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Analytic energy derivatives for regular approximations of relativistic effects
applicable to methods with and without correlation corrections

Michael Filatova) and Dieter Cremer
Department of Theoretical Chemistry, Go¨teborg University, Reutersgatan 2, S-41320 Go¨teborg, Sweden

~Received 12 December 2002; accepted 24 January 2003!

Analytic expressions are derived for the evaluation of derivatives of the total molecular energy with
respect to external parameters~nuclear coordinates, external electric fields, etc.! within the
relativistic regular approximation. The presented formalism employs the spectral resolution of the
identity avoiding, however, the explicit use of an auxiliary basis set in the calculation of the matrix
elements of the regular relativistic Hamiltonian. The final formulas for the total energy and energy
derivatives are presented in matrix form suitable for implementation into standard quantum
chemical packages. Results of benchmark calculations for gold containing diatomic molecules and
for xenone hexafluoride performed at the Hartree–Fock and various correlation corrected levels of
theory are presented and discussed. ©2003 American Institute of Physics.
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I. INTRODUCTION

Currently, it is well recognized that the incorporation
relativistic effects into quantum-chemical calculations is e
tremely important for the correct description of chemic
bonding in compounds with heavy elements.1–3 Computa-
tional complexity of the rigorous four-component compu
tional procedure, which is orders of magnitude more exp
sive than the standard nonrelativistic procedure, prom
researchers to seek low-cost yet accurate approxim
approaches. In recent years, the methods based on a re
expansion4–12 of the Dirac Hamiltonian13 as well as on
the Douglas–Kroll transformation14–16have been establishe
as cost effective alternatives to the full four-compone
formalism. The zeroth-order~ZORA!6,7 and infinite-order
~IORA!8 regular approximations lead to a two- o
one-component variationally stable Hamiltonian, whi
is capable of describing the valence and subvalence e
tronic shells of heavy elements with a remarkab
accuracy.6,7,11,12

The methods based on the regular approximation are
most exclusively used within the context of density fun
tional theory.17 Applications within the context of wave func
tion theory are relatively rare.9–12 This is probably due to
difficulties in calculating the matrix elements of the ZOR
or IORA Hamiltonian with the standard basis sets employ
in quantum chemistry.18 The regular-approximated Hami
tonian contains the full molecular potential in the denomin
tor, which makes it impossible to express its matrix eleme
in a closed algebraic form. Thus, one sticks to the
of numeric quadratures, which is a customary appro
within density functional theory~DFT! but is quite ineffi-
cient in conventional wave-function-based methods.
straightforward use of the spectral resolution of the iden
~RI!, suggested by Faaset al.,9 requires a huge auxiliary ba
sis set to provide the required accuracy.

a!Electronic mail: filatov@theoc.gu.se
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Recently, an efficient way of calculating the matrix el
ments of the ZORA and IORA Hamiltonians wa
developed.19 Although the new computational procedure r
lies on the RI technique, the explicit use of an auxiliary ba
set is avoided and the matrix elements of the quasirelativi
Hamiltonian can be obtained at essentially the same cos
in the nonrelativistic case. It is important to note that the n
computational procedure is quite insensitive to the size o
basis and provides reasonable results even with small b
sets.

Yet another hurdle for the rosy prospect of applying t
relativistic regular approximation is its gauge depende
problem.6–8,11,12When a constant shift is added to the pote
tial, the ZORA or IORA eigenenergy does not shift by e
actly the same amount. This results in an appearance of
physical forces between the nuclei and makes the di
calculation of energy differences impossible. Hence, o
should be content with certain modifications of the origin
formalism, which are aimed at reducing the gau
dependence.6,7,18The IORA Hamiltonian, which differs from
the ZORA Hamiltonian by renormalization using a quasi
lativistic metric, experiences a much weaker gauge dep
dence problem.8 This feature encouraged a simple modific
tion of the original IORA quasirelativistic metric, which
reduces the gauge dependence even further.19 Atomic and
molecular calculations with the new method, dubb
IORAmm ~IORA with modified metric!, have shown that the
residual gauge dependence does not affect the geomet
molecules containing heavy elements.19 When calculating
the energy differences~e.g., binding energies!, the effect of
the residual gauge dependence~usually no more than a few
kilocalories per mole! can be taken into account with th
help of a simple procedure19 similar to the counterpoise cor
rection for basis set superposition errors.20

The purpose of the present paper is to develop furt
the formalism of Ref. 19 and to present analytic expressi
for the evaluation of molecular energy derivatives with r
1 © 2003 American Institute of Physics
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spect to external parameters. Once such formulas are
rived, they can be applied to the calculation of the analy
energy gradient~first derivative with respect to nuclear coo
dinates! needed for geometry optimization or of oth
energy-related properties, such as dipole moment, ele
dipole polarizability, etc. In Sec. II a brief survey o
the IORAmm method and of the computational techniq
used for the evaluation of the Hamiltonian matrix eleme
is presented along with the expressions for the ene
derivatives. The formalism developed is applied to t
calculation of the spectroscopic parameters of diato
molecules containing gold atoms as well as to the calcula
of xenone hexafluoride. Section III describes the implem
tation of analytical energy derivatives into a standa
quantum chemical program and details of the calculatio
The results of the calculations performed at the s
consistent field~SCF! and at the MPn (n52 – 4) levels of
theory are presented in Sec. IV. Section V concludes
paper.

II. THEORY

The derivation of approximate relativistic theorie
normally starts with the transformation of the fu
four-component Dirac Hamiltonian13 to a two-component
form using for example the Foldy–Wouthuyse
~FW! formalism.21,22 Then, spin-dependent relativistic e
fects are neglected to obtain a one-component~spin-free!
theory.

Making the regular approximation for the exact FW o
eratorX̂ by8

X̂5
c

2mc22V
~s"p!, ~1!

where s is the vector of the Pauli matricess
5(sx ,sy ,sz),

23 p52 i\¹ is the momentum operator,m is
the rest mass of electron andc is the velocity of light, leads
to the IORA Hamiltonian

Ĥ IORA5
1

A11~s"p! ~c2/~2mc22V!2! ~s"p!

3S V1~s"p!
c2

2mc22V
~s"p!D

3
1

A11~s"p! ~c2/~2cm22V!2! ~s"p!
, ~2!
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
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which is referred to as the infinite-order regular approxim
tion ~IORA!.8 The IORA Hamiltonian has been propose
in Ref. 8 where it has been shown thatĤ IORA is bounded
from below on the same domain of the potentialsV
as the zeroth-order regular approximated~ZORA!

Hamiltonian.6 Thus, Ĥ IORA can be used in quasivariationa
calculations.

A serious disadvantage of the ZORA and IORA Ham
tonians is their lack of gauge invariance.6–8 If a constant
shift D is added to the potential,

VD5V1D, ~3!

then the eigenvalues of a gauge invariant method should
shifted by exactly the same amountD. For IORA, the gauge
shift error ~GSE! is8

E0
IORA2ED

IORA1D'2
~E0

IORA!2D

4m2c4 , ~4!

which is small compared to the gauge dependence
ZORA:6

E0
ZORA2ED

ZORA1D'
E0

ZORAD

2mc2 , ~5!

however still large enough to induce a considerable dis
tion of the molecular geometry if the method is applied
molecular calculations.11,12

A modification to the original normalization operato
Û,

Û5
1

A11~s"p! ~c2/~2mc22V!2! ~s"p!
, ~6!

of the IORA Hamiltonian, which reduces considerably t
gauge dependence of its eigenenergy, was proposed in
19. The IORAmm Hamiltonian reads
Ĥ IORAmm5
1

A11 ~1/2! ~s"p!~~1/2mc2! c2/~2mc22V! 1 ~c2/~2mc22V!2!!~s"p!
S V1~s"p!

c2

2mc22V
~s"p!D

3
1

A11 ~1/2! ~s"p!~~1/2mc2! c2/~2mc22V! 1 ~c2/~2mc22V!2!!~s"p!
. ~7!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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As has been demonstrated in atomic and molec
calculations,19 the IORAmm Hamiltonian has a gauge depe
dence, which is approximately two orders of magnitu
weaker than that of IORA. Hence, the IORAmm Ham
tonian can be used in molecular calculations without furt
modifications. This is illustrated in Fig. 1 where the GSE
ZORA, IORA, and IORAmm is plotted for the ground sta
of the U911 ion as a function of the gauge shiftD.

Expanding the one-electron wave functions~orbitals! c i

in terms of~nonorthogonal! basis set functionsx according
to Eq. ~8!

c i5ux&Ci , ~8!

where ux& is a row vector of basis functions andCi is a
column vector of expansion coefficients, the matrix form
the IORA ~or IORAmm! Hamiltonian is given by19

H5^xuĤux&5~S1/2!†~U21/2!†~V1K1!~U21/2!~S1/2!,
~9!

where S denotes the matrix of the overlap integralsSmn

5^xmuxn& andK1 the matrix of the operator

~s"p!
c2

2mc22V
~s"p!.

The matrixU is given by

U5H S1K2 ~ IORA!

S1
1

4mc2 K11
1

2
K2 ~ IORAmm! ,

~10!

whereK2 is the matrix of the operator

~s"p!
c2

~2mc22V!2 ~s"p!.

FIG. 1. Gauge shift errorE02ED1D obtained for the ground state energ
of U911 as a function of the gauge shiftD for ZORA ~long-dashed line!,
IORA ~dot-dashed line!, IORAmm ~short-dashed line!, and the gauge-
invariant method~solid line!.
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The major obstacle in evaluating the elements of ma
ces K1 and K2 is the presence of the potentialV in the
denominator. Thus, in the case of a general potentialV, an
analytic expression for these matrix elements can hardly
derived in a closed form. However, representing the oper

K̂5
c2

2mc22V
~11!

as in Eq.~12!,

K̂5
1

2m
1

1

2mc2 VK̂, ~12!

and using the spectral RI,Î 5uf&^fu, in terms of the kineti-
cally balanced24,25 basis setuf&,

uf&5u~s"p!x&
T21/2

~2m!1/2, ~13!

leads to the following equation for the matrix elemen
(K1)mn :

~K1!mn5 K ~s"p!xmU c2

2mc22VU~s"p!xnL
5Tmn1

1

2mc2 ^~s"p!xmuV3K̂u~s"p!xn&

5Tmn1~W0T21K1!mn , ~14!

whereT is the matrix of the kinetic energy operatorT̂,

T̂5
p2

2m
5

~s"p!~s"p!

2m
,

andW0 is the matrix of the operatorŴ0 ,

Ŵ05~s"p!
V

4m2c2 ~s"p!.

Cross3 in the second line of Eq.~14! marks the place a
which the RI is inserted. RepresentingK1 as

K15T1W, ~15!

Eq. ~16! for matrix W is obtained

W5W01W0T21W ~16!

with the solution

W215W0
212T21. ~17!

Using the relationship

2mK̂25
1

2m

1

~12 ~V/2mc2!!2

5
1

2m
1

1

mc2 VK̂12mK̂
V

2mc2

V

2mc2 K̂ ~18!

the elements of matrixK2 can be expressed as in Eq.~19!,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6744 J. Chem. Phys., Vol. 118, No. 15, 15 April 2003 M. Filatov and D. Cremer

Downloaded 25 Ja
TABLE I. Comparison of the nonrelativistic, IORA, and IORAmm ground state energies~in hartree! of U911

for different basis sets.

Na Nonrelativisticb IORAc DEIORAd IORAmm DEIORAmm d

62e 24232.0000 24921.0986 2689.0986 24841.1766 2609.1766
28f 24231.9999 24920.8645 2688.8646 24841.0079 2609.0080
14g 24228.9538 24914.5566 2685.6028 24835.3816 2606.4278
7g 23639.8428 24317.6384 2677.7956 24256.8133 2616.9705

aNumber of primitive Gaussian functions.
bThe exact nonrelativistic value is24232.0000 hartree. The exact Dirac value is24861.1980 hartree.
cThe exact IORA value is24921.0993 hartree~Ref. 8!.
dDEmethod5Emethod2Enonrel.
eBasis of 62 primitive Gaussians-type functions from Ref. 15.
fBasis of 28 primitive Gaussians-type functions from Ref. 26.
gObtained from the previous basis by excluding every second primitive function.
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~K2!mn5
1

2mc2 ^~s"p!xmu2mK̂2u~s"p!xn&

5
1

2mc2 S Tmn12K ~s"p!xmU V

2mc2 K̂U~s"p!xnL
12mK ~s"p!xmUK̂ V

2mc2 3
V

2mc2 K̂U
3~s"p!xnL D5

1

2mc2 ~T12W1WT21W!.

~19!

Note that in the third line of Eq.~19! the RI formed with the
auxiliary basis set~13! is used. Thus, the matrix elements
the IORA and IORAmm Hamiltonian can easily b
calculated19 with the use of Eqs.~9!, ~10!, ~14!, ~15!, ~17!,
and ~19!.

Although the present approach uses the RI, the qualit
the results is not very sensitive to the size of the basis
employed. This is documented in Table I, where the IO
and IORAmm energy calculated for the ground state of U911

ion is presented as a function of the basis set size. Redu
more than twice the size of the basis set from 62 to 28 pri
tive functions does not result in a significant loss of accura
Even with the smallest basis set comprising only se
primitive functions the relativistic correction to the nonrel
tivistic energy is reproduced with a relative accuracy be
than 2%.

While for the one-electron case the transformation of
relativistic Hamiltonian to the two-component form and t
application of further approximations are straigh
forward,8,27,28 the transformation of the many-electro
Hamiltonian is much more laborious due to the presence
two-electron terms. One should be content with certain
proximations to simplify molecular calculations and the u
derlying theory. The use of a relativistically corrected on
electron Hamiltonian in many-electron equations represe
an example of such an approximation.27,28 This one-electron
(1ē) approximation is used in many quasirelativistic the
ries, e.g., in the Douglas–Kroll–Hess method,15,29 etc.27,30,31

As has been shown in Refs. 27 and 28, such an approx
tion corresponds to neglecting the commutators of the lin
momentum operator (s"p) with the electron–electron repu
n 2005 to 129.16.100.69. Redistribution subject to AIP
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sion operator 1/r i j . This implies neglecting a renormalize
two-electron Darwin term which has the same order of m
nitude as the two-electron spin–orbit term. Hence, theē
approximation should perform reasonably within the sca
relativistic ~one-component! approach where all spin
dependent relativistic effects are neglected.27,28

Thus, the Hartree–Fock IORA~or IORAmm! equations
within the scalar-relativistic 1ē approximation read

~~S1/2!†~U21/2!†~Vn1T1W!~U21/2!~S1/2!1J2K !Ci

5SCie i , ~20!

where Vn is the matrix of the electron–nuclear attractio
integrals^xmuVnuxn& and the matrixU is given by

U5S1
1

2mc2 ~T1aW1bWT21W! ~21!

with the parametersa andb for IORA: a52, b51 and for
IORAmm: a5 3

2, b5 1
2. The matrixW0 in Eq. ~17! is calcu-

lated in the 1ē scalar-relativistic approximation as

W05 K xmUp Vn

4m2c2 pUxnL . ~22!

Note that only the electron–nuclear attraction potentialVn is
used in Eq. ~22! and the electron–electron repulsion
treated nonrelativistically. The matrixW0 can be expressed19

in terms of the usual electron–nuclear attraction integr
which are routinely available in the standard nonrelativis
quantum-chemical packages. The total SCF energy is g
by

ESCF5tr~ 1
2P~H1F!!

5tr~P~~S1/2!†~U21/2!†

3~Vn1T1W!~U21/2!~S1/2!1 1
2~J2K !!!, ~23!

whereP is the density matrix in the basis of atomic orbita
x,

P5CnC†. ~24!

In Eq. ~24!, n is the diagonal matrix of orbital occupatio
numbers.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Equation~23! differs from the corresponding nonrelativ
istic expression only in the use of the relativistically co
rected one-electron HamiltonianH1ē in the one-electron con
tribution to the total SCF energy, Eq.~25!,

E1ē5tr~PH1ē!5tr~P~~S1/2!†~U21/2!†~Vn1T1W!

3~U21/2!~S1/2!!!. ~25!

Let us assume that the molecular integrals in Eqs.~23!
and ~25! depend on an external parameterl, e.g., nuclear
coordinate. Then, the first derivative of the SCF total ene
with respect to the parameterl is given in32

]E

]l
5trS PS ]

]l
HD D1trS WS ]

]l
SD D

1
1

2
trS P8S ]

]l
~J2K ! D D , ~26!

whereW is the energy-weighted density matrix,

W5CneC†, ~27!

e is a diagonal matrix of orbital energies, and the prime
]/]l implies that only molecular two-electron integrals rath
than density matrix elements~or orbital coefficients! have to
be differentiated.

The IORA ~or IORAmm! one-electron contribution to
the derivative of the total energy is given as follows:

]E1ē

]l
5trS PS ]

]l
~~S1/2!†~U21/2!†~Vn1T1W!~U21/2!

3~S1/2!! D D
5trS PS S ]

]l
G†DHG1G†S ]

]l
HDG

1G†HS ]

]l
GD D D

5trS S GPS ]

]l
G†D1S ]

]l
GDPG†DHD

1trS ~GPG†!S ]

]l
HD D

5trS S ]8

]l
P8DHD1trS P8S ]

]l
HD D , ~28!

where the matricesG, H, and P8 are defined in Eqs.~29!,
~30!, and~31!, respectively,

G5U21/2S1/2, ~29!

H5Vn1T1W, ~30!

P85GPG†. ~31!

The derivative of theH matrix,

]

]l
H5

]

]l
Vn1

]

]l
T1

]

]l
W, ~32!
Downloaded 25 Jan 2005 to 129.16.100.69. Redistribution subject to AIP
y
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contains the derivatives of the electron–nuclear attrac
((]/]l)Vn) and the kinetic energy integrals ((]/]l)T),
which are easily available in standard quantum-chem
codes, as well as the derivative of matrixW defined in Eq.
~16!. The latter derivative can be obtained from differentia
ing the identityA21A5I as in the following:

]

]l
A2152A21S ]

]l
ADA21, ~33!

which for the derivative of theW matrix yields

]

]l
W52WS ]

]l
~W0

212T21! DW

5WW0
21S ]

]l
W0DW0

21W

2WT21S ]

]l
TDT21W. ~34!

Thus, the derivative of theH matrix with respect to a param
eterl as given in Eq.~35! can be expressed in terms of th
usual molecular integrals accessible in standard nonrelat
tic quantum-chemical packages,

]

]l
H5

]

]l
Vn1

]

]l
T1WW0

21S ]

]l
W0DW0

21W

2WT21S ]

]l
TDT21W. ~35!

The derivative of the renormalization matrixG with re-
spect to parameterl is given as follows:

]

]l
G5

]

]l
~U21/2S1/2!

5S ]

]l
U21/2DS1/21U21/2S ]

]l
S1/2D

52U21/2S ]

]l
U1/2DG1U21/2S ]

]l
S1/2D , ~36!

which contains the derivatives of theU1/2 andS1/2 matrices.
The latter derivatives can be taken33 using the properties o
eigenvalues and eigenvectors of a symmetric matrixA which
can be diagonalized with the help of its eigenvectorsC as in
the following:

a5C†AC. ~37!

Differentiating the diagonal matrixa one obtains

]

]l
a5S ]

]l
C†DAC1C†S ]

]l
AD C1C†AS ]

]l
CD . ~38!

Differentiating the identityCC†5I , it can be established tha
R5C†((]/]l)C) is an antisymmetric matrix. Using the ant
symmetry ofR and the identityA5CaC†, Eq. ~38! can be
transformed to

]

]l
a5aR2Ra1C†S ]

]l
AD C. ~39!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Noting that the matrixa is diagonal and the antisymmetr
matrix R has vanishing diagonal elements, Eq.~40! is ob-
tained for the elements of theR matrix,

Ri j 5H ~aj j 2ai i !
21S C†S ]

]l
AD CD

i j

, iÞ j

0, i 5 j .

~40!

Analogously, for the square root of a diagonal matrixa
one has

]

]l
a1/25a1/2R2Ra1/21C†S ]

]l
A1/2D C, ~41!

which after substituting Eq.~40! and noting that for the de
rivative of a diagonal element of the matrixa1/2 the follow-
ing holds:

]

]l
ai i

1/25
1

2
ai i

21/2 ]

]l
ai i 5

1

2
ai i

21/2S C†S ]

]l
AD CD

i i

~42!
h
oe
ra
st
rt
ap
a

m

it
er
g

H
-
a
i

d
A/
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and yields Eq.~43! for the derivative of the square root ma
trix A1/2,

S C†S ]

]l
A1/2D CD

i j

5~aj j
1/22ai i

1/2!Ri j

5~aj j
1/21ai i

1/2!21S C†S ]

]l
AD CD

i j

. ~43!

The derivatives of matricesU1/2 and S1/2 can be calculated
utilizing Eq. ~43!. The derivatives of the overlap integra
which are necessary to calculate (]/]l)S1/2 are available in
standard quantum-chemical programs while the derivati
of matrix U are expressed in Eq.~44! in terms of the usual
one-electron molecular integrals,
]

]l
U5

]

]l
S1

1

2mc2 S ]

]l
T2~a1b!WT21S ]

]l
TDT21W2b

3S WT21S ]

]l
TDT21WT21W1WT21WT21S ]

]l
TDT21WD1aWW0

21S ]

]l
W0DW0

21W1b

3S WW0
21S ]

]l
W0DW0

21WT21W1WT21WW0
21S ]

]l
W0DW0

21WD D . ~44!
cri-
a-

of
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Thus, the implementation of the IORA and IORAmm met
ods in the one-electron scalar-relativistic approximation d
not require the calculation of any unusual molecular integ
and can easily be achieved within standard nonrelativi
quantum-chemical codes. Because only one-electron pa
the total energy is modified, the formalism presented is
plicable at various correlation corrected levels of theory
well.

III. IMPLEMENTATION AND DETAILS
OF CALCULATIONS

Implementation of analytical energy derivatives. The
computational scheme described in Sec. II was program
and implemented into theCOLOGNE200234 suite of quantum-
chemical programs. Analytical derivatives were tested w
the help of numerical derivatives whereas the latter w
evaluated from a one-dimensional mesh with the step len
of 0.005 Å.

For the three gold-containing diatomic molecules Au
AuF, and Au2 , numeric ~computed with the central differ
ence formula! and analytic energy derivatives determined
points close to the equilibrium bond length are compared
Table II. The discrepancy between numeric and analytic
rivatives calculated at the IORA/SCF, IORAmm/SCF, IOR
MP2, and IORAmm/MP2 levels of theory~for the basis set
used, see the following! varies between 1025 and
-
s

ls
ic
of
-
s

ed

h
e
th

,

t
n
e-

1026 hartree/bohr, which is far less than a convergence
terion of ;1024 hartree/bohr used for geometry optimiz
tions in standard quantum-chemical programs. A reduction
the increment length of 0.005 Å leads to an even be
agreement between numeric and analytic derivatives.

A second test was carried out by comparing the result

TABLE II. Analytic vs numeric energy derivatives~in hartree/bohr! of Au-
containing diatomic molecules.

Method RAB ~Å!a Analytic derivative Numeric derivative

AuH
IORA/SCF 1.545 20.002 823 20.002 831

IORAmm/SCF 1.555 20.003 768 20.003 773
IORA/MP2 1.465 20.005 330 20.005 345

IORAmm/MP2 1.475 20.005 093 20.005 103

AuF
IORA/SCF 1.905 20.005 715 20.005 726

IORAmm/SCF 1.965 20.003 819 20.003 826
IORA/MP2 1.845 20.006 035 20.006 053

IORAmm/MP2 1.895 20.005 363 20.005 377

Au2

IORA/SCF 2.060 20.012 978 20.013 007
IORAmm/SCF 2.565 20.002 389 20.002 392

IORA/MP2 2.005 20.015 627 20.015 657
IORAmm/MP2 2.420 20.003 688 20.003 679

aInteratomic distance at which the derivative is calculated.
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a numeric bond length optimization with that of an optim
zation based on the analytic energy derivatives develo
and programmed in this work~see Table III!. Numerically
and analytically calculated bond lengths differ by less th
1023 Å, most of them by less than 1024 Å, whereas the
latter difference is given by the convergence criterion in
geometry optimization.

A comparison of the computer times for the SCF p
and the gradient part revealed that the additional w
needed for setting up the analytic energy gradient requ
not more than 20% of the SCF calculation of an IORA/SC
IORAmm/SCF, IORA/MP2, or IORAmm/MP2 approac
~with an average of 15 iteration cycles!. Even better timings
were found for larger molecules. Hence, we conclude t
our implementation of analytic energy gradients for IOR
and IORAmm methods reduces the time needed for the t
geometry optimization substantially and leads to accurate
ometries.

Computational details. A block-contracted
@14s10p9d3 f # basis set for gold was constructed from t
basis set of Gropen35 using prescriptions outlined in Ref. 36
The original basis set was partially decontracted. Three
nermost and six outermost primitive Gaussian functions
s-type and three outermost primitive functions ofp-type
were decontracted. The remaining tens-orbitals were con-
tracted in a pattern 3/3/2/2 using the contraction coefficie
for 1s, 2s, 3s, and 4s orbitals. For the tenp orbitals the
contraction pattern 4/3/3 was applied employing the contr
tion coefficients for 2p, 3p, and 4p orbitals. The outermos
primitive d-type function was dropped due to orthogonal
problems and the next four outermost orbitals were dec
tracted. The remaining fived orbitals were contracted in
3/2 pattern using the contraction coefficients for the 3d or-
bital. One outermostf-type primitive function was decon
tracted. The so-obtained block-contracted basis set was

TABLE III. Equilibrium bond lengths~in Å! of Au-containing diatomic
molecules optimized numerically and with the use of analytic energy der
tives.

Method Analytic optimization Numeric optimization

AuHa

IORA/SCF 1.5532 1.5531
IORAmm/SCF 1.5671 1.5663

IORA/MP2 1.4757 1.4757
IORAmm/MP2 1.4857 1.4857

AuFb

IORA/SCF 1.9176 1.9176
IORAmm/SCF 1.9751 1.9756

IORA/MP2 1.8560 1.8560
IORAmm/MP2 1.9071 1.9071

Au2

IORA/SCF 2.0700 2.0700
IORAmm/SCF 2.5768 2.5768

IORA/MP2 2.0154 2.0151
IORAmm/MP2 2.4321 2.4321

aInteratomic distance from DHF: 1.570 Å; from DHF/MP2: 1.485 Å~Ref.
40!.

bInteratomic distance from DHF: 1.968 Å; from DHF/MP2: 1.899 Å~Ref.
41!.
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mented with one diffuses and one f function and three
diffuse p and threed functions in a well-tempered sequenc
based on the ratio of 2.5.

In the calculations on xenone hexafluoride, the bloc
contracted@12s9p6d2 f # basis set for xenone was used. T
basis set was derived from the spin-free relativistic basis
of Dyall.37 The innermosts-type andp-type primitive func-
tion and the outermost fives-type, threep-type, and three
d-type primitive functions were decontracted. The remain
thirteens-type functions were block-contracted in a 4/3/2/2
pattern employing the contraction coefficients for 1s, 2s,
3s, 4s, and 5s orbitals. Elevenp-type primitive functions
remaining after decontraction were contracted in a 4/3/
pattern using the contraction coefficients for 2p, 3p, 4p,
and 5p orbitals. Sixd-type orbitals were block-contracted i
a 4/2 pattern using the coefficients for 3d and 4d orbitals.
The basis set obtained in this way was augmented with a
of correlating functions including ones-, onep-, oned-, and
one f-type primitive function and with one polarizingf-type
primitive function.37

For light elements, the correlation consistent augmen
double-zeta basis set of Dunning,38 aug-cc-pVDZ, was used
In the MP calculations on gold diatomics, all valence ele
trons of the light atom as well as 33 electrons of the g
atom~i.e., 5s, 4f , 5p, 5d and 6s electrons! were correlated.
In the MP calculations of XeF6 , 4d, 5s and 5p electrons of
xenone atom were correlated together with 2s and 2p elec-
trons of the fluorine atoms.

IV. RESULTS AND DISCUSSION

The three gold containing diatomics AuH, AuF, and A2

were investigated in this work for three reasons. First, th
represent suitable benchmarks for assessing the accura
the computational formalism described~see Sec. III!. Sec-
ond, their choice was motivated by the importance of re
tivistic effects for chemical bonding in gold compounds39

Finally, for some of these molecules~AuH and AuF! the
results of Dirac–Hartree–Fock~DHF! and post-DHF calcu-
lations are available,40,41 which enables one to make a com
parison with results obtained from the exact~four-
component! computational approach and to assess ther
the quality of the approximate schemes.

The bond lengths optimized with IORAmm~SCF and
MP2! compare well with available DHF and DHF/MP
results,40,41 whereas the bond lengths produced by IORA a
generally too short~see Table III!. This is a consequence o
the gauge noninvariance of the IORA total energy.8,11,12 In
molecules, tails of the nuclear potentials of neighboring
oms play the role of a constant gauge shift for the core e
trons on a given atom. Since the IORA orbital energies
crease by an amount slightly larger than the gauge s
value, an attractive extra force between the nuclei emer
While for AuH the extra force results in a modest distorti
of the molecular structure~compared to DHF and
DHF/MP2!,40,41 for diatomics with heavier elements the di
tortion is substantial.

For Au2 the bond length optimized with IORA is almos
half of an ångstrom shorter than the experimental value
2.472 Å.42 At the same time, the IORAmm/MP2 metho

-
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yields for Au2 the bond length 2.432 Å, which is in reaso
able agreement with the experimental value of 2.47242

~Table III! and those obtained with other quasirelativis
methods. For example, an MP2 calculation with t
Douglas–Kroll–Hess ~DKH! one-electron Hamiltonian
which correlated 34 electrons and employed
@13s11p6d4 f 2g1h1i # basis set, yielded 2.418 Å for th
Au–Au bond length.43

Thus, the effect of the residual GSE in IORAmm do
not show up during the geometry optimization and t
method can be used without further modifications. Howev
calculating dissociation energies requires that the GSE
taken into account. This can be done19 in the atomic SCF
calculation by taking the difference between the total atom
SCF energyE0 calculated without gauge shift in the nucle
potential and the energyED calculated with the gauge shi
D, EGSE5E02ED1D. The latter calculation employs th
wave function from the former one and does not optimize
The value of the gauge shiftD for a given atomA is calcu-
lated as a sum of values of the potentials of other nucle
the molecule at the position of the atomA, D
5(BÞA1/RAB . The GSE for the IORAmm total energy de
pends nearly linearly onD ~see Fig. 1! and, even for heavy
atoms, it does normally not account for more than a f
kilocalories per mole.19 For light atoms~up to the third row
elements! GSE is less than 0.1 kcal/mol and can safely
neglected.

Table IV summarizes the results of the IORAmm
MP4~SDQ! calculations of the spectroscopic constants
gold diatomics. When calculating the dissociation energ
the effect of the GSE was taken into account for the g
atom only. The GSE for Au in AuH, AuF, and Au2 corre-
sponds to 0.000 144 4, 0.001 047, and 0.008 464 2 har
respectively. Generally, the agreement between the ca
lated and the experimental spectroscopic constants is e
lent. Especially gratifying is that even for the gold dimer t
molecular structure and the vibrational frequency are not
fected by the residual gauge noninvariance of the IORAm
Hamiltonian. The results for Au2 from Table IV can be com-
pared with the results of the DKH/MP4 calculations,43 which
yielded 2.442 Å for the bond length and 202 cm21 for the
vibrational frequency. Note, however that the latter calcu
tion employed the somewhat larger@13s11p6d4 f 2g1h1i #
basis set and correlated fewer electrons, 34 in DKH/M

TABLE IV. Spectroscopic parameters of gold diatomic molecules calcula
with IORAmm/MP4~SDQ! method.

Molecule Method Re ~Å! ve ~cm21! De ~eV!

AuH Calc 1.510 2400 3.20
Expta 1.524 2305 3.36

AuF Calc 1.927 570 3.00
Expt 1.918b 560c 3.20d

Au2 Calc 2.477 190 2.23
Expt 2.472 191 2.29

aExperimental data taken from Ref. 42 unless noted otherwise.
bTaken from Ref. 44.
cTaken from Ref. 45.
dTaken from Ref. 46.
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instead of 66 in the IORAmm/MP4~SDQ! calculation.
Turning to polyatomic molecules, the IORAmm calcul

tions at the SCF, MP2, MP3, and MP4~SDQ! levels were
carried out for XeF6 . Since its experimental discovery47 the
electronic structure of xenone hexafluoride has received
tensive attention.48,49As has been stressed by Kauppet al.,49

the relative stability of the two conformers of XeF6 shown in
Fig. 2 is governed by a delicate balance of relativistic effe
and electronic correlation. While at the SCF level, theC3v
structure is most stable both in relativistic and nonrelativis
calculations, inclusion of electron correlation at the MP
level stabilizes theOh structure which will become the low
est energy structure if relativity is taken into account.48,49

This is in apparent contradiction with experiment, which e
tablished that the trigonally distorted octahedron should
more stable.47,50

The results of the IORAmm calculations for the tw
conformers of XeF6 are summarized in Table V. The re
ported total molecular energies are corrected for the GSE
the same way as it has been done for gold containing m
ecules. The trigonally distorted octahedron is the most sta
structure at the SCF, MP3, and MP4~SDQ! levels of theory
while at the MP2 level the regular octahedron is favore
Indeed, as has been pointed out in earlier work on XeF6 ~Ref.
49!, MP2 overestimates correlation effects~for a general dis-
cussion, see Ref. 51!. Generally,51 MP3 tend to overcorrec
the MP2 error while MP4 shifts the correlation energy ba
into the direction of the MP2 result. Because the conv
gence of the MPn series is nonmonotonous,51 the correct en-
ergy may lie somewhere in between the MP3 and MP4 v
ues. Thus, it may be expected that the energy differe
between the regular and trigonally distorted octahedral st
tures is bracketed by the MP3 value of 7.0~from above! and
the MP4 value 1.4 kcal/mol~from below!. Note that for both
MP3 and MP4 the optimized molecular geometry of theC3v
conformer is in reasonably good agreement with the av
able experimental data~see Table V!.50 Almost all structural
parameters fall within the error bars of the experimen
measurement.

V. CONCLUSIONS

A compact and reliable representation for the matrix
ements of the quasirelativistic Hamiltonian within the regu
approximation is presented. Despite the fact that the n
computational procedure uses the spectral RI technique
additional molecular integrals, which involve an auxilia

d

FIG. 2. Atom labels for the two conformers of XeF6 .
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TABLE V. Structural parameters~in Å! for XeF6 calculated with IORAmm.

Parameter Expta SCF MP2 MP3 MP4~SDQ!

C3v

Xe– F1 1.85060.036 1.767 n.a.b 1.818 1.838
Xe– F2 1.94160.036 1.920 n.a. 1.942 1.958
F1– F2 2.53560.208 2.284 n.a. 2.354 2.394
F4– F5 3.10660.302 3.223 n.a. 3.228 3.217
F1– F5 2.49860.108 2.338 n.a. 2.420 2.479
F1– F6 3.75760.070 3.582 n.a. 3.668 3.721
Etot

c 28037.314867 n.a. 28039.190 543 28039.242 876

Oh

Xe– F1 ¯ 1.888 1.938 1.913 1.930
Etot 28037.267 944 28039.314 422 28039.179 452 28039.240 648
DEd 29.4 ¯ 7.0 1.4

aTaken from Ref. 50.
bOptimization converges toOh structure.
cTotal molecular energy~in hartree! corrected for GSE.
dDE5Etot(Oh)2Etot(C3v) ~in kcal/mol!.
t
is
an
fo

s
R

r-
en

ta
te

in
v
-
u

r
re
e
rs
n

-
in
m
ru

d
el-
o-
/
ta
re

f
e

n-

rch
t

.

.

aer-

em.

van

hys.
tz,

J.
e,
basis set used to resolve the identity operator, appear in
final formulas for the Hamiltonian matrix elements. Th
makes an implementation of new technique within the st
dard nonrelativistic quantum-chemical programs straight
ward and easy.

A modification to the IORA8 is described, which reduce
considerably the erroneous gauge dependence of the IO
total energy. The IORAmm~IORA with modified metric!
method19 can be used in molecular calculations without fu
ther modifications designed to reduce the gauge depend
of the energy.6,7,18

The analytic expressions for the derivatives of the to
molecular energy with respect to external parame
~nuclear coordinates, external electric fields, etc.! are derived
and presented in matrix form suitable for implementation
the standard quantum-chemical codes. The formalism de
oped is tested inab initio calculations on a number of com
pounds containing heavy elements. The benchmark calc
tions demonstrate the following.

~i! The IORAmm/SCF and IORAmm/MP2 results fo
gold containing diatomic molecules are in reasonable ag
ment with the results obtained by the exact four-compon
formalism.40,41 At the same time the IORA method suffe
from the gauge dependence problem which results i
marked distortion of the molecular geometry.

~ii ! The IORAmm method in combination with correla
tion correctedab initio approaches exhibits high precision
describing the electronic and molecular structure of co
pounds containing heavy elements. The experimental st
tural and energetic data42,44–46for gold diatomic molecules
are at least as accurate as the results of the correspon
nonrelativistic calculations for molecules containing light
ements only.51 The molecular structure of xenone hexaflu
ride optimized with the IORAmm/MP3 and IORAmm
MP4~SDQ! methods is in good agreement with experimen
measurements50 and the correct minimal energy structu
~trigonally distorted octahedron! is obtained.

Thus, the formalism presented enables one to obtain
compounds of heavy elements results of high quality at
n 2005 to 129.16.100.69. Redistribution subject to AIP
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sentially the same price as that of conventional no
relativistic calculations.
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