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A General Definition of Ring Puckering Coordinates 
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Abstract: A unique mean plane is defined for a general monocyclic puckered ring. The geometry of the puckering relative to 
this plane is described by amplitude and phase coordinates which are generalizations of those introduced for cyclopentane by 
Kilpatrick, Pitzer, and Spitzer. Unlike earlier treatments based on torsion angles, no mathematical approximations are in- 
volved. A short treatment of the four-, five-, and six-membered ring demonstrates the usefulness of this concept. Finally, an 
example is given of the analysis of crystallographic structural data in terms of these coordinates. 

Although the nonplanar character of closed rings in 
many cyclic compounds has been widely recognized for 
many years, there remain some difficulties in its quantita- 
tive specification. An important first step was taken by Kil- 
patrick, Pitzer, and Spitzer in their 1947 discussion of the 
molecular structure of cyclopentane.' Starting with the nor- 
mal modes of out-of-plane motions of a planar regular pen- 
tagon,* they pointed out that displacement of the j t h  car- 
bon atom perpendicular to the plane could be written 

2 112 zj = (/'SI 4 COS (2+ + 4 n ( j  - 11/51 (11 
where q is a puckering amplitude and $ is a phase angle de- 
scribing various kinds of puckering. By considering changes 
in an empirical potential energy for displacements perpen- 
dicular to the original planar form, they gave reasons to be- 
lieve that the lowest energy was obtained for a nonzero 
value of q (finite puckering) but that this minimum was 
largely independent of $. Motion involving a change in fi at 
constant q was described as pseudorotation. Subsequent re- 
finement of this work has involved models in which con- 
straints to require constant bond lengths are imposed3q4 and 
extensions to larger rings5-' and some heterocyclic systems 
are considered.* 

Although the correctness of the model of Kilpatrick, et 

a f . ,  I and the utility of the (q. $) coordinate system is gen- 
erally accepted, application to a general five-membered ring 
with unequal bond lengths and angles is not straightfor- 
ward. Given the Cartesian coordinates for the five atoms 
(as from a crystal structure), determination of puckering 
displacements z, requires specification of the plane z = 0. 
A least-squares choice (minimization of Zz i2)  is one possi- 
bility, but the five displacements relative to this plane can- 
not generally be expressed in terms of two parameters q 
and $ according to eq 1. 

An attempt to define a generalized set of puckering cor- 
dinates which avoids these difficulties was made by Geise, 
Altona, Romers, and S~ndara l ingam.~- l '  Their quantita- 
tive description of puckering in five-membered rings in- 
volves the five torsion angles 0, rather than displacements 
perpendicular to some plane. These torsion angles are di- 
rectly derivable from the atomic coordinates and are all 
zero in the planar form. They proposed a relationship of 
the form" 

(2) 
for these torsion angles where again 6, is an amplitude and 
P is a phase angle. Given values for the five e,, the phase P 
is obtained from 

e, = em COS (P -t 4n( j  - 1)/5) 
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(3) 
e3 -t e5 - e2 - e4 

2Q1(sin 1/5n + sin2/,.rr) tan P = 

(a consequence of eq 2 )  and then Om follows from ( 2 )  for 
one particular atom (actually atom 1). This procedure has 
been used to obtain such puckering coordinates for a large 
number of five-membered rings. 

Although the method of Geise, et al., can be applied di- 
rectly to any five-membered ring given only the torsion an- 
gles, it is nevertheless subject to certain disadvantages. 
These arise because the relations in (2) are only approxi- 
mate and the full set of torsion angles cannot be expressed 
exactly in terms of two parameters in this way. Consequent- 
ly, the puckering amplitude calculated by the above proce- 
dure will depend somewhat on which atom is chosen as 
number one. The approximation is fairly good provided that 
the puckering is not too large, but it would clearly be desir- 
able to avoid such difficulties if possible. 

More recently, Dunitz12 has given a further discussion of 
ring-puckering and torsion angles. H e  showed that, for in- 
finitesimal displacements of a regular pentagon from plan- 
arity, there is a direct linear relationship between torsion 
angles and displacements, so that the amplitudes and phas- 
es in ( 2 )  can be rigorously related to those in the original 
expression 1 of Kilpatrick, et ai. However, for finite dis- 
placements q such as those found in cyclopentane, there are  
significant deviations from these linear relationships. 

The aim of this paper is to propose a general definition of 
ring-puckering coordinates which parallels the cyclopentane 
treatment of Kilpatrick, et al., but which can be applied 
without approximation to any cyclic molecule given only 
the coordinates of the nuclear positions of the atoms in the 
ring. This requires specification of an appropriate mean 
plane. We  give the mathematical details for a ring of gener- 
al size in the following section and then discuss certain 
qualitative features of the coordinates introduced. Finally, 
we give an example of application of the method to the de- 
termination of such coordinates for a compound where an 
accurate crystallographic structure is available. 

Mathematical Formulation 
Let us suppose that the positions of the nuclei of N atoms 

forming a puckered ring are specified by Cartesian coordi- 
nates (X,, 5, Z,) or position vectors RJ (j = 1, 2 ,  . . ., N ) .  
Initially these may be with respect to any origin, but it is 
convenient in the subsequent development to move the ori- 
gin to the geometrical center (center of mass if the N nuclei 
all have the same mass). With this origin, the position vec- 
tors satisfy 

N 

,=I 
C R 1  = 0 (4 1 

To set up a system of puckering coordinates, it is desir- 
able to specify the displacement of each nucleus from some 
suitably defined mean plane. This plane will be chosen to 
pass through the central origin. Further a new set of Carte- 
sian coordinates (x,y,z)  with respect to molecular axes can 
be chosen so that the origin is a t  the center and the z axis is 
perpendicular to this plane. The y axis may be chosen con- 
veniently to pass through the projection of nuclear position 
1 onto this plane. These new molecular coordinates will be a 
simple linear transformation of the original coordinates 
( X , Y , Z )  with respect to space-fixed axes. 

The orientation of the mean plane ( z  = 0) is not yet 
fixed. This may be specified in the following manner. The 
puckering with respect to the plane z = 0 can be partly de- 
scribed by the N coordinates zy By virtue of eq 4 and the 
requirement that the new origin is a t  the geometrical cen- 
ter, it follows that 

N 

We now impose the additional conditions 
N 

j= 1 
czj cos [2n( j  - l ) /N] = 0 
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(5) 

N 

j.1 
Cz, s i n  [ 2 n ( j  - l ) /N]  = 0 (7) 

Equations 6 and 7 are sufficient to fix the mean plane 
uniquely. In the special case of small puckering displace- 
ments of a regular planar polygon, they correspond to the 
condition that the displacements z, are such as to lead to no 
overall angular momentum.2 However, the same conditions 
may be used more generally for finite displacements, non- 
equivalent atoms, and any bond lengths and angles. Fur- 
ther, it is easily confirmed that these conditions are the 
same whichever atom in the ring is number one. 

The orientation of the mean plane can now be deter- 
mined for the position vectors R, in the following manner. 
Define new vectors 

N 

j;l 
R” = C R j  COS [ 2 a ( j  - 1)/N] 

n = R‘ x R ” / ( R ~  x R “ /  

(9 1 

Then the unit vector 

(10) 
will be perpendicular to R’ and R”. This will be chosen as 
the molecular z axis. Since the components of R’ and R” 
along n are zero, it follows that (6) and (7) are satisfied. 
The positive direction of n defines a “topside” of the ring 
(above the face with clockwise numbering). 

The components of the unit vector n with respect to the 
space-fixed axes may be obtained directly from the compo- 
nents (X,,Y,,Z,) of R, using (8), (9 ) ,  and (10). The full set 
of displacements from the mean plane are  then given by the 
scalar products 

z j  = R , * n  (11) 
These will automatically satisfy (5), (6), and (7). 

We may now define generalized ring-puckering coordi- 
nates in the following manner. If the number of atoms in 
the ring N is odd and N > 3, define qm and & by 

qm s in$ ,  = - ( 2 / N ) 1 / 2 ~ z j  s i n  [2nm(j - 1 ) / N ]  (13) 
j =  1 

These formulas apply for m = 2, 3, . . ., ( N  - 1)/2.  They 
represent a set of puckering coordinates with amplitudes qm 
(qm I 0) and phase angles 4,,, (0 I& < 2x).  If the num- 
ber of atoms N in the ring is even, the coordinates in (1  2) 
and (13) apply up to m = ‘/2N - 1 and then there is a sin- 
gle puckering coordinate 

N 
q N 1 2  = N - 1 ’ 2 ~ z j  cos [ ( j  - 

1=1 

(14) 
Unlike the other q amplitudes, this q value can have either 
sign. The total number of ring-puckering coordinates is N 
- 3. I t  should be noted that the index j - 1 appears in 
(12)-( 14) so that the corresponding angles appearing in 
these formulas are zero for atom 1 which will be treated as 
the apex of the ring. 

Equations 5-7 and 12-14 constitute a set of N linear 
equations for the N displacements z) They may be solved 
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€quat or T B  
Figure 1. One octant of the sphere on which the conformations of six- 
membered rings can be mapped (for a constant Q).  Special conforma- 
tions are indicated: C = chair for 8 = Oo, qj = Oo; B = boat for 8 = 90°, 
4 = Oo; TB = twist boat for 8 = 90°, C$ = 90°; HB = half-boat; HC = 
half-chair. 

to give expressions for zj in terms of the puckering coordi- 
nates qm and &. The results are 

( N  odd) 
and 

2, = (2/?v31/2Ny1 qm cos [qm + 2am(j - l ) /N]  + 
m.2 

N" "qN/ (-1)j-l (16) 
(N even) 

The normalization factors in the definitions in eq 12-14 are 
such that 

the quantity Q ( 2 0 )  may be termed a total puckering am- 
plitude. 

It is useful to consider the coordinates more explicitly for 
some small rings. The smallest ring showing puckering is N 
= ,4 and, in this case, the mean plane is that which is equi- 

distant from all four atoms so that 
z1 = -z2 = z 3  = -24 (18) 

The single q coordinate is 22 1 and may have either sign. 
For N = 5 ,  there is just one amplitude-phase pair, 

(q, @), and the displacement expressions (eq 15) become 
(19) 

This is just expression 1 used by Kilpatrick, et af.' (ex- 
cept for renumbering and the fact that @ in (19) corre- 
sponds to 21,b in (1)). In terms of the original cyclopentane 
model' (parallel displacements for a regular planar penta- 
gon), values @ = 0, 36, 7 2 O ,  . . . correspond to ten envelope 
(E) conformations I with C, symmetry while @ = 18, 54, 
90°, . . . give ten twist (T) conformations I1 with C2 sym- 
metry. This nomenclature can be carried over to the general 
five-membered ring with different lengths and angles using 
the phase 4 defined in this paper. Thus a "pure envelope" 
conformation with apex at 1 (@ = 0 or 180') would be such 
that 

zj = (2/5)'/'q COS [@ + 47i(j - 1)/5] 

22 = z5 z3 = 24 (20) 
and a "pure twist" with axis through 1 (@ = 90 or 270O) 

would have 
zi = z* + z5 = z3 + zq = 0 (21) 

However, it should be noted that for the general ring with 
unequal lengths and angles, the conditions in (20) do not 
necessarily imply coplanarity of atoms 2, 3 ,4 ,  and 5. 

For six-membered rings ( N  = 6), there are three pucker- 
ing degrees of freedom. These are described by a single am- 
plitude-phase pair ( q 2 , @ 2 )  and a single puckering coordi- 
nate q3. Alternatively, these coordinates may be re- 
p l a ~ e d ' ~ . ' ~  by a "spherical polar set" (Q, 6, @), where Q is 
the total puckering amplitude and 0 is an angle (0 5 6 5 7) 
such that 

q2  = Q sin 0 
93 = Q C O S  0 ( 2 2 )  

This coordinate system permits the mapping of all types of 
puckering (for a given amplitude Q )  on the surface of a 
sphere (Figure 1). The analysis of this paper allows every 
puckered ring with N = 6 to be located precisely on this 
surface. 

I II 

m nz P 

m Tu 
The polar positions (0 = 0 or 180') correspond to a chair 

conformation I11 with q 2  = 0 and q 3  = &Q. For this con- 
formation, the displacements relative to the mean plane are 
given by 

Z1 = -Z2 = +Z3 = -Z4 = +z,  = -z6 = 6'l/2q3 (23) 

For the special case of a puckered chair with equal bond 
lengths R and tetrahedral bond angles, the displacement z 1 

is (]/6)R and the amplitude q3 is (1/6)1/2R. 
The positions on the equator of the sphere (Figure 1 )  

have 6 = 90' so that q3 = 0 and q 2  = Q. As the phase angle 
@ varies, the conformation traverses a series of six boat con- 
formations IV (4 = 0, 60, 120, 180, 240, 300') and six 
twist-boat conformations V (4 = 30, 90, 150, 210, 270, 
330'). These can be interconverted by a pseudorotational 
path. Certain other commonly described conformations can 
also be located on this diagram. Thus the half-chair VI is 
intermediate between I11 and V. For small displacements of 
a regular hexagon (small Q), it can be shown that tan 0 = 
(3/2)1/2 and @ = 90° maintains copolanarity of atoms 4, 5 ,  6, 
and 1, so this angular deviation (e,@) may be taken as a 
more general definition of the half-chair. Similarly, the en- 
velope or half-boat VI1 is intermediate between I11 and IV. 
In this case, coplanarity of atoms 2 ,  3, 4, 5, and 6 is main- 
tained for small Q if tan 8 = 2 

Example 
The following example will demonstrate the usefulness of 

the ring-puckering parameters. From the reported neutron 
diffraction study of sucroselS (VIII), precise position coor- 
dinates of all atoms composing the two rings in the carbohy- 

and @ = 0. 
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Table I. Coordinates and Puckering Parameters for the Furanoid and Pyranoid Ring of Sucrose after the 
Neutron Diffraction Analysis of Brown and LevyI6 

Atom Cell coordinatesa Cartesian coordinates (x j ,y j ,z , ) *  

Furanoid Ring of Sucrose 

C‘(2)  2 0.1245 0.1926 0.3689 1,1622 0.4349 0.1461 
C’(3) 3 0,0072 1.1907 0.2148 0.7425 
C’(4) 4 0.0648 0.1665 0.0548 -0.7221 - 1 ,0309 0,2057 

Puckering parameters: q2 = 0.353, C$2 = 265.1” 

Pyranoid Ring of Sucrose 
O(5) 1 0.3772 0.3988 0.3686 0 1,3839 0,1976 

C(2) 3 0.3125 0.4747 0.6360 1.2356 -0.7040 0.2393 

C(4) 5 0.3740 0.6709 0.4420 -1.2300 -0.7208 0.2420 

Puckering parameters: qz = 0.050, C$z = 183.7” 

O‘(2) 1 0.2120 0.0944 0.3157 0 1.2111 -0,0189 

-0.2174 

C’(5) 5 0.1763 0.0613 0.1286 - 1.1826 0,3861 -0.1154 

-1.0012 

C(1) 2 0.2996 0.3579 0.4849 1.1997 0,7624 -0.2106 

C(3) 4 0.2854 0,6367 0.5645 0.0110 - 1.4564 -0.2550 

C(5) 6 0.3592 0.5511 0,2953 - 1.2164 0.7350 -0.2133 

q3 0.554 
Q = 0.556, e = 5.20  

Space group p2] ; a = 10.8633 A, b = 8.7050 A, c = 7.7585 A, p = 102.945 O (ref 12). All coordinates and puckering amplitudes in A.  

H z C O H  
c\ 

H\ 1 
HO 

H HO 

zmr 

Ix X 

drate are  known. In structure VIII, the original numbering 
is used. To describe the individual rings in accordance with 
the established IUPAC rules,I6 it is necessary to renumber 
the rings separately as in IX and X. In both the furanoid 
and pyranoid rings, oxygen is atom 1 and the carbon with 
the glycosidic linkage is atom 2 .  It should be noted that, to 
obtain clockwise numbering, the furanoid ring has been 
turned over in going from VI11 to IX.  (This will not, of 
course, change any of the puckering parameters.) Corre- 
spondence between these new numberings and the original 
ones follows by detailed comparison of VIII, IX, and X. Ac- 
cording to the definitions of “top” and “bottom” of the 
rings given in the previous section, it is clear that the pyra- 
noid ring is a substituent on the top of the furanoid ring. 
Also the furanoid ring is a substituent on the bottom of the 
pyranoid ring. 

The evaluation of the puckering parameters proceeded in 
the way described above. After a transformation of the re- 
ported cell coordinates to Cartesian  coordinate^,^^ the geo- 
metrical center of each ring was found and a translation of 
the origin of the coordinate system to this pint was imple- 
mented. By eq 8, 9, and 10 the vector n was derived. This 
defines the new z direction and the mean ring plane. The 
projection of the position vector R1 into this plane led to the 
positive y direction and the unit vector m, the cross product 
(m X n) to the unit vector I, and the new x direction. The 

scalar products of R, with 1, m, and n then gave the new set 
of xJ3yJ,zJ coordinates shown for both furanoid and pyranoid 
rings in Table I. Finally, the puckering parameters were 
evaluated from eq 12, 13, and 14. These are also given in 
Table I. (A Fortran computer routine which evaluates the 
coordinate set xJ,yj,zJ and the puckering parameters will be 
published. Is )  

For the furanoid ring, the 42 value ( 2 6 5 O )  is close to the 
value ( 2 7 0 O )  appropriate to one of the T forms with twist 
axis through the oxygen. This is also shown by the zJ coordi- 
nates ( z l  - 0, z 2  + zs - 0,23 + 24  - 0, z 2  > 0) .  This twist 
form (or one with 4 near 90’) seems to be the most stable 
conformation for itself and many compounds 
containing this ring.” Indeed, the puckering amplitude for 
many such rings lies in a narrow rangeI9 near 0.35 A. 

The puckering amplitudes of the pyranoid ring describe a 
slightly distorted chair (XI) with q3 >> q 2 .  Indeed, the total 
puckering amplitude Q (0.56 A) lies only slightly under the 
Q value of an  ideal cyclohexane chair (0.63 A for R(C-C) 
= 1.54 A). The magnitude of the distortion is given by 8 
( S o )  or better by tan 8 which is very small. In order to find 
the direction of the distortion, we note that 4 2  is close to 
180’ which corresponds to an  inverted boat conformation 
(XII). Therefore the pyranoid ring is distorted from the 
pure chair XI  in the direction of XI1 and hence is flattened 

Do mo 
xl x3I 

a t  the oxygen apex, allowing the C-0-C angle to increase 
to 115’ while the other internal ring angles remain close to 
tetrahedral values. These conformational tendencies reflect- 
ed by the puckering parameters are common for many py- 
ranoid rings.21 

Conclusion 
The ring mean plane and consequent molecular Carte- 

sian and puckering coordinates introduced in this paper 
should aid quantitative stereochemistry in a number of 
ways. In the first place, the type of puckering coordinates 
first applied to pseudorotation in cyclopentane by Kilpa- 
trick, Pitzer, and Spitzer’ can be generalized without ap- 
proximation in any ring with heteroatoms and arbitrary 
bond angles. The new definitions are completely consistent 
with the original ones in molecules to which they applied. 
Second, the analysis applies to rings of any size and should 
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allow a more systematic description of the possible geomet- 
rical structures for larger rings containing seven or more 
atoms. The "spherical" coordinate system used for six- 
membered rings in which the total puckering amplitude is Q 
and the "distortion-type'' is specified by two angular vari- 
ables 0 and 4 can itself be generalized. Thus for an N ring, 
it should be possible to represent all types of puckering by 
location on the surface of a hypersphere in N - 3 dimen- 
sions. Finally, the definition of a unique mean plane passing 
through the geometrical center should permit a more quan- 
titative approach to the description of substituent orienta- 
tion relative to such a plane. Studies in these directions are 
in progress.2' 
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Abstract: A6 initio molecular orbital theory is used to study the potential surfaces associated with ring puckering in cyclo- 
pentane, oxolane, 1,3-dioxolane, and cyclopentanone. A geometrical model is used which has fixed bond lengths and fixed 
angular conformations for methylene groups, but all other degrees of freedom are  varied. Extensive geometry exploration is 
carried out with the minimal STO-3G basis and a more limited study with the split valence 4-31G basis. Estimates are made 
of changes in the potential surface that would occur if the calculations were carried out using the polarized 6-31G* basis. It 
is found that the theory predicts puckering amplitudes in fair agreement with experimental data.  For cyclopentane, all meth- 
ods give nearly free pseudorotation. The oxolane surface also shows that a pseudorotational path is the favored route for con- 
formational interconversion. The final results (6-3 1G* estimates) indicate a twist (T) conformation (Cz symmetry) as the 
most stable form with a low barrier to pseudorotation into an envelope (E) conformation (C, symmetry). Similar results with 
a somewhat higher barrier are obtained for 1,3-dioxolane. Cyclopentanone is also found to have its energy minimum in the 
twist (T) form, but in this case conformational interconversion occurs most easily along a path passing close to the planar 
skeleton form as a transition state, in good agreement with experimental findings. The qualitative factors underlying these 
results are analyzed in terms of the quantum mechanical calculations. 

In 1947, Kilpatrick, Pitzer, and Spitzer' introduced the 
concept of pseudorotation to explain the high gas-phase en- 
tropy of cyclopentane. According to their thermodynamic 
data, they suggested that the cyclopentane ring is puckered 
rather than planar. This deformation, however, is not static 
but dynamic, the puckering displacements moving around 
the ring in a relatively free manner. Since that time, this 
pseudorotation phenomenon has been extensively docu- 
mented by various experimental t e ~ h n i q u e s , ~ - ~  not only for 
the hydrocarbon cyclopentane but also for various deriva- 
tives and compounds with one or more heteroatoms in the 
ring.6-'9 Unfortunately reliable information on the full 
pseudorotational potential and the populations of the vari- 
ous conformations is not easily derivable from experimental 
observation. It is therefore very desirable to develop quan- 

tum mechanical treatments of the phenomenon in five- 
membered ring compounds. This should aid the interpreta- 
tion of the important structural features influencing the 
properties of such molecules. 

The aim of this paper is to initiate a systematic ab initio 
molecular orbital theory of pseudorotation. This requires a 
geometrical procedure to allow for finite puckering dis- 
placements of five-membered rings, followed by quantum 
mechanical calculations of the appropriate potential sur- 
face. The molecules studied in detail are cyclopentane, oxo- 
lane, 1,3-dioxolane, and cyclopentanone. 

I. The Geometry of Pseudorotation 
The mathematical description of pseudorotation in a 

molecule such as cyclopentane is usually based on the out- 
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