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ABSTRACT -

Three different ways of getting reliable estimates of full configuration interaction (FCI)
correlation energies are tested, namely (a) by Padé approximants [k, k] and [k, k — 1], (b)
by using extrapolation formulas, and (c) by Feenberg scaling of Maller—Plesset (MP)
correlation energies. By using MPn energies up to sixth order, i.e., MP2, MP3, MP4, MP5,
and MP6, it was possible to test the convergence behavior of the Padé series [1, 0], [1,1],
[2,1], [2,2] and the Feenberg series up to sixth order where in the latter case a scaling
factor A® (scaling of the second-order wave function, FE2) rather than the previously
tested A® (scaling of the first-order wave function, FE1) was considered. Investigation of
26 different correlation energies for systems with monotonic convergence in the MPn
series (class A systems) or initially oscillatory convergence behavior (class B systems)
indicates that Padé approximants lead in some cases to reasonable estimates of FCI
correlation energies, but in other cases, in particular for class B systems, they give too
negative correlation energies. Both monotonic and oscillatory behavior for the Padé series
is observed where it is possible to predict its convergence behavior on the basis of
calculated MPn energies. The best estimates of the FCI correlation energy are obtained by
FE2 scaling. At sixth-order FE2, values for atoms and molecules with equilibrium
geometry differ on the average by just 0.146 mhartree from FCI correlation energies. The
FE2 correlation energies all converge monotonicly. Also, FE2 scaling reduces the
exaggeration of MP6 correlation energies for class B systems. However, surprisingly good
estimates of FCI energies are also obtained by simple extrapolation formulas based on
MP4, MP5, and MP6 correlation energies. © 1996 John Wiley & Sons, Inc.
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Introduction

O ne of the major goals in ab initio theory is to
obtain correlation energies of full configura-
tion interaction (FCI) accuracy. One comes close to
this goal if one uses coupled cluster (CC) methods
that involve single (S), double (D), and triple (T)
excitations {1, 2]. Benchmark calculations for elec-
tronic systems for which FCI calculations are still
possible have shown that exact correlation ener-
gies (calculated for a given basis set with a finite
number M of basis functions at a given geometry)
can be approached by CCSDT or the correspond-
ing quadratic ClI method, QCISDT, within 1
mbhartree [2]. Reasonable correlation energies are
also obtained with CC or QCI when the T excita-
tions are included in a perturbative way such as
for CCSD(T) [3) or QCISD(T) [4]. The success of
CC methods in approximating FCI results is based
on the fact that they include infinite-order effects
and are size extensive where the latter property is
more important for the calculation of relative ener-
gies.

Attempts to get reasonable estimates of FCI
correlation energies from many-body perturbation
theory (MBPT) with the Mepller-Plesset (MP) per-
turbation operator [5] have been less successful.
Methods for routine calculations of correlation en-
ergies at second-order MP (MP2) theory [6,7],
third-order MP (MP3) theory [8], and fourth-order
MP (MP4) theory [9, 10] are available for the last
10 years. Recently, programs for determining
fifth-order MP (MP5) theory have been developed
independently by the Bartlett and the Pople group
[11,12]. Some years ago, we pointed out that it is
possible to work out a method for calculating
sixth-order MP (MP6) correlation energies [13]. In
the three preceding articles to this work, we have
described development, implementation, and first
applications of a full MP6 method [14-16]. This
work enables us now to reconsider the possibility
of making reasonable estimates of FCI energies on
the basis of calculated MP correlation energies.
Such an investigation necessarily implies an analy-
sis of the convergence behavior of the MPn series
for n =2,3,4,5,6 and a search for methods that
may improve this convergence behavior.

At a time when routine calculations of MPn
correlation energies where only possible for n < 4,
Pople, Frisch, Luke, and Binkley (PFLB) [17] de-

rived an extrapolation formula for estimating infi-
nite-order MP correlation energies. Actually, this
formula was based on the assumption of a geomet-
rically progressing MPn series, which is not neces-
sarily fulfilled. For example, Handy and co-
workers [18,19] could show with the help of MP#n
energies (n < 48) obtained in the nth iteration step
of a FCI calculation that a MPn series does not
necessarily converge monotonically. In many cases,
there are initial oscillations in the correlation en-
ergy which make it difficult to extrapolate to infi-
nite-order MP energies.

Oscillations in the correlation energy are a logi-
cal consequence of a stepwise improvement of MP
theory with order n. At even orders n, new corre-
lation effects described by new excitations are
added to the perturbation series. For example, at
MP2, D excitations are included to describe pair
correlation effects. At MP4, S, T, and Q excitations
are added to D excitations to cover orbital relax-
ations, three-electron correlation effects, and the
simultaneous but independent correlations of two
electron pairs. At the MP6 level, pentuple (P) and
hextuple (H) excitations are included that cover
higher order correlation effects [13—16]. In all these
cases, the new correlation effects can be exagger-
ated because there is no coupling between D exci-
tations at MP2, S, T, and Q excitations at MP4, or
P and H excitations at MP6. This coupling, which
leads to a more realistic description of electron
correlation, is always included at the next higher
odd order perturbation theory level. For example,
at MP3 coupling between the D excitations leads
to an improved description of pair correlation ef-
fects that avoids the typical overestimation of pair
correlation by MP2. At MP5, couplings between S,
T, and Q excitations are introduced which are
important for a balanced description of correlation
effects associated with these excitations. Hence, at
the even orders new correlation effects normally
lead to a significant increase of the absolute mag-
nitude of the correlation energy while the latter
increases only slowly or is even reduced at odd
orders due to the couplings between excitations
just introduced in the previous even order. This
can lead to oscillations in the MPn correlation
energy series as has been observed by various
authors [18—20].

An improved understanding of the convergence
behavior of the MPn series has been obtained from
FCI calculations for electron systems of moderate
size [18,21]. Handy and co-workers have obtained
MPn correlation energies up to order n = 48 from
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the iteration steps of a FCI calculation [18]. They
found that the MPn series does not always con-
verge uniformly. Four cases could be distin-
guished, namely (a) rapid convergence, (b) initial
oscillations, (¢) divergence, and (d) slow conver-
gence of the MPn series. The latter case was found
for unrestricted MP#n calculations with consider-
able spin contamination in the wunrestricted
Hartree-Fock (UHF) reference function. The prob-
lem could be solved by using an appropriate re-
stricted open-shell formalism.

Although the calculation of the MPn series up
to n = 6 does not give much possibility of further
detailing its convergence behavior, calculation of
the MP2, MP3, MP4, MP5, and MP6 correlation
contributions provides the basis of investigating
those correlation effects that lead to monotonic or
oscillatory convergence behavior of the MP# series
at lower orders. In the third article of this series
[16], we have already shown that initial oscilla-
tions of the MPn series result from oscillations in
the T part of the correlation energy that cannot be
compensated by the corresponding SDQ contribu-
tions. Any method for predicting FCI correlation
energies has to consider these oscillations in some
way and, therefore, we will investigate in this
work how known procedures for estimating FCI
correlation energies can handle slow convergence
or initial oscillations of the MPn series. We will
particularly focus on the following questions:

1. What are the predictive properties of sixth-
order MP theory as compared to those of
MP4 and MP5? Does MP6 suffice to obtain
reliable estimates of FCI correlation energies?

2. What is the best way of using MP6 energies
for the prediction of exact correlation ener-
gies?

3. Is it possible to dampen initial oscillations of
the MPn series by an appropriate method?

These and some other questions will be dis-
cussed in this work which is structured in the
following way. In the second section we will
shortly describe three methods used in this work
for predicting FCI correlation energies. Then, in
the third section we will apply these methods to a
set of test examples and discuss possibilities of
getting improved estimates of FCI correlation en-
ergies.

Improvement of the MPn Series and
Estimation of FCI Correlation Energies

The exact correlation energy AE for a given
system is an eigenvalue of the Hamiltonian H:

H|®) = AE|®), @

where H is defined by

H=H-{(®,H|®,> = H— EHP. ()

The wave function |®,) is the Hartree—Fock (HF)
reference wave function and E(HF) corresponds to
the HF energy. The Schrodinger energy E and the
Schrodinger wave function ® are eigenvalue and
eigenfunction of the energy operator H.

The Hamiltonian H can be split into unper-
turbed Hamiltonian H, and perturbation operator
V [5):

H=H,+ V. €)]

Then, the correlation energy AE can be expanded
in terms of contributions E{j} = E(MPn) to the
MPn correlation energy:

AE=E-EMHF) = Y E®. @
n=2

In order to improve the convergence behavior of
the MPn series (4), we will test three possibilities
using calculated energies EMPn) (n = 2,3,4,5,6),
namely (1) Padé approximants [k, I] [22-24],
(2) the Pople—Frisch-Luke-Binkley extrapolation
formula [17], and (3) the Feenberg perturbation
series [25-28].

PADE APPROXIMANTS [K, I]

Calculation of the correlation energy expansion
(4) must be terminated at some finite order n
neglecting residuals of order n + 1. According to
Padé [22], Eq. (4) can be considered as one of the
(n + 1) approximants that are given by the ratio of
a polynomial of order k to a polynomial of order !
where k + I = n. The coefficients of these polyno-
mials are determined in the way that each approxi-
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mant differs from the energy only by residuals of
order n + L.

Bartlett and Shavitt have given general formu-
las for the [k, k] and [k, k — 1] Padé approximants
[24], which for k=1,2 lead to the following
expressions:

[1,0] = EQ(EQ, — EQ) ™ ER
@)
- E® _ = E@, EM_P_ 4 oo
EQ TG
T ED
= E@, + E&, + O(E®), (5)
[1,1] = EGh + ES(ES) — E&) ES)
= Ef + El(\?[)l’__E(A)_
E(3)
Efr
=E@ + EGh|1 + e T
MP

= B + Eip + Etp + O(ERR), (6
(2,11 = (E& EQ)

-1
2 3 3 4 2
Ewb — Er  Esp — Eip| [ Ebep
3 4 4 5 3) |’
Evb — E\b  Eitp — Eitb) | B\

@
and

[2,2] = EQ) + (EG EEH)

—-1
3 4 4 5 3
o[ EWp — BN EVb - Eup)| [ EW
4 5 5 6 4 )
E\b — EWp EGp —ENe/ | E\ib
(8)

Equations (7) and (8) can be rewritten in the form:

(2,1] = EQ) + EC) + Eg‘g,(1 - A)

D/
+ EGh |1 + , 9
MP( det A ) )

D
2,21 = E@ + EG) + E@p + EGW |1 + ——
[ ] MP MP MP ( det B )

D!
+ E& (1 + — 10

det B

where

D = (E{)" — EGLES), an
D = EQL(E@ — EQ) — EO(ES, — E®), (12)

det 4 =| EMb 7 Ebib Eik —Eib) o)
Ep —Ep  Er —EQb|
D= (ES) - EQES, 14
D' = E&(ES, — E®,) — ECL(E®, — ES)), (15)
and
det B = E\r — EMb  EMb — ER 16)
P E@ _E® E® _E® |
MP MP MP MP

Approximants [1,0], [1, 1], [2,1], and [2, 2] are cor-
rect up to third, fourth, fifth, and sixth order,
respectively, and, therefore, it is justified to com-
pare them with the corresponding MPn energies.
To determine the [k, k — 1] and [k, k] approxi-
mants, one has to calculate MPn correlation ener-
gies up to orders 2k + 1 and 2k + 2, respectively.
Since we have evaluated E{J} for n = 2,3,4,5,6,
we are able to analyze improvements obtained by
approximants (5)—(8) and study their convergence
behavior. In addition, we can test whether the
[2,2] approximant already provides a reasonable
estimate of the FCI correlation energy.

Padé approximants have been used to improve
the convergence behavior of the MPn series, and
in some cases these attempts have been successful
[24]. However, knowledge about the convergence
properties of a sequence of Padé approximants is
usually missing.

THE PFLB INFINITE-ORDER MP» FORMULA

Pople and co-workers have suggested an ex-
trapolation formula to obtain from calculated E{;}
(n = 2,3,4) correlation contributions a reasonable
approximation for the exact correlation energy AE
[17]:

2 3
Eh + EG)
EQ

T @
Ez»

A E(PFLB,MP4) = a7

Equation (17) is correct up to fourth order and is
based on the assumption that E{;} bears the same
relationship to EG) as E{) does to E{fh. Even-
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and odd-order terms of the MPn series are sup-
posed to form a geometrically progressive energy
series where the ratio of successive even-order
terms is similar to the ratio of successive odd-order
terms. In so far, Eq. (17) is related to the Padé
approximants [1,0] [Eq. (5)] and [1,1} [Eq. (6)],
which also suggest approximations in the form of
geometric series sums defined by the ratios
E(./EG, and EQ,/EC), respectively.

The PFLB extrapolation equation is based just
on fourth-order correlation energies because only
these correlation energies were available at the
time of development. Now, we can evaluate in
addition E(MP5) and E(MP6) and, therefore, it is
challenging to extend the PFLB equation to sixth-
order MP perturbation theory and to examine its
reliability:

4 5
B + ER
6
_Be
ES

(18)

A E(extrap, MP6) = E(Z) + EG) +
1

Formula (18) is correct up to sixth order. It as-
sumes similar to the PFLB formula monotonic con-
vergence of the MPn series, which, of course, is
not fulfilled in all cases (see [16]). Therefore, it will
be important to evaluate the reliability of (18) on
the basis of FCI (exact) correlation energies.

FEENBERG SERIES

In a number of studies interest in the Feenberg
series [25,26] as a perturbation series with im-
proved convergence characteristics has been
reestablished [27,28]. Since the relevant theory is
amply documented in the literature, we summa-
rize here just these equations relevant for an im-
provement of the convergence of the MPn series
@.

The contribution E{J} to the total correlation
energy AE of Eq. (4) is given by

EX = (D lVOACV|d,), (19)

where the wave operator () at nth order is defined
by
n—1

QM = G| VAr-D — ¥ EmOe-m™|. (20)

m=1

The reduced resolvent éo takes the form of

A 2 @ O( Dy
GO'—"Z k k

—_ (21)
k=1 Lo~ E
To improve the convergence of the series E{j}(n =

2,3,4,...) one introduces the A transformation
{271

E(M™ = (D,lVOVd,), (22)

n—1

+(1 - NG| VA — ¥ EmAE-m].
m=1

(23)

The transformed series E{™ converges to the same
limit as the original series E{f} when
det(1 — A) # 0. In the most simple form, A can be
written as a number operator

A = Al (24)

where [ is the unit operator. Equation (24) leads to
the Feenberg scaling of the Hamiltonian operator
of Eq. (3):

! H 1% A H (25)
———— + S —
1-a° ( 1-2A 0)

-~

=H,+ V. (26)

H

The scaling of H, leads to a transformation of the
MPn series {E{f2} where each term is obtained
now as a polynomial in A [27,28]:

n—1

EM = ¥ Crian*1a - N ERY  (n22).
k=1

27)

Feenberg [25] suggested that the value of A is
obtained by minimizing the third-order correlation
energy Y2 _,E™ = AE® = E® + E{®, which leads
to

2
EMp

-G (28)
B - B

A8 =1-—
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Substituting A in Eq. (27) by A®), the Feenberg
energy series E{" is obtained. Formulas for n = 2,
3,4, 5, and 6 are given in Egs. (29)-(33):

ER =1 - XED, (29)
ER =0, (30)
ES = A0 — A EQ,

+(1 - X0V ED, (31)

2 2

E® = 20091 - X ES)
+ 34001 — A E®, + 1 - A ES),
(32)
E® =3(0®)° 1 —A) EG), + 6(A®)’(1 —A®)’ EW),
+ 401 — A'EG, + (1 — A9 EE),.

(33)
An improved Feenberg parameter A can be deter-

mined by minimizing the fifth-order correlation
energy, AEQ):

=0, (34)

which leads to a cubic equation in A:

M+PA2+QA+R=0 (35)
with
3CEG — 26 + EG))
TR —aEg roEg £GP
3(ES) — EG))
B —sEq oEg £ )
Eisb (38)

"~ E® —3EQ, +3EQ) — ES,
For the electron systems investigated in this work,
one finds that Eq. (35) possesses just one real root,
which leads to the Feenberg parameter A®:

3 3
B B P
wole- 22l 6
yC 5 VC 5 T3 (39)
where C is defined by

C=—+-—2>0 (40)

for all cases investigated. In Egs. (39) and (40), A
and B are given by

PZ
A=Q—?, (41)
P\>* Px*Q
B = (5) 3 + R. (42)

Because of the minimum condition (34), Eq. (43)
holds:

EQ =0, (43)

which means that the Feenberg series E{& con-
verges in second-order perturbation theory, ie,
the second-order perturbed wave function and the
fifth-order energy, which is calculated from this
function, are eigenfunction and eigenvalue of the
Hamiltonian to be calculated.

Resulls and Discussion

The electron systems investigated in this work
are listed in Table 1. They have been chosen from
the pool of published FCI energies [29-33] for
atoms and simple molecules and comprise charged
and uncharged atoms (F and F™), different states
of molecules °B, and 'A, state of CH,, ®B, and A,
state of NH,) as well as AH, molecules both at
their equilibrium geometry (R,) and in geometries
with (symmetrically) stretched AH bonds (1.5R,,
2R,: “stretched geometries”). Calculation of
molecules with stretched geometries represents a
critical test on the performance of a correlation
method because these electronic systems possess
considerable multireference character.

In Table I, contributions E{}} and correlation
energies AE™ =Y __E(M calculated for n =
2,3,4,5, 6 are compared with FCI correlation ener-
gies. In addition, scaled Feenberg correlation ener-
gies for A (denoted by FE1) and A® (denoted by
FE2) are given where the former (apart from the
sixth-order energies) have been taken from the
work of Schmidt and co-workers [28] for reasons
of comparison. Also given are correlation energies
evaluated from Padé approximants and extrapo-
lated values obtained with the PFLB equation (17).
In Table II, Padé correlation energies are analyzed
with the help of differences E(approximate) —
E(FCI) and the ratios E/E"~D or the correction
terms D/det A, D'/det A, D/det B, D'/det B
[Egs. (9) and (10)]. The best estimates for the exact
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Correlation energies [hartree] obtained at the MPn level, by first-order (\®}) and second-order Feenberg scaling
(A9), by Padé approximants or by extrapolation formulas.®

Feenberg
Systems Order MPn FE1 FE2 [k, 1] Padé E(extra, MPn)
Class A

BH 'S, R, = 2.329a, DzP [29]

R, A® = _0.313 A6 = —0.392
E(HF) —25.125260
AE® —0.073728 —0.096810 —0.102641
AE® —-0.091306 —0.096810 —0.096458 [1,0] —0.096810
AE® —0.097307 —0.100907 -0.101713 [1,1] -0.100417 —0.099396
AE® —0.099841 —0.101621 -0.101713 {2,1] —0.102042
AE® —-0.101062 —-0.102152 -0.102313 [2,2] —-0.102392 —0.102021
FCl —0.102355

1.5R, A® = —0.356 A® = —0.363
E(HF) —25.062213
AE®@ —0.077656 —-0.105287 —~0.105870
AE® —0.098036 —-0.105287 —0.105284 [1,0] —0.105287
AE® —0.106532 -0.113133 —0.113264 {1,1] -0.112607 —0.110080
AE® —0.110453 —-0.113263 ~0.113264 [2, 1] —0.113919
AE® -0.112315 —0.113964 —0.113984 [2,2] —0.114030 —0.113939
FCl —-0.113763

2.0R, A® = —0.425 A® = —0.373
E(HF) —24.988201
AE® —0.086302 —0.122938 —-0.118525
AE® —0.112020 —0.122938 —0.122780 {1,0] —0.122938
AE® —0.125804 —0.140627 —0.138784 [1,1] —0.141723 -0.133312
AE® —0.133078 —0.138645 —0.138784 [2,1] -0.141209
AE® —0.136946 —0.141585 -0.141110 [2, 2] -0.141312 —0.141294
FCI —-0.139132

NH, %B, R, = 1.024a, 6=103.4° DZP [30]

R, A® = —0.125 A® = —0.140
E(HF) —55577182
AE®@ —0.143266 -0.161223 —0.163370
AE® -0.159223 —0.161223 —-0.161194 [1,0] -0.161223
AE® —0.163538 —0.164839 —0.164986 [1, 1] —-0.165137 —0.164107
AE® —0.164673 —0.164982 —0.164986 [2, 1] —0.165078
AE® —-0.165102 —0.165305 —-0.165327 [2,2] —0.165125 —0.165275
FcCl —0.165438

1.5R, \®=-0198 A5 =-0.350
E(HF) —55.424272
AE® —0.112964 ~0.135348 —0.152450
AE® —-0.131646 —0.135348 -0.133187 [1,0] —0.135348
AE@W -0.141704 —0.147334 —0.152748 [1,1] ~0.153435 —0.144480
AE'® —-0.147722 —0.151558 —0.152748 [2,1] —0.156790
AE® —0.152673 —0.157401 -0.161584 [2,2] —0.151365 —0.163305
FCl —0.180937

2.0R, A®=-0229 A®=-0338
E(HF) —55.393626
AE® —0.075370 —0.092648 —0.100831
AE® —0.089426 —0.092648 —0.091925 [1,0] —0.092648

(Continued)
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TABLE |
(Continued)
Feenberg
Systems  Order MPn FE1 FE2 [k, 1 Padé E(extra, MPn)
AE® —0.093102 —0.094608 —0.095238 [1,1] —0.094407 —0.094012
AE® —0.094412 —~0.095135 —-0.095238 [2,1] —0.095408
AE® —0.095210 —0.096016 —0.096447 [2,2] -0.086182 —0.095793
FCI —-0.111898
NH, %A, R, = 1.000a, 0= 144.0° DZP (30]
R, A®=-0116  A®=-0.133
E(HF) —55.526382
AE®@ —0.142090 —0.158666 —-0.161024
AE® —0.156935 —0.158666 —~0.158631 [1,0] —0.158666
AE®W —-0.160763 —0.161838 —0.161982 (1, 1] —0.162094 —0.161281
AE®) —0.161729 ~0.161978 —0.161982 [2, 1] —0.162055
AE® -0.162105 —-0.162276 —0.162299 [2,2] —0.162089 —0.162251
FCI —0.162380
1.5R, A® = —-0.119 A® = —0.162
E(HF) —55.325078
AE® —0.158512 —0.177337 -0.184129
AE® —0.175339 —0.177337 -0.177077 [1,0] -0.177337
AE® —0.184756 —0.188023 —0.189308 f1,1] -0.196725 ~0.186415
AE® —0.188136 —0.189214 —0.189308 [2,1] —0.190239
AE® —0.189950 —0.190887 —-0.191221 [2,2] -0.191228 -0.191190
FCI —0.192535
20R, A® = —0.258 A8 = -0.379
E(HF) —55.260731
AE®@ —0.089090 —0.112038 —0.122828
AE® —-0.107338 —0.112038 —0.110999 [1,0] —-0.112038
AE® —0.114099 —0.118051 —0.120062 [1, 1] —-0.118078 —0.116153
AE®) —0.117386 —0.119712 —0.120062 [2, 1] ~0.121011
AE® -0.119592 —0.122053 —-0.123296 [2,2] —0.168207 —0.122252
FCi —0.154402
CH, 2a, R, =1.090a, 0=120.0° DzP [33]
R, A®) = -0.178 A® = —0.205
E(HF) - 39.570629
AE®@ -0.125321 —0.147579 -~0.151006
AE® —0.144222 —0.147579 —-0.147500 [1,0] -0.147579
AE® -0.148602 —0.150076 —0.150256 [1,1] —0.149923 —0.149445
AE® —0.149813 —0.150248 —0.150256 [2, 1] -0.150310
AE® —-0.150237 —0.150468 —0.150494 [2,2] —0.150608 —0.150413
FCl -0.150583
15R, A® = -0.213 A®) = —0.277
E(HF) —39.298446
AE® -0.128387 —0.155749 —0.164004
AE® —0.150944 —0.155749 —0.155311 [1,0] —0.155749
AE® —0.163548 -0.171180 -0.173790 [1,1] —0.179521 —0.167376
AE® —0.169885 —0.173530 —0.173790 [2,1] ~0.176362
AE® —0.174405 —-0.178877 —0.180404 [2, 21 —0.178311 —0.180476
FCI —0.184407
(Continued)
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TABLE |
(Continued)
Feenberg
Systems  Order MPn FE1 FE2 [k, 1 Padé E{extra, MPn)
2.0R, A® = ~0.332 A8 = —0.632
E(HF) —39.123546
AE®@ —0.036568 —0.048709 —0.059697
AE® —0.045683 —~0.048709 —-0.046230 [1,0] —0.048709
AEW —0.051745 —0.057668 —0.065761 f1,1] —0.063789 —0.054762
AE® —0.056814 —0.062919 —0.065761 [2, 1] —0.087664
AE® —0.061754 —0.070139 —0.080227 [2,2] —0.014410 ~0.105754
FCl ~0.179586
CH, ®B, R, = 1.912a, 0=106.7° DzP [32]
A® = —0.200 A8 = —0.251
E(HF) —38.933045
AE® —0.092290 -0.110742 —0.115476
AE® —0.107668 —0.110742 —0.110540 {1, 0] -0.110742
AE® -0.111335 —0.112651 -0.112915 {1,1] —0.112483 -0.112123
AE® —0.112431 —0.112893 —0.112915 [2,1] -0.112973
AE® —0.112851 —-0.113110 -0.113157 [2,2] -0.113243 —0.113047
FCl —0.113215
CH, ‘A, R, =2.110a, 6=102.4° DZP [32]
AB) = —-0.229 A% = -0.318
E(HF) —38.886297
AE®@ —0.109830 —0.134983 —0.144790
AE® —0.130296 —0.134983 —0.134270 [1,0] —0.134983
AE®™ —0.135907 —0.138319 —0.139152 I1,1] —0.138025 -0.137310
AE® —0.137937 —0.139039 —0.139152 [2,1] —0.139375
AE® —0.138909 -0.139682 —0.139923 [2,2] ~0.140369 —0.139537
FCl —0.140886
Class B
Ne s
4s2pid A® =0.013 Al8) = 0.090 [29]
E(HF)  —128.522354
AE®@ —0.174449 —0.176704 —-0.158717
AE® —0.176676 -0.176704 —0.174873 {1,0] —0.176704
AE@ —0.180981 —0.181149 —0.179739 [1,1] —0.172065 —0.181146
AE® —0.179465 —0.179381 ~0.179739 [2, 1] —0.179942
AE® —0.180335 —0.180396 —0.180081 [2,2] —0.180048 —0.180172
FCl —0.180108
5s3p2d A® =0.004 A® = 0.055
EHF) —128.524013
AE®@ —0.240859 —0.239834 —0.227647
AE® —0.239829 —0.239834 —0.239215 [1,0] —0.239834
AEW —0.245427 —0.245356 —0.244525 [1,1] —0.240699 —0.245536
AE® —0.244416 —0.244433 —0.244525 [2, 1] —0.244660
AE® —0.244991 —0.244979 —0.244868 [2,2] —0.244874 —0.244941
FCl ~0.244864
6s4pid A® =0.007 A% = 0.072
EHF)  —128.543823
AE® —0.220236 -0.218700 —0.204381
AE® —0.218689 —0.218700 -0.217762 (1,0l —0.218700
AEW —0.224716 —0.224591 —0.223447 {1,1] —-0.219920 —0.224843
(Continued)
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TABLE 1
(Continued)
Feenberg
Systems Order MPn FE1 FE2 [k, 1] Padé E(extra, MPn)
AE® —0.223239 —-0.223278 —0.223447 [2,1] —0.223626
AE® —0.224434 —0.224393 —-0.224107 [2,2] ~0.224161 —0.224364
FCl —0.224066
F 2p [31]
4s3pid A® = _0.073 A® =0.023
E(HF) —99.398964
AE®@ -0.134714 —0.144604 —0.131617
AE® —0.143928 ~0.144604 —0.143438 {1,0] —0.144604
AE® —0.147377 —0.148091 —0.147129 [1,1] —0.149440 -0.147710
AE® -0.147116 —0.146920 -0.147129 [2, 1] —0.147262
AE® —0.147635 —0.147886 —0.147579 [2,2] —0.147498 —0.147681
FCi —-0.147656
4s3p2d A® = —0.070 A® =0.020
E(HF) —99.399543
AE® —-0.152758 —0.163450 —0.149771
AE® —-0.162751 —0.163450 -0.162306 [1,0] —0.163450
AE® —0.166672 —0.167453 —0.166434 [1,1] —0.169203 —0.167039
AE® —0.166424 -0.166232 —0.166434 [2,1] —-0.166576
AE® —0.166944 ~0.167181 —0.166896 [2,2] —-0.166823 —0.166986
FCl —0.166940
5s3p2d A® = -0.047 A®=-0.005
E(HF) —99.399983
AE® -0.181771 —0.190338 —-0.182719
AE® —0.189953 —0.190338 —0.190033 f1,0] —0.190338
AE® —0.194365 —0.194982 —0.194434 [1, 1] —0.199530 —0.194678
AE® —0.194433 —0.194387 —0.194434 [2, 1] —0.194546
AE® —0.194874 —0.194991 —0.194886 [2,2] —0.194851 —0.194931
FCi —0.194894
F- 's [29]
4s3pid A® = 0.040 A® =0.188
EHF) —99.442848
AE®@ -0.208035 -0.199729 -0.168915
AE® —0.199384 —0.199729 —0.194975 [1,0] —0.199729
AE® —0.215241 —0.213444 —0.207292 f1,1] —0.204981 -0.215836
AE® —0.203031 —0.204726 —0.207292 [2,1] -0.208481
AE® -0.218472 -0.215796 —0.210609 {2, 2] —-0.212862 —0.337984
FCl —0.210493
4s3p2d A® =0.035 A® =0.186
E(HF) —99.442848
AE® —0.232450 —0.224354 —-0.189239
AE® —0.224062 —0.224354 —0.218858 [1,0] —0.224354
AE®™ —0.239872 —0.238297 -0.231861 [1,1] —0.229542 —0.240414
AE®) —-0.227586 -0.229103 -0.231861 [2,1] —-0.233083
AE®) —0.242669 —0.240352 —0.235094 [2,2] —0.236558 —0.300600
FCl —0.234828
5s3p2d A®) =0.035 A®) =0.186
E(HF) —99.443696
AE® —0.262406 —0.249781 —0.218641
(Continued)
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TABLE |
(Continued)
Feenberg
Systems Order MPn FE1 FE2 [k, 1] * Padé E(extra, MPn)
AE® —0.249143 —0.249781 —0.245899 [1,0] - 0.249781
AE® —0.268392 —0.265805 —~0.260044 i1,1] —0.256995 —0.268866
AE® —0.256323 —0.258236 —-0.260044 [2,1] —-0.261161
AE® —0.269922 -0.267184 —~0.263481 [2, 2] —0.266306 —0.273605
FCI —0.262994
FH s, R, =1.733a, DzP [29]
R, AB = —0.012 A® =0.058
E(HF) —100.047087
AE®@ —0.196078 —0.198473 —0.183952
AE® —0.198444 —0.198473 ~0.197522 [1,0] -0.198473
AE® —0.204146 —0.204356 —-0.203152 f1,11 —0.194398 —0.204387
AE® —0.203023 —0.202962 —-0.203152 (2, 1] —0.203346
AE® —0.204112 —0.204181 —0.203854 i2,2] —0.203858 —0.204103
FCl —0.203882
1.5R, A® =0.006 A® = 0.057
E(HF) —99.933229
AE®@ —0.216526 —-0.215319 —0.204268
AE® —0.215312 -0.215319 -0.214752 {1,0] —0.215319
AE® —0.226397 —-0.226213 —0.224591 I1,1] —0.216406 —0.226929
AE®) —0.224368 —0.224410 —0.224591 {2, 1] —0.225090
AE® —0.227572 —0.227484 —0.226081 [2,2] —0.227360 —0.228049
FCI —0.227166
2.0R, A®) =0.012 A®) = 0.047
E(HF) —99.817572
AE® —0.239491 —0.236612 —0.228291
AE® —0.236577 —0.236612 —0.236320 {1,0] —0.236612
AE®W —0.258696 —0.257908 —0.255729 i1,11 -0.239152 —0.260650
AE®) —0.255433 —0.255568 —0.255729 [2,1] —~0.257493
AE® —0.264667 —-0.264130 —0.262744 [2,2] —0.266895 -0.268948
FCl —0.263536
H,O A, R, = 1.8897a, 0=104.5° DzP [29]
R, A®=—-0029 A®=-0012
‘ E(HF) —76.040541
AE® -0.203117 —0.209027 —0.205486
AE® —0.208860 —-0.209027 —0.208967 [1,0] —0.209027
AE® —0.215263 -0.215720 —0.215384 [1,1] —0.144215 —~0.215549
AE® —-0.215379 —0.215373 —0.215384 [2, 1] —0.215589
AE® —0.216005 -0.216101 -0.216042 f2, 2] —0.216056 —0.216098
FCl —-0.216083
1.5R, A® =0.012 A® = -0013
EHF) - 75.800494
AE®@ —0.247600 —0.244587 —0.250758
AE® —0.244550 —0.244587 —0.244431 [1,0] —0.244587
AE® —0.265147 —0.264405 —0.265947 {1, 1] —0.247207 —0.266739
AE® —0.265927 —0.265872 —0.265947 [2,1] —0.268041
AE® —0.269095 —0.268905 ~0.269301 [2,2] —0.270096 —0.269813
FCI —0.270911
(Continued)
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TABLE |
(Continued)
Feenberg
Systems Order MPn FE1 FE2 [k, 11 Padé E (extra, MPn)
2.0R, A® = 0.062 A®) =0.012
E(HF) -99.817572
AE®) —-0.316317 —0.296679 —0.312608
AE® —0.295379 —0.296679 —0.295823 [1,0] —0.296679
AE® —0.355124 —0.344829 -0.353055 [1,1] —0.310883 —0.364160
AE® —0.353006 —-0.352229 —0.353055 [2,1] —0.367072
AE®) —0.365926 -0.362327 —0.365188 [2, 2] —0.369810 —0.368907
FCl —0.369984

2Extrapolated correlation energies E(extrap, MPn) have been obtained with Eq. (17) for n = 4 (PFBL formula) and Eq. (18} for

n=6.

correlation energies (= FCI values) are based on
calculated MP6 energies. They are listed and com-
pared in Table III

A direct impression of the convergence behav-
ior of MP, Feenberg, and Padé series is provided
by Figures 1-10, which give absolute energies as a
function of the order of perturbation theory. In
these figures as well as in Table I, II, and III, Padé
approximants [k, [T with I = k, k — 1, namely [1, 0],
[1,11, [2,1], {2,2], etc., are considered to form a
series, each member of which can be related to
order n = k + I + 2 of perturbation theory as has
been described in the previous section.

The systems considered in this work are dis-
sected into two classes A and B depending on
whether they show monotonic or erratic (initial
oscillations) convergence behavior as has been dis-
cussed in [16]. Beside the systems discussed in
[16], we have also included equilibrium and two
stretched geometries of CH, into the set of test
systems because in this way our data become
more comparable with results obtained by Schmidt
and co-workers in a similar study on the Feenberg
series [28].

PADE APPROXIMANTS

Inspection of Tables I and II as well as Figures
1-10 reveals that Padé approximants improve MP
energies in some cases; however, they fail in many
cases to lead to acceptable predictions. These fail-
ures can be found for class A as well as class B
systems, for equilibrium geometries as well as
stretched geometries, for ground states as well as
excited states.

If one considers class A systems, then one real-
izes that with the exception of NH,, 2A1 the [2,2]
approximant leads to an improvement of MP6
energies in the direction of FCI energies in the case
of equilibrium geometries. For stretched geome-
tries, however, both improved and deteriorated
energies are obtained. It can happen as in the case
of BH that the FCI value is considerably overshot.
The latter applies also to several class B examples
simply reflecting in these cases that MP6 energies
are too negative. Compared to MP6 correlation
energies, the [2, 2] energies are actually somewhat
better.

Figures 1-10 show that the convergence behav-
ior of the Padé series (1,0], [1,1], [2,1], and [2,2]
does not always follow that of the MPn series.
There are examples (class A: stretched geometries
of CH, and NH,, °B,, equilibrium geometry of
NH,, “A,), for which the Padé series oscillates
despite the monotonic behavior of the MPn series,
and there are examples (class B: Ne [553p2d], Ne
[6s4p1d], E~, and stretched geometries of FH and
H,0, for which the Padé series is dampened (more
monotonic) in contrast to the MPn series.

Comparison of the data in Table II reveals that
the ratios E™/E™~D or the correction terms
D/det A, D /det B, etc. [Egs. (9) and (10)] provide
a basis to predict the convergence behavior of the
Padé series. They reflect the descent of the func-
tion E[k, 1] = f(n), partially scaled by using curva-
ture and geometric means. If E™/E""" and
D/det A, D/det B, etc. increase successively from
the [1,0] or [1, 1] approximant to the {2, 2] approxi-
mant, then the Padé energies decrease more or less
monotonicly. However, if there are oscillations in
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TABLE I
Differences E(approx) — E(FCI) [mhartree] between FCI, MPn, and Padé correlation energies.

g™ D [0}

System Order n MPn — FCI k,1! Padé — FCI , ,
Y Ik, 1] EC-Y detA’ detB
Class A
BH 5+ R, =2.329a, DzZP [29]
Re
3 11.049 [1,0] 5.545 0.238
4 5.048 1,11 1.938 0.341
5 2514 [2,1] 0.313 1.202
6 1.293 [2,2] —-0.037 1.677
1.5R,
3 15.727 [1,0l 8.476 0.262
4 7.231 i1,1] 1.156 0.417
5 3.310 [2,1] —~0.156 1.023
6 1.448 [2, 2] —~0.267 1.191
2.0R,
3 27.112 1,0 16.194 0.298
4 13.328 {1,1] —2.591 0.536
5 6.054 [2,1] —2.077 1.096
6 2.186 [2,2] —2.180 0.675
NH, %B, R, =1.024a, 6=103.4° DzP [30]
R
3 6.215 [1,0] 4,215 0.111
4 1.900 {1,1] 0.301 0.270
5 0.765 [2,1] 0.360 0.350
6 0.336 [2,2] 0.313 —0.733
1.5R,
3 46.026 [1,0] 45,589 0.165
4 39.233 {1,1] 27.502 0.538
5 33.215 [2,1] 24.147 1.568
6 28.264 [2,2] 29.572 —2.584
2.0R,
3 22,472 [1,0] 19.250 0.186
4 18.796 (1,11 17.491 0.262
5 17.486 (2,11 16.490 1.128
6 16.688 [2,2] 25.716 —18.429
NH, 2A, R, = 1.000a, 6= 144.0° DZP [30]
R
° 3 5.445 [1,0] 3714 0.104
4 1.617 [1,1] 0.286 0.258
5 0.651 [2,1] 0.325 0.332
6 0.275 [2,2] 0.291 —0.810
1.5R,
3 17.196 [1,0] 15.198 0.106
4 7.779 {1,1] ~4.190 0.560
5 4.399 [2,1] 2.296 0.511
6 2.585 [2,2] 1.307 0.281
(Continued)
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TABLE i
(Continued)
Em D D
System Order n MPn — FCI [k, 1] Padé — FCI E7-7 GotA’ doiB
2.0R,
3 47.064 [1,0] 42.364 0.205
4 40.303 [1,1] 36.324 0.371
5 37.016 [2,1] 33.391 1.360
6 34.810 [2,2] —-13.805 39.363
CH, 2a, R, = 1.090a, 6=120.0° DzP (33]
Re
3 6.361 [1,0] 3.004 0.151
4 1.981 [1,1] 0.660 0.232
5 0.770 [2,1] 0.273 0.517
6 0.346 [2,2] -0.025 1.682
1.5R,
3 33.463 [1,0l 28.658 0.176
4 20.859 [1,1] 4.886 0.559
5 14.522 [2,1] 8.045 0.966
6 10.002 [2,2] 6.096 -0.247
2.0R,
3 133.903 [1,0] 130.877 0.249
4 127.841 (1,11 115.797 0.665
5 122.772 [2,1] 91.922 6.712
6 117.832 [2,2] 165.176 —-16.926
CH, ®B, R, = 1.912a, 6=106.7° DzP [32]
3 5.547 [1,0l 2.473 0.167
4 1.880 [1,1] 0.732 0.238
5 0.784 [2,1] 0.242 0.682
6 0.364 [2,2] -0.028 1.611
CH, A, R, =2.110a, 6=102.4° DZP [32]
3 10.590 [1,0] 5.930 0.186
4 4979 [1,1) 2.861 0.274
5 2.949 [2,1] 1.511 0.989
6 1.977 [2,2] 0.517 2.453
E™  p D
Syst Ord MPn — FCI k! Padé — FCI , ,
ystem rder n n [k, 1 adé — FC E7-7 3eiA’ doiB
Ciass B
Ne 's [29]
4s2pid
3 +3.432 [1,0] +3.404 +0.013
4 -0.873 [1,1] +8.043 +1.934
5 +0.643 [2,1] +0.166 +0.022
6 -0.227 [2,2] +0.060 +0.050
583p2d
3 +5.035 [1,0] +5.030 -0.004
4 -0.563 [1,1] +4.165 —5.439
5 +0.448 [2,1] +0.204 +0.019
6 -0.127 [2,2] ~0.010 +0.066
(Continued)
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TABLE 1l
(Continued)
E D 2%
System Ord MPn — FCI k1 Padé — FCI , ,
yste rder n n [k, 1] adé — FC 0 GetA’ GotB
6s4pid
3 +5.377 [1,0] +5.366 -0.007
4 —0.650 [1, 1] +4.146 —3.895
5 +0.827 [2,1] +0.440 +0.021
6 —~0.368 [2,2] —0.095 +0.139
F 2p [31]
4s3pid
3 +3.728 [1,0] +3.052 +0.068
4 +0.279 1,11 -1.784 +0.374
5 +0.540 {2, 1] +0.394 +0.033
6 +0.021 [2,2] +0.158 +0.094
4s3p2d
3 +4.189 [1,0] +3.490 +0.065
4 +0.268 (1,11 -2.263 +0.392
5 +0.516 [2, 1] +0.364 +0.032
6 —0.004 [2, 2] +0.117 +0.090
5s83p2d
3 +4.941 [1,0] +4.556 —-0.045
4 +0.529 [1,11 —4.636 —-0.539
5 +0.461 [2,1] +0.348 +0.030
6 +0.020 {2,2] +0.043 +0.137
F- 's [29]
4s3pid
3 +11.109 [1,0] +10.764 —0.042
4 —4.748 [1,1] +5.512 —1.833
5 +7.462 [2, 1] +2.012 +0.027
6 -7.979 [2,2] —2.369 +0.870
4s3p2d 3 +10.766 [1,0] +10.474 —-0.036
4 —5.044 [1,1] +5.286 —1.885
5 +7.242 [2, 1] +1.745 +0.024
6 -7.841 [2, 2] -1.730 +0.688
5s3p2d
3 +13.851 1,0l +13.213 —0.051
4 —5.398 {1,1] +5.999 —1.451
5 +6.671 [2,1] +1.833 +0.028
6 —6.928 [2,2] -3.312 +0.794
FH s+ R, =1.733a, DzP [29]
R
° 3 +5.438 [1,0] +5.409 +0.012
4 -0.264 f1,1] +9.484 +2.409
5 +0.859 {2,1] +0.536 +0.027
6 —-0.230 [2,2] +0.024 +0.126
1.5R,
3 +11.854 [1,0] +11.847 —0.006
4 +0.769 (1,11 +10.760 -9.133
5 +2.798 2,11 +2.076 +0.045
6 —0.406 [2, 2] -0.194 +0.292
(Continued)
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TABLE Il
(Continued)
Em p D
System Order n MPn — FCI [k, 1] Padé — FCI Em- 0" GetA’ doiB
2.0R,
3 +26.958 [1,0] +26.923 ~0.012
4 +4.841 [1,1] +24.384 ~7.591
5 +8.103 [2,1] +6.043 +0.087
6 —1.132 [2,2] —~3.360 +0.584
H,0 ‘A, R, = 1.8897a, 6 =104.5° DzZP [29]
Re
3 +7.223 [1,0] +7.056 +0.028
4 +0.920 [1,1] +71.868 +1.098
5 +0.704 [2,1] +0.494 +0.032
6 +0.078 [2,2] +0.027 +0.106
1.5R,
3 +26.316 [1,0] +26.324 -0.012
4 +5.764 [1,1] +23.704 —6.752
5 +4.984 [2, 1] +2.870 +0.098
6 +1.816 [2,2] +0.815 +0.192
2.0R,
3 +74.605 [1,0] +73.305 —0.066
4 +14.860 [1,1] +59.101 -2.853
5 +16.978 [2,1] +2.912 +0.246
6 +4.058 [2,2] +0.174 +0.294

these values (see Table II), then the Padé series
also will oscillate.

We conclude that Padé approximants may not
generally be suited to be used for the extrapolation
to infinite-order correlation energies. In selected
cases, improvements are possible, however, it
seems that each case has to be investigated sepa-
rately using correlation contributions up to sixth-
order MP theory.

PFLB AND OTHER INFINITE-ORDER MPn
FORMULAS

On first sight, it seems that the infinite-order
correlation energies A E(extrap, MP6) based on cal-
culated MP6 energies [see Eq. (18)] do not lead to
any improvement with regard to extrapolated cor-
relation energies obtained with the PFLB formula
[Eq. (17)], which is based on calculated MP4 corre-
lation energies. The mean absolute deviation from
exact FCI correlation energies is for A E(extrap,
MP6) 12.529 mhartree (12.207 for equilibrium ge-
ometries, Table III) while it is 10.236 mhartree
(1599 for equilibrium geometries, Table I) for

AE(PFLB, MP4). However, these deviations are
misleading since they are dominated by an unusu-
ally large failure in the prediction of the infinite-
order correlation energy by Eq. (18) in the case of
F~ (Table I). At the MP level, there are strong
initial oscillations for this ion. For smaller basis
sets, the value of E{§ is comparable in magnitude
with that of E{z). As a consequence, the correction
factor [1 — (E&, /E-)]7! in Eq. (18) becomes very
large and leads to an unreasonable value for
A E(extrap, MP6). If one excludes the predictions
for F~, the mean absolute deviation of A E(extrap,
MP6) values from FCI correlation energies will
become 6.132 (all systems) and 0.260 mhartree
(atoms an equilibrium geometries), which is clearly
smaller than the corresponding values for
A E(PFLP, MP4) (10.767 and 1.071 mhartree).
Further improvements of predictions based on
Eq. (18) can be achieved if one splits Eq. (18) into
two formulas, which reflect the different conver-
gence properties of class A and class B systems.
For the latter, E(MP6) values are mostly more
negative than FCI energies, which indicates that
higher order correlation effects are exaggerated.
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TABLE il
Energy differences E(®)(approx) — E(FCI) in mhartree.
Systems MP6 FE1 FE2 Padé [2,2]  AE(extrap, MP8)  AEA-B)(extrap, MP6)
Class A
BH
R, 1.293 0.203 0.042 —0.037 0.334 0.158
1.5R, 1.448 —-0.201 —-0.221 —0.267 -0.171 -0.233
2.0R, 2.186 —2.453 -1.978 —2.180 -2.162 -2.210
NH, ’B,
R, 0.336 0.133 0.111 0.313 0.163 0.075
1.5R, 28.264 23.536 19.353 29.572 17.632 5.308
2.0R, 16.688 15.882 15.451 25.716 16.105 15.448
NH, %A,
R, 0.275 0.104 0.081 0.291 0.129 0.004
1.5AR, 2.585 1.648 1.314 1.307 1.346 0.485
2.0R, 34.810 32.349 31.107 13.080 32.150 30.310
CH,
351 0.364 0.105 0.058 —0.028 -0.722 0.103
1A1 1.977 1204 - 0.963 0.517 1.349 1.086
CH,
R, 0.346 0.115 0.089 -0.025 0.170 0.117
1.5R, 10.002 5.530 4.003 6.096 3.931 -1.251
2.0R, 117.832 109.447 99.359 165.176 73.832 —70.327
Class B
Ne
4s2pid -0.227 —-0.288 0.027 0.060 0.064 0.018
5s3p2d -0.127 -0.115 —0.004 —-0.010 -0.077 -0.048
6s4pld  —0368 -0327  —0.041 ~0.095 ~0.298 -0.170
F
4s3pid 0.021 —-0.230 0.077 0.158 -0.024 0.022
4s3p2d —0.004 —-0.241 0.044 0.117 —0.046 —0.005
5s3p2d 0020  -0.097 0.008 0.043 -0.037 ~0.010
F-
4s3pid —-7.979 -5.303 —-0.116 —-2.369 —127.491 1.452
4s3p2d —-7.841 —5.524 —-0.266 —1.730 —65.772 1.616
5s83p2d —-6.928 -4.190 —0.487 —-3.312 -10.611 0.701
FH
R, -0.230 —0.299 0.028 0.024 —-0.221 -0.104
1.5R, —0.406 -0.318 0.365 —0.194 —0.883 -0.237
2.0R, —-1.132 —0.594 0.791 -3.360 -5.412 —1.668
H,0
R, 0.078 -0.018 0.041 0.027 —0.015 0.023
1.5R, 1.816 2.006 1.610 0.815 1.098 1.430
2.0R, 4.058 7.657 4.796 0.174 1.077 3.065
Mean abs.
dev. 8.608 7.590 6.304 8.865 12.529; 6.1322 4.748; 5.149%
Mean abs.
dev. (Re) 1.671 1.088 0.146 0.539 12.207;0.260% 0.336;0.1392

2The second entry gives the mean absolute deviation excluding extrapolated energies for F ~

Therefore, one has to scale down their contribution fulfilled and, accordingly, extrapolation formulas
to the infinite-order correlation energy. However, of type (17) or (18) are appropriate. We retain these
for class A systems, for which the MPn series has equations and only describe the ratio of subse-
initially monotonic convergence behavior, the orig- quent correlation contributions by the best MPn
inal assumption of a geometric series is largely values available at the moment, namely E$) and
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FIGURE 1. Graphical representation of the total MPn energy of BH, 'S.*, as a function of the order of perturbation
theory applied. MPn values are compared with the corresponding energies obtained by Padé approximants, by
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the
same geometry (see text).

-55.735 - -55.547 -55.476 - —<— MPn
===O=sc Pade
---D.-.
-55.557L 554811 ,? FEI
1 § & FE2
- -85.737+ J FCI
e -55.567L -55.486
=
&
=) -,
B 557391 55.577] -55.491[
ol
@
=
=
= -55.587[ -55.496 |
]
[ 55741}
-55.597] -55.501 [
.55.743 L y -55.607 P S —— I -55.506 ———————y )
3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 Order
NH; 3By, R = Re, DZP) NH, (3B, R = 1.5Re, DZP) NH; (®B4, R =2Re, DZP)

FIGURE 2. Graphical representation of the total MPn energy of NH,, ?B,, as a function of the order of perturbation
theory applied. MPn values are compared with the corresponding energies obtained by Padé approximants, by
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the
same geometry (see text).
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FIGURE 3. Graphical representation of the total MPn energy of NH,, 24}, as a function of the order of perturbation
theory applied. MPn values are compared with the corresponding energies obtained by Padé approximants, by
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the
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perturbation theory applied. MPn values are compared with the corresponding energies obtained by Padé approximants,
by first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at
the same geometry (see text).
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FIGURE 6. Graphical representation of the total MPn energy of Ne, 'S, as a function of the order of perturbation
theory applied. MPn values are compared with the corresponding energies obtained by Padé approximants, by
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the
same geometry (see text).
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(FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the same
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FIGURE 8. Graphical representation of the total MPn energy of F ~, 'S, as a function of the order of perturbation
theory applied. MPn values are compared with the corresponding energies obtained by Padé approximants, by
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first-order (FE1) and second-order (FE2) Feenberg scaling and the FC! energy obtained with the same basis set at the
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E{. In this way, the extrapolation equation for
class A systems becomes

A 4 £
AE“(extrap, MP6) = Y E{} + E©
n=2 1 — MP
£

(44)
For class B systems, we use

AE®(extrap, MP6)
= E@ + E®), + (EQ, + EGL)eE /b (45)

where the exponent is chosen in view of the oscil-
lations in the MPn series. Actually, both 1/(1 — x)
and e* lead to similar series, however, in the
exponential series higher powers k of x are scaled
down by prefactors 1/k!. In this way, higher exci-
tation effects are reduced in Eq. (45).

Application of Egs. (44) and (45) leads to infi-
nite-order correlation energies superior to energies
predicted by either the PFLB Eq. (17) or the MP6
extrapolation equation (18). This is reflected by
mean absolute deviations of 4.748 and 0.336
mhartree for the complete set of correlation ener-
gies given in Table III and the problems with
equilibrium geometries, respectively. Particularly
noteworthy is the significant improvement for the
correlation energies of F~ (deviations from FCI
values are just 1.452, 1.616, and 0.701 mbhartree,
Table III). The only failures of extrapolation formu-
las (44) and (45) occur for the strongly stretched
geometries of CH,; and NH,. However, in these
cases MP6 correlation energies differ from FCI
values so strongly because of the inherent mul-
tireference character of the systems considered that
it is unrealistic to expect clearly better values from
any extrapolation formula.

We conclude that by the use of MP6 correlation
energies and an improvement of the original PFLB
extrapolation formula, errors in predicted infinite-
order correlation energies can be reduced to
0.3 mhartree for equilibrium geometries and to
4.7 mhartree for systems including both equilib-
rium and stretched geometries.

FEENBERG SERIES

The calculated Feenberg correlation energies
listed in Table I confirm the expected improve-
ment in line with the observations made by

Schmidt and co-workers [28]. It is particularly in-
teresting to compare correlation energies obtained
by these authors [ A®), Feenberg 1 (FE1), first-order
perturbation theory] and the Feenberg energies
obtained in this work [ A®, Feenberg 2 (FE2), sec-
ond-order perturbation theory]. The scaling factors
A® and X® possess in most cases similar values.
However, A® values calculated in this work are
somewhat more negative for class A systems,
which means that FE2 correlation energies are more
negative than the corresponding MPn or FE1 val-
ues for class A systems. Since MPn energies ap-
proach in these cases the FCI energy monotoni-
cally from above, the FE2 values are closer to the
latter than either MPn or FE1 values.

In the case of class B systems, the MP6 correla-
tion energy is often more negative than the corre-
sponding FCI value (Table I). To reduce the mag-
nitude of the correlation energy, both A® and A®
values are positive where the latter are slightly
larger than the former thus leading to a better
agreement between FE2 and FCl correlation ener-
gies for class B systems. Hence, for both class A
and class B systems a significant improvement of
correlation energies is obtained by using the FE2
scaling of MPn energies. At sixth-order, the mean
absolute deviation from FCI values is for FE2 0.146
mhartree provided just atoms and molecules in
their equilibrium geometry are considered while it
is 6.304 mhartree if stretched geometries are in-
cluded into the comparison. Hence, compared to
FE1 results an improvement of the mean absolute
deviation by almost 1 mhartree can be considered.
Compared to A E(extrap, MP6), FE2 offers also an
improvement if equilibrium geometries are com-
pared. For stretched geometries, sixth-order FE2
values are not as close to FCI correlation energies
as AE(extrap, MP6) values. However, in these
cases correlation errors because of multireference
effects are rather large and, therefore, none of the
approximation methods considered here may be
useful as long as it is based on a single determi-
nant approach.

The convergence behavior of FE2 correlation
energies seems to be also considerably improved
as compared to the MPn or FE1 series. Oscillations
typical of MPn and even FE1 correlation energies
for class B systems are dampened out. This is quite
obvious for Ne, F, FH and in particular F~ where
FE2 scaling leads to a leveling of the MP4/MP5
oscillation. In the particular case of F~, the Padé
approximants [1, 0], [1, 1], {2, 1], and [2, 2] also pro-
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vide a smoothly converging series (see discussion
above), however, FE2 scaling is clearly superior to
the Padé series because it leads to the more accu-
rate prediction of FCI values.

The dampening of the MP4/MP5 oscillation by
FE2 scaling, of course, is a consequence of the
minimization of E® and the resulting equality of
AE® = AE®. In this way, the improvement ob-
tained for fifth-order energies is fully transferred
to fourth-order energies leading there to a substan-
tially large improvement (see Table I and Figs.
1-10). The second largest improvement is obtained
for sixth-order energies, which provide a useful
basis for a prediction of the corresponding FCI
values.

If one calculates MP5 or even MP6 energies, it is
an advantage to apply FE2 scaling, which is as
simple as the calculation of FE1 values, which,
however, leads to significantly improved conver-
gence behavior (no initial oscillations) and the most
accurate predictions for infinite-order MP energies
(FCI energies) presently possible.

Conclusions

The following conclusions can be drawn from
this work.

1. Using the Padé approximants [1,0], [1,1],
[2,1], and [2,2}, one can expect improved
correlation energies in some but not all cases.
At the moment, it seems to be impossible to
predict under which conditions Padé approx-
imants lead to reliable estimates of the FCI
correlation energy. The Padé series [1,0],
[1,1], [2,1], [2,2] is monotonicly convergent
if the ratios E®/E®, D/det A, D/det B,
etc. become successively more positive; oth-
erwise it oscillates.

2. The Pople~Frisch-Luke-Binkley (PFLB) infi-
nite-order MPn formula [17] can be consider-
ably improved by using MP6 correlation en-
ergies. The best estimates are obtained by
using for class A and class B systems sepa-
rate formulas, where in the former case the
series 1/(1 — x) with x = E®/E® is used
while in the latter case the series e* with
x = E®/E® is more appropriate to avoid an
exaggeration of the magnitude of the correla-
tion energy. In this way, the mean absolute
deviation of predicted infinite-order correla-

tion energies from FCI values is decreased to
0.3 mhartree for atoms and molecules in their
equilibrium geometry investigated in this
work.

3. Feenberg scaling can be significantly im-
proved if second-order perturbation theory
(FE2) is applied and A® is evaluated from
MPS5 energies. FE2 correlation energies up to
sixth-order are significantly better than either
MPn or FE1 correlation energies. At sixth
order, the mean absolute deviation of FE2
correlation energies from FCI values is just
0.1 mhartree for equilibrium geometries. Ini-
tial oscillations in the correlation energies of
case B systems are suppressed at the FE2
level. FE2 scaling is clearly superior to pre-
dictions being based either on Padé approxi-
mants or extensions of the PFLB extrapola-
tion formula.

Future work has to prove whether FE2 scaling
is also useful when only approximated rather than
full MP5 and MP6 energies, for example from
MP6(M7) or MP6(MS8) calculations, are available.
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