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ABSTRACT 
Three different ways of getting reliable estimates of full configuration interaction (FCI) 
correlation energies are tested, namely (a) by Pad6 approximants [ k,  k ]  and [ k,  k - 11, (b) 
by using extrapolation formulas, and (c) by Feenberg scaling of Maller-Plesset (MP) 
correlation energies. By using MPn energies up to sixth order, i.e., MP2, MP3, MP4, MP5, 
and MP6, it was possible to test the convergence behavior of the Pad6 series [l, 01, [l, 11, 
[2,1], [2,2] and the Feenberg series up to sixth order where in the latter case a scaling 
factor A(5) (scaling of the second-order wave function, FE2) rather than the previously 
tested A(3) (scaling of the first-order wave function, FE1) was considered. Investigation of 
26 different correlation energies for systems with monotonic convergence in the MPn 
series (class A systems) or initially oscillatory convergence behavior (class B systems) 
indicates that Pad6 approximants lead in some cases to reasonable estimates of FCI 
correlation energies, but in other cases, in particular for class B systems, they give too 
negative correlation energies. Both monotonic and oscillatory behavior for the Pad6 series 
is observed where it is possible to predict its convergence behavior on the basis of 
calculated MPn energies. The best estimates of the FCI correlation energy are obtained by 
FE2 scaling. At sixth-order FE2, values for atoms and molecules with equilibrium 
geometry differ on the average by just 0.146 mhartree from FCI correlation energies. The 
FE2 correlation energies all converge monotonicly. Also, FE2 scaling reduces the 
exaggeration of MP6 correlation energies for class B systems. However, surprisingly good 
estimates of FCI energies are also obtained by simple extrapolation formulas based on 
MP4, MP5, and MP6 correlation energies. 0 1996 John Wiley & Sons, Inc. 
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Introduction 

ne of the major goals in ab initio theory is to 0 obtain correlation energies of full configura- 
tion interaction (FCI) accuracy. One comes close to 
this goal if one uses coupled cluster (CC) methods 
that involve single (S), double ( D ) ,  and triple (T) 
excitations [ 1,2]. Benchmark calculations for elec- 
tronic systems for which FCI calculations are still 
possible have shown that exact correlation ener- 
gies (calculated for a given basis set with a finite 
number M of basis functions at a given geometry) 
can be approached by CCSDT or the correspond- 
ing quadratic CI method, QCISDT, within 1 
mhartree [ 21. Reasonable correlation energies are 
also obtained with CC or QCI when the T excita- 
tions are included in a perturbative way such as 
for CCSD(T) [31 or QCISD(T) [4]. The success of 
CC methods in approximating FCI results is based 
on the fact that they include infinite-order effects 
and are size extensive where the latter property is 
more important for the calculation of relative ener- 
gies. 

Attempts to get reasonable estimates of FCI 
correlation energies from many-body perturbation 
theory (MBPT) with the Mdler-Plesset (MP) per- 
turbation operator [5] have been less successful. 
Methods for routine calculations of correlation en- 
ergies at second-order MP (MP2) theory [ 6,71, 
third-order MI' (MP3) theory [8], and fourth-order 
MP (MP4) theory [9,101 are available for the last 
10 years. Recently, programs for determining 
fifth-order MP (MP5) theory have been developed 
independently by the Bartlett and the Pople group 
[11,121. Some years ago, we pointed out that it is 
possible to work out a method for calculating 
sixth-order MI' (MP6) correlation energies [ 131. In 
the three preceding articles to this work, we have 
described development, implementation, and first 
applications of a full MP6 method [14-161. This 
work enables us now to reconsider the possibility 
of making reasonable estimates of FCI energies on 
the basis of calculated MP correlation energies. 
Such an investigation necessarily implies an analy- 
sis of the convergence behavior of the MPn series 
for n = 2,3,4,5,6 and a search for methods that 
may improve this convergence behavior. 

At a time when routine calculations of MPn 
correlation energies where only possible for n I 4, 
Pople, Frisch, Luke, and Binkley (PFLB) [17] de- 

rived an extrapolation formula for estimating infi- 
nite-order MP correlation energies. Actually, this 
formula was based on the assumption of a geomet- 
rically progressing MPn series, which is not neces- 
sarily fulfilled. For example, Handy and co- 
workers [18,19] could show with the help of MPn 
energies ( n  I 48) obtained in the nth iteration step 
of a FCI calculation that a MPn series does not 
necessarily converge monotonically. In many cases, 
there are initial oscillations in the correlation en- 
ergy which make it difficult to extrapolate to infi- 
nite-order MP energies. 

Oscillations in the correlation energy are a logi- 
cal consequence of a stepwise improvement of MP 
theory with order n. At even orders n, new corre- 
lation effects described by new excitations are 
added to the perturbation series. For example, at 
MP2, D excitations are included to describe pair 
correlation effects. At MP4, S, T ,  and Q excitations 
are added to D excitations to cover orbital relax- 
ations, three-electron correlation effects, and the 
simultaneous but independent correlations of two 
electron pairs. At the MP6 level, pentuple ( P I  and 
hextuple ( H )  excitations are included that cover 
higher order correlation effects [13-161. In all these 
cases, the new correlation effects can be exagger- 
ated because there is no coupling between D exci- 
tations at MP2, S, T ,  and Q excitations at MP4, or 
P and H excitations at MP6. This coupling, which 
leads to a more realistic description of electron 
correlation, is always included at the next higher 
odd order perturbation theory level. For example, 
at MP3 coupling between the D excitations leads 
to an improved description of pair correlation ef- 
fects that avoids the typical overestimation of pair 
correlation by MP2. At MP5, couplings between S, 
T ,  and Q excitations are introduced which are 
important for a balanced description of correlation 
effects associated with these excitations. Hence, at 
the even orders new correlation effects normally 
lead to a significant increase of the absolute mag- 
nitude of the correlation energy while the latter 
increases only slowly or is even reduced at odd 
orders due to the couplings between excitations 
just introduced in the previous even order. This 
can lead to oscillations in the MPn correlation 
energy series as has been observed by various 
authors [18-201. 

An improved understanding of the convergence 
behavior of the MPn series has been obtained from 
FCI calculations for electron systems of moderate 
size [ 18,211. Handy and co-workers have obtained 
MPn correlation energies up to order n = 48 from 
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the iteration steps of a FCI calculation [MI. They 
found that the MPn series does not always con- 
verge uniformly. Four cases could be distin- 
guished, namely (a) rapid convergence, (b) initial 
oscillations, (c) divergence, and (d) slow conver- 
gence of the MPn series. The latter case was found 
for unrestricted MPn calculations with consider- 
able spin contamination in the unrestricted 
Hartree-Fock (UHF) reference function. The prob- 
lem could be solved by using an appropriate re- 
stricted open-shell formalism. 

Although the calculation of the MPn series up 
to n = 6 does not give much possibility of further 
detailing its convergence behavior, calculation of 
the MP2, MP3, MP4, MP5, and MP6 correlation 
contributions provides the basis of investigating 
those correlation effects that lead to monotonic or 
oscillatory convergence behavior of the MPn series 
at lower orders. In the third article of this series 
[161, we have already shown that initial oscilla- 
tions of the MPn series result from oscillations in 
the T part of the correlation energy that cannot be 
compensated by the corresponding SDQ contribu- 
tions. Any method for predicting FCI correlation 
energies has to consider these oscillations in some 
way and, therefore, we will investigate in this 
work how known procedures for estimating FCI 
correlation energies can handle slow convergence 
or initial oscillations of the MPn series. We will 
particularly focus on the following questions: 

1. What are the predictive properties of sixth- 
order MP theory as compared to those of 
MP4 and MP5? Does MP6 suffice to obtain 
reliable estimates of FCI correlation energies? 

2. What is the best way of using MP6 energies 
for the prediction of exact correlation ener- 
gies? 

3. Is it possible to dampen initial oscillations of 
the MPn series by an appropriate method? 

These and some other questions will be dis- 
cussed in this work which is structured in the 
following way. In the second section we will 
shortly describe three methods used in this work 
for predicting FCI correlation energies. Then, in 
the third section we will apply these methods to a 
set of test examples and discuss possibilities of 
getting improved estimates of FCI correlation en- 
ergies. 

Improvement of the MPn Series and 
Estimation of FCI Correlation Energies 

The exact correlation energy A E  for a given 
system is an eigenvalue of the Hamiltonian H :  

where H is defined by 

H = I? - ( @ o ~ f ? ~ @ o )  = f? - E(HF). (2) 

The wave function is the Hartree-Fock (HF) 
reference wave function and E(HF) corresponds to 
the HF energy. The Schrodinger energy E and the 
Schrodinger wave function @ are eigtnvalue and 
eigenfunction of the energy operator H. 

The Hamiltonian H can be split into unper- 
turbed Hamiltonian Ro and perturbation operator v [5]: 

H =  Ho + v. (3) 

Then, the correlation energy A E  can be expanded 
in terms of contributions Eg$ = E(MPn) to the 
MPn correlation energy: 

m 

A E  = E - E(HF) = C EC$. (4) 
n = 2  

In order to improve the convergence behavior of 
the MPn series (4), we will test three possibilities 
using calculated energies E(MPn) ( n  = 2,3,4,5,6), 
namely (1) Pad6 approximants [ k, 11 [22-241, 
(2) the Pople-Frisch-Luke-Binkley extrapolation 
formula [ 171, and (3) the Feenberg perturbation 
series [25-281. 

PADE APPROXIMANTS [K,  Ll 

Calculation of the correlation energy expansion 
(4) must be terminated at some finite order n 
neglecting residuals of order n + 1. According to 
Pad6 [22], Eq. (4) can be considered as one of the 
( n  + 1) approximants that are given by the ratio of 
a polynomial of order k to a polynomial of order 1 
where k + I = n. The coefficients of these polyno- 
mials are determined in the way that each approxi- 
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mant differs from the energy only by residuals of 
order n + 1. 

Bartlett and Shavitt have given general formu- 
las for the [ k, k] and [ k, k - 11 Pad6 approximants 
[24], which for k = 1,2 lead to the following 
expressions: 

[ i ,  01 = E ~ A E Z ’ ~  - E E L ) - ~ E ( ~ )  MP 

and 

Equations (7) and (8) can be rewritten in the form: 

D 
[2,1] = Egf, + E$L + Eg’p 1 + - ( det A )  

D‘ + EEL 1 + - ( det A ) ’  (9) 

6 
[2,2] = EEL + EEL + EGL + EQ’p 1 + - ( det B )  

+ E$L 1 + - ( de?B)’ (10) 

where 

and 

Approximants [l ,  01, [ l ,  11, [2,11, and [2,21 are cor- 
rect up to third, fourth, fifth, and sixth order, 
respectively, and, therefore, it is justified to com- 
pare them with the corresponding MPn energies. 
To determine the [ k, k - 11 and [ k, k] approxi- 
mants, one has to calculate MPn correlation ener- 
gies up to orders 2k + 1 and 2k + 2, respectively. 
Since we have evaluated E&!, for n = 2,3,4,5,6, 
we are able to analyze improvements obtained by 
approximants (5)-(8) and study their convergence 
behavior. In addition, we can test whether the 
[2,2] approximant already provides a reasonable 
estimate of the FCI correlation energy. 

Pad6 approximants have been used to improve 
the convergence behavior of the MPn series, and 
in some cases these attempts have been successful 
[24]. However, knowledge about the convergence 
properties of a sequence of Pad6 approximants is 
usually missing. 

THE PFLB INFINITE-ORDER MPn FORMULA 

Pople and co-workers have suggested an ex- 
trapolation formula to obtain from calculated E&! 
( n  = 2,3,4) correlation contributions a reasonable 
approximation for the exact correlation energy A E 
[171: 

Ez’p + EEL 
A E(PFLB, MP4) = . (17) Egf, 

1 - -  Egb 

Equation (17) is correct up to fourth order and is 
based on the assumption that E$L bears the same 
relationship to EGL as EC’p does to Eg’p. Even- 
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and odd-order terms of the MPn series are sup- 
posed to form a geometrically progressive energy 
series where the ratio of successive even-order 
terms is similar to the ratio of successive odd-order 
terms. In so far, Eq. (17) is related to the Pad6 
approximants [1,01 [Eq. (511 and [1,11 [Eq. (611, 
which also suggest approximations in the form of 
geometric series sums defined by the ratios - 
E$b/EC', and €$L/Ef&, respectively. 

The PFLB extrapolation equation is based just 
on fourth-order correlation energies because only 
these correlation energies were available at the 
time of development. Now, we can evaluate in 
addition E(MP5) and E(MP6) and, therefore, it is 
challenging to extend the PFLB equation to sixth- 
order MI' perturbation theory and to examine its 
reliability: 

1 - -  €8 
(18) 

Formula (18) is correct up to sixth order. It as- 
sumes similar to the PFLB formula monotonic con- 
vergence of the MPn series, which, of course, is 
not fulfilled in all cases (see [16]). Therefore, it will 
be important to evaluate the reliability of (18) on 
the basis of FCI (exact) correlation energies. 

FEENBERG SERIES 

In a number of studies interest in the Feenberg 
series [25,26] as a perturbation series with im- 
proved convergence characteristics has been 
reestablished [27,28]. Since the relevant theory is 
amply documented in the literature, we summa- 
rize here just these equations relevant for an im- 
provement of the convergence of the MPn series 
(4). 

The contribution E&! to the total correlation 
energy A E of Eq. (4) is given by 

where the wave operator h at nth order is defined 
by 

r n - 1  1 

The reduced resolvent G^, takes the form of 

(21) 

To improve the convergence of the series E&?( n = 
2,3,4,. . . ) one introduces the A transformation 
[27]: 

where 

m = l  

(23) 

The transformed series E P )  converges to the same 
limit as the original series ECh when 
det(1 - A) # 0. In the most simple form, A can be 
written as a number operator 

A = hf, (24) 

where f is the unit operator. Equation (24) leads to 
the Feenberg scaling of the Hamiltonian operator 
of Eq. (3): 

- A -  
H = -  H o +  V - -  H,,) (25) 

1 - A  - (- 1 - A  

The scaling of r?, leads to a transformation of the 
MPn series {E#,} where each term is obtained 
now as a polynomial in h [27,281: 

Feenberg [25] suggested that the value of A is 
obtained by minimizing the third-order correlation 
energy z:= €1") = A Ei3) = El2) + El3), which leads 
to 
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Substituting A in Eq. (27) by A(3), the Feenberg 
energy series El") is obtained. Formulas for n = 2, 
3, 4, 5, and 6 are given in Eqs. (29)-(33): 

Eii\ = (1 - A(3)) E(2) MP (29) 

E,$) = 0, (30) 
= A(3)(1 - A(3))2E(3) 

MP 

+(1 - A(3))3Egb, (31) 

E$3', = 2( A(3))2(1 - E(3) 
MP 

+ 3A(3)(1 - A(3))3E$b + (1 - A(3))4E$&, 
(32) 

= 3( A(3)) 3 (1 -A(3))' E(3) + 6( A(3))*(1 -A(3))3 E(4) 
MP MP 

+ 4A(3)(1 - A(3))4E(5b + (1 - ~ ( 3 ) ) ' ~ ( 6 )  
M P '  

(33) 

An improved Feenberg parameter A can be deter- 
mined by minimizing the fifth-order correlation 
energy, A El5): 

which leads to a cubic equation in A: 

A3 + PA2 + Q A  + R = 0 

with 

For the electron systems investigated in this work, 
one finds that Eq. (35) possesses just one real root, 
which leads to the Feenberg parameter A(5): 

where C is defined by 

B 2  A3 
4 27 c = - + - > o  (40) 

for all cases investigated. In Eqs. (39) and (40), A 
and B are given by 

P 2  

3 A = Q - - ,  (41) 

Because of the minimum condition (341, Eq. (43) 
holds: 

€$I = 0, (43) 

which means that the Feenberg series El&!) con- 
verges in second-order perturbation theory, i.e., 
the second-order perturbed wave function and the 
fifth-order energy, which is calculated from this 
function, are eigenfunction and eigenvalue of the 
Hamiltonian to be calculated. 

Results and Discussion 

The electron systems investigated in this work 
are listed in Table I. They have been chosen from 
the pool of published FCI energies [29-331 for 
atoms and simple molecules and comprise charged 
and uncharged atoms (F and F-), different states 

state of NH,) as well as AH, molecules both at 
their equilibrium geometry ( R e )  and in geometries 
with (symmetrically) stretched AH bonds (1.5Re, 
2 R e :  "stretched geometries"). Calculation of 
molecules with stretched geometries represents a 
critical test on the performance of a correlation 
method because these electronic systems possess 
considerable multireference character. 

In Table I, contributions E$? and correlation 
energies A E(") = Xk= E & ?  calculated for n = 
2,3,4,5,6 are compared with FCI correlation ener- 
gies. In addition, scaled Feenberg correlation ener- 
gies for A(3) (denoted by FEU and A(5) (denoted by 
FE2) are given where the former (apart from the 
sixth-order energies) have been taken from the 
work of Schmidt and co-workers [28] for reasons 
of comparison. Also given are correlation energies 
evaluated from Pad6 approximants and extrapo- 
lated values obtained with the PFLB equation (17). 
In Table 11, Pad6 correlation energies are analyzed 
with the help of differences E(approximate) - 
E(FC1) and the ratios E(")/E("-') or the correction 
terms D/det A,  D'/det A,  6/det B, D/det B 
[Eqs. (9) and (l0)l. The best estimates for the exact 

of molecules (3B2 and 'A,  state of CH,, 2 B ,  and 'A, 
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TABLE I 
Correlation energies [hartreel obtained at the MPn level, by first-order ( l ~ ( ~ ) )  and second-order Feenberg scaling 
( A(5)), by Pad6 approximants or by extrapolation formulas.8 

Feen berg 

Systems Order MPn FE1 FE2 [ k ,  I1 Pad6 E (extra, MPn) 

Class A 
BH 
Re 

1 .5Re 

2.OR, 

NH2 
Re 

1 .5Re 

2.0 Re 

Re = 2.329a0 

- 25.125260 
- 0.073728 
-0.091306 
- 0.097307 
- 0.099841 
-0.101062 
- 0.1 02355 

- 25.06221 3 
- 0.077656 
- 0.098036 
- 0.106532 
- 0.1 10453 
- 0.1 12315 
-0.113763 

- 24.988201 
- 0.086302 
- 0.1 1 2020 
- 0.1 25804 
- 0.1 33078 
- 0.136946 
- 0.1391 32 

Re = 1 .024a0 

- 55.5771 82 
- 0.1 43266 
- 0.1 59223 
- 0.1 63538 
- 0.1 64673 
- 0.1 651 02 
- 0.1 65438 

- 55.424272 
- 0.1 12964 
- 0.1 31 646 
- 0.1 41 704 
- 0.1 47722 
- 0.1 52673 
- 0.1 80937 

- 55.393626 
- 0.075370 
- 0.089426 

DZP 
A(3) = -0.313 

- 0.09681 0 
- 0.09681 0 
- 0.1 00907 
-0.101621 
- 0.1021 52 

A(3) = -0.356 

- 0.1 05287 
- 0.105287 
- 0.1 131 33 
- 0.1 13263 
- 0.1 13964 

A(3) = -0.425 

- 0.122938 
- 0.1 22938 
- 0.1 40627 
- 0.138645 
- 0.141 585 

e = 103.40 
A(3) = -0.125 

- 0.1 61223 
- 0.1 61 223 
- 0.164839 
- 0.1 64982 
- 0.1 65305 

A(3) = -0.198 

- 0.1 35348 
- 0.1 35348 
- 0.1 47334 
- 0.1 51 558 
- 0.1 57401 

A(3) = -0.229 

- 0.092648 
- 0.092648 

1291 
A(5) = -0.392 

- 0.1 02641 
- 0.096458 
- 0.1 01713 
- 0.101 71 3 
- 0.1 0231 3 

A(5) = -0.363 

- 0.1 05870 
- 0.1 05284 
-0.113264 
-0.1 13264 
-0.113984 

A(5) = -0.373 

-0.118525 
- 0.1 22780 
- 0.1 38784 
- 0.1 38784 
- 0.141 1 10 

DZP 
A(5) = -0.140 

- 0.1 63370 
- 0.161 194 
- 0.164986 
- 0.164986 
- 0.1 65327 

A(5) = -0.350 

- 0.1 52450 
- 0.1 331 87 
- 0.1 52748 
- 0.1 52748 
- 0.1 61 584 

A(5) = -0.338 

-0.100831 
- 0.091 925 

11 1 01 
[ I ,  11 
[2,11 
[2,21 

[1 ,01 
[l, 11 
[2,11 
[2,21 

[1,01 
[I, 11 
[2,11 
[2,21 

[301 

11 I01 
[I, 11 
[2,11 
[2,21 

[1,01 
[ l ,  11 
[2,11 
[2,21 

[1 I01 
(Continued) 

- 0.09681 0 
-0.100417 -0.099396 
- 0.1 02042 
- 0.102392 - 0.1 02021 

- 0.105287 
- 0.1 12607 
-0.113919 
-0.114030 -0.113939 

- 0.1 10080 

- 0.122938 
-0.141723 -0. 
- 0.1 41 209 
-0.141312 -0. 

3331 2 

41 294 

- 0.1 61223 
- 0.1 651 37 
- 0.1 65078 
- 0.1 651 25 

- 0.1 641 07 

- 0.165275 

- 0.1 35348 
- 0.1 53435 
- 0.1 56790 
- 0.1 51 365 

- 0.1 44480 

- 0.1 63305 

- 0.092648 
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TABLE I 
(Continued) 

Feen berg 
Systems Order MPn FE 1 FE2 [ k ,  I1 Pad6 €(extra, MPn) 

NH2 
Re 

1 .5Re 

2.0 Re 

CH3 
Re 

1 .5Re 

-0.093102 
- 0.09441 2 
- 0.09521 0 
- 0.1 1 1 898 

Re = 1 .OOOao 

- 55.526382 
- 0.142090 
- 0.1 56935 
- 0.160763 
-0.161729 
-0.162105 
- 0.1 62380 

- 55.325078 
- 0.1 5851 2 
- 0.1 75339 
- 0.1 84756 
- 0.1 881 36 
- 0.1 89950 
- 0.1 92535 

- 55.260731 
- 0.089090 
- 0.1 07338 
-0.114099 
- 0.1 17386 
-0.119592 
- 0.1 54402 

Re = 1 .090ao 

- 39.570629 
-0.125321 
- 0.1 44222 
- 0.148602 
- 0.1 4981 3 
- 0.150237 
- 0.1 50583 

- 39.298446 
- 0.1 28387 
- 0.1 50944 
- 0.1 63548 
- 0.1 69885 
- 0.1 74405 
- 0.184407 

- 0.094608 
- 0.0951 35 
- 0.09601 6 

0 = 144.0" 
A(3) = -0.116 

- 0.1 58666 
- 0.1 58666 
- 0.1 61 838 
- 0.1 61978 
- 0.1 62276 

A(3) = -0.119 

- 0.177337 
- 0. 177337 
- 0.188023 
- 0.18921 4 
- 0.190887 

A@) = -0.258 

- 0.1 12038 
- 0.1 12038 
- 0.1 18051 
-0.1 19712 
- 0.122053 

e = 120.00 
A(3) = -0.178 

- 0.147579 
- 0.147579 
- 0.1 50076 
- 0.1 50248 
- 0.1 50468 

A(3) = -0.213 

- 0.155749 
- 0.155749 
- 0.1 71 180 
- 0.1 73530 
- 0.1 78877 

- 0.095238 
- 0.095238 
- 0.096447 

DZP 
A(5) = -0.133 

- 0.161 024 
- 0.158631 
- 0.1 61 982 
- 0.1 61 982 
- 0.162299 

A(5) = -0.162 

- 0.1 841 29 
- 0.1 77077 
- 0.1 89308 
- 0.189308 
- 0.191 221 

A(5) = -0.379 

- 0.122828 
-0.110999 
- 0.1 20062 
- 0.120062 
- 0.1 23296 

DZP 
A(5) = -0.205 

-0.151006 
- 0.147500 
- 0.1 50256 
- 0.1 50256 
- 0.1 50494 

A(5) = -0.277 

- 0.164004 
-0.155311 
- 0.1 73790 
- 0.1 73790 
- 0.1 80404 

(Continued) 

- 0.094407 
- 0.095408 
- 0.0861 82 

- 0.158666 
- 0.162094 
- 0.1 62055 
- 0.162089 

- 0.1 77337 
- 0.1 96725 
-0.190239 
- 0.1 91 228 

-0.112038 
-0.118078 
- 0.1 21 01 1 
- 0.1 68207 

- 0.1 47579 
- 0.1 49923 
- 0.1 5031 0 
- 0.1 50608 

-0.155749 
- 0.1 79521 
- 0.1 76362 
-0.178311 

- 0.09401 2 

- 0.095793 

- 0.1 61 281 

- 0.1 62251 

- 0.18641 5 

-0.191190 

- 0.1 1 61 53 

- 0.1 22252 

- 0.1 49445 

- 0.1 5041 3 

- 0.1 67376 

- 0.1 80476 
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TABLE I 
(Continued) 

Feen berg 
Pad6 €(extra, MPn) Systems Order MPn FEI FE2 [k, I1 

2.0Re 

CH2 

CH2 

Class B 
Ne 
4s2pld 

5s3p2d 
E(HF) 
A E (2) 

A E (3) 

A E (6) 

FCI 

E(HF) 
A E (2) 

AE(3) 

6s4pld 

- 39.1 23546 
- 0.036568 
- 0.045683 
- 0.051 745 
- 0.05681 4 
- 0.061 754 
- 0.179586 

Re = 1.912~1, 

- 38.933045 
- 0.092290 
- 0.107668 
- 0.1 1 1335 
- 0.1 12431 
-0.112851 
- 0.1 13215 

Re = 2.1 IOa, 

- 38.886297 
- 0.1 09830 
- 0.130296 
- 0.135907 
-0.137937 
- 0.1 38909 
- 0.1 40886 

- 128.522354 
- 0.174449 
- 0.1 76676 
-0.180981 
- 0.179465 
- 0.180335 
- 0.1 801 08 

- 128.52401 3 
- 0.240859 
- 0.239829 
- 0.245427 
- 0.24441 6 
- 0.244991 
- 0.244864 

- 128.543823 
- 0.220236 
- 0.21 8689 
- 0.22471 6 

A(3) = -0.332 

- 0.048709 
-0.048709 
- 0.057668 
-0.062919 
-0.070139 

0 = 106.7" 
A(3) = -0.200 

-0.110742 
-0.110742 
- 0.1 12651 
- 0.1 1 2893 
-0.113110 

0 = 102.4" 
A(3) = -0.229 

- 0.1 34983 
- 0.134983 
- 0.1 3831 9 
- 0.139039 
- 0.139682 

A(3) = 0.013 

- 0.1 76704 
- 0.1 76704 
-0.181149 
- 0.1 79381 
- 0.1 80396 

A(3) = 0.004 

- 0.239834 
- 0.239834 
- 0.245356 
- 0.244433 
- 0.244979 

A(3) = 0.007 

- 0.21 8700 
- 0.21 8700 
- 0.224591 

A(5) = -0.632 

- 0.059697 
- 0.046230 
- 0.065761 
- 0.065761 
- 0.080227 

DZP 
A(5) = -0.251 

-0.115476 
- 0.1 10540 
- 0.1 1291 5 
- 0.1 1291 $ 
-0.113157 

DZP 
A(5) = -0.318 

- 0.144790 
- 0.134270 
- 0.1 391 52 
- 0.1391 52 
- 0.1 39923 

A(5) = 0.090 

- 0.1 5871 7 
- 0.1 74873 
- 0.1 79739 
-0.179739 
-0.180081 

A(5) = 0.055 

- 0.227647 
- 0.23921 5 
- 0.244525 
- 0.244525 
- 0.244868 

A(5) = 0.072 

- 0.204381 
- 0.21 7762 
- 0.223447 

(Continued) 

- 0.048709 
- 0.063789 - 0.054762 
- 0.087664 
- 0.01 441 0 - 0.1 05754 

-0.110742 
-0.112483 -0.112123 
-0.112973 
- 0.1 13243 - 0.1 13047 

-0.134983 
- 0.1 38025 
- 0.139375 
-0.140369 -0.139537 

- 0.1 3731 0 

- 0.176704 
-0.172065 -0. 
- 0.1 79942 
-0.180048 -0. 

81 146 

801 72 

-0.239834 
- 0.240699 - 0.245536 
- 0.244660 
- 0.244874 - 0.244941 

- 0.21 8700 
- 0.21 9920 - 0.224843 
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TABLE I 
(Continued) 

Feen berg 
Systems Order MPn FEI FE2 [ k ,  I1 Pad6 €(extra, MPn) 

F 
4s3pld 

4s3p2d 

5s3p2d 

F- 
4s3pld 

4s3p2d 

5s3p2d 

- 0.223239 
- 0.224434 
- 0.224066 

131 1 

- 99.398964 
- 0.1 34714 
- 0.1 43928 
- 0.147377 
-0.147116 
- 0.1 47635 
- 0.1 47656 

-99.399543 
- 0.1 52758 
-0.162751 
- 0.1 66672 
- 0.1 66424 
- 0.1 66944 
- 0.1 66940 

- 99.399983 
- 0.1 81 771 
- 0.1 89953 
- 0.194365 
- 0.194433 
- 0.1 94874 
- 0.1 94894 

[291 

- 99.442848 
- 0.208035 
- 0.1 99384 
- 0.215241 
-0.203031 
- 0.21 8472 
- 0.21 0493 

- 99.442848 
- 0.232450 
- 0.224062 
- 0.239872 
- 0.227586 
- 0.242669 
- 0.234828 

- 99.443696 
- 0.262406 

- 0.223278 
-0.224393 

A(3) = -0.073 

- 0.144604 
- 0.1 44604 
-0.148091 
- 0.146920 
- 0.147886 

A(3) = -0.070 

- 0.163450 
- 0.163450 
- 0.167453 
- 0.166232 
- 0.1671 81 

A(3) = -0.047 

- 0.1 90338 
-0.190338 
-0.194982 
- 0.1 94387 
-0.194991 

A(3) = 0.040 

- 0.199729 
- 0.199729 
- 0.21 3444 
- 0.204726 
- 0.21 5796 

A(3) = 0.035 

- 0.224354 
- 0.224354 
- 0.238297 
- 0.2291 03 
-0.240352 

A(3) = 0.035 

- 0.249781 

- 0.223447 
- 0.2241 07 

A(5) = 0.023 

-0.1 31 61 7 
- 0.1 43438 
- 0.1 471 29 
- 0.147129 
- 0.147579 

A(5) = 0.020 

-0.149771 
- 0.1 62306 
- 0.166434 
-0.166434 
- 0.1 66896 

A(5) = -0.005 

-0.1 8271 9 
- 0.1 90033 
- 0.194434 
- 0.1 94434 
- 0.1 94886 

A@) = 0.188 

- 0.1 6891 5 
- 0.194975 
- 0.207292 
- 0.207292 
- 0.21 0609 

A(5) = 0.1 86 

- 0.189239 
- 0.21 8858 
- 0.231 861 
- 0.231861 
- 0.235094 

A(5) = 0.186 

- 0.21 8641 

(Continued) 

- 0.223626 
- 0.2241 61 

-0.144604 
- 0.1 49440 
- 0.147262 
- 0.147498 

- 0.1 63450 
- 0.1 69203 
- 0.166576 
- 0.1 66823 

- 0.1 90338 
- 0.199530 
- 0.194546 
- 0.194851 

- 0.1 99729 
- 0.204981 
- 0.208481 
-0.212862 

- 0.224354 
- 0.229542 
- 0.233083 
- 0.236558 

- 0.224364 

- 0.1 4771 0 

- 0.1 47681 

- 0.1 67039 

- 0.1 66986 

- 0.1 94678 

-0.194931 

- 0.21 5836 

- 0.337984 

- 0.24041 4 

- 0.300600 
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TABLE I 
(Continued) 

Feenberg 

Systems Order MPn FE1 FE2 [ k ,  I 1  ' Pad6 €(extra, MPn) 

FH 
Re 

1.5Re 

2.OR, 

HZO 
Re 

1 .5Re 

- 0.2491 43 
- 0.268392 
- 0.256323 
- 0.269922 
- 0.262994 

Re = 1 .733a0 

- 100.047087 
- 0.1 96078 
- 0.198444 
- 0.204146 
- 0.203023 
- 0.2041 12 
- 0.203882 

- 99.933229 
- 0.21 6526 
- 0.21 531 2 
- 0.226397 
- 0.224368 
- 0.227572 
-0.227166 

- 99.81 7572 
- 0.239491 
- 0.236577 
- 0.258696 
- 0.255433 
- 0.264667 
- 0.263536 

Re = 1 .8897a0 

- 76.040541 
-0.2031 17 
- 0.208860 
- 0.21 5263 
- 0.21 5379 
- 0.21 6005 
- 0.21 6083 

- 75.800494 
- 0.247600 
- 0.244550 
- 0.2651 47 
- 0.265927 
- 0.269095 
- 0.27091 1 

- 0.249781 
- 0.265805 
- 0.258236 
- 0.2671 84 

DZP 
A(3) = -0.01 2 

- 0.198473 
- 0.198473 
- 0.204356 
- 0.202962 
- 0.204181 

A(3) = 0.006 

- 0.21 531 9 
- 0.21 5319 
- 0.22621 3 
- 0.22441 0 
- 0.227484 

A(3) = 0.01 2 

- 0.23661 2 
- 0.23661 2 
- 0.257908 
- 0.255568 
- 0.2641 30 

6 = 104.5" 
A(3) = -0.029 

- 0.209027 
-0.209027 
- 0.2 1 5720 
-0.215373 
-0.216101 

A(3) = 0.01 2 

- 0.244587 
- 0.244587 
- 0.264405 
- 0.265872 
- 0.268905 

- 0.245899 
- 0.260044 
- 0.260044 
- 0.263481 

[291 
A(5) = 0.058 

- 0.183952 
- 0.197522 
-0.203152 
- 0.2031 52 
-0.203854 

A(5) = 0.057 

- 0.204268 
-0.21 4752 
- 0.224591 
- 0.224591 
- 0.226081 

A@) = 0.047 

-0.228291 
- 0.236320 
- 0.255729 
- 0.255729 
- 0.262744 

DZP 
A(5) = -0.012 

- 0.205486 
- 0.208967 
- 0.21 5384 
- 0.21 5384 
- 0.21 6042 

A(5) = -0.013 

- 0.250758 
- 0.244431 
- 0.265947 
- 0.265947 
- 0.269301 

(Continued) 

- 0.249781 
- 0.256995 
- 0.261 161 
- 0.266306 

-0.198473 
- 0.194398 
- 0.203346 
- 0.203858 

- 0.21 531 9 
- 0.21 6406 
- 0.225090 
- 0.227360 

- 0.23661 2 
- 0.2391 52 
- 0.257493 
- 0.266895 

- 0.209027 
- 0.1 4421 5 
- 0.21 5589 
- 0.21 6056 

- 0.244587 
- 0.247207 
- 0.268041 
- 0.270096 

- 0.268866 

- 0.273605 

- 0.204387 

- 0.2041 03 

- 0.226929 

- 0.228049 

- 0.260650 

-0.268948 

- 0.21 5549 

- 0.21 6098 

- 0.266739 

- 0.26981 3 
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TABLE I 
(Continued) 

Feenberg 
Systems Order MPn FEI FE2 [ k ,  / I  Pad6 €(extra, MPn) 

2.0 Re A(3) = 0.062 A(5) = 0.012 
E(HF) -99.81 7572 
A€(*) -0.316317 - 0.296679 - 0.31 2608 
A€(3) - 0.295379 - 0.296679 - 0.295823 [1,0] - 0.296679 
A€ (4)  - 0.3551 24 - 0.344829 - 0.353055 [1,1 I - 0.31 0883 - 0.364160 

- 0.353006 - 0.352229 - 0.353055 [2,1] - 0.367072 
A € (6) - 0.365926 - 0.362327 - 0.3651 88 [2,2] - 0.36981 0 - 0.368907 
FCI - 0.369984 

aExtrapolated correlation energies .€(extrap, MPn) have been obtained with Eq. (17) for n = 4 (PFBL formula) and Eq. (18) for 
n = 6. 

correlation energies (= FCI values) are based on 
calculated MP6 energies. They are listed and com- 
pared in Table 111. 

A direct impression of the convergence behav- 
ior of MP, Feenberg, and Pad6 series is provided 
by Figures 1-10, which give absolute energies as a 
function of the order of perturbation theory. In 
these figures as well as in Table I, 11, and 111, Pad6 
approximants [ k, I] with 1 = k,  k - 1, namely [l ,  01, 
[l,  11, [2,1], [2,2], etc., are considered to form a 
series, each member of which can be related to 
order n = k + 1 + 2 of perturbation theory as has 
been described in the previous section. 

The systems considered in this work are dis- 
sected into two classes A and B depending on 
whether they show monotonic or erratic (initial 
oscillations) convergence behavior as has been dis- 
cussed in [161. Beside the systems discussed in 
[16], we have also included equilibrium and two 
stretched geometries of CH, into the set of test 
systems because in this way our data become 
more comparable with results obtained by Schmidt 
and co-workers in a similar study on the Feenberg 
series [281. 

PADE APPROXIMANTS 

Inspection of Tables I and I1 as well as Figures 
1-10 reveals that Pad6 approximants improve MP 
energies in some cases; however, they fail in many 
cases to lead to acceptable predictions. These fail- 
ures can be found for class A as well as class B 
systems, for equilibrium geometries as well as 
stretched geometries, for ground states as well as 
excited states. 

If one considers class A systems, then one real- 
izes that with the exception of NH,, A,  the [2,2] 
approximant leads to an improvement of MP6 
energies in the direction of FCI energies in the case 
of equilibrium geometries. For stretched geome- 
tries, however, both improved and deteriorated 
energies are obtained. It can happen as in the case 
of BH that the FCI value is considerably overshot. 
The latter applies also to several class B examples 
simply reflecting in these cases that MP6 energies 
are too negative. Compared to MP6 correlation 
energies, the [2,2] energies are actually somewhat 
better. 

Figures 1-10 show that the convergence behav- 
ior of the Pad6 series [l ,  01, [I, 11, [2,1l, and [2,2l 
does not always follow that of the MPn series. 
There are examples (class A: stretched geometries 
of CH and NH,, 'B , ,  equilibrium geometry of 
NH,, 'A,), for which the Pad6 series oscillates 
despite the monotonic behavior of the MPn series, 
and there are examples (class B: Ne [5s3p2d], Ne 
[6s4pld], F-, and stretched geometries of FH and 
H,O, for which the Pad6 series is dampened (more 
monotonic) in contrast to the MPn series. 

Comparison of the data in Table I1 reveals that 
the ratios E ( n ) / E ( " - * )  or the correction terms 
D/det A,  6/det B, etc. [Eqs. (9) and (lo)] provide 
a basis to predict the convergence behavior of the 
Pad6 series. They reflect the descent of the func- 
tion E [  k,  I] = f ( n ) ,  partially scaled by using curva- 
ture and geometric means. If E ( " ) / E ( " - ' )  and 
D/det A, D/det B ,  etc. increase successively from 
the [ 1, 01 or [ 1,1] approximant to the [2,2] approxi- 
mant, then the Pad6 energies decrease more or less 
monotonicly. However, if there are oscillations in 

2 
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TABLE II 
Differences E(approx) - E(FCI) [mhartreel between FCI, MPn, and Pad6 correlation energies. 

System Order n MPn - FCI Ik, I1 
D' 61 - ~ -  Pad6 - FCI 

€("- ' ) '  detA' det6 

Class A 

BH 'z+ 
Re 

3 
4 
5 
6 

1 .5Re 

2.0 Re 

NH, 
Re 

1.5 Re 

2.0 Re 

3 
4 
5 
6 

2B, 

3 
4 
5 
6 

2A 1 

Re = 2.329a0 

1 1.049 
5.048 
2.514 
1.293 

15.727 
7.231 
3.31 0 
1.448 

27.112 
13.328 
6.054 
2.1 86 

Re = 1 .024a0 

6.21 5 
1 .goo 
0.765 
0.336 

46.026 
39.233 
33.21 5 
28.264 

22.472 
18.796 
17.486 
16.688 

Re = 1 .OOOao 

5.445 
1.617 
0.651 
0.275 

17.196 
7.779 
4.399 
2.585 

DZP 

[1 I01 
[1,11 
I2,lI 
[2,21 

I1 I01 
11,ll 
12,lI 
[2,21 

I1,OI 
11,ll 

[2,21 
O =  103.4' 

11 101 
[ l ,  11 
[2,11 
[2,21 

11, 01 
[ I ,  11 
[2,11 
[2,21 

I1 7 01 
[ l ,  11 
[2,11 
k 2 1  

13 = 144.0' 

[1 ,01 
[1,11 
[2,11 
[2,21 

[ l ,  01 
[1,11 
[2,11 
[2,21 

(Continued) 

[291 

5.545 
1.938 
0.313 

- 0.037 

8.476 
1.156 

-0.156 
- 0.267 

16.194 
- 2.591 
- 2.077 
-2.180 

DZP 

4.21 5 
0.301 
0.360 
0.313 

45.589 
27.502 
24.1 47 
29.572 

19.250 
17.491 
16.490 
25.71 6 

DZP 

3.714 
0.286 
0.325 
0.291 

15.198 

2.296 
1.307 

-4.190 

0.238 
0.341 
1.202 
1.677 

0.262 
0.41 7 
1.023 
1.191 

0.298 
0.536 
1.096 
0.675 

1301 

0.1 11 
0.270 
0.350 

- 0.733 

0.1 65 
0.538 
1.568 

- 2.584 

0.186 
0.262 
1.128 

[301 

- 18.429 

0.104 
0.258 
0.332 

- 0.81 0 

0.106 
0.560 
0.51 1 
0.281 
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TABLE II 
(Continued) 

System Order n MPn - FCI [ k ,  I1 
6, 

--- 
€("- ' ) '  detA' detB 

Pad6 - FCI 

2.0Re 
3 
4 
5 
6 

3 
4 
5 
6 

1.5Re 
3 
4 
5 
6 

2.0 Re 
3 
4 
5 
6 

CH2 3B, 
3 
4 
5 
6 

CH2 'A 1 
3 
4 
5 
6 

47.064 
40.303 
37.016 
34.810 

Re = l.090a0 

6.361 
1.981 
0.770 
0.346 

33.463 
20.859 
14.522 
10.002 

1 33.903 
127.841 
122.772 
1 17.832 

Re = 1.91 2a, 
5.547 
1.880 
0.784 
0.364 

Re = 2.1 10a, 
10.590 
4.979 
2.949 
1.977 

42.364 
36.324 
33.391 

- 13.805 
DZP 

3.004 
0.660 
0.273 

- 0.025 

28.658 
4.886 
8.045 
6.096 

130.877 
11 5.797 
91.922 

165.176 

DZP 
2.473 
0.732 
0.242 

- 0.028 
DZP 
5.930 
2.861 
1.51 1 
0.51 7 

0.205 
0.371 
1.360 

39.363 

[331 

0.151 
0.232 
0.51 7 
1.682 

0.176 
0.559 
0.966 

- 0.247 

0.249 
0.665 
6.71 2 

- 16.926 

[321 
0.167 
0.238 
0.682 
1.61 1 

[321 
0.186 
0.274 
0.989 
2.453 

System Order n MPn - FCI [ k ,  I1 

Class B 
Ne 'S 
4s2pld 

3 
4 
5 
6 

5s3p2d 
3 
4 
5 
6 

[291 

+3.432 
- 0.873 
+0.643 
- 0.227 

+5.035 
- 0.563 
+0.448 
-0.127 

11 I01 
[ l ,  11 
[2,11 
[2,21 

11 I 01 
[1,11 
[2,11 
[2,21 

(Continued) 

+3.404 
+8.043 
+0.166 
+0.060 

+5.030 
+4.165 
+0.204 
-0.010 

+0.013 
+ 1.934 
+0.022 
+0.050 

- 0.004 
- 5.439 
+0.019 
+0.066 
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TABLE II 
(Continued) 

System Order n MPn - FCI 
D' fi 

--- Pad6 - FCI 
E (" - ') ' det A ' det 6 

6s4pld 
3 
4 
5 
6 

2P F 
4s3pld 

4s3p2d 

5s3p2d 

F -  
4s3pld 

4s3p2d 

5s3p2d 

FH 
Re 

3 
4 
5 
6 

'S 

3 
4 
5 
6 

'x + 

1 .5Re 

+5.377 
- 0.650 
+0.827 

131 I 
- 0.368 

+3.728 
+0.279 
+0.540 
+0.021 

+4.189 
+0.268 
+0.516 
- 0.004 

+4.941 
+0.529 
+0.461 
+0.020 

1291 

+11.109 
-4.748 
+7.462 
- 7.979 

+ 10.766 

+7.242 
- 5.044 

- 7.841 

+ 13.851 
- 5.398 
+6.671 
- 6.928 

Re = 1.733a0 

+5.438 
- 0.264 
+0.859 
- 0.230 

+ 1 1.854 
+0.769 
+2.798 
- 0.406 

[l ,  01 
[I ,  11 
[2,11 
[2,21 

11 I01 
[ I ,  I1 
[2,11 
[2,21 

[I,  01 
[I ,  11 
[2,11 
[2,21 

[I I01 
[ I ,  11 
[2,11 
k 2 1  

[1 I01 
[ l ,  11 
[2,11 
[2,21 

[I I01 
[ I ,  11 
[2,11 
[2,21 

[ I ,  01 
[ I ,  11 
k 1 1  
[2,21 
DZP 

11 I01 
[ l ,  11 
[2,11 
[2,21 

[I 101 
[ I ,  11 
k l l  
[2,21 

(Continued) 

+5.366 
+4.146 
+0.440 
- 0.095 

+3.052 

+0.394 
+0.158 

- 1.784 

+3.490 
- 2.263 
+0.364 
+0.117 

+4.556 

+0.348 
+0.043 

- 4.636 

+ 10.764 
+5.512 
+2.012 
- 2.369 

+ 10.474 
+5.286 
+1.745 
- 1.730 

+ 13.21 3 
+5.999 
+ 1.833 
- 3.31 2 

[291 

+5.409 
+9.484 
+0.536 
+0.024 

+11.847 
+ 10.760 
+2.076 
-0.194 

- 0.007 
- 3.895 
+0.021 
+0.139 

+0.068 
+0.374 
+0.033 
+0.094 

+0.065 
+0.392 
+0.032 
+0.090 

- 0.045 
- 0.539 
+0.030 
+0.137 

- 0.042 
- 1.833 
+0.027 
+0.870 

- 0.036 
- 1.885 
+0.024 
+0.688 

- 0.051 
- 1.451 
+0.028 
+0.794 

+0.012 
+2.409 
+0.027 
+0.126 

- 0.006 
-9.133 
+0.045 
+0.292 
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TABLE II 
(Continued) 

System Order n MPn - FCI 
D' 61 

--- 
€(" - ') ' det A ' det B Pad6 - FCI 

2.OR, 
3 
4 
5 
6 

H2O 'A 1 

Re 
3 
4 
5 
6 

1.5Re 
3 
4 
5 
6 

2.0 Re 
3 
4 
5 
6 

+26.958 
+4.841 
+8.103 

Re = 1.8897a0 

+7.223 
+0.920 
+0.704 
+0.078 

-1.132 

+26.316 
+5.764 
+4.984 
+1.816 

+74.605 
+ 14.860 
+ 16.978 
+4.058 

[1,01 
[l ,  11 
[2,11 
[2,21 

0 = 104.5" 

[1,01 
[l ,  11 
[2,11 
[2,21 

11 I01 
[ l ,  11 
[2,11 
[2,21 

[1 ,01 
[1,11 
[ Z l I  
[2,21 

+26.923 
+24.384 
+6.043 
- 3.360 

DZP 

+7.056 
+71.868 
+0.494 
+0.027 

+26.324 
+ 23.704 
+2.870 
+0.815 

+73.305 
+59.101 
+2.912 
C0.174 

- 0.01 2 
- 7.591 
+0.087 
+0.584 

1291 

+0.028 
+ 1.098 
+0.032 
+0.106 

- 0.01 2 
- 6.752 
+0.098 
+0.192 

- 0.066 
- 2.853 
+0.246 
+0.294 

these values (see Table 10, then the Pad6 series 
also will oscillate. 

We conclude that Pad6 approximants may not 
generally be suited to be used for the extrapolation 
to infinite-order correlation energies. In selected 
cases, improvements are possible, however, it 
seems that each case has to be investigated sepa- 
rately using correlation contributions up to sixth- 
order MI' theory. 

PFLB AND OTHER INFINITE-ORDER MPn 
FORMULAS 

On first sight, it seems that the infinite-order 
correlation energies A E(extrap, MP6) based on cal- 
culated MP6 energies [see Eq. (1811 do not lead to 
any improvement with regard to extrapolated cor- 
relation energies obtained with the PFLB formula 
[Eq. (17)], which is based on calculated MP4 corre- 
lation energies. The mean absolute deviation from 
exact FCI correlation energies is for A E(extrap, 
MP6) 12.529 mhartree (12.207 for equilibrium ge- 
ometries, Table 111) while it is 10.236 mhartree 
(1.599 for equilibrium geometries, Table I) for 

A E(PFLB, MP4). However, these deviations are 
misleading since they are dominated by an unusu- 
ally large failure in the prediction of the infinite- 
order correlation energy by Eq. (18) in the case of 
F- (Table I). At the MI' level, there are strong 
initial oscillations for this ion. For smaller basis 
sets, the value of Egf, is comparable in magnitude 
with that of EgL. As a consequence, the correction 
factor [ l  - (E$L/E$b)]-' in Eq. (18) becomes very 
large and leads to an unreasonable value for 
A E(extrap, MP6). If one excludes the predictions 
for F-, the mean absolute deviation of AE(extrap, 
MP6) values from FCI correlation energies will 
become 6.132 (all systems) and 0.260 mhartree 
(atoms an equilibrium geometries), which is clearly 
smaller than the corresponding values for 
A E(PFLP, MP4) (10.767 and 1.071 mhartree). 

Further improvements of predictions based on 
Eq. (18) can be achieved if one splits Eq. (18) into 
two formulas, which reflect the different conver- 
gence properties of class A and class B systems. 
For the latter, E(MP6) values are mostly more 
negative than FCI energies, which indicates that 
higher order correlation effects are exaggerated. 
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TABLE 111 
Energy differences E(6)(approx) - E(FCI) in mhartree. 

~~ ~~ ~ 

Systems MP6 FE1 FE2 Pad6 [2,2] A €  (extrap, MP6) A €  (A3B)(extrap, MP6) 

Class A 
BH 

NH, 

NH, 

CH2 

CH3 

Class B 
Ne 

F 

F -  

FH 

H2O 

Mean abs. 
dev. 

Mean abs. 
dev. 

Re 
1 .5Re 
2.0 Re 

24 
Re 

1 .5Re 
2.0 Re 

2A 1 

R e  
1.5Re 
2.0 Re 

3B, 
'A 1 

Re 
1 .5Re 
2.0Re 

4s2pld 
5s3p2d 
6s4pld 

4s3pld 
4s3p2d 
5s3p2d 

4s3pld 
4s3p2d 
5s3p2d 

Re 
1 .5Re 
2.0Re 

Re 
1 .5Re 
2.0 Re 

(Re) 

1.293 
1.448 
2.186 

0.336 
28.264 
16.688 

0.275 
2.585 

34.810 

0.364 
1.977 

0.346 
10.002 

1 17.832 

- 0.227 
-0.127 
- 0.368 

0.021 
- 0.004 

0.020 

- 7.979 
- 7.841 
- 6.928 

- 0.230 
- 0.406 
- 1.132 

0.078 
1.81 6 
4.058 

8.608 

1.671 

0.203 
- 0.201 
- 2.453 

0.133 
23.536 
15.882 

0.1 04 
1.648 

32.349 

0.105 
1.204 

0.115 
5.530 

109.447 

- 0.288 
-0.115 
- 0.327 

- 0.230 
- 0.241 
- 0.097 

- 5.303 
- 5.524 
-4.190 

- 0.299 
- 0.31 8 
- 0.594 

- 0.01 8 
2.006 
7.657 

7.590 

1.088 

0.042 
- 0.221 
- 1.978 

0.1 11 
19.353 
15.451 

0.081 
1.314 

31.107 

0.058 
0.963 

0.089 
4.003 

99.359 

0.027 
- 0.004 
- 0.041 

0.077 
0.044 
0.008 

-0.116 
- 0.266 
- 0.487 

0.028 
0.365 
0.791 

0.041 
1.610 
4.796 

6.304 

0.146 

- 0.037 
- 0.267 
-2.180 

0.313 
29.572 
25.71 6 

0.291 
1.307 

13.080 

- 0.028 
0.51 7 

- 0.025 
6.096 

165.176 

0.060 
- 0.01 0 
- 0.095 

0.158 
0.117 
0.043 

- 2.369 
- 1.730 
- 3.31 2 

0.024 
-0.194 
- 3.360 

0.027 
0.81 5 
0.174 

8.865 

0.539 

0.334 
- 0.1 71 
-2.162 

0.163 
17.632 
16.105 

0.129 
1.346 

32.150 

- 0.722 
1.349 

0.170 
3.931 

73.832 

0.064 
- 0.077 
- 0.298 

- 0.024 
- 0.046 
- 0.037 

- 127.491 
- 65.772 
- 10.61 1 

- 0.221 
- 0.883 
- 5.41 2 

- 0.01 5 
1.098 
1.077 

12.529; 6.132a 

12.207; 0.260a 

0.158 
- 0.233 
- 2.21 0 

0.075 
5.308 

15.448 

0.004 
0.485 

30.31 0 

0.103 
1.086 

0.117 
- 1.251 
- 70.327 

0.01 8 
- 0.048 
- 0.1 70 

0.022 
- 0.005 
- 0.01 0 

1.452 
1.616 
0.701 

-0.104 
- 0.237 
- 1.668 

0.023 
1.430 
3.065 

4.748; 5.14ga 

0.336; 0.13ga 

aThe second entry gives the mean absolute deviation excluding extrapolated energies for F - 

Therefore, one has to scale down their contribution 
to the infinite-order correlation energy. However, 
for class A systems, for which the MPn series has 
initially monotonic convergence behavior, the orig- 
inal assumption of a geometric series is largely 

fulfilled and, accordingly, extrapolation formulas 
of type (17) or (18) are appropriate. We retain these 
equations and only describe the ratio of subse- 
quent correlation contributions by the best MP n 
values available at the moment, namely E$b and 
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FIGURE 1. Graphical representation of the total MPn energy of BH, 'C+, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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NH2 ('Bl, R = Re, DZP) N H z ( ~ B ~ ,  R = 1.5Re, DZP) NH2(2B1, R=ZRe,DZP) 

FIGURE 2. Graphical representation of the total MPn energy of NH,, ,B,, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pade approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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FIGURE 3. Graphical representation of the total MPn energy of NH,, ,A,, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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CH3 ('A'$ R = Re, DZP) CH3 (,A;, R = ISRe, DZP) CH3 ('A;, R = 2Re, DZP) 

FIGURE 4. Graphical representation of the total MPn energy of CH,, 'A';, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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FIGURE 5. Graphical representation of the total MPn energy of CH,, 38,, and CH,, 'A, ,  as a function of the order of 
perturbation theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, 
by first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at 
the same geometry (see text). 

- 

- 

- 

-128.762 ,- 
t 

-128.705 -128.770 -128.770 
3 4 5 6 7  3 4 5 6 7  3 4 5 6 7 Order 

Ne [4s2pld] Ne [5s3p2dl Ne [6s4pld] 

FIGURE 6. Graphical representation of the total MPn energy of Ne, 'S, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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FIGURE 7. Graphical representation of the total MPn energy of F, 2P, as a function of the order of perturbation theory 
applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by first-order 
(FEl) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the same 
geometry (see text) 
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FIGURE 8. Graphical representation of the total MPn energy of F -, 'S ,  as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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FIGURE 9. Graphical representation of the total MPn energy of FH, '2+, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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FIGURE 10. Graphical representation of the total MPn energy of H,O, 'A,, as a function of the order of perturbation 
theory applied. MPn values are compared with the corresponding energies obtained by Pad6 approximants, by 
first-order (FE1) and second-order (FE2) Feenberg scaling and the FCI energy obtained with the same basis set at the 
same geometry (see text). 
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Ef&. In this way, the extrapolation equation for 
class A systems becomes 

4 EEL 
AE(A)(extrap, MP6) = E&!, + 

n = 2  Egf, * 

l - -  
EEf, 

For class B systems, we use 

A E(B)(extrap, MP6) 

where the exponent is chosen in view of the oscil- 
lations in the MPn series. Actually, both 1/(1 - x) 
and e x  lead to similar series, however, in the 
exponential series higher powers k of x are scaled 
down by prefactors l/k!. In this way, higher exci- 
tation effects are reduced in Eq. (45). 

Application of Eqs. (44) and (45) leads to infi- 
nite-order correlation energies superior to energies 
predicted by either the PFLB Eq. (17) or the MP6 
extrapolation equation (18). This is reflected by 
mean absolute deviations of 4.748 and 0.336 
mhartree for the complete set of correlation ener- 
gies given in Table I11 and the problems with 
equilibrium geometries, respectively. Particularly 
noteworthy is the significant improvement for the 
correlation energies of F- (deviations from FCI 
values are just 1.452, 1.616, and 0.701 mhartree, 
Table 111). The only failures of extrapolation formu- 
las (44) and (45) occur for the strongly stretched 
geometries of CH, and NH,. However, in these 
cases MP6 correlation energies differ from FCI 
values so strongly because of the inherent mul- 
tireference character of the systems considered that 
it is unrealistic to expect clearly better values from 
any extrapolation formula. 

We conclude that by the use of MP6 correlation 
energies and an improvement of the original PFLB 
extrapolation formula, errors in predicted infinite- 
order correlation energies can be reduced to 
0.3 mhartree for equilibrium geometries and to 
4.7 mhartree for systems including both equilib- 
rium and stretched geometries. 

FEENBERG SERIES 

The calculated Feenberg correlation energies 
listed in Table I confirm the expected improve- 
ment in line with the observations made by 

Schmidt and co-workers [28]. It is particularly in- 
teresting to compare correlation energies obtained 
by these authors [ A(,), Feenberg 1 (FEl), first-order 
perturbation theory] and the Feenberg energies 
obtained in this work [A@), Feenberg 2 (FE2), sec- 
ond-order perturbation theory]. The scaling factors 
A(’) and A(5) possess in most cases similar values. 
However, A(5) values calculated in this work are 
somewhat more negative for class A systems, 
which means that FE2 correlation energies are more 
negative than the corresponding MPn or FE1 val- 
ues for class A systems. Since MPn energies ap- 
proach in these cases the FCI energy monotoni- 
cally from above, the FE2 values are closer to the 
latter than either MPn or FE1 values. 

In the case of class B systems, the MP6 correla- 
tion energy is often more negative than the corre- 
sponding FCI value (Table I). To reduce the mag- 
nitude of the correlation energy, both A(3) and A(’) 
values are positive where the latter are slightly 
larger than the former thus leading to a better 
agreement between FE2 and FCI correlation ener- 
gies for class B systems. Hence, for both class A 
and class B systems a significant improvement of 
correlation energies is obtained by using the FE2 
scaling of MPn energies. At sixth-order, the mean 
absolute deviation from FCI values is for FE2 0.146 
mhartree provided just atoms and molecules in 
their equilibrium geometry are considered while it 
is 6.304 mhartree if stretched geometries are in- 
cluded into the comparison. Hence, compared to 
FE1 results an improvement of the mean absolute 
deviation by almost 1 mhartree can be considered. 
Compared to AE(extrap, MP6), FE2 offers also an 
improvement if equilibrium geometries are com- 
pared. For stretched geometries, sixth-order FE2 
values are not as close to FCI correlation energies 
as AE(extrap, MP6) values. However, in these 
cases correlation errors because of multireference 
effects are rather large and, therefore, none of the 
approximation methods considered here may be 
useful as long as it is based on a single determi- 
nant approach. 

The convergence behavior of FE2 correlation 
energies seems to be also considerably improved 
as compared to the MPn or FE1 series. Oscillations 
typical of MPn and even FE1 correlation energies 
for class B systems are dampened out. This is quite 
obvious for Ne, F, FH and in particular F- where 
FE2 scaling leads to a leveling of the MP4/MP5 
oscillation. In the particular case of F-, the Pad6 
approximants [l, 01, [l,  11, [2,11, and [2,21 also pro- 
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vide a smoothly converging series (see discussion 
above), however, FE2 scaling is clearly superior to 
the Pad6 series because it leads to the more accu- 
rate prediction of FCI values. 

The dampening of the MP4/MP5 oscillation by 
FE2 scaling, of course, is a consequence of the 
minimization of E(') and the resulting equality of 
AEi4) = A€i5). In this way, the improvement ob- 
tained for fifth-order energies is fully transferred 
to fourth-order energies leading there to a substan- 
tially large improvement (see Table I and Figs. 
1-10]. The second largest improvement is obtained 
for sixth-order energies, which provide a useful 
basis for a prediction of the corresponding FCI 
values. 

If one calculates MP5 or even MP6 energies, it is 
an advantage to apply FE2 scaling, which is as 
simple as the calculation of FE1 values, which, 
however, leads to significantly improved conver- 
gence behavior (no initial oscillations) and the most 
accurate predictions for infinite-order MI' energies 
(FCI energies) presently possible. 

Conclusions 

The following conclusions can be drawn from 
this work. 

1. Using the Pad6 approximants [l, 01, [l, 11, 
[2,11, and [2,21, one can expect improved 
correlation energies in some but not all cases. 
At the moment, it seems to be impossible to 
predict under which conditions Pad6 approx- 
imants lead to reliable estimates of the FCI 
correlation energy. The Pad6 series [1,0], 
[1,11, [2,11, [2,21 is monotonicly convergent 
if the ratios E(4)/E(3), D/det A, fi/det B ,  
etc. become successively more positive; oth- 
erwise it oscillates. 

2. The Pople-Frisch-Luke-Binkley (PFLB) infi- 
nite-order MPn formula 1171 can be consider- 
ably improved by using MP6 correlation en- 
ergies. The best estimates are obtained by 
using for class A and class B systems sepa- 
rate formulas, where in the former case the 
series 1/(1 - x) with x = E(6)/E(5) is used 
while in the latter case the series e x  with 
x = €(6)/E(4) is more appropriate to avoid an 
exaggeration of the magnitude of the correla- 
tion energy. In this way, the mean absolute 
deviation of predicted infinite-order correla- 

tion energies from FCI values is decreased to 
0.3 mhartree for atoms and molecules in their 
equilibrium geometry investigated in this 
work. 

3. Feenberg scaling can be significantly im- 
proved if second-order perturbation theory 
(FX2) is applied and A") is evaluated from 
MP5 energies. FE2 correlation energies up to 
sixth-order are significantly better than either 
MPn or FE1 correlation energies. At sixth 
order, the mean absolute deviation of FE2 
correlation energies from FCI values is just 
0.1 mhartree for equilibrium geometries. Ini- 
tial oscillations in the correlation energies of 
case B systems are suppressed at the FE2 
level. FE2 scaling is clearly superior to pre- 
dictions being based either on Pad6 approxi- 
mants or extensions of the PFLB extrapola- 
tion formula. 

Future work has to prove whether FE2 scaling 
is also useful when only approximated rather than 
full MP5 and MP6 energies, for example from 
MP6(M7) or MP6(M8) calculations, are available. 
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