected to certain restrictions. An obvious w
to restrict this expression is to use all terms up to the th
order in the IORA eigenenergye i

(0) @i.e., the first four terms
in Eq. ~31!# when calculating the first-order correction~21!
alone. Indeed, according to Eq.~22!, the contributions of the
fourth order ine i

(0) will appear when calculating the correc
tion of the second order in theẐN̂21L̂ (0) operator. Thus,
there is no need to go beyond the (e i

(0))3 terms in Eq.~21!, if
one is interested in the first-order correction only. Howev
if both first- and second-order corrections are to be cal
lated, it is consistent to include the (e i

(0))4 terms into the
first-order correction~21!. This means that we effectively
switch from the expansion of the positive-energy eigenval
of the Dirac Hamiltonian with respect to theẐN̂21L̂ (0) op-
erator to the expansion with respect to the IORA eigenene
e i

(0) .
Apparently, the resulting perturbational expansion co

be designated as IORA(n), wheren denotes the order in the
IORA eigenenergye i

(0) . However, this notation has alread
been used by Dyall and van Lenthe,8 who developed a some
what different perturbational expansion of the Dirac eigen
ergy. Their work8 is based on the assumption that the ex
solution to the Dirac equation is known, which leads to t
energy-dependent algebraic expression for the operatorX̂ in
the following:

X5
c

2mc22V1e i

~s"p!. ~38!

Equation~38! is consistent with Eq.~3! as long as the opera
tor X̂ acts on the large componentc i

L of the Dirac eigenfunc-
tion, but is not valid otherwise. Note that in the present wo
no reference to the exact solution of the Dirac equation w
made. The present derivation follows directly from the alg
braic form of the non-Hermitian operatorL̂ and does not rely
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Ground state energies~in hartree! for hydrogen-like atomic ions with varying nuclear charge. All calculations employ the basis set o
Gaussian-type functions taken from Ref. 28.

Method 20a 40 60 80 100 120 92

Dirac eq.b 2201.076 523 2817.807 498 21895.682 36 23532.192 15 25939.1954 29 710.7835 24861.1980

IORAc 2201.082 194 2818.171 958 21899.900 01 23556.901 02 26042.5850 210 089.4142 24921.0993
IORA3c,d 2201.076 516 2817.806 523 21895.673 09 23532.206 01 25939.5728 29 712.0963 24861.3512
IORA4c,e 2201.076 521 2817.807 407 21895.680 67 23532.193 70 25939.3800 29 712.8699 24861.2527
IORA3~2!c,f 2201.076 522 2817.807 487 21895.681 96 23532.181 79 25939.0659 29 709.7282 24861.1475
SIORA3/2c,g 2201.076 522 2817.807 654 21895.684 33 23532.192 20 25939.1129 29 710.3178 24861.1699

IORA~3!h 24859.9034
TIORAh 24861.1475

DKH2i 2201.072 538 2817.615 772 21893.897 64 23523.324 84 25906.1918 29 594.0960
DKH3i 2201.076 660 2817.820 110 21895.844 04 23533.119 56 25942.3694 29 712.9311
DKH5i 2201.076 523 2817.808 095 21895.702 82 23532.461 47 25941.5285 29 730.9684

DPT~1!j 25665.6420
DPT~2!j 25842.8737
DPT~8!j 25938.5990
DPT~10!j 25939.0651
DPT~11!j 25939.1336

aNuclear charge.
bAnalytic results from the Dirac equation.
cCalculated in this work with the basis set of 50 primitive Gaussian functions from Ref. 28.
dEquation~39! in this work.
eEquation~40! in this work.
fEquation~45! in this work.
gEquation~47! in this work.
hNumeric results from Ref. 8.
iFrom Ref. 28. DKHn stands for the Douglas–Kroll–Hess method ofnth order.
jAnalytic results from Ref. 29. DPT(n) stands for the direct perturbation theory accurate through 1/c2n.
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on Eq.~38!. For the purpose of making a distinction betwe
the present work and the earlier work of Dyall and v
Lenthe,8 the alternative notation IORAn is used to denote the
nth order expansion of the Dirac eigenenergy in terms of
IORA eigenenergies.

Thus, the IORA3 energy is given in the following:

e i
IORA35e i

~0!1^c i
~0!ux̂2uc i

~0!&e i
~0!e i

~0!

2^c i
~0!ux̂3uc i

~0!&e i
~0!e i

~0!e i
~0!

1(
j

^c i
~0!ux̂2uc j

~0!&^c j
~0!ux̂2uc i

~0!&e i
~0!e i

~0!e i
~0!

1(
j

^c i
~0!ux̂2uc j

~0!&e j
~0!^c j

~0!ux̂2uc i
~0!&e i

~0!e i
~0!.

~39!

Along with these terms, the IORA4 energy, Eq.~40!, in-
cludes the (e i

(0))4 terms into the first-order correction~21!
@see Eq.~31!—note that the indexk now must be replaced
with i# and the contribution of the fourth order ine i

(0) from
Eq. ~22!,

e i
IORA45e i

IORA31$fourth-order terms from Eq.~31!%

1(
kÞ i

^c i
~0!ux̂2uck

~0!&ek
~0!ek

~0!^ck
~0!ux̂2uc i

~0!&

e i
~0!2ek

~0!
e i

~0!e i
~0! .

~40!

Numeric accuracy of these approximations is tested
the calculation of the ground state energy of a number
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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hydrogen-like atomic ions presented in Table I. In these c
culations, the basis set of 50 primitives-type Gaussian func-
tions taken from work of Wolfet al.28 is employed. Since we
are interested in the ground states of one-electron atoms
which the spin–orbit interaction does not play any role, t
latter was neglected in the calculations. The results of
present work are compared in Table I with the results
other investigations reported in the literature.

In general, for all hydrogen-like ions considered, t
IORA3 and IORA4 approximations show fast convergen
to the Dirac energy and are superior to the Douglas–Kro
Hess~DKH! method28,30,31up to the fifth order~the highest
order of the DKH theory reported in the literature!. This is
especially pronounced for ions with highZ. The last five
lines in Table I list the results from a direct perturbatio
theory ~DPT!29,32 calculation of the hydrogen-like fermium
(Z5100) taken from the work of Rutkowskiet al.29 The
comparison reveals that the IORA3 and IORA4 approxim
tions achieve the same or even better accuracy as the DP~8!
calculation exact through 1c216. The only difference with
DPT is that the latter converges to the exact Dirac eigenva
from above, whereas the IORAn approximations converge
from below.

A separate entry was made for hydrogen-like urani
ion for the purpose of a comparison with the earlier work
Dyall and van Lenthe,8 who used the alternative approach
a perturbational improvement of the IORA eigenenergy. T
IORA3 approximation, which is analogous to the IORA~3!
method reported by Dyall and van Lenthe,8 is clearly supe-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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rior to the latter. However, it does not reach the accuracy
the so-called TIORA method,8 which is approximately cor-
rect to third order ine i

(0)5e i
IORA and combines the IORA~3!

energy with certain contributions from the fourth-ord
IORA~4! approximation. Although TIORA is only an ap
proximation within the Dyall and van Lenthe approach,8 it
will be shown in the following that this method follows natu
rally from an alternative formulation of relativistic perturb
tion theory based on the effective HamiltonianL̂, Eq. ~17!.

VII. DOUBLE PERTURBATION THEORY
WITH AN EFFECTIVE HERMITIAN HAMILTONIAN

The operatorL̂ obtained with the help of similarity trans
formation~5! is non-Hermitian. Using Eqs.~4!, ~7!, and~8!,
it is possible to show21 that the large componentc i

L of the
Dirac wave functionc i

D satisfies

1
2@~11X̂†X̂!L̂1L̂†~11X̂†X̂!#c i

L5e i~11X̂†X̂!c i
L . ~41!

In Eq. ~41!, the operator in square brackets on the left-ha
side is Hermitian. However, the transformation to a Herm
ian form comes at the price of an explicit dependence on
relativistic normalization operator 11X̂†X̂. Contrary to the
linear operatorL̂, this operator is quadratic inX̂ and, conse-
quently, it has a more complicated structure thanL̂. How-
ever, up to terms quadratic inL̂ (0), the algebraic expressio
for this operator is still simple,

11X̂†X̂511~X̂~0!!†X̂~0!2 x̂2N̂21L̂ ~0!2L̂ ~0!N̂21x̂2

1L̂ ~0!N̂21x̂3N̂21L̂ ~0!1¯ . ~42!

Because our primary goal is to expand the exact relativi
energye i in terms of the IORA eigenenergiese i

(0) , Eq. ~42!
can be used for the expansion correct at least through t
order ine i

(0) .
We rewrite the operators in Eq.~41! according to

L̂5N̂21~ L̂ ~0!1ẐN̂21L̂ ~0!!5N̂21~ L̂ ~0!1L̂ ~1!!, ~43a!

11X̂†X̂5N̂1N̂~1!, ~43b!

whereN̂511(X̂(0))†X̂(0) is the IORA normalization opera
tor @see Eq.~16!# and the operatorẐ is defined in Eq.~18!,
Furthermore, we considerN̂(1) and L̂ (1) as perturbations to
the normalization operator of the wave function and to
Hamiltonian, respectively. Then, in the zeroth order
double perturbation theory~see Appendix C!, the IORA
equation~20! emerges. The correction to the IORA energ
which combines linear and bilinear terms in the perturbat
expansion, is given in Eq.~C11!. The reason why the bilinea
term e i

(11) , Eq. ~C8!, is included is that it contains the con
tributions of the third order ine i

(0) . The higher-order correc
tions such ase i

(20) , e i
(02) , etc., depend on the perturbed wa

function and, as is obvious from Eq.~C13!, make contribu-
tions of at least fourth order ine i

(0) . The same is true for the
last two terms in Eq.~C11! @see also Eq.~C14!#. Thus, these
terms can be neglected in the derivation of a third-order
ergy correction.

Using Eq.~29! for the operatorN̂21, Eq.~C11! ~with the
last two terms omitted! can be rewritten as in the following
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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e i
IORA3~2!5e i

~0!1 1
2 ^c i

~0!uL̂ ~1!1~ L̂ ~1!!†uc i
~0!&

1 1
2 (

kÞ i
^c i

~0!uN̂~1!uck
~0!&^ck

~0!uL̂ ~1!uc i
~0!&

1 1
2 (

kÞ i
^c i

~0!u~ L̂ ~1!!†uck
~0!&^ck

~0!uN̂~1!uc i
~0!&,

~44!

where the notation IORAn(2) means that the energy corre
throughnth order ine i

(0) is obtained from double perturba
tion theory. For consistency with previous derivations,c i

(00)

ande i
(00) are replaced byc i

(0) ande i
(0) . Note, that the zeroth-

order wave function and energy are identical in both pert
bation theories, i.e.,c i

(00)[c i
(0) ande i

(00)[e i
(0) . The sum of

the first two terms on the right-hand side of Eq.~44! is ex-
actly equivalent to the IORA3 energy. As for the last tw
terms in Eq.~44!, only the contributions intoL̂ (1), which are
quadratic inL̂ (0), i.e., the second term on the right-hand si
of Eq. ~17!, and the contributions intoN̂(1), which are linear
in L̂ (0), i.e., the third and fourth terms on the right-hand si
of Eq. ~42!, should be used. Upon substituting them into E
~44! one obtains

e i
IORA3~2!

5e i
IORA32(

kÞ i
^c i

~0!ux̂2uck
~0!&^ck

~0!ux̂2uc i
~0!&e i

~0!e i
~0!e i

~0!

2(
kÞ i

^c i
~0!ux̂2uck

~0!&ek
~0!^ck

~0!ux̂2uc i
~0!&e i

~0!e i
~0!

5e i
~0!1^c i

~0!ux̂2uc i
~0!&e i

~0!e i
~0!

2^c i
~0!ux̂3uc i

~0!&e i
~0!e i

~0!e i
~0!

12^c i
~0!ux̂2uc i

~0!&^c i
~0!ux̂2uc i

~0!&e i
~0!e i

~0!e i
~0! , ~45!

which is exactly equivalent to the TIORA energy defined
Eq. ~45! of Ref. 8. Note, that thex̂k operators defined in Eq
~15! are connected with theĜk operators used by Dyall an
van Lenthe:8

x̂k5
Ĝk

~2mc2!k
. ~46!

Thus, with the use of double perturbation theory the equi
lence between the IORA3~2! and the TIORA approaches i
demonstrated. TIORA is not a method approximately corr
to third order ine i

(0) , as was originally claimed,8 but is the
exact third-order method when corrections to both the re
tivistic wave function metric and the relativistic Hamiltonia
are incorporated.

The results of the IORA3~2! calculations for hydrogen-
like atomic ions are presented in Table I. Although IORA3~2!
is formally correct only to order (e i

(0)/(2mc2))3, this method
yields results of a considerably higher accuracy than co
have been expected for a method correct toc26. In fact, the
IORA3~2! results are as accurate as the DPT~10! results, i.e.,
a method correct to orderc220.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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VIII. SCALED IORA METHOD

Although it seems tempting to use Eq.~41! together with
the expressions for the operatorsL̂, Eq. ~17!, and 11X̂†X̂,
Eq. ~42!, in variational calculations, a caveat against such
idea is appropriate. Indeed, the expressions for these op
tors result from a sign-alternating series inL̂ (0). Because the
matrix elements of the operatorsx̂k are inversely propor-
tional to (2mc2)2k @see Eq.~46!#, these series will converg
if all eigenvalues of theL̂ (0) Hamiltonian are in absolute
magnitude smaller than 2mc2. For a Coulomb potentia
~with Z,c), the effective HamiltonianL̂ (0) does not posses
bound eigenvalues lower than22mc2. However, it may
possess unbound eigenvalues larger than 2mc2. For these
high-lying unbound energy levels, the truncated expressi
such as Eqs.~17! and~42!, are divergent and yield meaning
less results. For instance, when trying to solve Eq.~41! with
the truncated operatorsL̂ and 11X̂†X̂ variationally, spurious
roots much lower than22mc2 are obtained, which indicate
a variational collapse. These roots can be eliminated
reasonable energies can be obtained, if all positive IO
eigenvalues larger than 2mc2 are omitted, when calculating
the matrix elements of theL̂ and 11X̂†X̂ operators. Evi-
dently, this is not convenient for practical calculations w
Eq. ~41!.

For states in the energy interval@22mc2,2mc2#, the use
of the truncated expressions does not pose any danger
the improved energy values can be obtained from the R
leigh quotient~47! with the IORA wave function,

e i
SIORAn/m5

1
2 ^c i

~0!u~11X̂†X̂!L̂1L̂†~11X̂†X̂!uc i
~0!&

^c i
~0!u11X̂†X̂uc i

~0!&
.

~47!

Note that minimization of this quotient with respect to t
wave function leads to the exact relativistic equation~41!.

The namescaledIORA ~SIORA! is suggested for this
approach, because it is based on the use of the Rayl
quotient with an approximate wave function, which is simi
to what was done in the scaled ZORA method.2 However, the
scaled ZORA method uses the Rayleigh quotient obtai
from the IORA equation~20!,8 which does not lead to the
exact relativistic equation upon variation of the trial wa
function. The SIORA method, on the contrary, employs
Rayleigh quotient which leads to the exact relativistic eq
tion for the large-component wave function, Eq.~41!.

Since the operatorsL̂ and 11X̂†X̂ are obtained from a
truncated expansion valid through a finite order inL̂ (0), two
additional indicesn and m are used to designate the scal
IORA method: the first indicates that the effective Ham
tonianL̂ is correct tonth order and the second belongs to t
normalization operator 11X̂†X̂. Combination of the third-
order expression forL̂ with Eq. ~42! furnishes the SIORA3/2
method. This method is computationally as simple
IORA3~2! ~or TIORA!, however it leads to somewhat mo
accurate results, especially for heavy atoms~see Table I!.
Whereas IORA3~2! produces for hydrogen-like fermium
(Z5100) results of the same quality as DPT~10!, the
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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SIORA3/2 value is closer to the DPT~11!, i.e., the energy is
accurate toc222.

Although the scaled ZORA method yields for a on
electron atom exactly the Dirac eigenvalues,2 it employs the
ZORA wave function, which is quite inaccurate for the low
est atomic energy levels.2,7,8 The SIORA method uses th
IORA wave function, which is much more accurate, esp
cially in the core regions of atoms.8 For instance, the relative
absolute error in the expectation values of the operatorsrn

calculated with the ZORA wave function for the hydroge
like uranium ion reaches 12% forr and more than 40% for
r22.8 With the use of the IORA wave function, the error
reduced to just 3% in the case of the^r22& value for the 1s
orbital of U911.8 As for the orbital radiî r &, the relative error
for the 1s orbital of U911 is only 1.3%,8 which is comparable
to the errors obtained in the DKH2 calculation for the mu
lighter bromine.31 For other orbitals, the relative errors are
the range of 0.01% and less.8 Thus, the SIORA method com
bines a very accurate quasirelativistic wave function with
improved energy estimate.

For practical purposes, the SIORA equation can be w
ten in exactly the same algebraic form as the IORA equa
~20!, however, following the Hamiltonian:

ĤSIORAn/m5 (
k

ek
~0!

,2mc2

uck
~0!&ek

SIORAn/m^ck
~0!u

1 (
k

ek
~0!>2mc2

uck
~0!&ek

~0!^ck
~0!u, ~48!

where the summation with respect to the IORA eigenstate
split into two intervalsek

(0),2mc2 and ek
(0)>2mc2 for the

reason described at the beginning of this section. Obviou
Eq. ~20! with the Hamiltonian~48! yields the IORA eigen-
functionsc i

(0) and the SIORAn/m eigenenergies. In matrix
form, Eq. ~48! transforms to

HSIORAn/m5NC~0!z= e= ~0!~C~0!!†N, ~49!

where z= is the diagonal matrix of the scaling coefficien
defined in the following:

zk5H ek
SIORAn/m/ek

~0! , ek
~0!,2mc2

1, ek
~0!>2mc2.

~50!

IX. IMPLEMENTATION OF IORA n AND SIORAn Õm

The formalism developed in the previous sections
plies to one-electron systems. In case of many-electron
tems, the electron–electron repulsion potential should be
cluded into the Dirac equation. Even in the simplest case
pure Coulomb repulsion 1/r i j , which is not Lorentz-
invariant, the subsequent transformations of the Di
Hamiltonian, which lead to the effective HamiltonianL̂, be-
come very complicated. However, if one assumes that
electron–electron repulsion operator commutes with the
erator X̂, Eqs. ~3! and ~4!, then this operator will become
independent of the electron–electron repulsion potential@see
Eq. ~3!# and the relativistic transformations will include on
the electron-nuclear attraction potential. This assumpt
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 25 Ja
TABLE II. Orbital energies for the xenon atom. Calculations employ the uncontracted relativistic basis se
Ref. 36.

Orbital Dirac–Focka ZORAb Scaled ZORAa IORAb SIORA3/2b

1s 21277.2511 21338.8489 21275.5423 21278.8691 21276.6454
2s 2202.4603 2205.6187 2202.2547 2202.4880 2202.4516
2p 2181.6912 2184.1154 2181.5901 2181.5652 2181.5313
3s 243.0057 243.4147 242.9673 243.0148 243.0119
3p 236.0988 236.3625 236.0811 236.0818 236.0790
3d 225.7266 225.8598 225.7232 225.7330 225.7306
4s 28.4255 28.4889 28.4185 28.4283 28.4279
4p 26.1350 26.1644 26.1320 26.1321 26.1318
4d 22.6604 22.6608 22.6608 22.6613 22.6610
5s 21.0070 21.0129 21.0061 21.0073 21.0072
5p 20.4541 20.4544 20.4537 20.4535 20.4534

aTaken from Ref. 9.
bThis work.
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known under the name of the one-electron (1ē)
approximation,33 is used in many quasirelativistic comput
tional schemes.12–16,19,28,31,33In comparison with the exac
formalism, the 1ē approximation neglects terms which in
clude the commutator@1/r i j ,X̂#, i.e., terms of the same orde
of magnitude as the electron–electron spin–or
interaction.33 As it has been demonstrated in many investig
tions that33–35the neglect of these terms leads to small err
in the total energy, which do not have any chemical sign
cance.

In our previous studies,12–16we have applied the 1ē ap-
proximation to the IORA and the IORA with modified metr
~IORAmm! methods and details of the implementation c
be found there. The major advantage of the 1ē approxima-
tion is that it can be easily installed in any existing nonre
tivistic quantum-chemical program. Within the 1ē approxi-
mation, the nonrelativistic one-electron Hamiltonian sho
be replaced by the quasirelativistic one-electron Ham
tonian, which is renormalized on the nonrelativistic~unit!
metric. The renormalization is simple and straightforwa
Because the IORA wave function is normalized with resp
to the operatorN̂, the renormalization of the one-electro
Hamiltonian is achieved by

renĤ1ē
SIORAn/m5N̂21/2Ĥ1ē

SIORAn/mN̂21/2, ~51!

where Ĥ1ē
SIORAn/m is the SIORA Hamiltonian in the 1ē ap-

proximation. In matrix form, Eq.~51! translates to

renH1ē
SIORAn/m5S1/2N21/2H1ē

SIORAn/mN21/2S1/2, ~52!

where S is the overlap matrix. In order to construct th
H1ē

SIORAn/m matrix, one needs first to solve the one-electr
~matrix! IORA equation ~27! with the Hamiltonian L (0)

which includes the electron-nuclear attraction potentialVn

only, i.e.,

L ~0!5Vn1T~T2W0!21T, ~53!

whereVn is the matrix of the electron-nuclear attraction i
tegrals and the matrixW0 is calculated using the electron
nuclear attraction potentialVn . In the present work, the spin
dependent relativistic effects are neglected and only
scalar-relativistic~spin-independent! effects are taken explic
n 2005 to 129.16.100.69. Redistribution subject to AIP
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itly into account. This is achieved by replacing the~s"p!
operator with the linear momentum operatorp only, when
calculating the matrix elements ofW0 ,

~W0!mn5
1

4m2c2
^xmupVn"puxn&. ~54!

Thus, to construct therenH1ē
SIORAn/m Hamiltonian one

needs first to solve Eq.~27! with the Hamiltonian~53!,
which is achieved by a simple diagonalization. Having o
tained the eigenvectorsC(0) and the eigenvaluese (0), one
constructs the renormalized SIORAn/m Hamiltonian accord-
ing to

renH1ē
SIORAn/m5S1/2N1/2C~0!z= e= ~0!~C~0!!†N1/2S1/2, ~55!

where the scaling factorsz are given in Eq.~50! for the
SIORA3/2 method. The renormalized SIORA Hamiltonia
then replaces the one-electron Hamiltonian of the nonrela
istic Hartree–Fock method. Because the modification c
cerns only the one-electron Hamiltonian, the same progra
which are designed for nonrelativistic correlated calcu
tions, can be used for quasirelativistic SIORA calculations
the correlated level.

The IORAn (n52,3,4), IORAn(m) (n52,3,4, m52),
and SIORAn/m (n52,3, m51,2) methods were pro
grammed and implemented into theCOLOGNE 2003suite of
quantum-chemical programs.36 The implementation require
only the modification of the one-electron Hamiltonian, whi
has been described in the current section.

X. RESULTS AND DISCUSSION

The application of IORAn and IORAn(2) to one-
electron atomic ions has already been described in the
vious sections and is not repeated here. In the following
focus will be predominantly on SIORA3/2 because th
method provides the best results for one-electron io
SIORA3/2 is applied inab initio calculations on many-
electron atoms and molecules using both Hartree–Fock
second-order Møller–Plesset perturbation theory.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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A. Atomic calculations

Table II lists the orbital energies for the xenon ato
calculated in this work with the ZORA, IORA, an
SIORA3/2 methods as well as the results of the Dirac–F
and scaled ZORA calculations performed by Faaset al.9 All
calculations reported in Table II employed the uncontrac
(19s15p9d) relativistic basis set developed by Dyall.37 Al-
though xenon is a relatively light element (Z554), the rela-
tivistic effects on the orbital energies are significant:;50
hartree for the 1s orbital and ;0.06 hartree for the 5s
orbital.9 This element was chosen for an analysis of the p
formance of the methods developed in this work beca
results of the Dirac–Fock and some quasirelativistic calcu
tions on Xe performed with a well-specified basis set
available in the literature. This facilitates significantly th
comparison of the results obtained in the present work w
the results of other quasirelativistic investigations.

The ZORA and IORA methods exaggerate the relativ
tic effects on the orbital energies, where this feature is w
documented in the literature.1,2,7–13The SIORA orbital ener-
gies are in very good agreement with the Dirac–Fock valu
Although for one-electron atoms the scaled ZORA meth
yields exact energies,2,3 for a many-electron atom such a
xenon, this method is inferior to SIORA. This is a cle
manifestation of the improved quality of the IORA wav
function as compared to the ZORA one. Better description
the electron density achieved with the use of the IORA wa
function results in a better description of the electro
electron interaction. This is especially pronounced in
deep core region, where the SIORA3/2 method reduces m
than twice the error made by scaled ZORA.

B. Gauge dependence

In the molecular calculations, an important disadvanta
of the IORA and other methods based on the regular appr
mation ~ZORA, etc.! is the erroneous gauge dependence
the energy eigenvalues.2,8,12,13If a constant shift is added to
the potentialV, then the eigenvalues of the Hamiltonia
should be shifted by exactly the same amount of energy. T
feature is known as thegauge invarianceand it means
merely that it is the difference of potentials rather than
potential itself, which counts in physical events.

The gauge shift error~GSE! of ZORA is of the order of
E/(2mc2),2,8 i.e., when the potential is shifted by an amou
D, the shift in the ZORA energy exceedsD by a small but
non-negligible amount. The gauge shiftD plays an important
role in molecular calculations for the core electrons, beca
for a given nucleus, they experience the tails of the potent
of the neighboring nuclei, which means a shift in the pote
tial seen by these electrons byD. The closer the nuclei are
brought together, the larger is the shift generated by o
nuclei at the position of the given nucleus. Because of
gauge noninvariance, the ZORA energy decreases faster
it should, which results in the appearance of nonphys
~attractive! forces between nuclei and in a distortion
the molecular geometry. Although the IORA method h
considerably weaker gauge dependence, of the orde
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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(E/(2mc2))2,8 for heavy nuclei the GSE still can reach co
siderable values.12,13

The use of the scaled IORA formalism reduces grea
the gauge dependence of the IORA method making the G
proportional to (E/(2mc2))4. This is illustrated in Table III,
where the results of calculations of the gauge shift errorE0

2ED1D performed with various methods for noble gas
oms He through Xe are displayed. The negative constanD,
added to the nuclear potential, is chosen in such a way
the nonrelativistic total atomic energy is shifted by2100
hartree units. The SIORA3/2 method causes a GSE, whic
almost two orders of magnitude smaller than that of
IORA method. Although for a one-electron atom the sca
ZORA method is gauge invariant~i.e., zero GSE!,2,3 for
many-electron atoms this method is not gauge-invaria11

and leads to errors almost an order of magnitude larger t
SIORA3/2.

C. Molecular calculations

The results of calculations of diatomic, the gold ato
containing molecules, AuH, AuF, and Au2 are collected in
Table IV. The calculations employed the contract
@14s10p9d3 f # basis set on gold used in our earlier work13

and the augmented correlation consistent double-zeta b
set of Dunning~aug-cc-pVDZ!39 for the light elements. The
calculations were carried out at the Hartree–Fock level
at the level of the second-order Møller–Plesset~MP2! per-
turbation theory.40 In the MP2 calculations, all valence elec
trons of light atoms and the 5s, 4f , 5p, 5d, and 6s electrons
~33 electrons in total! of the gold atom were correlated. Th
optimized molecular geometries and the harmonic vib
tional frequencies are obtained numerically. No correct
for the gauge dependence was made during the geom
optimization. However, the dissociation energies are c
rected for gauge noninvariance, by subtracting the GSE
individual atoms from the total molecular energy.12,13

Comparison of the results of IORA and SIORA3/2 ca
culations with the available theoretical and experimental d
shows that the IORA method clearly suffers from the gau
dependence problem. Since no correction for the gauge
pendence was used during the geometry optimization,
bond lengths obtained with IORA are markedly shorter th
the reference values. However, as long as this distortion
mains modest, the dissociation energy, which is corrected

TABLE III. Gauge shift errorE0
method2ED

method1D ~in hartree units! in the
ground state energy of noble gas atoms for different methods. The g
shift D is chosen such that the total nonrelativistic energy is shifted
exactly 2100 hartrees. Calculations employ the TZV basis set of Ahlric
and May~Ref. 38! unless noted otherwise.

Atom ZORAa Scaled ZORAb IORAa SIORA3/2a

He 0.003 803 0.000 000 5 0.000 006 20.000 002
Ne 0.034 280 0.000 016 0.000 084 20.000 010
Ar 0.077 076 20.000 18 0.000 464 20.000 010
Kr 0.199 988 20.001 8 0.003 781 20.000 107
Xe 0.375 149c 20.006 0.014 135c 20.000 479c

aThis work.
bTaken from Ref. 11.
cCalculations employ the uncontracted relativistic basis set from Ref. 3
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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GSE, is reasonable. For the gold dimer, the IORA meth
predicts an unrealistic geometry with the bond length be
almost half of an angstrom shorter than the experime
value. As a consequence of this distortion, the GSE ca
lated at this geometry is so large that it exceeds the bind
energy, thus yielding the negative values forDe ~see Table
IV !.

For all molecules in Table IV, the SIORA3/2 metho
leads to results in very good agreement with the refere
theoretical and experimental data. The weak gauge de
dence does not have a visible effect on the optimized m
lecular geometries and the vibrational frequencies. Even
the gold dimer, the Au–Au bond length of 2.490 Å, obtain
in the SIORA3/2/MP2 calculation, is in excellent agreeme
with the experimental value of 2.472 Å.

XI. CONCLUSIONS

The following conclusions can be drawn from th
present work:

~i! The exact relativistic Hamiltonian for electron
~positive-energy! states was expanded in terms of line
energy-independent operators. The advantage of the reg
Hamiltonian operatorL̂ (0)5ĤZORA and the operatorsN̂ and
x̂k used in expansion~17! is that they are bound from below
and do not contain the singularities typical for the operat
obtained in the standard 1/c2 expansion, even in the case
a singular potential such as the potential of a point-cha

TABLE IV. Spectroscopic parameters of gold diatomic molecules.

Method Re (Å) ve (cm21) De (eV)

AuH
IORA/SCF 1.553 2178 1.76
SIORA3/2/SCF 1.566 2131 1.76
DHFa 1.570 2067 1.78
IORA/MP2 1.476 2597 3.24
SIORA3/2/MP2 1.485 2568 3.24
DHF/MP2a 1.485 2504 3.21
Expt.b 1.524 2305 3.36

AuF
IORA/SCF 1.918 597 1.09
SIORA3/2/SCF 1.978 522 1.11
DHFc 1.968 528
IORA/MP2 1.856 655 3.24
SIORA3/2/MP2 1.908 589 3.26
DHF/MP2c 1.899 590
Expt. 1.918d 560e 3.20f

Au2

IORA/SCF 2.070 513 23.27
SIORA3/2/SCF 2.655 148 0.83
IORA/MP2 2.015 473 20.33
SIORA3/2/MP2 2.490 184 2.52
Expt.b 2.472 191 2.29

aTaken from Ref. 41.
bExperimental data taken from Ref. 42 unless noted otherwise.
cTaken from Ref. 43.
dTaken from Ref. 44.
eTaken from Ref. 45.
fTaken from Ref. 46.
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nucleus. Thus, the expansion obtained can be considere
the regular expansion for the effective relativistic Ham
tonian.

In previous development work, Changet al.19 derived
the effective Hamiltonian in the recursive formĤeff

5f(Ĥeff), which is suitable for an iterative numeric solutio
Such an approach is not well suited for an implementat
within standard quantum-chemical codes. Indeed, the ca
lation of the effective Hamiltonian depends on the conv
gence features of the iteration process. In the present w
we avoid a recursive formulation of the effective relativis
Hamiltonian and express the latter directly in terms
energy-independent linear operators. Such an expressio
suitable for a one-step calculation of the effective Ham
tonian in actual quantum-chemical calculations.

~ii ! The effective relativistic Hamiltonian obtained
used for the construction of a perturbational expansion of
exact relativistic electronic energy. An ordinary perturb
tional expansion based just on the effective non-Hermit
HamiltonianL̂ as well as a double perturbational expansio
which employs the symmetrized effective Hamiltonian t
gether with the normalization operator, 11X̂†X̂, of the rela-
tivistic wave function are constructed. Both theories, IORAn
and IORAn(2), lead in zeroth order to the IORA method
Thus, it is IORA rather than ZORA, which is the true zerot
order approach of the regular perturbation theory of rela
istic effects.

The higher-order corrections to the IORA energy with
both perturbation expansions converge rapidly to the ex
relativistic energy for electronic states. Already the thir
order perturbational expansion IORA3 outperforms in ac
racy the popular Douglas–Kroll–Hess method, even wh
the latter is taken up to fifth order. The third-order express
obtained from double perturbation theory, IORA3~2!, offers
even better accuracy. In calculations on hydrogen-like ato
ions, IORA3~2! leads to the same level of accuracy as dir
perturbation theory correct through orderc220.

~iii ! At the moment, the perspective of using the tru
cated expansion for the effective relativistic HamiltonianL̂
~and the wave function normalization operator 11X̂†X̂) war-
rants further study. However, these expressions can be
for nonvariational calculations of the relativistic energy fro
the Rayleigh quotient. The use of the IORA wave function
the Rayleigh quotient~47! leads to the scaled IORA
~SIORA! method. SIORA, although conceptually similar
the scaled ZORA approach, differs from the latter in tw
ways: ~a! The IORA wave function provides a much bett
approximation to the exact relativistic wave function.~b! The
Rayleigh quotient~47! used in SIORA leads to the exac
relativistic equation~41!; however, the Rayleigh quotien
used in the scaled ZORA method leads to the IORA equa
~20!. In calculations on hydrogen-like atomic ions, th
SIORA3/2 method reaches the same level of accuracy
direct perturbation theory correct through orderc222.

~iv! The matrix form of the new methods was present
because this can be easily incorporated into the exis
quantum-chemical programs designed for nonrelativistic c
culations. The atomic and molecular calculations perform
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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in the present work with the SIORA3/2 method as imp
mented in theCOLOGNE 2003suite of quantum-chemical pro
grams, demonstrate that the new approach provides a co
erable improvement over the results from both IORA a
scaled ZORA calculations. The combination of an improv
energy estimate with an accurate quasirelativistic wave fu
tion is crucial for obtaining reliable descriptions of atom
and molecular properties, especially those which depend
the core electrons. Indeed, properties such as the nu
magnetic shielding tensor, dipole and quadrupole scree
factors, the electric polarizability, etc., can be obtained
differentiation of the energy with respect to external pert
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
-

id-
d
d
c-

on
ar

ng
y
-

bations. The improved energy functional will then accou
for a better description of the energy spectrum, whereas
improved wave function will lead to a better description
the coupling to the external fields.
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APPENDIX A: COMPLETE ALGEBRAIC EXPRESSION FOR THE EFFECTIVE RELATIVISTIC HAMILTONIAN

The operatorL̂ (5), obtained after five consecutive iterations according to Eq.~13!, reads

L̂ ~5!5~12 x̂1 x̂22 x̂31 x̂42 x̂5!L̂ ~0!1 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!2 x̂x̂2~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂2

2 x̂3!L̂ ~0!1 x̂2x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!2 x̂3x̂2L̂ ~0!~12 x̂!L̂ ~0!2 x̂3~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!~12 x̂

1 x̂22 x̂31 x̂4!L̂ ~0!1 x̂x̂3~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!2 x̂2x̂3L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!

1 x̂2x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!2 x̂x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!2 x̂2x̂x̂2L̂ ~0!

3~12 x̂!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!1 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂2~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!2 x̂x̂2~12 x̂

1 x̂2!L̂ ~0!x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!2 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!1 x̂x̂2~12 x̂

1 x̂2!L̂ ~0!x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!1 x̂2x̂2~12 x̂!L̂ ~0!x̂2L̂ ~0!~12 x̂!L̂ ~0!1 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!1 x̂4~1

2 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!2 x̂x̂4L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!~12 x̂

1 x̂22 x̂3!L̂ ~0!1 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂2~12 x̂1 x̂2!L̂ ~0!x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!2 x̂x̂2~12 x̂1 x̂2!L̂ ~0!x̂2~1

2 x̂!L̂ ~0!x̂2L̂ ~0!~12 x̂!L̂ ~0!2 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂x̂2~12 x̂!L̂ ~0!x̂2L̂ ~0!~12 x̂!L̂ ~0!2 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂2~12 x̂

1 x̂2!L̂ ~0!x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!1 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!1 x̂2x̂2~1

2 x̂!L̂ ~0!x̂2L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!1 x̂2x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!x̂2~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂2

2 x̂3!L̂ ~0!2 x̂x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!2 x̂2x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!x̂2~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂2

2 x̂3!L̂ ~0!2 x̂2x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!x̂x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!1 x̂x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!

1 x̂2x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!x̂x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!1 x̂2x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!

2 x̂2x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!2 x̂2x̂3L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!

2 x̂3x̂2L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!~12 x̂1 x̂22 x̂31 x̂4!L̂ ~0!2 x̂2~12 x̂1 x̂22 x̂3!L̂ ~0!x̂3~12 x̂!L̂ ~0!~12 x̂

1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!1 x̂x̂2~12 x̂1 x̂2!L̂ ~0!x̂3L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!1 x̂2~12 x̂1 x̂2

2 x̂3!L̂ ~0!x̂x̂3L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!2 x̂3~12 x̂1 x̂2!L̂ ~0!x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3

1 x̂4!L̂ ~0!1 x̂x̂3~12 x̂!L̂ ~0!x̂2L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!1 x̂3~12 x̂1 x̂2!L̂ ~0!x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!~12 x̂1 x̂2

2 x̂31 x̂4!L̂ ~0!2 x̂3~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!x̂2~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!1 x̂x̂3~12 x̂!L̂ ~0!~12 x̂

1 x̂2!L̂ ~0!x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!1 x̂3~12 x̂1 x̂2!L̂ ~0!~12 x̂1 x̂22 x̂3!L̂ ~0!x̂x̂2~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!

2 x̂x̂3~12 x̂!L̂ ~0!~12 x̂1 x̂2!L̂ ~0!x̂x̂2L̂ ~0!~12 x̂!L̂ ~0!2 x̂2x̂3L̂ ~0!~12 x̂!L̂ ~0!x̂2L̂ ~0!~12 x̂!L̂ ~0!2 x̂3~12 x̂1 x̂2!L̂ ~0!~1

2 x̂1 x̂22 x̂3!L̂ ~0!x̂2x̂2L̂ ~0!~12 x̂!L̂ ~0!1¯, ~A1!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where all terms up to the fourth order inL̂ (0) are shown. One
can anticipate that after the fifth iteration no new terms up
this order will appear in the expression. The operatorsx̂ and
x̂k , used in Eq.~A1!, are defined in Eqs.~14! and~15! in the
text.

APPENDIX B: ORDINARY PERTURBATION THEORY
OF THE EFFECTIVE RELATIVISTIC HAMILTONIAN

Although the Rayleigh–Schro¨dinger perturbation theory
is well known,26 we repeat here some important results fro
it as they refer to Eq.~19!. Note, that the wave function
normalization in Eq.~19! differs from the standard nonrela
tivistic wave function normalization. Let us start from

~ L̂ ~0!1L̂ ~1!!c i5e i N̂c i , ~B1!

where L̂ (0) is the unperturbed Hamiltonian,L̂ (1) is the per-
turbation operator, and the superscriptL at the wave function
symbol is dropped for brevity. MultiplyingL̂ (1) by a pertur-
bation parameterl, expanding the wave functionsc i and
energiese i in powers of the parameterl, and equating terms
with the same power ofl on both sides of the resultin
equation, one obtains

~ L̂ ~0!2e i
~0!N̂!c i

~0!50, ~B2!

~ L̂ ~0!2e i
~0!N̂!c i

~1!52L̂ ~1!c i
~0!1e i

~1!N̂c i
~0! , ~B3!

~ L̂ ~0!2e i
~0!N̂!c i

~2!52L̂ ~1!c i
~1!1e i

~1!N̂c i
~1!1e i

~2!N̂c i
~0! .

~B4!

Parametrizing the first-order wave functionc i
(1) in terms of

the eigenfunctions of the unperturbed Eq.~B2!,

c i
~1!5(

kÞ i
ck

~0!aki ~B5!

substituting Eq.~B5! into ~B3!, multiplying from the left
with (ck

(0))* , and integrating, one obtains for the coefficien
aki in the expansion~B5! the following:

~ek
~0!2e i

~0!!aki52^ck
~0!uL̂ ~1!uc i

~0!&, ~B6!
io
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where the orthonormality of the zeroth-order wave functio

^c j
~0!uN̂uc i

~0!&5d i j ~B7!

was used. Substituting Eq.~B6! into Eq. ~B5! one obtains

c i
~1!52(

kÞ i
ck

~0!
^ck

~0!uL̂ ~1!uc i
~0!&

ek
~0!2e i

~0!
, ~B8!

which after substitution into Eq.~B4!, multiplication of the
resulting equation by (c i

(0))* from the left, and integration
yields Eq.~22!. Equation~21! for the first-order correction
e i

(1) to the unperturbed energye i
(0) is obtained from Eq.~B3!

by multiplying it from the left with (c i
(0))* , integrating, and

using the Hermitian property of the operatorsL̂ (0) and N̂.

APPENDIX C: DOUBLE PERTURBATION
THEORY
OF THE EFFECTIVE RELATIVISTIC HAMILTONIAN

Let us rewrite Eq.~41! in the text in form of Eq.~C1!,

1
2@~N̂1N̂~1!!N̂21~ L̂ ~0!1L̂ ~1!!

1~ L̂ ~0!1L̂ ~1!!†N̂21~N̂1N̂~1!!#c i5e i~N̂1N̂~1!!c i ,

~C1!

where the operatorN̂(1) represents the difference between t
IORA normalization operatorN̂ and the exact relativistic
normalization operator 11X̂†X̂ and the operatorL̂ (1) is iden-
tical to the operatorẐN̂21L̂ (0). Expanding wave functionsc i

and energiese i in double perturbation series, one obtai
from Eq. ~C1!

~ L̂ ~0!2e i
~00!N̂!c i

~00!50, ~C2!

~ L̂ ~0!2e i
~00!N̂!c i

~10!52 1
2@N̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!#c i

~00!

1e i
~10!N̂c i

~00!1e i
~00!N̂~1!c i

~00! , ~C3!

~ L̂ ~0!2e i
~00!N̂!c i

~01!52 1
2@ L̂ ~1!1~ L̂ ~1!!†#c i

~00!1e i
~01!N̂c i

~00! ,
~C4!
~ L̂ ~0!2e i
~00!N̂!c i

~11!52 1
2@N̂~1!N̂21L̂ ~1!1~ L̂ ~1!!†N̂21N̂~1!#c i

~00!2 1
2@N̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!#c i

~01!

2 1
2@ L̂ ~1!1~ L̂ ~1!!†#c i

~10!1e i
~11!N̂c i

~00!1e i
~10!N̂c i

~01!1e i
~01!N̂c i

~10!1e i
~00!N̂~1!c i

~01!1e i
~01!N̂~1!c i

~00! ,

~C5!
where the first superscript at the energy or wave funct
denotes the order in the perturbationN̂(1) and the second
superscript denotes the order in the perturbationL̂ (1). Note,
that the operatorN̂(1) is Hermitian, whereas the operatorL̂ (1)

is not.
Multiplying Eqs. ~C3!–~C5! with (ck

(00))* from the left
and integrating, one obtains Eqs.~C6!–~C8! for the consecu-
ntive first-order corrections to the unperturbed~i.e., IORA!
energy,

e i
~10!5 1

2^c i
~00!uN̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!uc i

~00!&

2e i
~00!^c i

~00!uN̂~1!uc i
~00!&, ~C6!

e i
~01!5 1

2^c i
~00!uL̂ ~1!1~ L̂ ~1!!†uc i

~00!&, ~C7!
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e i
~11!5 1

2^c i
~00!uN̂~1!N̂21L̂ ~1!1~ L̂ ~1!!†N̂21N̂~1!uc i

~00!&1 1
2^c i

~00!uN̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!uc i
~01!&2e i

~10!^c i
~00!uN̂uc i

~01!&

2e i
~00!^c i

~00!uN̂~1!uc i
~01!&1 1

2^c i
~00!uL̂ ~1!1~ L̂ ~1!!†uc i

~10!&2e i
~01!^c i

~00!uN̂uc i
~10!&2e i

~01!^c i
~00!uN̂~1!uc i

~00!&. ~C8!

Equation~C8! can be further simplified with the help of Eqs.~C9! and ~C10! obtained from Eqs.~C3! and ~C4!,

^c i
~10!uL̂ ~0!2e i

~00!N̂uc i
~01!&5e i

~00!^c i
~00!uN̂~1!uc i

~01!&1e i
~10!^c i

~00!uN̂uc i
~01!&2 1

2^c i
~00!uN̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!uc i

~01!&,
~C9!

^c i
~01!uL̂ ~0!2e i

~00!N̂uc i
~10!&5e i

~01!^c i
~00!uN̂uc i

~10!&2 1
2^c i

~00!uL̂ ~1!1~ L̂ ~1!!†uc i
~10!&. ~C10!

Summing over all first-order corrections to the unperturbed energy, one obtains

e i
~00!1e i

~10!1e i
~01!1e i

~11!5 1
2^c i

~00!u~N̂1N̂~1!!N̂21~ L̂ ~0!1L̂ ~1!!1~ L̂ ~0!1L̂ ~1!!†N̂21~N̂1N̂~1!!uc i
~00!&2e i

~00!^c i
~00!uN̂~1!uc i

~00!&

2e i
~01!^c i

~00!uN̂~1!uc i
~00!&2^c i

~10!uL̂ ~0!2e i
~00!N̂uc i

~01!&2^c i
~01!uL̂ ~0!2e i

~00!N̂uc i
~10!&. ~C11!
in
a

rs,

. A

. J.

em.

.

r.

l,

A.
The last two terms in Eq.~C11! are identical, becauseL̂ (0)

andN̂ are Hermitian operators. For the purpose of estimat
these terms, let us represent the first-order perturbed w
functions as in the following:

c i
~10!5(

kÞ i
ck

~00!aki , ~C12a!

c i
~01!5(

kÞ i
ck

~00!bki . ~C12b!

The expansion coefficientsaki and bki can be found using
Eqs.~C3! and~C4!, respectively. Thus, one has forc i

(10) and
c i

(01)

c i
~10!5 1

2 (
kÞ i

ck
~00!^ck

~00!uN̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!

22e i
~00!N̂~1!uc i

~00!&/~e i
~00!2ek

~00!!, ~C13a!

c i
~01!5 1

2 (
kÞ i

ck
~00!^ck

~00!uL̂ ~1!

1~ L̂ ~1!!†uc i
~00!&/~e i

~00!2ek
~00!!, ~C13b!

which upon substitution into Eq.~C11! yield for the last two
terms

2^c i
~10!uL̂ ~0!2e i

~00!N̂uc i
~01!&2^c i

~01!uL̂ ~0!2e i
~00!N̂uc i

~10!&

5 1
2 (

kÞ i
^c i

~00!uN̂~1!N̂21L̂ ~0!1L̂ ~0!N̂21N̂~1!

22e i
~00!N̂~1!uck

~00!&^ck
~00!uL̂ ~1!

1~ L̂ ~1!!†uc i
~00!&/~e i

~00!2ek
~00!!. ~C14!
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46D. Schröder, J. Hrusˇák, I. C. Tornieporth-Oetting, T. M. Klapo¨tke, and H.

Schwarz, Angew. Chem., Int. Ed. Engl.33, 212 ~1994!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


