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Analytic energy derivatives for regular approximations of relativistic effects
applicable to methods with and without correlation corrections
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Analytic expressions are derived for the evaluation of derivatives of the total molecular energy with
respect to external parametetsuclear coordinates, external electric fields, )etwithin the
relativistic regular approximation. The presented formalism employs the spectral resolution of the
identity avoiding, however, the explicit use of an auxiliary basis set in the calculation of the matrix
elements of the regular relativistic Hamiltonian. The final formulas for the total energy and energy
derivatives are presented in matrix form suitable for implementation into standard quantum
chemical packages. Results of benchmark calculations for gold containing diatomic molecules and
for xenone hexafluoride performed at the Hartree—Fock and various correlation corrected levels of
theory are presented and discussed. 2@3 American Institute of Physics.
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I. INTRODUCTION Recently, an efficient way of calculating the matrix ele-

Currently, it is well recognized that the incorporation of ments 0(';19 the ZORA and IORA Ham|lton|ans was
relativistic effects into quantum-chemical calculations is ex-developed.” Although the new computational procedure re-

tremely important for the correct description of chemical!i€s on the Rl technique, the explicit use of an auxiliary basis
bonding in compounds with heavy eIemehT%.Computa- set is avoided and the matrix elements of the quasirelativistic

tional complexity of the rigorous four-component computa-Hamiltonian can be obtained at essentially the same cost as
tional procedure, which is orders of magnitude more expentn the nonrelativistic case. Itis important to note that the new
sive than the standard nonrelativistic procedure, prompt§omputational procedure is quite insensitive to the size of a
researchers to Seek |ow_cost yet accurate approxima@sis and prOVideS reasona.ble reSUltS even W|th Sma” ba.SiS
approaches. In recent years, the methods based on a regu¥&ts.
expansiofi~? of the Dirac Hamiltonia? as well as on Yet another hurdle for the rosy prospect of applying the
the Douglas—Kroll transformatidfi'®have been established relativistic regular approximation is its gauge dependence
as cost effective alternatives to the full four-componentproblem®=8*when a constant shift is added to the poten-
formalism. The zeroth-ordefZORA)®’ and infinite-order tial, the ZORA or IORA eigenenergy does not shift by ex-
(IORA)® regular approximations lead to a two- or actly the same amount. This results in an appearance of non-
one-component variationally stable Hamiltonian, whichphysical forces between the nuclei and makes the direct
is capable of describing the valence and subvalence elecalculation of energy differences impossible. Hence, one
tronic shells of heavy elements with a remarkableshould be content with certain modifications of the original
accuracy’ /112 formalism, which are aimed at reducing the gauge
The methods based on the regular approximation are adlependenc®’8The IORA Hamiltonian, which differs from
most exclusively used within the context of density func-the ZORA Hamiltonian by renormalization using a quasire-
tional theory!” Applications within the context of wave func- |ativistic metric, experiences a much weaker gauge depen-
tion theory are relatively rar&.*? This is probably due to dence problerf.This feature encouraged a simple modifica-
difficulties in calculating the matrix elements of the ZORA tion of the original IORA quasirelativistic metric, which
or IORA Hamiltonian with the standard basis sets employededuces the gauge dependence even futthatomic and
in quantum chemistr}? The regular-approximated Hamil- molecular calculations with the new method, dubbed
tonian contains the full molecular potential in the denomina4jORAmmM (IORA with modified metri¢, have shown that the
tor, which makes it impossible to express its matrix e|ement$esidua| gauge dependence does not affect the geometry of
in a closed algebraic form. Thus, one sticks to the Usenolecules containing heavy elemeftswhen calculating
of numeric quadratures, which is a customary approacihe energy differencee.g., binding energiesthe effect of
within _density fun_ctional theor)(DF'I_') but is quite ineffi-  the residual gauge dependerfesually no more than a few
cient in conventional wave-function-based methods. Agjiocalories per molg can be taken into account with the
straightforward use of the spectral resolution of the identityhe|p of a simple procedut®similar to the counterpoise cor-
(RI), suggested by Faat al.® requires a huge auxiliary ba- rection for basis set superposition errdts.

sis set to provide the required accuracy. The purpose of the present paper is to develop further
the formalism of Ref. 19 and to present analytic expressions

dElectronic mail: filatov@theoc.gu.se for the evaluation of molecular energy derivatives with re-
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spect to external parameters. Once such formulas are deich is referred to as the infinite-order regular approxima-
rived, they can be applied to the calculation of the analytition (IORA).2 The IORA Hamiltonian has been proposed
energy gradientfirst derivative with respect to nuclear coor- jn Ref. 8 where it has been shown tHa{°RA is bounded
dinates needed for geometry optimization or of other from below on the same domain of the potentials
energy-related properties, such as dipole moment, electrigs the zeroth-order regular approximatetZORA)
dipole polarizability, etc. In Sec. Il a brief survey of y5miitonian® Thus, F'°RA can be used in quasivariational
the IORAMM method and of the computational technique.gcylations.

used for the evaluation of the Hamiltonian matrix elements A serious disadvantage of the ZORA and IORA Hamil-

is presented along with the expressions for the energysnians s their lack of gauge invarianté If a constant
derivatives. The formalism developed is applied to thegpift A is added to the potential

calculation of the spectroscopic parameters of diatomic

molecules containing gold atoms as well as to the calculation

of xenone hexafluoride. Section IIl describes the implemen- /v A 3
tation of analytical energy derivatives into a standard

guantum chemical program and details of the calculations.

The results of the calculations performed at the selfthen the eigenvalues of a gauge invariant method should be

consistent field SCH and at the MR (n=2-4) levels of  shifted by exactly the same amouht For IORA, the gauge
theory are presented in Sec. IV. Section V concludes thehift error (GSB is?

paper.
IORA\ 2
Il. THEORY IORA_ EIORA_| 5 _ _ (Eg7)°A @
The derivation of approximate relativistic theories 0 A am2ct

normally starts with the transformation of the full

four-component Dirac Hamiltonidh to a two-component

form using for example the Foldy—Wouthuysen which is small compared to the gauge dependence of
(FW) formalism?22 Then, spin-dependent relativistic ef- ZORA®

fects are neglected to obtain a one-compon@pin-free

theory.
Making the regular approximation for the exact FW op- EZORA_ £ZORA, A E§ORAA 5
eratorX by? 0 A 2mc
K= 5 (p) M
= — O-.p ,
2mce—-V however still large enough to induce a considerable distor-

where o is the vector of the Pauli matricess  tion of the molecular geometry if the method is applied in

=(0y,0y,0,),%2 p=—i#V is the momentum operatan is molecular 9‘?"‘3‘1_'3“0”%1-’12 o o
the rest mass of electron ands the velocity of light, leads A modification to the original normalization operator
to the IORA Hamiltonian u,
i 1
£JIORA_
VLt (ap) (2(2ME=V)?) (a-p) 0= ! ©
c? \/l+(0'-p) (c?/(2mE—V)?) (o-p)
x| V+(o+p) ———— (o
(o-p) ome—v'’ p)
1 of the IORA Hamiltonian, which reduces considerably the
X , 2) gauge dependence of its eigenenergy, was proposed in Ref.
V1+(o+p) (c¥(2cm2—V)2) (o-p) 19. The IORAmMmM Hamiltonian reads
"1 IORAMM 1 CZ
H = V+(op) (o-p)
\/1+ (1/2) (o-p)((1/2mc3) c?/(2mE—V) + (c?/(2mE—V)?))(o+p) 2mc—V
1

()

X .
V1+ (1/2) (o-p)((1/2mE) cX(2mE—V) + (c%(2mE—V)2))(a-p)
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15 The major obstacle in evaluating the elements of matri-
e cesK,; and K, is the presence of the potentisl in the
/ZORA denominator. Thus, in the case of a general poteMjahn
_ - analytic expression for these matrix elements can hardly be
g 10 % derived in a closed form. However, representing the operator
k= e o2
5 e Ke —0r (12)
E e 2mce—V
& yd
IR ~ as in Eq.(12),
: - !
g ~ IORA .1 1.
© e L K=-—+=—>VK, (12)
s - 2m  2mdc®
e IORAmm
O e e ~
Gauge-invariant method and using the spectral RI=|¢){¢|, in terms of the kineti-
cally balancet>° basis set¢),
—-1/2
s [#)=1(P)) Gy (13)
0 -20 -40 -60 -80 -100
Gauge shift, hartree leads to the following equation for the matrix elements
FIG. 1. Gauge shift erroE,— E,+ A obtained for the ground state energy (Kl);w:
of U%" as a function of the gauge shift for ZORA (long-dashed ling )
IORA (dot-dashed line IORAmMm (short-dashed line and the gauge- . c
invariant methodsolid line). (Kl),uv_ (0'°p)X,u mE—V (o+pP)xy
Tt s ((rDVXRI7-D).)
= ——{(o* X o
As has been demonstrated in atomic and molecular w T om@ TP IXu PIxy
. 9 . . _
calculations'® the IORAmMm Hamiltonian has a gauge depen = (WoT_lKl),W (14)

dence, which is approximately two orders of magnitude
weaker than that of IORA. Hence, the IORAMM Hamil- \ o167 is the matrix of the kinetic energy operafbr
tonian can be used in molecular calculations without further

modifications. This is illustrated in Fig. 1 where the GSE of . p?> (op)op)

ZORA, IORA, and IORAmMm is plotted for the ground state T= >m- 2m

of the U ion as a function of the gauge shift

Expanding the one-electron wave functidosbitals ¢ andw,, is the matrix of the operatdofVy,
in terms of (nonorthogonal basis set functiong according

to Eq.(8) -
Wo=(op) Am?c
lzbl = |X>CI ’ (8)
where |x) is a row vector of basis functions ar@ is a Cross<in the second line of Eq(14) marks the place at

column vector of expansion coefficients, the matrix form ofwhich the RI is inserted. RepresentiKg as
the IORA (or IORAMmM) Hamiltonian is given by’

2( p).

. Ki=T+W, (15
H=(x|H|x)=(S")T (U~ "3)T(V+K (U (s,
(9) Eq. (16) for matrix W is obtained

vi/hereS denotes the mat_nx of the overlap integrds, W=W,+W,T W (16)
=(x.lx,) andK; the matrix of the operator
2 with the solution

c
(0p) 5~ (o°p).
2mC2 V W~ 1_ WO —-T- 1. (17)
The matrixU is given by . . i
Using the relationship

S+ Kz (IORA)
1 1
U= 1 (10 - __
St c2 Ky+ 5K, (IORAMM), 2mK = 5 A md)?
whereK, is the matrix of the operator - 4 LVRJF ZmRL L”K (18)
2m mc 2mc 2mc
(-p) (2m@—V)2 (o-p). the elements of matriK, can be expressed as in H49),
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TABLE |. Comparison of the nonrelativistic, IORA, and IORAmm ground state enefgidsartreg¢ of U%*"
for different basis sets.

N2 Nonrelativisti® IORA® AE'ORAd IORAMM AE'ORAMMd
62 —4232.0000 —4921.0986 —689.0986 —4841.1766 —609.1766
28 —4231.9999 —4920.8645 —688.8646 —4841.0079 —609.0080
149 —4228.9538 —4914.5566 —685.6028 —4835.3816 —606.4278
79 —3639.8428 —4317.6384 —677.7956 —4256.8133 —616.9705

Number of primitive Gaussian functions.
PThe exact nonrelativistic value is4232.0000 hartree. The exact Dirac value-i4861.1980 hartree.

‘The exact IORA value is-4921.0993 hartre€Ref. 8.
dA Emethocg Emeth0d7 Enonre[

®Basis of 62 primitive Gaussiasttype functions from Ref. 15.
fBasis of 28 primitive Gaussiastype functions from Ref. 26.
9Obtained from the previous basis by excluding every second primitive function.

1 - sion operator Xf; . This implies neglecting a renormalized
(Kz)wzm((U'P)XAZmK |(oP) X ) two-electron Darwin term which has the same order of mag-
nitude as the two-electron spin—orbit term. Hence, tlee 1

Vo approximation should perform reasonably within the scalar-
= oma | Twt 2\ (eP)xu 52K (0P)x, relativistic (one-component approach where all spin-
dependent relativistic effects are neglectétf
+2m{ (o-p)x RLXLAK Thus, the Hartree—Fock IORfr IORAmMM) equations
#2me T 2me? within the scalar-relativistic & approximation read

(SHTU™YAT(Vp+ T+ W) (U™ (8 +3-K) G

X(o--p)X,,> ) = ﬁ(T%—ZW%—WT_lW).
=SGe, (20)

(19

Note that in the third line of Eq19) the RI formed with the
auxiliary basis sef13) is used. Thus, the matrix elements of

where V,, is the matrix of the electron—nuclear attraction
integrals(x,|Vn|x,) and the matrixU is given by

the IORA and IORAmm Hamiltonian can easily be 1
calculated® with the use of Eqs(9), (10), (14), (15), (17), U=S+5 z(T+Haw+ bWT ~*w) (21)
and(19).

Although the present approach uses the RlI, the quality ofvith the parametera andb for IORA: a=2, b=1 and for
the results is not very sensitive to the size of the basis sdORAmMmM: a=3, b=3. The matrixW, in Eq. (17) is calcu-
employed. This is documented in Table I, where the IORAlated in the E scalar-relativistic approximation as
and IORAmm energy calculated for the ground state U
ion is presented as a function of the basis set size. Reducing _
more than twice the size of the basis set from 62 to 28 primi- o < Xu
tive functions does not result in a significant loss of accuracy. ) )
Even with the smallest basis set comprising only sevenVote that only the electron—nuclear attraction poter\lk_als _
primitive functions the relativistic correction to the nonrela- US€d in Eq.(22) and the electron—electron repulsion is
tivistic energy is reproduced with a relative accuracy bettefréated nonrelativistically. The matri?/o can be e?<pre-ssé?j
than 2%. in terms of the usual electron—nuclear attraction integrals,

While for the one-electron case the transformation of theVhich are routinely available in the standard nonrelativistic
relativistic Hamiltonian to the two-component form and the duantum-chemical packages. The total SCF energy is given

application of further approximations are straight- by
forward®2"?8 the transformation of the many-electron

Vi
Pamzcz P Xy - (22

Hamiltonian is much more laborious due to the presence of Esce=tr(sP(H+F))

two-electron terms. One should be content with certain ap- =tr(P((S¥3)T(U~Y2) T

proximations to simplify molecular calculations and the un-

derlying theory. The use of a relativistically corrected one- X (Vpt THW)(U (S +3(3-K))), (29

electron Hamiltonian in many-electron equations representsh P is the densit trix in the basis of atomic orbital
an example of such an approximatioite This one-electron wherer1s the density matrix in the basis of atomic orbitals

(1€) approximation is used in many quasirelativistic theo-X'

ries, e.g., in the Douglas—Kroll-Hess methdd® etc?7:30:31 p=cnct (24)
As has been shown in Refs. 27 and 28, such an approxima-

tion corresponds to neglecting the commutators of the lineain Eq. (24), n is the diagonal matrix of orbital occupation

momentum operatorof-p) with the electron—electron repul- numbers.
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Equation(23) differs from the corresponding nonrelativ- contains the derivatives of the electron—nuclear attraction
istic expression only in the use of the relativistically cor- ((d/d\)V,) and the kinetic energy integrals J@\)T),
rected one-electron Hamiltonid, g in the one-electron con- which are easily available in standard quantum-chemical
tribution to the total SCF energy, EQR5), codes, as well as the derivative of matii defined in Eq.

- NS URtot = Ut (16). The latter derivative can be obtained from differentiat-
Eie=tr(PHye) =tr(P((S™) /(U™ (Vo + T+ W) ing the identityA~*A=1 as in the following:

X(U™2)(s49)). (25 5

A1 _p-1
Let us assume that the molecular integrals in Eg8) 2N A A
and (25) depend on an external paramelere.g., nuclear . o S
coordinate. Then, the first derivative of the SCF total energ)yVh'Ch for the derivative of th&V matrix yields

with respect to the parameteris given ir’?

d
A

N AL (33

ﬁw— w i Woi-T71|w

s =tr| P i H||+trl W J S 7
ax MR I a N
+§tl’ P (X(J—K))), (26) p
_ _ _ _ -wt! —T)le. (39
where)V is the energy-weighted density matrix, I\
W=CneC' (27) Thus, the derivative of thel matrix with respect to a param-

eter\ as given in Eq(35) can be expressed in terms of the
€ is a diagonal matrix of orbital energies, and the prime atusual molecular integrals accessible in standard nonrelativis-
dloN implies that only molecular two-electron integrals rathertic quantum-chemical packages,
than density matrix elementer orbital coefficientshave to
be differentiated.

J J [ »
Vit o= T+HWWo | == Wo | Wo *W

The IORA (or IORAmMmM) one-electron contribution to N N 2N

the derivative of the total energy is given as follows: P
OE = P —WT ! 5T)T—lw. (35)
o P(X((Sl’Z)T(U1’2)T(Vn+T+W)(Ul’2)

The derivative of the renormalization mati@& with re-

spect to parametex is given as follows:
X(Sl/2))
J J
e T 2u
J J 2N G 2N ( S 2)
=tr| P| | -——G"|HG+G'| —H|G
| 212 el —1/2| ¥ l2
P —(m\u )S +U (a)\s )
+G'H|—G
— v 22 —1/2| 7 Ql2
P P U (m\u G+U (a)\s ) (36)
=tr| | GP XGT +| 2 G PG |H
which contains the derivatives of thé"2 and S? matrices.
9 The latter derivatives can be tak&mising the properties of
+tr (GPGT)<5 H) ) eigenvalues and eigenvectors of a symmetric matrixhich
can be diagonalized with the help of its eigenvectoess in
a’' d the following:
=tr RP' H|+tr| P’ XH , (28
a=C'AC. (37)

where the matrice§, H, andP’ are defined in Eqs(29),

. Differentiating the diagonal matria one obtains
(30), and(31), respectively,

J J J J

G:U71/281/2, 29 oA |t T t . )

(29 e (”\C AC+C m\A C+C'A (”\C (38
H=Vat THW, (30 Differentiating the identityCC'=1, it can be established that
P’ =GPG'. (31) R=C"((8/9\)C) is an antisymmetric matrix. Using the anti-

symmetry ofR and the identityA=CaC", Eq. (38) can be

The derivative of thed matrix, transformed to
T =y Lri Lw 32 7 a=ar—Rat+cl| LAl 39
B I N N (32) gy amanTRarTti or A C. (39)
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Noting that the matrixa is diagonal and the antisymmetric and yields Eq(43) for the derivative of the square root ma-
matrix R has vanishing diagonal elements, E40) is ob-  trix A2,
tained for the elements of tHe matrix,

J
(a"_aii):L(CT(_A)C) , 1 #]
Rij: 1] o\ i (40) (CT(%AUZ)C) z(ale_IZ_aﬁIZ)Rij
0, i=j. ’ !

Analogously, for the square root of a diagonal matix

J
__a12 12y —-1| ot
e —(al+ gt (c (a)\A)C)”. 43)
1%
gl glizg _ pali2y ot
o R—Ra"“+C
which after substituting Eq40) and noting that for the de- The derivatives of matrices” and S can be calculated

rivative of a diagonal element of the mat@t’ the follow-  utilizing Eq. (43). The derivatives of the overlap integrals

9
XA1’2) C, (41)

ing holds: which are necessary to calculat@ {\)SY? are available in
p 1 P 1 p standard quantum-chemical programs while the derivatives
BN i ' L ek T e 1 of matrix U are expressed in E@44) in terms of the usual

one-electron molecular integrals,

i —'95+ ! 0T +bWT’1aTT’1Wb
PN e L ) AN
-1 J -1 -1 -1 -1 J -1 1 9 -1
X|WT ™Y ——T|T'WT "W+ WT *WT Y —T|T W | +aWW, }| —— W, |W, 'W+b
DY DY DY
-1 J -1 -1 -1 -1 J -1
X | WW g H == Wo |Wo 'WT “IW+WT IWW g | —=Wo [Wo "W | |. (44)

Thus, the implementation of the IORA and IORAMmM meth- 10~ hartree/bohr, which is far less than a convergence cri-
ods in the one-electron scalar-relativistic approximation doegerion of ~10"* hartree/bohr used for geometry optimiza-
not require the calculation of any unusual molecular integralsions in standard quantum-chemical programs. A reduction of
and can easily be achieved within standard nonrelativistighe increment length of 0.005 A leads to an even better
quantum-chemical codes. Because only one-electron part efgreement between numeric and analytic derivatives.

the total energy is modified, the formalism presented is ap- A second test was carried out by comparing the results of
plicable at various correlation corrected levels of theory as

well.
TABLE Il. Analytic vs numeric energy derivative@ hartree/bohrof Au-
containing diatomic molecules.

IIl. IMPLEMENTATION AND DETAILS

OF CALCULATIONS Method Rag (A)  Analytic derivative  Numeric derivative
Implementation of analytical energy derivativeshe AuH
computational scheme described in Sec. Il was programmed IORAISCE 1545 ~0.002823 0002831
b : : ORAMM/SCF  1.555 —0.003 768 —0.003 773
and implemented into theoLOGNE 2002 suite of quantum- IORA/MP2 1.465 —0.005 330 —0.005 345
chemical programs. Analytical derivatives were tested with IORAmMm/MP2  1.475 —0.005 093 —0.005 103
the help of numerical derivatives whereas the latter were AUF
evaluated from a one-dimensional mesh with the step length |ora/scE 1.905 _0.005 715 0.005726
of 0.005 A. IORAMM/SCF  1.965 —0.003 819 —0.003 826
For the three gold-containing diatomic molecules AuH, I10RA/MP2 1.845 —0.006 035 —0.006 053
AuF, and Ay, numeric(computed with the central differ- |ORAMM/MP2  1.895 —0.005363 —0.005377
ence formulaand analytic energy derivatives determined at AU,
points close to the equilibrium bond length are compared in I0RA/SCF 2.060 -0.012978 —0.013 007
Table Il. The discrepancy between numeric and analytic de-/ORAmMM/SCF  2.565 —0.002 389 —0.002 392
rivatives calculated at the IORA/SCF, IORAMM/SCF, IORA/ ORAMP2 — 2.005 ~0.015627 ~0.015657
IORAMM/MP2  2.420 —0.003 688 —0.003 679

MP2, and IORAMmM/MP2 levels of theoijor the basis set
used, see the following varies between I and  Anteratomic distance at which the derivative is calculated.
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TABLE Ill. Equilibrium bond lengths(in A) of Au-containing diatomic  mented with one diffuses and onef function and three
molecules optimized numerically and with the use of analytic energy deriva-diffuse p and threed functions in a weII-tempered sequence

flves. based on the ratio of 2.5.
Method Analytic optimization Numeric optimization In the calculations on xenone hexafluoride, the block-
AUH® conj[racteq[ 1259p§d2 f] basis set fpr xenone was ysed. The
IORA/SCE 15532 15531 basis set was derived from the spin-free relativistic basis set
JORAMM/SCE 15671 1.5663 of DyaII.37 The innermost-type andp-type primitive func-
IORA/MP2 1.4757 1.4757 tion and the outermost five-type, threep-type, and three
IORAMM/MP2 1.4857 1.4857 d-type primitive functions were decontracted. The remaining
AUFP thirteens-type functions were block-contracted in a 4/3/2/2/2
IORA/SCF 1.9176 1.9176 pattern employing the contraction coefficients fas, 12s,
IORAMM/SCF 1.9751 1.9756 3s, 4s, and 5 orbitals. Elevenp-type primitive functions
lo'gig’rmmz 11-22‘;2 11-2%‘;(; remaining after decontraction were contracted in a 4/3/2/2
’ ' pattern using the contraction coefficients fop,23p, 4p,
Au, and 5 orbitals. Sixd-type orbitals were block-contracted in
IORA/SCF 2.0700 2.0700 a 4/2 pattern using the coefficients fod Znd 4d orbitals.
IORAMM/SCF 2.5768 2.5768 The basis set obtained in this way was augmented with a set
IORA/MP2 2.0154 2.0151 . . . :
|IORAMM/MP2 24321 24321 of correlating functions including ong, onep-, oned-, and

onef-type primitive function and with one polarizinfgtype
“Interatomic distance from DHF: 1.570 A; from DHF/MP2: 1.485Ref.  primitive function3’

40). . , )
blnt)eratomic distance from DHF: 1.968 A; from DHF/MP2: 1.899(Ref. For light elements, the correlation consistent augmented
41). double-zeta basis set of Dunniffyaug-cc-pVDZ, was used.

In the MP calculations on gold diatomics, all valence elec-

trons of the light atom as well as 33 electrons of the gold
a numeric bond length optimization with that of an optimi- atom(i.e., 5s, 4f, 5p, 5d and 6 electrons were correlated.

zation based on the analytic energy derivatives developeH‘ the MP calculations of Xeg; 4d, 55 and_';'p electrons of
and programmed in this worksee Table IlJ. Numerically xenone atom were correlated together withahd 2 elec-
and analytically calculated bond lengths differ by less tharf"ons of the fluorine atoms.

10 3 A, most of them by less than 16 A, whereas the

latter difference is given by the convergence criterion in theIV' RESULTS AND DISCUSSION
geometry optimization. The three gold containing diatomics AuH, AuF, and,Au

A comparison of the computer times for the SCF partwere investigated in this work for three reasons. First, they
and the gradient part revealed that the additional workepresent suitable benchmarks for assessing the accuracy of
needed for setting up the analytic energy gradient requirethe computational formalism describésee Sec. I). Sec-
not more than 20% of the SCF calculation of an IORA/SCF,ond, their choice was motivated by the importance of rela-
IORAMM/SCF, IORA/MP2, or IORAMmM/MP2 approach tivistic effects for chemical bonding in gold compourids.
(with an average of 15 iteration cyclegven better timings Finally, for some of these moleculé®uH and AuB the
were found for larger molecules. Hence, we conclude thatesults of Dirac—Hartree—FodloHF) and post-DHF calcu-
our implementation of analytic energy gradients for IORAlations are availabl&“* which enables one to make a com-
and IORAmMmM methods reduces the time needed for the totgdarison with results obtained from the exactour-
geometry optimization substantially and leads to accurate gesomponent computational approach and to assess thereby
ometries. the quality of the approximate schemes.

Computational details A block-contracted The bond lengths optimized with IORAMISCF and
[14s10p9d3f] basis set for gold was constructed from theMP2) compare well with available DHF and DHF/MP2
basis set of Gropénusing prescriptions outlined in Ref. 36. results!®*!whereas the bond lengths produced by IORA are
The original basis set was partially decontracted. Three ingenerally too shortsee Table Il). This is a consequence of
nermost and six outermost primitive Gaussian functions othe gauge noninvariance of the IORA total enetgy*? In
stype and three outermost primitive functions pftype  molecules, tails of the nuclear potentials of neighboring at-
were decontracted. The remaining tewrbitals were con- oms play the role of a constant gauge shift for the core elec-
tracted in a pattern 3/3/2/2 using the contraction coefficientérons on a given atom. Since the IORA orbital energies de-
for 1s, 2s, 3s, and 4 orbitals. For the terp orbitals the crease by an amount slightly larger than the gauge shift
contraction pattern 4/3/3 was applied employing the contracvalue, an attractive extra force between the nuclei emerges.
tion coefficients for P, 3p, and 4 orbitals. The outermost While for AuH the extra force results in a modest distortion
primitive d-type function was dropped due to orthogonality of the molecular structure(compared to DHF and
problems and the next four outermost orbitals were deconDHF/MP2),*** for diatomics with heavier elements the dis-
tracted. The remaining fived orbitals were contracted in a tortion is substantial.

3/2 pattern using the contraction coefficients for the &- For Au, the bond length optimized with IORA is almost
bital. One outermost-type primitive function was decon- half of an @gstrom shorter than the experimental value of
tracted. The so-obtained block-contracted basis set was aug-472 A% At the same time, the IORAMM/MP2 method
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TABLE IV. Spectroscopic parameters of gold diatomic molecules calculated
with IORAMM/MP4SDQ) method.

Molecule Method R, (A) e (cm™ 1) D, (eV)
AuH Calc 1.510 2400 3.20
Exptf 1.524 2305 3.36
AuF Calc 1.927 570 3.00
Expt 1.918 560° 3.20'
Au, Calc 2.477 190 2.23 C3V Oh
Expt 2.472 191 2.29
3Experimental data taken from Ref. 42 unless noted otherwise. FIG. 2. Atom labels for the two conformers of XgF

PTaken from Ref. 44.
‘Taken from Ref. 45. ) ) )
“Taken from Ref. 46. instead of 66 in the IORAMM/MR&DQ) calculation.

Turning to polyatomic molecules, the IORAmMm calcula-
tions at the SCF, MP2, MP3, and M&DQ) levels were
carried out for Xek. Since its experimental discovéfythe
electronic structure of xenone hexafluoride has received ex-
tensive attentioi®*°As has been stressed by Kaugipal,*®

yields for Au, the bond length 2.432 A, which is in reason-
able agreement with the experimental value of 2.473 A
(Table Ill) and those obtained with other quasirelativistic

methods. For example, an MP2 calculation with the : o .
J . he relativ ility of the tw nformers of wn in
Douglas—Kroll-Hess (DKH) one-electron Hamiltonian, the relative stability of the two conformers of Xg&ho

. Fig. 21 vern li lan f relativistic eff
which correlated 34 electrons and employed a g. 2 is governed by a delicate balance of relativistic effects

. . ; and electronic correlation. While at the SCF level, ®g
,[Alugfi\tpggsgzlgr%gtﬂ; basis set, yielded 2.418 A for the structure is most stable both in relativistic and nonrelativistic

. . calculations, inclusion of electron correlation at the MP2
Thus, the effegt of the residual GSE.m. IORAmm doesIeveI stabilizes th&,, structure which will become the low-
not show up during the geometry optimization and the

) P est energy structure if relativity is taken into accofftt’
method can be used without further modifications. However,l_his is in apparent contradiction with experiment, which es-

calculgtmg d|ssomat|on_ Energies requires that the GSE '‘Bablished that the trigonally distorted octahedron should be
taken into account. This can be ddhén the atomic SCF more stabld?50

calculation by taking the difference between the total atomic The results of the IORAmMMm calculations for the two

SCiF ?_ntlargy(ijotﬁalculated W|th|ouf gtjagge.tihg: in the nucfllgf?r conformers of Xef are summarized in Table V. The re-
potential and the energy, calculated wi € gauge shi ported total molecular energies are corrected for the GSE in

A, EGfS'=: EO_EAJF% 1;he latter calcglztlon er?plog/s .the_t the same way as it has been done for gold containing mol-
\_/rvsve llmc |ofnthrom N orhr&e; one an O?Srrrxlb?' op |Im|ze ecules. The trigonally distorted octahedron is the most stable
€ value ot the gauge s ora given atomh IS calcl gy otyre at the SCF, MP3, and MBDQ) levels of theory

lated as a sum of values of th_e potentials of other nuclei Nwhile at the MP2 level the regular octahedron is favored.
the molecule at the position of the atond, A

) . . f
—S4..1/Rs. The GSE for the IORAmM total energy de- Indeed, as has been pointed out in earlier work ong{&e

. . 49), MP2 overestim rrelation eff r neral dis-
pends nearly linearly o (see Fig. 1 and, even for heavy 9, overestimates correlation effectsr a general dis

atoms, it does normally not account for more than a fewCUSSion’ see Ref. 51Generally;" MP3 tend to overcorrect
. T . . the MP2 error while MP4 shifts the correlation energy back
kilocalories per molé? For light atoms(up to the third row 9y

| 5 GSE is | than 0.1 keal/mol and felv b into the direction of the MP2 result. Because the conver-
ﬁ:;eecrtfd IS 1ess than ©.1 kealimol and can salely egence of the MP series is nonmonotonod$the correct en-

. ergy may lie somewhere in between the MP3 and MP4 val-

MPAE%Z) Iz:/aliﬁlr;g:)irslzii tLh: Sr;s;lfcs)sggpit?ecolr?;;gmé fues. Thus, it may be expected thgt the energy difference

gold diatomics. When calculating the dissociation energiesbetween the regular and trigonally distorted octahedral struc-
the effect of tHe GSE was taken into account for the gol ures is bracketed by the MP3 value of Tt@m abové and
991G he MP4 value 1.4 kcal/mdafrom below). Note that for both

atom donly. ;)r%eOOGlSzlE AfforoA(;Jo'lno'il?JH' A(;"B ggg L{%fgrf' ' MP3 and MP4 the optimized molecular geometry of @
sponds to ©. C » ang o. arre&ynformer is in reasonably good agreement with the avail-

lretsp()jectn(/jei)t/]. Ge”er.a”y' :hle agr(taement. betweizn tth(_a calc ble experimental dat@ee Table V.°° Almost all structural
ated and the expenmental Speclroscopic constants 1S eXCep, o maters fall within the error bars of the experimental
lent. Especially gratifying is that even for the gold dimer the

L measurement.
molecular structure and the vibrational frequency are not af-
fected by the residual gauge noninvariance of the IORAmM
Hamiltonian. The results for Aufrom Table IV can be com- ™. concLusions
pared with the results of the DKH/MP4 calculatidisyhich A compact and reliable representation for the matrix el-
yielded 2.442 A for the bond length and 202 ¢chfor the ~ ements of the quasirelativistic Hamiltonian within the regular
vibrational frequency. Note, however that the latter calcula-approximation is presented. Despite the fact that the new
tion employed the somewhat larget3s11p6d4f2glhli] computational procedure uses the spectral Rl technique, no
basis set and correlated fewer electrons, 34 in DKH/MP4dditional molecular integrals, which involve an auxiliary
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TABLE V. Structural parameterén A) for XeF; calculated with IORAMm.

Parameter Expt SCF MP2 MP3 MP4SDQ
C3U

Xe—F, 1.850+0.036 1.767 n.& 1.818 1.838

Xe-F 1.941+0.036 1.920 n.a. 1.942 1.958

Fi—F 2.535+0.208 2.284 n.a. 2.354 2.394

F,—Fs 3.106+0.302 3.223 n.a. 3.228 3.217

Fi—Fs 2.498+0.108 2.338 n.a. 2.420 2.479

Fi—Fe 3.757+0.070 3.582 n.a. 3.668 3.721
Erol —8037.314867 n.a. —8039.190543  —8039.242 876

O

Xe—-F, 1.888 1.938 1.913 1.930
= —8037.267944 —8039.314422 —8039.179452 —8039.240 648
AE¢ 29.4 7.0 1.4

#Taken from Ref. 50.

POptimization converges t®), structure.

“Total molecular energyin hartree corrected for GSE.
9AE = E,o(Op) —Eiof(Cs,) (in kcal/mol).

basis set used to resolve the identity operator, appear in theentially the same price as that of conventional non-
final formulas for the Hamiltonian matrix elements. This relativistic calculations.
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