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The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent
linear operators within the regular approximation. An effective relativistic Hamiltonian has been
obtained, which yields in lowest order directly the infinite-order regular approxim&loRA)

rather than the zeroth-order regular approximation method. Further perturbational expansion of the
exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based
on ordinary (IORMA) or double[ IORAN(2)] perturbation theoryn: order of expansion which
provide improved energies in atomic calculations. Energies calculated with IORA4 and [@QRA3
are accurate up te~2°. Furthermore, IORA is improved by using the IORA wave function to
calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The
outstanding performance of this new IORA method coined scaled IORA is documented in atomic
and molecular calculations. @003 American Institute of PhysicgDOI: 10.1063/1.1623473

I. INTRODUCTION because, in the now standard approach to the regular ap-
The all-electron methods derived on the basis of thd®roximation, the exact relativistic Hamiltonian for electronic

regular approximatior(RA) to the exact relativistic Dirac (Positive-energy states is represented in the energy-
equation are among the most used computational tools délependent form. The expansion of such a Hamiltonian in
signed for a relativistic description of atomic and molecularpowers of the perturbational parameter will contain the
systems®  The zeroth-ordet? first-orde® and (power of energy eigenvalue in all orders except the lowest.
infinite-ordef regular approximation§ZORA, FORA, and For the purpose of going beyond the ZORA and IORA
IORA, respectively as well as the expansions and modifica- methods and of finding a way for a variational improvement
tions derived therefrofd'*® have proven to be very useful of the energy within the RA, one needs to know the expan-
methods because they can lead to high accuracy results fQ[on of the exact relativistic Hamiltonian in terms of linear

molecules containing heavy atoms. : :
T energy-independent operators rather than energy eigenval-
The concept of the regular approximation is based on the gy P P 9y €19

. . Ues. This goal cannot be achieved if one starts from the
expansion of the exact Foldy—Wouthuysen transforméfion L S
of the Dirac Hamiltonian with respect to a palrameterenergy—dependent relativistic Hamiltonian. The energy-

E/(2m&—V) that depends on both the enerByand the inde_pendent exact rel_ativistic Hami!tonian for posit(e@c—
potential V.228 The use of a potential-dependent parametefronic) energy states is not known in closed algebraic form,
leads to a perturbational expansion that does not possess tBcept for the trivial case of a free particleThe construc-
singularity problems typical of the standard expansion intion of an expansion of the exact Hamiltonian, only in terms
terms of 1¢? (thus the name regular approximatidr®  of linear operators, has been attempted in many
However, prior to expansion, the exact relativistic Hamil- investigations®=2% of which the one by Heullyet al® and
tonian has to be brought into an energy-dependent formhe one by Changt al® are commonly cited as the corner-
which is valid only as long as it operates on the exact relastones of the RA. In both investigations, the ZORA Hamil-

tivistic eigenfunction. tonian was obtained in the lowest order of the expansion

At the lowest order in this expansion one obtains the Lo
. : L note that the terms regular approximation and ZORA were
ZORA Hamiltonian'? which is bound from belowand can ( 9 bp

2 .
be used in(quasjvariational calculations. The ZORA eigen- §uggested 'atef by Baereneisal.). Ho'wev'er, " thes'e stud
values are lower than the exact relativistic enerdids ies the expansion of the exact Hamiltonian was either trun-

Within the variational formalism, an improvement can beCat€d at the low-order terfsor pursued with the different

achieved by including the lowest order correction to the goal of obtaining an effective relativistic Hamiltonian in the
metric, on which the relativistic wave function is normalized. recursive formH "= f(Hef).19

This leads to the IORA methddZORA and IORA are the In the present work, we report a derivation of a regular
only (quasjvariational methods within the regular approxi- expansion of the exact relativistic Hamiltonian for electronic
mation. Further improvement of the ZORA or IORA energy states in terms of linear energy-independent operators. In this
can only be achieved perturbativél§iThis is not surprising, ~ expansion, certain terms are summed up to infinite order and
an expression for the effective energy-independent relativis-
¥Electronic mail: filatov@theoc.gu.se tic Hamiltonian is derived. In the lowest order, the effective
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Hamiltonian thus obtained leads directly to the IORA rather

Relativistic Hamiltonian 11527

It has been suggestedhat the use of a similarity trans-

than the ZORA method. A perturbational expansion of theformation (change of the basis set used to construct a linear
exact relativistic electronic energy based on the new effeceperatoy carried out with the help of a non-Hermitian opera-
tive Hamiltonian is constructed and investigated. Formulagor v,

up to fourth order are derived, implemented in the IORA
approach, and tested for atomic calculations. Further im-
provements are gained by calculating with the IORA wave

function the Rayleigh quotient that, if minimized, would lead
to the exact formalism. The new quasirelativistic method
which we shall call scaled IORASIORA), is tested in

1 0

-

X 1)

1 0
T
-X 1)’

Y 5)

results in simpler algebraic expressions for the transformed

'Dirac equation,

atomic and molecular calculations and is found to lead toy~ HDy(y gl/, )

considerable improvements in the relativistically corrected

energies.

II. BASIC THEORY OF THE RELATIVISTIC
ELECTRONIC HAMILTONIAN

Hour'=

The Dirac equation for a single electron moving in a
c(op) w?) «/f%)
S|~ &\ s/

potentialV is given by*
c(o-p) V—2mcz)( 7z v

Y
In Eq. (1), o is the vector of the Pauli matrices
=(ax,oy,az),25 p=—i%V is the momentum operatam is
the rest mass of electron, ands the velocity of light. Equa-

)

tion (1) describes simultaneously particle and antiparticle,

(i.e., electronic and positronistates, which are, in general,
superpositions of the Iarge-componezpi‘t and the small-
componenlwiS wave functions. For the description of chemi-
cal systems, knowledge of electronic solutions of Eg.is

c(a+p)
V—Xc(o-p)—2mc

V+ c((r-p)f(

0
(‘/’i

L

)
In Eq. (6), the small-component wave functia,iqS is elimi-
nated and the large-component wave function is a solution of
Eq. (7) with the non-Hermitian effective Hamiltoniah,
which has the positive-energy eigenvaluesHyf as its ei-
genvalues, ; as its right eigenfunctions, andyf)’
+ (4 )TX as its left elgenfunctlons

L¢|_(V+C(O-p) )l;b|_6¢'| . (7)

Rewriting Eq.(3) in form of Eq. (8) establishes a connection
between the operatof and the effective Hamiltoniah,

(2mE—V)X=c(o-p) — XV—Xc(o-p)X

)5}

(6)

=c(op)—XL. ®

sufficient and one usually proceeds with a decoupling of thQ:onS|der|ng the last term on the right-hand side of Bjas
two types of solutions from each other. In the most genera perturbation, a perturbational expansion of the effective

case, this can be achieved with the help of a Foldy
Wouthuysen(FW) transformatiohy’ given in Eq.(2), which,
upon applying to the Dirac Hamiltonigti, , leads”?**'to a
partitioning into two Hermitian operatorlsl+ and H_ for
electronic and positronic states, respectively,

H, 0\/gmW Fw
el %)

0 H_
The unitary operatot] rw Which carries out the FW trans-
formation, has been described in many publicatiéig®?!

UFWHDUFV:\L/(UFWlpiD):(

“HamiltonianL was obtained in Ref. 21, whereby it was dem-

onstrated that to the lowest orderXi. the expansion leads
to the so-called ZORAzeroth-order regular approximatipn
Hamiltonian, HZORA (see the following No attempts were
reported to go beyond the first order )(L which corre-
sponds to the first-order regular approximati®®ORA).

As an alternative to the perturbational expansion one can
use the iteration techniqd@ This technique was used earlier
by Changet al,*° with the primary objective to derive ex-

pressions of the forni *=f(H°") for the effective relativis-

and its detailed form is not reproduced here for brevity. Thistic HamiltonianH®" [see, e.g.l in Eq.(7)]. The objective of

operator is parametrized in terms of anotfresn-Hermitian
operatorX, which satisfies

c(o-p) =2mSEX+[X,V]+ Xc(o-p) X ©)

the present work is however to express the effective Hamil-
tonianL in terms of simple operators such ae®) (see the
following), which were used in the perturbational analysis by
Kutzelnigg?®?!

and connects the large and the small components of the Dirac

wave functiony? via the following??#2021

Ue=Xyt . 4
In the general case, the exact solution of & is not known

in a closed algebraic form and the same is true for the op-

eratorsU rw @ndH . Perturbational expansions of the op-
eratorsH, and Up, suggested in the literatd&°-23 are

very complicated and one usually truncates these expansions

at the lowest orders.

lll. STRUCTURE OF THE EFFECTIVE
RELATIVISTIC HAMILTONIAN

Operatorsf( and L can be represented by a set of

coupled nonlinear equations,
X= Pc(op)— PXL, (93
L=V+c(a-p)X, (9b)

whereP is an abbreviation for the inverse ofrfi?—V,
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eratorL(®) obtained after five iterations is presented in Eq.

1 =
P= omZ—v (100 (A1), where it is expressed in termsof®) and the operators
m x andx, defined in Eqs(14) and(15), respectively,

Then, starting fromX(® in the following, X

X =Pc(ap), (11) x=c*(o-p)P*(a+p)=(0o"p) m(lf‘p), (14)
one gets fol.(®), ,
. . R . c
LO=V+c(a-p)XO=V+cXa-p)P(a-p)=HZRA  (12)  X=CX(a-p)P"*(ap)=(0-p) 2ma—yyc1 P (19

which demonstrates that® is identical to the(Hermitian
ZORA HamiltonianH“°®. SubstitutingL ®) and X(*) into
Eq.(9a), one obtain&®, and fromX*) one had. M via Eq.
(9b), etc. In general, this iterative procedure can be written a
in the following:

One can conclude from E@Al) that from iteration to
iteration a prefactor  X+X*—X3+--- builds up in front of
the X, andL(®) operators. Realizing that this prefactor sums

Tp to the operatoN ™1,

X1+ = %(0) _ pS[ (), (133 N 1=1—-X+X2—x3+---

(13b

-1
L1 L0—g(0p) PRI, g

1+x: 1+(ap)

(op)| ., (16

i iterati 2mc?—V)?
where the superscriptmarks the iteration step rather than ( )

the order of perturbation theory. Obviously, the exact
should emerge dt=co.

Fortunately, there is no need to investiga:il%‘) to un-
ravel the structure of the effective Hamiltonihn The op-

Eq. (17) for the exact operatoft can be inferred, where all
terms up to the fourth order ib(®) are displayed. Generali-
zation to fifth and higher order is straightforward albeit te-
dious:

L=N"ILO+N 1N ILONTILO - NI N ILONTILONTILO + NN %,NTILONTILONILO©
+ N3N L ON 35N L ON L + N~ 1%,N - ILONILONILONILO
+ N7 15N L ON35,N 1L ON35,N 1L ON L@+ N~ 15%N 1L ON %N %N 1L ONILON1L©
+ N7 25N 235N L ON 25N L ON L ON O+ N 1%,N %N 1L ON L ON %N 1L ON 1L ©
— N7 35N NI ON L ONILON L - N~ 1%gN %N ILONILONILONILO
— N3N L ON %N AL ONILONILO - N %N 1L ON %N ILONILONILO

Rl ORI OR R OR- O . a7

IV. PERTURBATIONAL TREATMENT

Considering the ternZN~1L( as a perturbation, one ob-
OF THE EFFECTIVE RELATIVISTIC HAMILTONIAN

tains in the zeroth order E¢20), which is identical to the
IORA equationnote thatL(?) is identical toHZ?°RA andN is

ituting Eq(17) i Eq.(7 h
Substituting Eq(17) into Eq. (7), one has defined in Eq(16)],

Lyb=(1+N1Z)N"LOyt= gyt (18) LOYO =Ny, (20)

i where (%) denotes the IORA wave function, which approxi-
where the(lnon-Hermitian operatorZ (for brevity not shown mates the large componeqﬁt of the Dirac wave function.
explicitly) collects all terms after the first one on the right- By applying standard Rayleigh—Schlinger perturba-
hand side of Eq(17). Note that the factor8l ™! in front of  tion theory® to Eq. (19), one obtains Eqg21) and (22) for
and N~ in back of each term in Eq17) were moved the first- and second-order correctionsef®,
outside of the operatoi. For further analysis, it is conve-
nient to multiply Eq.(18) by the operatoN from the left,
which leads to

= (0| ZN 1L ©)] 40y, (21

(7 1ZNTLOBRD) 1 ZNTIL O )

-3

KZi (0)

(L+ZN"HLOyt =Nyt (9
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Since the unperturbed wave functigi® is normalized on a WhereS;V1 is an element of the inverse of the overlap matrix
metric different from that used in standard Rayleigh—S with elementsS,,=(x,|x,). The matrix of the inverse
Schrainger perturbation theoRy,the derivation of Eqs(21) operatorN 1 is given by

and(22) is outlined in Appendix B.

V. EVALUATION OF MATRIX ELEMENTS

For the purpose of representing the operatan matrix (XMIN_1|XM>= > S.N; 1S, (25
form,2” we introduce a basis ofgenerally nonorthogongl or
functionsx,, and express the wave functioné® as

$O=> x,Cl, (23)  which follows from the operator identiyN *N=1 and

a whereN_ ! denotes an element of the inverse of matrix
wherecﬁﬂ) denotes a set of expansion coefficients. Utilizingwith e|ement9VgT=<Xg|N|X7>- If one inserts the resolution
the new basis, the resolution of the identity is giveR’by  of the identity between the operators of E&j7) and uses Eq.
71 - (25), then, for the matrix representation of the operaor
g«y X Suv Xl =1, (24) Eqg. (26) will be obtained,

Z=x,N"ILO—xoNTILONTILO+ x,N" N TILONTIL O+ x,NTILONIx,NTILO + x,NTILONTILONTIL©
+XoNTILONTHONTILONTIGNTIL @O 4 3N TILONT N N TILON IO
+XoNTHONTILON TN TILONTIL O 4 3NN ILONTILON I, N 1L (©)
XN IxgNTILONTILONTILO — ) NTHONTILONTILONTIL O — x NTILON "IN ILON~IL©
—XgNTILONT DN TILONTIL @O —x N L ONTILONT NI O+ (26)

wherex, denotes the matrix of the operatr andL(® stands for the matrix of the operatbf.
Equation(20) in matrix representation reads

LOCO=NCOO, (27)

whereC(® is the matrix composed from the column vectors of the expansion coeffi@ﬁtand g‘o) is the diagonal matrix

of the orbital energies?). Just to remind, the matrix(®) is identical to the matri?°** and we stick to the former notation
merely for consistency with other formulas in the current paper. The m@ffixof the IORA orbital coefficients is normalized
by the following condition:

(COYINC©@ =], (28)
wherel is the unity matrix. From Eq(28), it follows that

N~1=CcO(cO)t, (29)
whereN~1 is the inverse of the matrik. From Eqs.(27) and(28), it also follows that

(COYTLOCO= (O (30)

Substituting Egs(29) and (30) into Eq. (26) and converting the resulting equation back to the operator notation, one obtains
Eq. (31) for the matrix elements of the operatdN *L(®),

(12N @) = (215l i) €% el = (il i)l e el + 25 (il ]Vl i) €% el
20 (15l 0y 62 el i) e+ (U Ral 1) €l €% el
+ 20 15l 1) 2 el of )l f el 1) €l

+ 20 (18l 1) €2 el )5l 1) €% el
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+ 20 (el ™) el i) el el 1) €% €l
+ 20 1l 1) el 1) €l Xt el 1) €l
=2 U1l )] el 1) €l %€l el = 20 (el el 1) €% el el
=2 (U1l 1) €7 el i) el el = 2 (el € el i) €l el

=2 (U1l 1) € €0 el 1) €Vl (3Y)

The next step requires the evaluation of integralsvVl. EXPANSION OF THE DIRAC EIGENENERGY
(O] % ¥?). Because thi, operators contain the potential [N TERMS OF THE IORA EIGENVALUES
V in the denominator, it may seem that these integrals can be  Having developed an algorithm for calculating the ma-
evaluated only by numeric quadratures. However, the use afjx elements in Eq(31), the first- and second-order correc-

the resolution of the following identity: tions to the IORA energy as given in Eq&1) and(22) can
R be calculated. Because the expression for the expectation
(2m)~ 1> (P X )T (P =1, (32 value of the operataN L), Eq.(31), is infinitely long, it
wv

should be subjected to certain restrictions. An obvious way
whereT ! is the inverse of the matrix of the nonrelativistic t0 restrict this expression is to use all terms up to the third
kinetic energy operatoi=(o-p)%/(2m), enables one to order in the IORA eigenenergs® [i.e., the first four terms
evaluate the matrix elements of thgoperators analytically. in Eq. (31)] when calculating the first-order correcti¢®l)
Inserting Eq.(32) between the factors 1/(@°—V) in Eq.  alone. Indeed, according to E@2), the contributions of the
(15) one arrives at Eq(33) for the matrix of the operatdy,,  fourth order ine® will appear when calculating the correc-
— am@) 4K (T-1K K tion of the second order in théN1L(®) operator. Thus,
X= (2me) TK(TK) (33 there is no need to go beyond thé¥)> terms in Eq.(21), if
whereK is the matrix of the ZORA kinetic energy operator One is interested in the first-order correction only. However,
k:(a--p)[czl(chz—V)](o-p). Using the matrix repre- if both first- and second-order corrections are to be calcu-

. ! . . : i 4 :
sentation for operators, one can easily calculate the inte- lated, it is consistent to include the{))* terms into the

grals in Eq.(31) according to first-order correction(21_). This means that we effectively
e (0 o o switch from the expansion of the positive-energy eigenvalues
(U215 i) =(C{) "% C? of the Dirac Hamiltonian with respect to tH&N 1L op-

:(2mc2)*k(C§°))TK(T*1K)kCJ(O). (34) e(rgtorto the expansion with respect to the IORA eigenenergy
ei .

The algorithm for the analytic calculation of the ZORA ki- Apparently, the resulting perturbational expansion could
netic energy matriX was developed earli&r*®and is rep- be designated as IORAJ, wheren denotes the order in the
resented as follows: IORA eigenenergysi(o). However, this notation has already
4 oegig been used by Dyall and van Lenthaho developed a some-

K=T+Wo =T, (35 what different perturbational expansion of the Dirac eigenen-

where W, represents the matrix of the operatos-p) ergy.'Their worK .is based on the assumptiqn that the exact
X[V/(4m?c?)](o~p), which can be easily calculated with solution to the Dirac equation is known, which leads to the
the use of the standard nonrelativistic quantum-chemicafn€rgy-dependent algebraic expression for the opekator
codes. A somewhat easier way of calculating the matrie  the following:

based on the fact that for two symmetric matridesnd B
the following holds:

(A"1-B 1)"1=B(B—A) B-B, (36)

X=——F—(0op). (39
2mc—V+ ¢ P
Equation(38) is consistent with Eq(3) as long as the opera-
which leads to Eq(37) for the matrixK, tor X acts on the large componesit of the Dirac eigenfunc-
_ B 1 tion, but is not valid otherwise. Note that in the present work
K=T(T=Wo)""T. @37 no reference to the exact solution of the Dirac equation was
Equation(37) requires that only a single matrix is inverted made. The present derivation follows directly from the alge-
rather than three as in E(B5). braic form of the non-Hermitian operatbrand does not rely
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TABLE |. Ground state energie6n hartreg for hydrogen-like atomic ions with varying nuclear charge. All calculations employ the basis set of 50

Gaussian-type functions taken from Ref. 28.

Relativistic Hamiltonian

11531

Method 20 40 60 80 100 120 92
Dirac eqP —201.076523  —817.807498 —1895.68236  —3532.19215 —5939.1954 —9710.7835  —4861.1980
IORAS® —201.082194  —818.171958  —1899.90001  —3556.90102 —6042.5850 —10089.4142  —4921.0993
IORA3%d —201.076516  —817.806523  —1895.67309 —3532.20601  —5939.5728 —9712.0963  —4861.3512
IORA4%® —201.076521  —817.807407 —1895.68067 —3532.19370  —5939.3800 —9712.8699  —4861.2527
IORA3(2)%f —201.076522  —817.807487 —1895.68196 —3532.18179  —5939.0659 —9709.7282  —4861.1475
SIORA3/Z9 —201.076522  —817.807654 —1895.68433  —3532.19220  —5939.1129 -9710.3178  —4861.1699
IORA(3)" —4859.9034
TIORA" —4861.1475
DKH2! —201.072538  —817.615772  —1893.89764  —3523.32484  —5906.1918 —9594.0960
DKH3' —201.076660 —817.820110 —1895.84404  —3533.11956  —5942.3694 —9712.9311
DKH5'! —201.076523  —817.808095 —1895.70282  —3532.46147  —5941.5285 —9730.9684
DPT(1) —5665.6420
DPT(2) —5842.8737
DPT(8) —5938.5990
DPT(10) —5939.0651
DPT(11) —5939.1336

Nuclear charge.

PAnalytic results from the Dirac equation.

‘Calculated in this work with the basis set of 50 primitive Gaussian functions from Ref. 28.
dEquation(39) in this work.

fEquation(40) in this work.

fEquation(45) in this work.

9Equation(47) in this work.

"Numeric results from Ref. 8.

iFrom Ref. 28. DKHh stands for the Douglas—Kroll-Hess methodntf order.

IAnalytic results from Ref. 29. DPH) stands for the direct perturbation theory accurate througf'.1/

on Eq.(38). For the purpose of making a distinction betweenhydrogen-like atomic ions presented in Table I. In these cal-
the present work and the earlier work of Dyall and vanculations, the basis set of 50 primitigetype Gaussian func-
Lenthe® the alternative notation IORAIis used to denote the tions taken from work of Wolet al 28 is employed. Since we
nth order expansion of the Dirac eigenenergy in terms of theyre interested in the ground states of one-electron atoms, for
IORA eigenenergies. S . which the spin—orbit interaction does not play any role, the

Thus, the IORA3 energy is given in the following: latter was neglected in the calculations. The results of the

€lORAS = (0 4 (0%, | 1O (@ present work are compared in Table | with the results of

R other investigations reported in the literature.
_<‘r/fi(0)|x3|'//i(0)>6i(0)6i(0)6i(0) In general, for all hydrogen-like ions considered, the

IORA3 and IORA4 approximations show fast convergence
to the Dirac energy and are superior to the Douglas—Kroll—
Hess(DKH) method®3%3tup to the fifth orderthe highest
order of the DKH theory reported in the literaturéhis is
especially pronounced for ions with high The last five
lines in Table | list the results from a direct perturbation
theory (DPT)?°#2 calculation of the hydrogen-like fermium
(Z=100) taken from the work of Rutkowslét al?® The
comparison reveals that the IORA3 and IORA4 approxima-
tions achieve the same or even better accuracy as thédpPT
calculation exact throughcI'®. The only difference with
DPT is that the latter converges to the exact Dirac eigenvalue
from above, whereas the IORAapproximations converge
from below.

A separate entry was made for hydrogen-like uranium
ion for the purpose of a comparison with the earlier work of
Dyall and van Lenth& who used the alternative approach to

40 4 perturbational improvement of the IORA eigenenergy. The

Numeric accuracy of these approximations is tested iHORA3 approximation, which is analogous to the IORA

the calculation of the ground state energy of a number ofnethod reported by Dyall and van Lenthés clearly supe-

+ 2 (Bl i) (07 oy ) Ve

20 (15l ) 620 el i) €l

(39

Along with these terms, the IORA4 energy, E40), in-
cludes the éi(o))“ terms into the first-order correctiof21)
[see Eq.(31)—note that the indek now must be replaced
with i] and the contribution of the fourth order &® from
Eqg. (22,

€lORA = lORA3 Ifourth-order terms from Eq(31)}

1
0)15| /(O £(0) (0)/ 1 (0)% | ,1(0
o5 )G U) g, o
k#i 6?0)—6&0) o
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rior to the latter. However, it does not reach the accuracy of  _10RA3(2) _ (0) ;. ;<$_(0)||:(1)+(l:(l))‘r|l//_(0)>

the so-called TIORA methotwhich is approximately cor- ! oA '

rect to third order ine(” = ¢/°** and combines the IOR@) ) O (O 7 (O (D (D)
energy with certain contributions from the fourth-order + sz;&i (G INTTo T IL 1)
IORA(4) approximation. Although TIORA is only an ap-
proximation within the Dyall and van Lenthe approdci,
will be shown in the following that this method follows natu-
rally from an alternative formulation of relativistic perturba-
tion theory based on the effective Hamiltonian Eq. (17).

+32 (OTLO) OV PO IND g0y,
(44)

where the notation IORA(2) means that the energy correct
VIl. DOUBLE PERTURBATION THEORY throughnth order in ei(o) is obtained from double perturba-
WITH AN EFFECTIVE HERMITIAN HAMILTONIAN tion theory. For consistency with previous derivatioxp&?o)
ande(®? are replaced by ande(?). Note, that the zeroth-
order wave function and energy are identical in both pertur-
bation theories, i.e{"?=y{®) and(®=€(? . The sum of
the first two terms on the right-hand side of E44) is ex-
actly equivalent to the IORA3 energy. As for the last two
TA+XXOL+LT(L+XTX) gk = (1 +XTX) gt (41)  terms in Eq(44), only the contributions intd.(*), which are

In Eqg. (41), the operator in square brackets on the Ieft-hanqquadr"’ltIC L™, i.e., the _secgnd tgrrp(?)n the. right hqnd side
of Eq. (17), and the contributions intd*™, which are linear

side is Hermitian. However, the transformation to a Hermit-_ 0 ) ) ]
L©, i.e., the third and fourth terms on the right-hand side

ian form comes at the price of an explicit dependence on th¥ e '
relativistic normalization operator-4X"X. Contrary to the of Eq. (42), should be used. Upon substituting them into Eq.

linear operatot:, this operator is quadratic ¥ and, conse- (44) one obtains

quently, it has a more complicated structure ttanHow- €|ORA3(2)

ever, up to terms quadratic In‘®), the algebraic expression

for this operator is still simple, _ _IORA3 0)[5 | ,/(0 0)[5 | ,/,(0\ (0) (0) (O
P P = O S (1ot ([l yf 0 0 el

1+ XK= 1+ (XO) KO —,N~1L O — [ O~ 1,

The operatot. obtained with the help of similarity trans-
formation (5) is non-Hermitian. Using Eqs4), (7), and(8),
it is possible to shoft that the large componenyt!‘ of the
Dirac wave functiony" satisfies

HLON BN L0 (42 = 2 Ol ) el (el 01 %) el
Because our primary goal is to expand the exact relativistic . O 1 (O (0) (0)
energye; in terms of the IORA eigenenergies” , Eq. (42) =6 (W Xl ) e
can be used for the expansion correct at least through third

O] SO O (O (O)
. %] ! (0) (0) ¢l
order ine{®. (W [Xal ™) e € €

We rewrite the operators in E1) according to + 20 V1R OV V15| 412) €V €V €l (45)

L=NTHLO+ZNTIL) =N"HLO+ L), (433 which is exactly equivalent to the TIORA energy defined in
1+ XTX=N+ND, (43b) Eq. (45 of Ref. 8. Note, that the, operators defined in Eq.
- - . (15) are connected with th&, operators used by Dyall and

whereN=1+(X®)"X(®) is the IORA normalization opera- yan |enthée®
tor [see Eq(16)] and the operatoZ is defined in Eq(18), A
Furthermore, we considM) and L(Y) as perturbations to N Gy
the normalization operator of the wave function and to the Xk:m'
Hamiltonian, respectively. Then, in the zeroth order of
double perturbation theorysee Appendix ¢ the IORA  Thus, with the use of double perturbation theory the equiva-
equation(20) emerges. The correction to the IORA energy, |ence between the IORA3) and the TIORA approaches is
which combines linear and bilinear terms in the perturbatiordemonstrated. TIORA is not a method approximately correct
expansion, is given in EC11). The reason why the bilinear to third order ine”), as was originally claimefibut is the
term e, Eq. (C8), is included is that it contains the con- exact third-order method when corrections to both the rela-
tributions of the third order ie{”) . The higher-order correc- tivistic wave function metric and the relativistic Hamiltonian
tions such ag(??, €2, etc., depend on the perturbed wave are incorporated.
function and, as is obvious from E¢C13), make contribu- The results of the IORA®) calculations for hydrogen-
tions of at least fourth order ig{”). The same is true for the like atomic ions are presented in Table I. Although IORA3
last two terms in Eq(C11) [see also Eq(C14)]. Thus, these s formally correct only to ordere(®/(2mc?))2, this method
terms can be neglected in the derivation of a third-order enyields results of a considerably higher accuracy than could
ergy correction. R have been expected for a method correat . In fact, the

Using Eq.(29) for the operatoN %, Eq.(C11) (withthe  IORA3(2) results are as accurate as the DF) results, i.e.,
last two terms omittedcan be rewritten as in the following: a method correct to order 2.

(46)
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VIll. SCALED IORA METHOD SIORAZ3/2 value is closer to the DIFT), i.e., the energy is
_ _ _ accurate ta@ ™%
Although it seems tempting to use Hg1) together with Although the scaled ZORA method vyields for a one-

the expressions for the operatdrs Eq. (17), and 1+ X'™X,  electron atom exactly the Dirac eigenvaldesemploys the
Eq. (42), in variational calculations, a caveat against such aryoRA wave function, which is quite inaccurate for the low-
idea is appropriate. Indeed, the expressions for these opergs; atomic energy levefs’® The SIORA method uses the
tors result from a sign-alternating serieslif?). Because the |ORA wave function, which is much more accurate, espe-
matrix elements of the operatosg are inversely propor- cially in the core regions of atonfsFor instance, the relative
tional to (2mc®) ~* [see Eq(46)], these series will converge absolute error in the expectation values of the operatbrs

if all eigenvalues of theL(®) Hamiltonian are in absolute calculated with the ZORA wave function for the hydrogen-
magnitude smaller than@c®. For a Coulomb potential like uranium ion reaches 12% forand more than 40% for
(with Z<c), the effective Hamiltoniah. (%) does not possess r 2.2 With the use of the IORA wave function, the error is
bound eigenvalues lower than2mc®. However, it may reduced to just 3% in the case of the 2) value for the &
possess unbound eigenvalues larger thanc?2 For these orbital of UL .8 As for the orbital radiir), the relative error
high-lying unbound energy levels, the truncated expressiongor the 1s orbital of U** is only 1.3%¢ which is comparable
such as Eq917) and(42), are divergent and yield meaning- to the errors obtained in the DKH2 calculation for the much
less results. For instance, when trying to solve @d) with lighter bromine®! For other orbitals, the relative errors are in
the truncated operatotsand 1+ XX variationally, spurious  the range of 0.01% and le8hus, the SIORA method com-
roots much lower thar-2mc? are obtained, which indicates bines a very accurate quasirelativistic wave function with the
a variational collapse. These roots can be eliminated andnproved energy estimate.

reasonable energies can be obtained, if all positive IORA  For practical purposes, the SIORA equation can be writ-
eigenvalues larger tham?.cf are omitted, when calculating ten in exactly the same algebraic form as the IORA equation
the matrix elements of thé and 1+X'X operators. Evi- (20), however, following the Hamiltonian:

dently, this is not convenient for practical calculations with 0 <ome
Eq. (42). "\ SIORAN/m_ (0)\ _SIORAN/m, ,(0)
For states in the energy interjat 2mc?,2mc?], the use H - ; [ ek (il

of the truncated expressions does not pose any danger and

. ) (0)—
the improved energy values can be obtained from the Ray- §'=2mc
. . : . + E | (0)> (0)< (0)| (48)
leigh quotient(47) with the IORA wave function, . b ) e (il
L Ol L+ XOL + L1+ XX (@ where the summation with respect to the IORA eigenstates is
SIORAYm_ 2 (v« o ) . ( o Uk >, split into two intervalsel”’<2mc and eV=2m¢c for the
(6711 XX ™) reason described at the beginning of this section. Obviously,

(47) Eqg. (20) with the Hamiltonian(48) yields the IORA eigen-

o _ _ _ functions {” and the SIORA/m eigenenergies. In matrix
Note that minimization of this quotient with respect to theform, Eq.(48) transforms to

wave function leads to the exact relativistic equatidm).
The namescaledlORA (SIORA) is suggested for this HSIORAM=NC(@z¢0(C(?)N, (49

approach, because it is based on the use of the Rayleighere ¢ is the diagonal matrix of the scaling coefficients

quotient with an approximate wave function, which is similar yofined in the following:

to what was done in the scaled ZORA metHddowever, the

scaled ZORA method uses the Rayleigh quotient obtained e ORMIM D e <2m

from the IORA equation(20),® which does not lead to the &= 1 9=o2me (50

exact relativistic equation upon variation of the trial wave Tk '

function. The SIORA method, on the contrary, employs the

Rayleigh quotient which leads to the exact relativistic equa-lx' IMPLEMENTATION OF IORA 1 AND SIORAnA/m

tion for the large-component wave function, E41). The formalism developed in the previous sections ap-
Since the operators and 1+X'X are obtained from a plies to one-electron systems. In case of many-electron sys-
truncated expansion valid through a finite ordet.i, two  tems, the electron—electron repulsion potential should be in-
additional indicesn and m are used to designate the scaledcluded into the Dirac equation. Even in the simplest case of
IORA [nethod: the first indicates that the effective Hamil- pure Coulomb repulsion a4, which is not Lorentz-
tonianL is correct tonth order and the second belongs to theinvariant, the subsequent transformations of the Dirac
normalization operator 4 X"™X. Combination of the third- Hamiltonian, which lead to the effective Hamiltonian be-
order expression fdr with Eq. (42) furnishes the SIORA3/2 come very complicated. However, if one assumes that the
method. This method is computationally as simple aselectron—electron repulsion operator commutes with the op-
IORA3(2) (or TIORA), however it leads to somewhat more erator X, Egs.(3) and (4), then this operator will become
accurate results, especially for heavy atofeee Table ).  independent of the electron—electron repulsion potefdie
Whereas IORA®) produces for hydrogen-like fermium Eq.(3)] and the relativistic transformations will include only
(Z=100) results of the same quality as DRU), the the electron-nuclear attraction potential. This assumption,
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TABLE II. Orbital energies for the xenon atom. Calculations employ the uncontracted relativistic basis set from

Ref. 36.
Orbital Dirac—Fock ZORA® Scaled ZORA IORA® SIORA3/2
1s —1277.2511  —1338.8489 —1275.5423 ~1278.8691  —1276.6454
2s ~202.4603 —205.6187 —202.2547 —202.4880 —202.4516
2p —181.6912 —184.1154 —181.5901 —181.5652 —181.5313
3s —43.0057 —43.4147 ~42.9673 —43.0148 —43.0119
3p —36.0988 —36.3625 ~36.0811 —36.0818 ~36.0790
3d ~25.7266 —25.8598 —25.7232 —25.7330 ~25.7306
4s —8.4255 —8.4889 —8.4185 —8.4283 —8.4279
4p —6.1350 —6.1644 ~6.1320 ~6.1321 ~6.1318
4d —2.6604 —2.6608 ~2.6608 —2.6613 ~2.6610
5s ~1.0070 -1.0129 ~1.0061 ~1.0073 ~1.0072
5p —0.4541 —0.4544 —0.4537 —0.4535 —0.4534

aTaken from Ref. 9.
This work.

known under the name of the one-electron el itly into account. This is achieved by replacing the-p)
approximatior?® is used in many quasirelativistic computa- operator with the linear momentum operafmonly, when
tional scheme$?~1619283133 comparison with the exact calculating the matrix elements &,

formalism, the Eapproxirqation neglects terms which in-
clude the commutatdri/rj; ,X], i.e., terms of the same order (
of magnitude as the electron—electron spin—orbit
interaction®> As it has been demonstrated in many investiga-
tions that*-35the neglect of these terms leads to small errors ~ Thus, to construct thé™H3>"*"™ Hamiltonian one

in the total energy, which do not have any chemical signifi-needs first to solve Eq(27) with the Hamiltonian(53),
cance. which is achieved by a simple diagonalization. Having ob-

In our previous studie¥ *®we have applied thedlap-  tained the eigenvectors(o) and the eigen_valu.es(o), one
proximation to the IORA and the IORA with modified metric constructs the renormalized SIORAn Hamiltonian accord-
(IORAMm) methods and details of the implementation caning to
be found there. The major advantage of the approxima- reny SIORAN/M __ /20 (1/2~(0) 7 (0); (~(O) T n(L/2l/2
tion is that it can be easily installed in any existing nonrela- Hie =SINTEC e "(CT)INTEST, (59
tivistic quantum-chemical program. Within thee Bpproxi-  \\here the scaling factorg are given in Eq.(50) for the
mation, the nonrelativistic one-electron Hamiltonian shoulds;ora3/2 method. The renormalized SIORA Hamiltonian
be replaced by the quasirelativistic one-electron Hamily,ep replaces the one-electron Hamiltonian of the nonrelativ-
tonian, which is renormalized on the nonrelativistinit)  stic Hartree—Fock method. Because the modification con-
metric. The renormalization is swpple and. stralghtforward.cems only the one-electron Hamiltonian, the same programs,
Because the IORA wave function is normalized with respeclyhich are designed for nonrelativistic correlated calcula-
to the operato, the renormalization of the one-electron tions, can be used for quasirelativistic SIORA calculations at
Hamiltonian is achieved by the correlated level.

reny SIORAN/M _ § ~1/2/ SIORAVM ~1/2 (51) The IORAN (n=2,3,4), IORM(mM) (n=2,3,4,m=2),

e le ' B and SIORA/m (n=2,3, m=1,2) methods were pro-
where HngRA”’m is the SIORA Hamiltonian in thed ap- grammed and implemented into tlk®LOGNE 2003suite of

proximation. In matrix form, Eq(51) translates to quantum-chemical program$ The implementation requires
only the modification of the one-electron Hamiltonian, which
has been described in the current section.

O)MV: <X;L|pvn'p|)(v>' (54)

4m?c?

renySIORAN/M _ 1/2)— 1/2) 4 SIORAN/ My | — 1/2c1/2
H SIORAM_ G172 -~ 1124 SIORANmN ~ 1126112 (52

where S is the overlap matrix. In order to construct the
HIORAY™ matrix, one needs first to solve the one-electron
(matrix) IORA equation (27) with the Hamiltonian L(O) X. RESULTS AND DISCUSSION

which includes the electron-nuclear attraction potentgal
only, i.e., The application of IORA and IORM(2) to one-

_ electron atomic ions has already been described in the pre-
L=Vt T(T=Wo) T, (53 vious sections and is not repeated here. In the following the
whereV,, is the matrix of the electron-nuclear attraction in- focus will be predominantly on SIORA3/2 because this
tegrals and the matri}V, is calculated using the electron- method provides the best results for one-electron ions.
nuclear attraction potentid, . In the present work, the spin- SIORA3/2 is applied inab initio calculations on many-
dependent relativistic effects are neglected and only thelectron atoms and molecules using both Hartree—Fock and
scalar-relativistidspin-independeneffects are taken explic- second-order Mgller—Plesset perturbation theory.
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A. Atomic calculations TABLE Ill. Gauge shift errorE]®"°®- ETeMod A (in hartree unitsin the
) ) ) ground state energy of noble gas atoms for different methods. The gauge
Table Il lists the orbital energies for the xenon atomshift A is chosen such that the total nonrelativistic energy is shifted by

calculated in this work with the ZORA, IORA, and exactly—100 hartrees. Calculations employ the TZV basis set of Ahlrichs
SIORA3/2 methods as well as the results of the Dirac—FocR"d May(Ref. 38 unless noted otherwise.

and scaled ZORA calculations performed by FQBBLQ All Atom ZORAR Scaled ZORA JORA? SIORA3/2
calculations reported in Table Il employed the uncontracted

(19s15p9d) rel_at|V|st|c _ba5|s set developed by Dy3lIAl- Hz 8:822 ggg 8:888 8225 8_‘888 ggﬁ 78:888 8(1)5
though xenon is a relatively light elemer £ 54), the rela- Ar 0077076  —0.00018 0.000464 —0.000 010
tivistic effects on the orbital energies are significants0 Kr 0.199988  —0.0018 0.003781  —0.000 107
hartree for the & orbital and ~0.06 hartree for the $ Xe 0.375149  —0.006 0.014135 —0.000479
orbital® This element was chosen for an analysis of the Peraic work

formance of the methods developed in this work becauseraken from Ref. 11.

results of the Dirac—Fock and some quasirelativistic calculasCalculations employ the uncontracted relativistic basis set from Ref. 37.
tions on Xe performed with a well-specified basis set are

available in the literature. This facilitates significantly the
comparison of the results obtained in the present work witft . 213
the results of other quasirelativistic investigations. siderable values.

The ZORA and IORA methods exaggerate the relativis- The use of the scaled IORA formalism redupes greatly
tic effects on the orbital energies, where this feature is wellihe gauge dependence of4the IORA method ”.‘ak'”g the GSE
documented in the literatufé’~3The SIORA orbital ener-  Proportional to E/(2me?)*. This is illustrated in Table IIl,
gies are in very good agreement with the Dirac—Fock valuesv.vhere the resulis of calculations of the gauge shift eigr

Although for one-electron atoms the scaled ZORA method Ea+A performed with various methods for noble gas at-

yields exact energi€s® for a many-electron atom such as ogwds :? ”:;OUgh )I(e are tdls?I?ygd. ghe ne_gatlvehconskan:h ¢
xenon, this method is inferior to SIORA. This is a clear 340€C t0 the nuclear potential, IS chosen in such a way tha

. : - : the nonrelativistic total atomic energy is shifted byl00
manifestation of the improved quality of the IORA wave ) S
function as compared to the ZORA one. Better description Opartree units. The SIORA3/2 method causes a GSE, which is

the electron density achieved with the use of the IORA wav ggzst tV\t’E grd:iiﬁ of r:n]:elgnltude s:na{ler thfm t:}?t of tlhz
function results in a better description of the electron— method. ough Tor a one-electron atom e scale

; ; ; 2,3
electron interaction. This is especially pronounced in theZORA method is gauge invariari.e., zero GSE™" for

deep core region, where the SIORA3/2 method reduces mopéany-electron atoms this method is not gguge-mva]ﬁant
than twice the error made by scaled ZORA. and leads to errors almost an order of magnitude larger than

SIORA3/2.

h(E/(2mcz))2,8 for heavy nuclei the GSE still can reach con-

C. Molecular calculations

B. Gauge dependence The results of calculations of diatomic, the gold atom

In the molecular calculations, an important disadvantageontaining molecules, AuH, AuF, and Awre collected in
of the IORA and other methods based on the regular approxifable V. The calculations employed the contracted
mation (ZORA, etc) is the erroneous gauge dependence of 14s10p9d3f] basis set on gold used in our earlier wdk,
the energy eigenvalué$:'213|f a constant shift is added to and the augmented correlation consistent double-zeta basis
the potentialV, then the eigenvalues of the Hamiltonian set of Dunning(aug-cc-pVDZ*° for the light elements. The
should be shifted by exactly the same amount of energy. Thisalculations were carried out at the Hartree—Fock level and
feature is known as th@auge invarianceand it means at the level of the second-order Mgller—Ples@éP?2) per-
merely that it is the difference of potentials rather than theturbation theory® In the MP2 calculations, all valence elec-
potential itself, which counts in physical events. trons of light atoms and thes5 4f, 5p, 5d, and 6 electrons

The gauge shift errofGSE) of ZORA is of the order of (33 electrons in totalof the gold atom were correlated. The
E/(2mc?),?®i.e., when the potential is shifted by an amountoptimized molecular geometries and the harmonic vibra-
A, the shift in the ZORA energy exceedsby a small but tional frequencies are obtained numerically. No correction
non-negligible amount. The gauge shifplays an important for the gauge dependence was made during the geometry
role in molecular calculations for the core electrons, becausaptimization. However, the dissociation energies are cor-
for a given nucleus, they experience the tails of the potentialsected for gauge noninvariance, by subtracting the GSE for
of the neighboring nuclei, which means a shift in the poten-individual atoms from the total molecular energy?
tial seen by these electrons By The closer the nuclei are Comparison of the results of IORA and SIORA3/2 cal-
brought together, the larger is the shift generated by otheculations with the available theoretical and experimental data
nuclei at the position of the given nucleus. Because of theshows that the IORA method clearly suffers from the gauge
gauge noninvariance, the ZORA energy decreases faster thdependence problem. Since no correction for the gauge de-
it should, which results in the appearance of nonphysicapendence was used during the geometry optimization, the
(attractive forces between nuclei and in a distortion of bond lengths obtained with IORA are markedly shorter than
the molecular geometry. Although the IORA method hasthe reference values. However, as long as this distortion re-
considerably weaker gauge dependence, of the order ehains modest, the dissociation energy, which is corrected for
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TABLE V. Spectroscopic parameters of gold diatomic molecules. nucleus. Thus, the expansion obtained can be considered as
Method R.(A) g (o) D, (eV) the' regular expansion for the effective relativistic Hamil-
tonian.
AuH In previous development work, Chare all® derived
IORA/SCF 1.553 2178 1.76 h focti Hamiltoni i th e formmief
SIORAS/2/SCE 1566 2131 176 e Aeﬁ ective Hamiltonian in the recursive forrd®
DHF? 1.570 2067 1.78 =f(H®"), which is suitable for an iterative numeric solution.
IORA/MP2 1.476 2597 3.24 Such an approach is not well suited for an implementation
SIORAS/2/MP2 1.485 2568 324 \ithin standard quantum-chemical codes. Indeed, the calcu-
DHF/MP2 1485 2504 321 |ation of the effective Hamiltonian depends on the conver-
Expt® 1524 2305 336 ation of the effective Hamiltonian depends on the conve
gence features of the iteration process. In the present work,
ORAISCE fl;;g 507 109 we avoid a recursive formulation of the effective relativistic
SIORAI2ISCE 1978 522 111 Hamllto_nlan and express the latter directly in terms_ of_
DHF® 1.968 528 energy-independent linear operators. Such an expression is
IORA/MP2 1.856 655 3.24 suitable for a one-step calculation of the effective Hamil-
SIORA3/2/MP2 1.908 589 3.26 tonian in actual quantum-chemical calculations.
DHF/MPZ 1.899 590 (i) The effective relativistic Hamiltonian obtained is
Expt. 1.918 560° 3.20 . . .
used for the construction of a perturbational expansion of the
Au, exact relativistic electronic energy. An ordinary perturba-
IORA/SCF 2.070 513 —3.27 tional expansion based just on the effective non-Hermitian
SIORA3/2/SCF 2.655 148 0.83 LA . .
IORA/MP2 2015 473 033 Ha_mlltonlanL as well as a do_uble pertur_batlonal expansion,
SIORA3/2/MP2 2.490 184 2.52 which employs the symmetrized effective Hamiltonian to-
Expt” 2.472 191 2.29 gether with the normalization operator+ XX, of the rela-
aTaken from Ref. 41. tivistic wave function are constructed. Both theories, IGRA
PExperimental data taken from Ref. 42 unless noted otherwise. and IORM(2), lead in zeroth order to the IORA method.
‘Taken from Ref. 43. Thus, it is IORA rather than ZORA, which is the true zeroth-

4Taken from Ref. 44. . .
“Taken from Ref. 45 order approach of the regular perturbation theory of relativ-

Taken from Ref. 46. istic effects.

The higher-order corrections to the IORA energy within
both perturbation expansions converge rapidly to the exact
elativistic energy for electronic states. Already the third-

GSE, is reasonable. For the gold dimer, the IORA metho rder perturbational expansion IORA3 outperforms in accu-

predicts an unrealistic geometry with the bond length bein acy the popular Douglas—Kroll—Hess method, even when

alrrost Ahalf of an angstromf fr?orggr tth?n tht?\ eépselgme?teghe latter is taken up to fifth order. The third-order expression
value. As a consequence ot this distortion, the caCUsbtained from double perturbation theory, IOR2&B offers
8ven better accuracy. In calculations on hydrogen-like atomic

ions, IORA32) leads to the same level of accuracy as direct

- 720

For all molecules in Table 1V, the SIORA3/2 method pertz{r_baitt)r:htheory cor:e;t} through o:pter f ing the t
leads to results in very good agreement with the reference i) (_a moment, the pgrspec '\_'e_ 0, usmg. € trun-
theoretical and experimental data. The weak gauge depefidt€d expansion for the effective relativistic Hamiltonian
dence does not have a visible effect on the optimized motand the wave function normalization operator X"X) war-
lecular geometries and the vibrational frequencies. Even fofants further study. However, these expressions can be used
the gold dimer, the Au—Au bond length of 2.490 A, obtainedfor nonvariational calculations of the relativistic energy from
in the SIORA3/2/MP2 calculation, is in excellent agreementthe Rayleigh quotient. The use of the IORA wave function in

with the experimental value of 2.472 A. the Rayleigh quotient(47) leads to the scaled IORA
(SIORA) method. SIORA, although conceptually similar to

the scaled ZORA approach, differs from the latter in two
XI. CONCLUSIONS ways: (a) The IORA wave function provides a much better
approximation to the exact relativistic wave functid). The
The following conclusions can be drawn from the Rayleigh quotient(47) used in SIORA leads to the exact
present work: relativistic equation(41); however, the Rayleigh quotient
(i) The exact relativistic Hamiltonian for electronic used in the scaled ZORA method leads to the IORA equation
(positive-energy states was expanded in terms of linear(20). In calculations on hydrogen-like atomic ions, the
energy-independent operators. The advantage of the regul8tORA3/2 method reaches the same level of accuracy as
Hamiltonian operatot.(9=HZ°RA and the operatorl and  direct perturbation theory correct through order2
Xy used in expansiofil7) is that they are bound from below (iv) The matrix form of the new methods was presented,
and do not contain the singularities typical for the operatordecause this can be easily incorporated into the existing
obtained in the standardcf/ expansion, even in the case of quantum-chemical programs designed for nonrelativistic cal-
a singular potential such as the potential of a point-chargeulations. The atomic and molecular calculations performed

energy, thus yielding the negative values g (see Table
V).
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in the present work with the SIORA3/2 method as imple-bations. The improved energy functional will then account
mented in thecOLOGNE 2003suite of quantum-chemical pro- for a better description of the energy spectrum, whereas the
grams, demonstrate that the new approach provides a consitrproved wave function will lead to a better description of
erable improvement over the results from both IORA andthe coupling to the external fields.

scaled ZORA calculations. The combination of an improved

energy estimate with an accurate quasirelativistic wave func-

tion is crucial for obta_ining reliaple descriptior_\s of atomic A ~KNOWLEDGMENTS

and molecular properties, especially those which depend on

the core electrons. Indeed, properties such as the nuclear This work was supported by the Swedish Research
magnetic shielding tensor, dipole and quadrupole screeninGouncil (Vetenskapstet. An allotment of computer time at
factors, the electric polarizability, etc., can be obtained bythe National Supercomputer Cent@SC) at Linkoping is
differentiation of the energy with respect to external pertur-gratefully acknowledged.

APPENDIX A: COMPLETE ALGEBRAIC EXPRESSION FOR THE EFFECTIVE RELATIVISTIC HAMILTONIAN

The operatOII:(5), obtained after five consecutive iterations according to(Eg), reads

L) = (1= X+ X2—= K3+ K=K L O+ Xy (1— X+ X=X LO(1— X+ 32— 3+ X)L O — kX (1 — X+ X2)L O (1 — X+ X
—53LO 4 %2%,(1— X)L O(1— %+ X2)L O = 33%,L O (1 =X)L O — Xg(1— X+ X2 LO(1— X+ 32— X)L O(1- X
F X253 KL O+ XK (1=K LO(L =X+ X)L O(1— X+ X2 =KL O —x2X,LO(1—X)LO(1— X+ X)L ©
F %X (1= X)L O(L =K+ K LO(1— %+ X2— 3+ XML O — xXo%oL O (1= X)L O (1 — X+ X2 —K3)L (O — %,x%,L @
X(1—=X)LO(1 =X+ K=K+ KL O+ %y (1— X+ K=K LOR(1 - X+ X)L O(1— X+ X2 X3 L0 — XX (1— X

%)L O%,(1—X)LO(1— X+ X2)L O — %y (1— X+ X2 — X3 LOKXH(1— X)L O(1— X+ X2)LO + x%,(1—X
+§<2)I: $XoL Q1= X)L O+ %2%,(1— X)L OK,LO(1=K)L O+ %o (1— X+ X2 — X3 LOXZK,LO(1—K)L O+ %,4(1
—LOL =X+ LO(1— %+ =X)L O(1—x+ X2 = X+ X4 LO = xx,L O(1— X)L O(1— %+ X)L O(1—%

F 3253 LO 4+ %oy (1— X+ X2— X)L O%, (1= X+ X2 LO%(1— X)L O(1— X+ X2)L O — XXo(1— X+ X2)L O, (1
—S)LOZLO(1 =) LO = Xy(1— X+ X2— X3 LO%K( 1 — X)L OKLO(1— X)L O =Ko (1— X+ K2 =X)L O%5(1—X
+ R LORRLO(1 =)L O+ %y(1— X+ 32— K3 L OR XL O (1~ )L O (1~ K+ K= K3)L O+ %,%,5(1
—LOKLO(1 =) LO(1— %+ %2 — 3+ X)L O + Xoko( 1= X)L O(1— X+ X2) L O%p(1— X+ X2)LO(1 — X+ X2
—53)LO — %%, %L O(1— X)L 0%y (1—K)LO(1— X+ X)L O = %,%%,L O (1= X)L O%o(1— X+ X)L O(1— %+ X2
—53)LO = %% 1 =X)L O(1— %+ X2) L O%Ko(1— X)L O(1— %+ X2) L@+ XXo%,L @(1— X)L OxK,L O (1 =X)L ©
F %o XKoL O (1= ) LORXH( 1= X)L O(L =K+ X)L O+ XoRo( 1 — X)L O(1— %+ X2) LOKZK,LO(1—K)L@

— %o X%l (1=K LOKZK,L O(1—K)LO = Xo&aL O(1— X)L O(1— X+ X)L O(1— X+ X2— X3+ X4 L@

— %KoL O(L—=F)LO(1— X+ K2 =KL O(1 =K+ X2 K3+ KL O — Xy (1— X+ X2— X)L O%5(1— X)L O(1—X
F3)LO1 =%+ 32— X)L O+ KXo (1— X+ X2)LORL (1= K)LO(1— X+ X2)L O+ Rp( 1 — X+ X2

— 53 LORKLO(L—K)LO(1 =X+ X)L O —Xg(1— X+ X2)LO% (1 —K)LO(1— X+ X2)LO(1— K+ X2— X3
FXHLO 4 x%g (1= K)LOKLO(1 =X)L O(1— K+ X2 = X3 L O 4+ Xa(1— X+ X2) L OxK,L O (1 - X)L O(1— %+ X2
— 53 KHLO = Xg(1— X+ X2)LO(1 =X+ K2 =X)L Oy (1— X+ X2)LO(1— X+ K2 = K3 L O+ KX5(1 - X)L O(1— %
F32)LOR(1—)LO(L— %+ X2)L O+ X(1— X+ X)L O(1— X+ X2 K3 LORXH(1— X)L O(1— K+ X)L ©
—%Xa(1 =X)L O(1— X+ X2) LOKK,L O (1= X)L O =%k (1= K)LOK,LO(1— X)L O —%g(1—X+%2)LO(1

— R+ K=K LOKZKLO(1—K)L O+, (A1)
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where all terms up to the fourth orderlit® are shown. One

this order will appear in the expression. The operakoasd
X, used in Eq(Al), are defined in Eqg14) and(15) in the
text.

APPENDIX B: ORDINARY PERTURBATION THEORY
OF THE EFFECTIVE RELATIVISTIC HAMILTONIAN

Although the Rayleigh—Schdinger perturbation theory
is well known?® we repeat here some important results fro
it as they refer to Eq(19). Note, that the wave function

M. Filatov and D. Cremer

where the orthonormality of the zeroth-order wave functions
can anticipate that after the fifth iteration no new terms up to

(OIN[gO) =& (B7)

was used. Substituting E@B6) into Eq. (B5) one obtains

S

k#i i

(B8)
O,

which after substitution into EqB4), multiplication of the

mresulting equation by (®)* from the left, and integration,

yields Eq.(22). Equation(21) for the first-order correction

normalization in Eq(19) differs from the standard nonrela- €\ to the unperturbed energy® is obtained from Eq(B3)

tivistic wave function normalization. Let us start from

(LO+LD) g =Ny, (B1)

whereL(© is the unperturbed Hamiltoniat,® is the per-
turbation operator, and the supersctipat the wave function
symbol is dropped for brevity. Multiplying. (") by a pertur-

by multiplying it from the left with @{”))*, integrating, and
using the Hermitian property of the operatdar§) andN.

APPENDIX C: DOUBLE PERTURBATION
THEORY
OF THE EFFECTIVE RELATIVISTIC HAMILTONIAN

Let us rewrite Eq(41) in the text in form of Eq(C1),

bation parametei, expanding the wave functiong; and
energies; in powers of the parametar, and equating terms
with the same power ok on both sides of the resulting
equation, one obtains

(L0 dOR)O—o0,

T(N+ND)N"YLO4LD)
+(LO+ L) NN+ ND) T = g(N+ND)

(B2) (C1)

where the operatdi(V) represents the difference between the
IORA normalization operatoN and the exact relativistic
normalization operator £ X"X and the operatdr ™) is iden-
tical to the operatoZN 1L (). Expanding wave functions
and energies; in double perturbation series, one obtains
from Eq.(C1)

(E(O)—fi(O)NWi(l): _|A_(1)¢i<0)+€i(1)|§|¢i(0)’ (B3)
(L0 @R g2 = LDy 1 DRy + 2Ryl

(B4)
Parametrizing the first-order wave functigi®) in terms of
the eigenfunctions of the unperturbed Eg2),

1 0
PP=> ya

k#i

B5) (LO=e®N)y®=o0, (€2

(LO — 0N 10 = — I NDIN~ILO) 4+ LON~IND] (00
substituting Eq.(B5) into (B3), multiplying from the left
with (¢{9)*, and integrating, one obtains for the coefficients
a; in the expansior{B5) the following:

(6= e a=— (1L,

+éi(lo)l;lwi(OO)_f_ei(OO)N(l)wi(OO) , (C3)

(L= f0ON) {0 = — J[ LD+ (L) 1]+ PNy,

(B6) (CH

(LO— 0N 10— — INON L@ 4 (L) TN IND] (00 — I NON-LLO 4 LON L] (0D
_%[l“_(l)+(|‘_(1))*r]w§10)+6;11)&11/?00)4_6?10)&‘//?01)4_Ei(01)|§|l//i(10)+6i(00)|§|(1)¢501)+Ei(Ol),(l(l)wi(OO)7
(CH

where the first superscript at the energy or wave functiortive first-order corrections to the unperturbéce., IORA)
denotes the order in the perturbatibh’) and the second energy,
superscript denotes the order in the perturbaliéi. Note, (10) _ 1/ (00 | (LN~ 1[ (0) o [ (0= LN (D] (00
S - =) "= 3 INONTIL O+ LONTIND )
that the operatoN® is Hermitian, whereas the operatdt

is not. — €20 PN )| {0, (C6)
Multiplying Egs. (C3)—(C5) with ({°”)* from the left . .
and integrating, one obtains Eq&:6)—(C8) for the consecu- 6% = H( g OO ILD + (LD)T] g0, (C7)
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= MO

& "IN )+ K LD+ (L) Ty 0) -

lL(l)+(L(l))TN 1N<1)|Ir//00)>+ 1<lr/1 OO)|N(1)N lL(0)+L N*l&(l)|¢,i(01)>_
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| *)

Equation(C8) can be further simplified with the help of Eq€9) and (C10) obtained from Eqs(C3) and(C4),

(oo~

(HOHIE - ORI = €2 (IR 1) -

€f?OR12) = e PN ) + 20 IR )~ KRR

%< ‘//i(oo)l LD, (L(l))‘r| lﬂi(lo)>-

el (PO IN[ 1) — € PN g, (c8)
{004 L OR-R®] o),

(C9)

(C10

Summing over all first-order corrections to the unperturbed energy, one obtains

€004 104 O 4 (1= 10y (00 (N+ NN~ HLO + L)+ (LO+ LO)INTIN+ND) | {0 —

6i(01)< wi(00)| N lr/li(OO)> —( l/,i(10)| LO_—

The last two terms in Eq(C11) are identical, because(®)

andN are Hermitian operators. For the purpose of estimating
these terms, let us represent the first-order perturbed wave,

functions as in the following:

0= 2 ha, (C123
%= 2 Uy (C12b

The expansion coefficients,; and by; can be found using

Egs.(C3) and(C4), respectively. Thus, one has fgf'® and
heo

l//i(lO):%gi l//(k00)<lr/j(k00)|N(1)NflL(0)+ L(O)Nle(l)

— 2PN {00/ (00— 00), (C133
Y= YOI
L)~ ), (c13

which upon substitution into EqC11) yield for the last two
terms

(O 4RI — (O - R g2

= 3> (POINON-ILO 4 LON-IND)
k#i

- 2d PRy P

(LD (e~ ). (C14
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