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ABSTRACT

Based on a cluster operator formulation of sixth-order Meller~Plesset (MP6) perturbation
theory equations for the calculation of MP6 in terms of spin-orbital two-electron integrals
are derived. Efficiency has been gained by systematically using intermediate arrays for
the determination of energy contributions resulting from disconnected cluster operators.
In this way, the maximum cost factor of O(M'?) (M being number of basis functions) is
reduced to O(M?®). The implementation of MP6 on a computer is described. The
reliability of calculated MP6 correlation energies has been checked in three different
ways, namely (a) by comparison with full configuration interaction (CI) results, (b) by
using alternative computational routines that do not involve intermediate arrays, and (c)
by taking advantage of relationships between fifth-order and sixth-order energy
contributions. First applications of the MP6 method are presented. © 1996 John Wiley &

Sons, Inc.

Introduction

T his is the second article in a series of four
studies [1-3], which will describe the devel-
opment and application of sixth-order many-body
perturbation theory (MBPT) in connection with the
Moller—Plesset (MP) perturbation operator [4] for
the purpose of getting improved correlation ener-
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gies for atoms and molecules in a routine way. At
sixth-order MP-MBPT (MP6), correlation effects
are described by single (S), double (D), triple (T),
quadruple (Q), pentuple (P), and hextuple (H)
excitations, where the P and H excitations lead to
new correlation effects not covered by any of the
perturbation methods of lower order. In addition,
MP6 provides a refined description of the coupling
between different excitations, which helps to fur-
ther reduce an overestimation of correlation effects
at lower orders. Of course, coupling between P or
H excitations is not included at MP6 and, there-
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fore, the correlation effects associated with P and
H excitations will be somewhat exaggerated at the
sixth-order level.

In the first article in the series [1], we have
derived explicit expressions for the 36 energy con-
tributions to the sixth-order energy E(MP6) using
a cluster operator notation. In this study, we will
transform the 36 energy terms into appropriate
spin-orbital two-electron integral formulas, which
can directly be calculated with a computer pro-
vided appropriate computer programs are devel-
oped. Because of this, we will also describe the
implementation of such programs on a vector com-
puter and discuss first application of the MP6
method to atoms and molecules. Then, in the third
article [2], we will present various size-extensive
MP6 methods, which can be used to analyze dif-
ferent energy contributions to EQMP6) or to apply
MP6 to larger than the small test molecules we
will discuss in this study.

Although the development of the E(MP6) ex-
pression in the first series [1] has been done in an
algebraic way, the derivation of each part of
E(MP6) was based on the characteristics of its
diagrammatic representation. All terms of the gen-
eral E(MP6) expression can be associated with
connected and disconnected cluster operator dia-
grams. This dissection facilitates the identification
of linked and unlinked diagram terms. We have
distinguished between four major contributions to
E(MP6), namely E(MMP6),, EMMP6),, E(MP6),, and
E(MP6),. The first part, E(MP6),, covers just con-
tributions resulting from connected cluster opera-
tor diagrams, which lead to linked diagram terms
and, according to the linked diagram theorem [5],
fully contribute to the E(MP6) energy. The other
parts cover contributions from the T, Q, or P
disconnected cluster operators T Tz, 2T2 , Or T2T3
E(MP6), covers those Q contributions which lead
to linked diagram terms. Similarly, E(MP6), cov-
ers the linked diagram terms resulting from T
contributions while E(MP6), contains the corre-
sponding P contributions.

In this study, we will stepwise transform the
cluster operator expressions of the first study into
two-electron integral formulas. This will be
straightforward in the case of those terms resulting
from connected cluster operator diagrams. How-
ever, for the disconnected cluster operator diagram
contributions involving higher excitations (e.g.,
ESho, ESho) transformation will result into two-

electron integral formulas, which are very costly to
calculate on a computer. In these cases, the intro-
duction of intermediate arrays that reduce compu-
tational cost will be essential. In the case of MP6,
there are several possibilities to define intermedi-
ate arrays and to reduce the computational cost to
a minimum. We will present here one way which
we have found to be suitable for setting up a MP6
computer program.

In the following section, an E(MP6) eneigy ex-
pression will be derived in terms of two-electron
integrals that can be programmed for a computer.
For this purpose, we will first consider all con-
nected cluster operator terms of E(MP6);. Then,
we will discuss disconnected Q cluster operator
terms contained in E(MP6),, followed by the dis-
connected T cluster operator contributions of
E(MP6); and the disconnected P cluster operator
contributions of E(MP6),. In this way, we follow
the procedure applied in the first article of the
series for the derivation of the energy formula in
terms of cluster operators. In the third section, we
will describe the implementation of an appropriate
program for the calculation of the sixth-order cor-
relation energy E(MP6) on a vector computer. In
this connection, we will particularly focus on the
testing of the reliability of calculated E(MP6) val-
ues because this is a major problem in programs of
this size and degree of complication. Finally, some
applications of the new MP6 method will be dis-
cussed.

Derivation of the Sixth-Order Energy
E(MP6) in Terms of Two-Electron
Integral Formulas

We first consider the energy terms EY) . asso-

ciated with connected cluster operator dlagrams
(see Egs. (28) and (29) of [1]),

1,2,3 Y
EQyx, = Z Z<®O‘(fi<z))fx7‘<by>
i, ] y
X (E, — E) ™" {@,|7T2]d,)

(iorj=1,2,3for X;or X,=S5,D,T),
(1)

where excitations Y =5, D,T, Q are denoted by
subscript y = s, 4, t,q. For P, H or general excita-
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tions X, we will use subscripts p, h, and x, re-
spectively. In Eq. (1), energies E, and E, are
eigenvalues of the unperturbed Hamiltonian H,
corresponding to the Hartree-Fock (HF) reference
function |®;) and the y-fold excited eigenfunction
|<I>y>. The MP perturbation operator V and total
Hamiltonian are defined by

V=V - (D,V|®,) (2
and
H=H, + V. (3)

The cluster operators fi(z) (i =1,2,3) at second-
order perturbation theory are given by

X
fi(2)|(b0> = belq)x>

(X=5,D,Tfori=1,2,3) (4

where the amplitudes b,(x =s,d, t) are defined

by

b, = (E,

X

— E,) (@ |VTMID,), 5)

with the double excitation cluster TV at first-order
being

D
TPIDy) = Y agl®,) (6)
d

and the first-order amplitude a, being

a, = (Ey — E) " H{@,IVD,). )
Both first-order and second-order amplitudes can
easily be expressed in terms of two-electron inte-
grals as is shown in Egs. (A1)-(A4) of the Ap-
pendix.

DERIVATION OF TWO-ELECTRON INTEGRAL
FORMULAS FOR E(MP6),

The sum of all energy terms EY), . defined in
Eq. (1) is equal to E(MP6), [1] and can be ex-
pressed by Eq. (8):

S$,D, TS,D D, T T T Q
EMPEL=| Y Y + ¥ Y+ ¥ ¥

X, X, Y X, X, Y X, X, Y

XEQ)y x,- (8)

SIXTH-ORDER MANY-BODY THEORY. Ii.

E(MP®6), covers 16 different energy terms result-
ing from S, D, and T excitations. When converting
the matrix elements (®,[VT®|®,) (y =s5,4d,t,q;
i=1,2,3) in Eq. (1) into a two-electron integral
form, one obtains the arrays u;-u, listed in Table
I. With the help of arrays u;—u,, one can derive
two-electron integral formulas for the 16 energy
terms of E(MP6), in a relatively simple form. For
example,

E=Y i, ui, 2) a)”l(i’“), ©)

i € — €

sy u,(ij, ab)u,(ij, ab) (10)

1
411 b e+e—e—eb

u,(ijk, abc)ug(ijk, abc)

E®) - ,
brr (3|)2§’§cei+ej+ek—ea—eb—ec
1)
ug(ijk, abc)ug(ijk, abc)
Effr=—L Y ,
3n ik abc i+ej+ek——ea—eb—ec
(12)
By = =2 T
rer (4')2 ikl abed
uy(ijkl, abed)uy(ijkl, abed)
ei+ej+ek+e,—ea—e,,—ec—ed'
13)

In Egs. (9)-(13), indices i, j, k,1,... denote occu-
pied spin orbitals while 4, b, ¢, d, ... represent vir-
tual spin orbitals. According to Table I, calculation
of arrays ug(ij, ab) [or u,(ijk, abc)], ug(ijk, abc), and
uy(ijkl, abed) requires O(M7), O(M?), and O(M°®)
computational steps while calculation of the other
arrays involves just O(M®) or even less steps (M
being number of basis functions).

Two-electron integral expressions for all 16
terms of E(MP6); can be constructed with the help
of Tables I and II. Comparing the various E(MP6),
terms in Table II, it becomes obvious that evalua-
tion of E{; is most costly because it requires
calculation of array uy(ijkl, abcd).

DERIVATION OF TWO-ELECTRON INTEGRAL
FORMULAS FOR E(MP6),

The energy part E(MP6), = E(MP6),, +
E(MP6),, contains contributions associated with
the disconnected Q cluster operator [1]. E(MP6),,
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TABLE |
Definition of arrays u,-u,.?
Arrays Expressions Two-electron integral formulas Cost
uy(i, a) (DEVIP|Dy) ~Eme{mallie)be, Oo(M®)
u,li, a) (D2VTE D) — %o {mallefybef + ¥ .. .(mnllieyb2e ] O(M®)
ugli, a) (DT> I mner{mnllef ybact oM7)
u,ij, ab) (DT |D,) T Xp(—1)PP(i/j)(abllejdb?
+Xne(—1)PP(a/b){mallij>bE, o(m?)
ug(ij, ab) (DIWVTR D, ) 3o (abllef)bg + L, (mnl i) b5 ]
—Lmelpl— )PP(I//Ia/b)<mbl|/e>b,-7,‘,’ o(m®)
uglij, ab) (DEPWVTE Dy ) 3 mer Lp(—1)FP(a/b) bmllef yb3e!
+ZmneLp(—1)PP(i/j){mn||ej)b2be] oM7)
u,{ijk, abc) q>,f;f°1\7f*2)m>o> Lp(—1)PP(i/ijla/ bc) T (belleidbie — ¥, {malljk)bES] oM7)
uylifk, abe) (DLeVTD|Dy) 3[EeTp(~ 1)Pp(a/bc)<bc||ef>bf;:f
+ X Lpl= )PP jk){mnl|jk>babc]
—LneLp(=1)Pli/jkla/bc){mallie)bjs? o(m8)
u,ijkl, abed) (DELIVTR D) T Zp(—1)PP(i/ jkilab | cd){ie||lab)bgde
+X,Zp(—1)PPij /jkla/ bed)ijllma)blsd o(m?)

(—1)PLLPLi/f) [P(i]jk)] denotes the sum of the identity and the permutation(s) of / with j (and k) while the permutation symbol
P(i/jla/b) lor P(i/jkla/ab)] stands for P{i/j)P(a/b) [or P{i/jk)P(a/bc)]. Note that in a symbol such as P(i/jkllab/cd)

[=P(i/jkI)P(ab/cd)] permutations a <> b and ¢ © d are excluded.

covers all energy terms involving the disconnected
operator T These are the contributions
(D, v (T(l))z] @) with(1) y =dand ) y = ¢,
q, and (3) y = h, namely (&, [ V(1/3')(T(]))3]c|¢) >
and (®, ITOIVHT? D, S, which  correspond to
the connected part of (P |VI|®,)(E, -
E) @,V (T(”)ZICD . Hence, E(MP6)2u can be
expressed by the following equations:

E(MP6)2,

= E(MP6)24, + E(MP6)24, + E(MP6)24;,
(14)

where

1,2,3 D

EMPo =2 ¥ ¥ (@,|(12)'7]e,)
i d

X(Ey — E,;z)_1 <(I)d [V%( Az(l))zlc

o)

D . a " 2
<2 (o)) 7] o
d C
X(E, — E;)”" <<I>d [V e ] (qa >
(15)
— 2E8)o + 2ESho + 2E8 0 + ESho
(16)

E(MP6)2s, — <<p0

+ (D,

(1) (79 [73(E0Y] foo)
+ % <<p0 %[((fz(l))T)ZV]C q>y>(50
[7a(ey] o)

+zz £< |( @)'7

(1@ (50 | 73y o)
T,Q
2,

®, X E,
) (o[7a(E0Y] Joo)
. 2% (0| (72) e, XE,
et (o]
~ [EQo + ES%Q(IDH]

+ [ ESho(D + ES) (D]

+ ES}o(Ds + ES)o(IDs

i) @

+ 2ES) (D + 2EL), (D + 2Ef (D (18)
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TABLE Il
Definition of the 16 energy terms of E(MP6), [Eq. (8)] as products of arrays u; and y; (i,j=1,...,9).®

Arrays u, u; ui,a) uyli,a) usli,a) u,lij,ab) usij,ab) uelij,ab) u,(ijk,abc) uglijk,abc) u,lijkl, abcd)

;(i,a)
oS B ER  ER

ESdp  EfY

ugli,a)
E{R
A2 T
u,(ij, ab)
—w EQs  E@Bo  EG
ug(ij, ab)
i ESo  ESh
if
uglij, ab)
e Bl
u,(ijk, abc)
e S ESH
ijk
ug(ijk, abc)
A?ﬁ(c E§67)T
ug(ijkl, abed)
Aabcd E&%T
ijkt

A%, %P, A%RE, and AT559 are given by
A =¢ - ¢,
A",?f'=e,~+e,~—ea — €
A?ﬁ(°=e,+e/+ek — €, — € — €

abcd _ —_ _
A,ik, =€teteteg—€ € — € — €

E(MP6)24,

- (o,

rpjmn

x | agfast, — 23 (=1)"P(a/b)aal
P

p F12 a [y a2
[y Tro(maciey] foo) ,
¢ 23 (=D PG/Paihast
P

A 2f_1
+ <<1>0 %[(sz)*] [V—’(Tg)f] q>0> (19)
3! c +4 Y (- DP PG/ ata] (21)
= ESho(D + ES)L (D). (20) . i
In Eq. (15), all energy terms contain the same =3 Y z,(ij, mn)a?l,
matrix element (®,[V3(T{P)]-|®,), for which a mn
two-electron integral form is given by Egs. (21) -y Z(—l)P P(a/b)z,(b, e)a’s
and (22), respectively. e P
1y ij, ab) + 3 Y (=1 /2y, m)a,
m P
—_ ~ 2
— ab (7D
= <<I>,~j [Vz(Tz )]C|<Do> + 3 Y=/ z,lia, nf)alf.  (22)
1 nf P
= — ) ) (mnllef)
4 mn ef

Here, the permutation symbol P(i/j) [or P(a/b)]
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TABLE 1l

Definition of intermediate arrays z,-z,,.

Intermediate array Expression Cost
z,(ij, mn) 3Zor(mnllef)as’ o(MS8)
z,(b,e) 3T mn r{mnllefyall O(M?)
z4(j, m) —3L, or{mnllef)as, O(M%)
z,(ia, nf) T, o{mnllefyage O(M®)
z,(i, be,f) LmeZp(—1)PP(b/c)(mbllef)ass — 3L, {mnllif)ass O(M®)
z¢(jk, m, a) 3LoCamllefdafl + L, Xp(—1)PP(j/k){mnllej)age O(Mm®)
z,(cd, jki,m) Zp(= VPP KNZE (KlImnyasd — £, L0 (- 1)PP(c/d){mclljeyagf oM7)
z4(bcd, ki, e) 35X (—1)PP(b [ cd){cdl|lefyal! oM7)
z4(i, be, f) ~T(bcllefyb? — T, ((mbl|lifybS — (mclifybk) O(M®)
Zy(jk, 1, @) ~ L. (kllmbbg, — E.(lalljedbg — (lallke)bf) O(M®)
z,(mn, jk) 3Zer{mnilefya O(M®)
z,,(i,m) — 3L, omnllefag Oo(M®)
z,5(bc, ef) 2T nimnllef yabe O(M®)
z..{a,e) — 3. {mnllef)ad O(M5)
z,5(ma, ie) r, f(mn|lef)a? O(M®)
z6(i, be, f) — 3 mn o{mnllef)b2be oM7)
z,(jk,n, a) — 3L er{mnllef>b3s; oM7)
z,4(j, @, bc) %Zk,’daﬁ;’bﬁﬁ" oM’)

denotes the sum of the identity and the permuta-
tion of i (a) and j (b). The arrays z,(ij, mn), z,(b, e),
z4(j, m), and z,(ia, nf), which appear in expression
(22), are defined in Table III. They represent inter-
mediate arrays introduced to reduce the calcula-
tion of u,,(ij, ab) from O(M?) to O(M?®) steps.

With the help of arrays u,(ij, ab), us(ij, ab),
ug(ij, ab), and u,,(ij, ab) (see Table D), one can de-
rive two-electron integral formulas for each energy
term of E(MP6),, in Eq. (16). For example, E{f,
is given by Eq. (23):

Eéél))Q = <<p0|(f1(2))fx7‘<pd>( Ey - Ed)il
x(@,|[73(7)] |@0)

u,(ij, ab)u,o(ij, ab)

€t €€~ €

1
-,ZX

ij ab

(23)

Similar expressions are obtained for Ef),, Efq,
and E§), by replacing u,(ij, ab) in Eq. (23) by
arrays us(ij, ab), u(ij, ab), and u,,(ij, ab).
The determination of E(MP6),, involves the
calculation of matrix elements
).

(@[[72E)] Joo)ana ([ 727,

The latter are given by u,, and u,, respectively, in
Egs. (24), (25), and (26):

uy,(ijk, abc)

[722y] Jeo)

= Y (D" P(i/jklasbe)
P

— abc
- (g

< { T [Cmblleats, — Gl e atga
mef

+3am]lef yaifaly,

— ¥ [(Kmnllejags, — Cmnllek)aty,)als

+3(mnl lie)aly, al } (24)
= Y (-D"P(i/jkla/bc)
P
X [Zzs(i, be, Payf + 3 ze(jk, m, a)aly, |.
f m

(25)
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uy, (ijkl, abed)

ubcd
z}kI 0

- ¥ Y (-7 PG/jkllab /cd)
m P

[V T(l)) .

X z,(cd, jki, m)ak,
- Z Z(—l)”P(z‘j/kua/bcd)

X zs( bed, ki, e)aif (26)

1]’

where the intermediate arrays zs(i, be, f),
z4(jk, ma), z,(cd, jkI, m), and zg(bcd, ki, e) are given
in Table WI. Utilizing arrays uy(ijk, abc) and
uy,(ijkl, abcd) [Egs. (25) and (26)], expressions
(27)-(33) can be derived for the seven energy terms
of E(MP6),, shown in Eq. (18):

EQ,AD + ES} (D
1
= Y bl — Y aku,(ijk, abo)|, (27)
ia

4 jk, be
%QQQ(II) + ES) oD

= — Z Y albifu,(ijkl, abed), (28)
16 ij, ab ki, cd

E(6) Q(H)b
uy,(ijk, abc)uy,(ijk, abc)

LY

2 _ _ ’
(3!) ik abe €i tete—€ €€

(29)
1
EGbo(IDs = @
Y uy, (ijkl, abed Yu,,(ijkl, abed)
ijki abed € T € T € T € —

€, — € — € — €
(30)
E© (D)

203 u,(ijk, abc)u,,(ijk, abc)

(31)2 e G TG e~ € €’
(31

E}ﬁgg(n)

ug(ijk, abc)yuy,(ijk, abc)

’
(31) ,,kuhcf""fj"‘fk_fa—fb_f

C

(32)

SIXTH-ORDER MANY-BODY THEORY. i

E®) =
T 0Q (II) (4 ' )

vy uy(ijkl, abed) uy,(ijkl, abed)
ikl abed €& T € T €+ € — € — €

— € — €

(33)

The calculation of E(MP6),, is clearly more costly
than the calculation of E(MP6)2u , which requires
just O(M7) computational steps. ‘The most expen-
sive terms of E(MP6),, lead to O(M®) computa-
tional steps. Equations (27) and (28) reveal that the
T and Q energy denominators disappear. This
permits a considerable reduction of the computa-
tional cost. For example the evaluation of E{,(ID
+ E& (D, and ES),UD + ES) (D, can be re-
duced from O(M7) and O(M 9) to no more than
O(M®) steps by using a series of intermediate
arrays [see Egs. (A5)-(A14), (A15)-(A18) and
(A19)-(A32) of the Appendix].

E(MP6),,, is the only MP6 term, which covers
H contributions. However, Eqg. (19) does no longer
depend on the H energy denominator (E, — E,) ™"
[1]. The calculation of the energy term ES}, in Eq.
(20) requires just O(M®) computatlonal steps,
which can be shown by separating the term ES)
(= E(MP6),, ) into two parts, namely ES);o(D) and
E§ho(D. ES},Q(I) is give by

ES) oD = < (fél’)T]zfz‘l’[V%(fz‘”)Z]C(‘PQ

== Z ZakIQk (uyg,a xa), (34)

4k1 cd

C

where we have used the following general nota-
tion [6}):

Qi (w,a X b)

=32-28, )Y Y wlmn,ef)

mn ef

x{atfesh, + ot bf

—22( D Pc/d)(assbds,

+a$f,,bk,) -2 (=D Pk/D(a b,
P

+agf bid) + 42( VP Pk /lle/d)a, bdf}

(35)
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Here, w represents any array with four indices
m,n and e, f as, for example, u,,(mn, ef) or the
array of two-electron integrals (mn||ef). By com-
parison of Egs. (35) and (21), one can see that the
computational requirements of Qf#(w, a X b) and
u,(ij, ab) are both O(M?®).

The energy term E{),,(ID is given by

y

ES)oD

o |2[(ran ] Vl Ty
0j2 ( 2 ) 3!( 2 )

-5 T T e

32 ij, ab kI, cd

c

m P

1
X { -7 L Y (=1’ P(i/jkllab/cd)

[Z( nip Gi/kD Y, (mnl Ief)aefa‘d]

n,ef
+ Y Y (-0 PGj/kla/bed) Y {mnllef )
f 14 mn, e
mkanl

——Z( DY P(b/cd)act akl]a“f} (36)

As written in Eq. (36), the evaluation of ES),(ID
involves O(M'?) operations. However, as shown
in the Appendix [Eqs. (A33)-(A42)], the actual cost
of calculating ES),(ID) can be reduced to O(M*®)
steps by using 11 intermediate arrays.

Next, we consider Q contributions due to the
disconnected cluster operator T{VT{ which are
summarized in E(MP6),,:

E(MP6)2
- <q>o|(f~2<2>)*(Vf;l)r‘gn)c’%)
+2(,| (1) VIPTO |, )

+<<I>0%

= [ESbp + ESoM] + 2[ Efp + Efdo(]

[t wrpte

q>0>c (37)

+[ESyp + EQ oM. (38)

The first term of Eq. (38) can be obtained by

@ f(z) t vfa)T‘a) ®
o\ 12 2 127).[Po

ESLp + ESoM

= Z}:bk, e(1,a X b) (39)

Kkl cd

in which I denotes the array of two-electron inte-
grals (mn| |ef ). The calculation of Eq. (39) requires
just O(M®) operations similar as the calculation of
ESho-

The second term in Eq. (38) is given by

E®), + S

< I(T(Z) T“TA(1>T<2)|(;[,0>

Il

= - Z ag} n Z ug(ijkl,abcd)b,ﬁf]. (40)
l] ab kl, cd
Although Eq. (40) contains u,(ijkl, abcd), which is
an O(M?) term and thereby one of the most ex-
pensive terms at sixth-order, introduction of addi-
tional intermediate arrays reduces the computa-
tion of E{}, + Ef,(D to O(M7) operations as is
described in the Appendix [Egs. (A43)-(A49)].
The last term of Eq. (38) is of the form

ES)p + ESho(D
<p0>
C

= <<I>0 %
¢0>

A 2— A A
- (o3[ ] 7} feore
}C
A 2— A A
+(af(3[(re)]7) fotele)
D C
(41)

where the first part (d)ol{%[('fz(l))*]zV}sz(l)TAz(z)Ifb(,)
is equivalent to EJ),(D + ES) (I, given in Eq.
(28). The second part of Eq. (41) can be evaluated
according to
)
c

A 2— A
<q>o{%[( o] V} FOTE
[ 1) V] (1) FOT@

- (o,

PO 2 [N
(Tz(l)) ] VIOT®

),

Z agi Qi (by, a X b)), (422)

with b, being
b, = (0| VTM |@,). (42b)
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In summary, the calculation of the term ES), +
ES)o(D involves just O(M?®) steps. However, the
determination of E(MP6),, requires O(M’) opera-
tions due to the calculation of the triple ampli-
tudes bf%* in the contribution Ef),, + Eo(D.

DERIVATION OF TWO-ELECTRON INTEGRAL
FORMULAS FOR E(MP6),

T effects due to the disconnected T cluster
operator T{PT{V are covered by E(MP6),, which is
given by Egs. (43) and (44):

E(MP6)3

— (@,

(7T
+2(®,
+2(@,(
<q>

= [EQs + EQo] + 2[ ES)s + ES (D]

(T VT<2>T<1>]<I>0>C

7@ Vf1<2)f2(1>}¢0>c

%[ T(l) ] VT(Z)T(l)

O] > (43)
c

+ 2[ Ef)s + ER (D]
+[E§)s + ESL o). (44)

By introducing arrays uy;(i, a) and u,,(ij, ab) de-
fined by Egs. (45) and (46),

u,(i, a) = <<I>;‘

(VIT) [,

It

> Z L Cmnllef Y(bfaly,

mn ef
—biatf — 2b%a%)). (45)
u,,(ij, ab)

(o

Y Y (=DPPG/)}mnl|jed(bgast

mn,e p

__1pe,ab a be_ b ae
Zbiam bm in bmam

+ ¥ L (=D Pla/b)amllef )(bat!

m,ef P

—sbhatl + bralf — bealf), (46)

j¥im

(VIRTP) |eo)

SIXTH-ORDER MANY-BODY THEORY. |l

the first two bracket terms in Eq. (44) can be
calculated according to Eqs. (47)-(49):

EQs + EQo(D = <q)0l(fl(Z))TVfl(z)fz(l)'q)0>c
= Y blu(i, a). (47)

i,a
ES}s + ESo(D = (|(T2) VIOTP|@, ).
(48a)

(o] (22) (7110) [e)
+ (@,

1
-3 ) [b{‘j”u14(ij, ab)

4 ij ab
+be(bfb? — b)) (49)

(F9) (V) cfo)
(48b)

In Eq. (48b), we have used the fact that

(2

(fZ(Z)) TE(VIP) |<p >
_ <<I)0|(T2(1)) \7|<I>d>(E0 —Ep)"!
X (@ TO(VIE) [ o)

= (@) (T) T3 (F@Y |0,).  (50)

Arrays uy,(i, a) and u,,(ij, ab) appear in the CCSD
projection equations [7], which represents an
O(M?*) method. Hence, the evaluation of E& +
EQo(M and ES) + ES}o(D requires only O(M®)
operations.

For the last two parts of Eq. (44), namely E{)
+ Efo(D and ES}s + ES) (D), the computational
cost correspond to O(M7) and O(M?®). To show
this, the E{Ys + Ef,(D is split into three parts:

E®)s + ESoM

<2>T<1>|<1> ) (51a)
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where first and last part are evaluated according to
Egs. (52) and (53) using arrays u5(ijk, abc) and
u,(i, a) defined in Egs. (54) and (55), respectively.

(3')2 Zk %bl,k u15(ijk, abC)/ (52)
ijk abc

<(DO|(féZ))*TAz(l)(VTAl(Z))C|(DO> - Zu16(i/ a)l;;‘, (53)
i, a

u,5(ijk, abc)

— abc
- (o

(VEOTO) [,
= Y (=1D"P(a/beli/jk)
14

X [Zzg(i, be, Paif + Y z0(jk, 1, a)uff],
f !
(54)

ST, (69)

jk  bc

|

u, (i, a) =

with b7 = (¢ — €)b?. Arrays 2z(i, bc, f) and
z1(jk, 1, a) of Eq. (54), which both require O(M?>)
operations, are given in Table IIL

The second part of Eq. (51b), namely
(D KT(Z))TT(Z’(VT(”)CId)O) can be combined with
some part of Ef), + EQ) (D [Eq. (40)] as is ex-
plained in Egs. (A43)—(A49) of the Appendix.
There, it is also shown that this leads to a reduc-
tion of computational cost from O(M7) to O(M®).
Thus, the most demanding step in the computa-
tion of EfPs + EQ)o(I) is the evaluation of
u,5(ijk, abc) of Eq. (54), which involves O(M?)
steps.

The final term of Eq. (44), EG}¢ +
tains two parts:

Eg’%Q(I), con-

ES)s + ESLo(D

= <¢’0%

Bl (e

~n | rfm
[(T2 ) ] VT®TS

2,)
c
doc).

%[(fz(l))f}ZTAfZ)(VTAz(D)cl‘Do> . (56)

C

The first part of the right side of Eq. (56) adopts
the two-electron integral form:

(o o)

T<2> V] o) %( )

ey T re(vie)

o

2

%),

Y Y a0 (uy, a X a), (57)

kIl cd

while the second part can be written as

o

)| T ) fe,)

= Y blu,(1,d), (58)
Id

where array u,,(l, d) is defined by

o) T (vie).

Array u,,(l, d) can be evaluated according to Egs.
(A50)—(A57) of the Appendix, where the computa-
tional cost is given by O(M®) operations. Hence,
the evaluation of both ES)¢ + ES)o(D) and E{; +
Ef) o involves just O(M?) steps.

(1, d) = <q>0 q>,d>c. (59)

DERIVATION OF TWO-ELECTRON INTEGRAL
FORMULAS FOR E(MP6),

The analysis of E(MP6), reveals that calculation
of the terms resulting from the disconnected T
cluster operator T,T, does not lead to higher com-
putational cost than calculatlon of those terms that
result from the connected T operator T,. This
conclusion also holds in the case of the P cluster
operator. In the following, we will demonstrate
that the computational requirements of the terms
resulting from the disconnected P operator T,T,
are not the highest of an E(MP6) calculation since
they require just O(M?®) steps.

The P term E(MP6), is given by

E(MP6)4
= (o[ (1) TEOTR |0,

+<®0—;—

= [ Eg“ﬁgT +

(UMM

@)
o

ERo] + [ES: + ESho]. (60)

40

VOL. 59, NO. 1



For computational reasons, the first bracket term
of Eq. (60) is separated into parts I and II:

Efdr + Efdg
= [ES: D + EQo)
+[ES (D + ER, (D]
- (o) () (E010) o,

+ <<D0'(f§2))T(\7f2(1)f3(2))C|d)0>’ (61)

which can be calculated according to Egs. (62) and
(63):

E€ (D + ESo (D)
- o) ) o),
- (710
= Y u(i, Duy(i, a) (62)
ia

and
ES (D) + E(TégQ(II)

< ‘(Ta)) T(”T(Z) \¢0>

f

(3') 1]k uls(ijk/ ﬂbC). (63)
ijk abc

Array u,4(ijk, abc) of Eq. (63) is given by

u5(ijk, abc)
= <¢>fo

(ViTe) fo,)

= —Z Y- (mnllef)

mn ef
X[Z(_l)PP(i/]'k)(bl",ﬁ;a]{ — Zb]‘}frﬁ ef)
P
+ Z(—l)PP(a/bc)(b;‘; abe — Zbibjﬁceafnfn)
P

+ Y (-1D"P/jkla/be)
14
X (4bheeat] — 258 — 267 a%)

jkm*in

= Y (-D°PG/jk)
P

SIXTH-ORDER MANY-BODY THEORY. |l.

Zzu(m" JObims, + Zzlz(i,m)b;‘kb,ﬁ]
m

+ 2(—1) P(a/bc)

X 2213(bc ef)b! [+ 2214(51 e)b,]k]
2

+ Z(—l)”P(i/jkia/bc)
P

X 2215(ma, ie)b]l;frz + ZZlé(i/ be, f)u;’[
me f

+ Y z,(jk, n, a)ale |, (64)
n

where arrays z,,-z;; [~ O(M7)] are defined in
Table IIL. Array u,(i, a) in Eq. (55) requires O(M7)
operations because it depends on the triple ampli-
tudes by, Evaluation of Ef}.(D) + Ef},(D and
ESUD + E (D leads to O(M7) and o(M?®)
steps, respectively.

The second bracket term of Eq. (60) can also be
split into two parts:

6 6
EShr +EShg

- (s,
- (s,

ot = A
ity 7ot

@)
c

[y T aee), o)

C

P -
(oot T(7rt) Joo)
= [ES @ + ESL D]

+[ ES) - (D + ES), (D). (65)
In Eq. (65), term I can be calculated according to

>C

AN T2 =nyen
- (e, %[(sz) | (vieie)

A 2 ~ — A
- (o Tr(@i) Joo)
C
A 2 A — A
+ <<I>0 %[(T{“)T] TP(VTP), <1>0> (66a)
C
== Z > a1 Qi (ug, a X a)
Kkl cd
+ Zb?ulg(il a)/ (66b)
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where array u,4(i, 4) is determined by

u(i, a) = Za?;’”w(]'r b)

-= Z ai/z1g(j, a,bc),  (67)
] ch

using intermediate array z4(j, 4, bc), which repre-
sents contractions of the triple amplitudes b, with
the double amplitudes a, (see Table III). Accord-
ingly, the computational requirements for the
calculation of E$} (D + ESL (D) are determined
by the evaluation of the triple amplitudes b,
[~ O(M7)].
The second bracket of Eq. (65) is given by

ES) (D) + ES) (D)
o L[ty (Frote) |o
0|2 ( 2 ) 2 137 %o

— }: Y. ailagiuy(ijkl, abed), (68)
32 ij, ab kI, cd

I

where array u,,(ijkl, abcd) is defined by

1y ikl abed)
- <<p?.bcd

Z( DFP(ab/cdlk/iD Y. Y (=D
f P

X P'(c/d) Z (md|lef yage, by,

iji

(VA1) |@o)

—Z( D P(c/abdlij /DY T (D7
m P

xP’(k/l)Z (mnl |If Yag bl
nf

~ Y (—~1"P(ab/cdli/jkl)
P

1
XZ(EZZ( D P'(c/d)mdllef b s

e P
+ L (=D P'U/K) L Cmnl |1 yblcd | a2,
P’ nf

+ Y (=17 Pa/bedlij /k)
P

M ( Y (=D P(d/be) ¥ (md lef YbEiS
f \ P me

1
+= ¥ X (=D P (k/D{mnl lIf Y52, | a

2 mn P’
1
-~ 2(—1)”P(ab/cd|l/ijk)

X }:(mnl \fYasd biyf

-3 Z(—l)PP(d/abclij/kl)

X Z(mdl lef af/biis,. (69)
o

Since the evaluation of wu,,(ijkl, abcd) involves
O(M™) steps, one has to use intermediate arrays
to reduce the computational cost for the evaluation
of ES) (D + ES},(D. In the Appendix [Egs.
(A58) -(A80)] 1t 1s described that ES) (1D +
ES)o(ID) can be split into four parts, each of which
can be evaluated in no more than O(M?) compu-
tational steps using several intermediate arrays.

Implementation of a MP6 Computer
Program

In the previous section, we derived two-electron
integral formulas for all 36 MP6 energy terms
grouped into the four energy parts E(MP6),,
E(MP6),, EQ(MP6);, and E(MP6),. The most expen-
sive terms [ > O(M?)] that have to be calculated to
obtain the energy E(MP6) are summarized in
TableIV.

In each case, we have checked how by the use
of intermediate arrays the computational cost can
be reduced to a minimum, and we have found that
this can be done for all the disconnected cluster
operator terms associated with T, Q, or P excita-

TABLE IV
MP6 energy contributions requiring high
computational cost.

Energy contribution  Expression Cost

E(MPg), ES), Eq. (11) O(M®)
E{®), Eq. (120 O(M®)
E®), Eq. (13) O(M®)
EMPB),,, ES)o(iD, Eqg. (300 O(M?®)
EfFo(N) Eq.(32) O(M?)
E%Q(M) Eq.(33) O(M?)
E(MP6), ESL() + EEL () Eq. (63) O(M?®)
ESL) +ESLU)  Eq.(68) O(M®)
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tions in E(MP6),, E(MP6),, and E(MP6),. How-
ever, in some cases it is of advantage to combine
the calculation of disconnected cluster operator
terms with that of related connected cluster opera-
tor terms involving a higher cost factor rather than
calculating each MP6 term individually. In this
way, superfluous input/output (I/0) operations
are suppressed in exchange of a slight increase in
computational cost. We have found that in this
way the calculation of E(MP6) becomes much more
efficient.

In Table V, all MP6 energy contributions are
listed in the sequence they are calculated within
the ab initio program package COLOGNE9%4 [8].
First, the double amplitudes a; from a MP2 calcu-
lation are used to calculate the second-order am-
plitudes b, (x = s, d, t) according to Egs. (A2)-(A4)
of the Appendix. Utilizing first- and second-order
amplitudes, the terms EJ),(ID) + ES),(D [Eq.
(68)], ES)o(D [Eq. (36)], ESQL,AD + ES) (D), [Eq.
@71, Eg”Q p + ESho(D [Eq. (42)] of steps 1 and 2 as
well as some matrlx elements for ES) (D + ES}o(D
[Eq. (66)] of step 3 (Table V) are calculated. Next,
array ug is determined, which has to be available
for carrying out the loop over T excitations, which
leads to the calculation of E&}; [Eq. (11)] and ES&),
[Eq. (12)] in step 4 and requires O(M?) operations.
Although less costly, contributions E$)s, ES)(D),
Ef}s, E®) oD, and Ef)}, are calculated at the same
time. In this way the MP6 program is simplified
and separated calculations involving a large
amount of I /O avoided.

In step 5, the two contributions Ef),, [Eq. (39)]
and ESho(D [Eq. (39)] are computed. Computa-
tionally most demanding is step 6, in which one
has to loop over all Q excitations to evaluate the
O(M°®) terms Ef); [Eq. (13)], Ef,(ID [Eq. (33)],
and E(%Q(II),, [Eq (30)]. In the Q loop, also some
less costly terms such as ES) (D + ES (D, [Eq.
(28)] and E)p + E®) oD [Eq. (40)] are calculated
to reduce extensive 1/0 operations. Step 7 leads to

ES)o(D [Eq. BD] and E (D [Eq. (32)], where
calculation of the latter term also requires O(M®)
operations. The evaluation of a number of MP6
contributions requires just O(M7) or less compu-
tational steps. Actually, determination of these
terms can be connected with the calculation of
appropriate MP5 terms [6,9], which leads to a
clear structuring of steps 10-19. In step 22, the last
O(M?8) term, E€} (D + ES (D [Eq. (63)], is eval-
uated. The calculation of E(MP6) is finished by

SIXTH-ORDER MANY-BODY THEORY. Ii.

complementing energy contributions ES},(ID, [Eq.
(29)] and E§}s [Eq. (58)] in steps 23 and 24.

We have set up a MP6 program in such a way
that it can also be run with a program package
such as Gaussian [10]. In addition, we have pro-
grammed somewhat modified routes to E(MP6),
which are needed for testing purposes (see below)
or which help to evaluate partial contributions to
the MP6 correlation energy.

Testing and Application of the MP6
Computer Program

Computer codes such as the MP6 program are
rather complicated although they are set up in the
same way as lower-order MPn programs have
been set up [6,9,10]. Beside the actual develop-
ment work, the programming work, and the work
necessary to reduce run times of the MP6 pro-
gram, it is a major part of the work and in the end
most time consuming to make sure that the final
computer codes are free of errors. We have used
three different ways of checking the MP6 com-
puter programs.

First, we have compared calculated E(MP6) val-
ues with results from full configuration interaction
(FCD) calculations. These authors have shown that
high-order MPn energies (up to n = 48) can be
obtained from FCI calculations published by
Handy and co-workers [11,12]. In this way, FCI-
based MP6 energies (FCI-MP6) have been calcu-
lated for a number of small electron systems in-
cludmg H,0,'4,, (R, = 0.967 A, 0 =1076),
NHZ, By, both at equilibrium geometry (R, = 1.013
A, ©=103.2°) and at "stretched geometries” with
15R, and 2R,, BH,'S, (R, = 1232 A), Be,,'S!
(R, = 525A) CHZ,Al(R = 1102A 6 =104.7°),
and CN,3* (R, = 11619 A). In Table VI
FCI-MPn energies for n =2,3,4,5,6 from the
work of Handy and co-workers [11,12] are listed
and compared with the corresponding MPn ener-
gies obtained in this work. Lower orders than
n = 6 are included into the comparison to identify
differences in energy caused by geometries or other
computational differences that may result from the
limited information possible in a publication.

For all electron systems listed in Table VI, calcu-
lated MP6 correlation energy contributions agree
with the corresponding FCI-MP6é values within
107¢ hartree, which is also the difference between
many of the lower-order correlation contributions.
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TABLE V
Implementation of the MP6 program.

Required arrays

Step and comments Expression Calculated MP6 contributions Expression
1 ay and b, Egs. (A1) and (A4) ESH ) + ES) (D), EG)o) Egs. (A58)-(A80) and
(A33)~(A42)
2 ay, b, and by Egs. (A1)-(A3) E@o() + ELL, Egs. (A15)-(A18)
(D HEUTMON2VLTOTP10,)c
in EEL, + EEL () Eq. (42)
3 ayand b, Egs. (A1) and (A4) (DL UTNRTAWT) ol gD
in ELL () + EELL() Eq. (66b)
4 bg, by, b;, and ug. Egs. (A2)-(A4), and Ef); and E{9); Egs. (11) and (12)
The T loop is Table | ES)s + ELL) Eg. (48a)
carried out EL)s + EEL0) Eq. (51a)
ES), Table It
5 agand b, Egs. (A1) and (A3) EShp + ESL ) Eq. (39)
6 Ug Table | E&); and EE), () Egs. (13) and (33)
U Eq. (26) ESLo(), Eq. (30)
ayand by Egs. (A1) and (A3) ES o + ES D, Egs. (A19)-(A32)
The Q loop is ESL + ERL0) Eq. (40)
carried out
7 u,, ug, and uy, Table | and Eq. (25) EL) () and E{S, (1) Eqs. (31) and (32)
8 b, and u,, Egs. (A2) and (45) EQs+ESLD Eq. (47)
9 ay and uy, Egs. (A1) and (22) ES LN Eq. (34)
Calculation of
steps 10-19
is based on MP5
10 us and u,qg Table | and Eq. (22) ES), and Ef)q Tabie Il and Eq. (16)
11 u, and u, Table | EE), and ESL, Table [l
12 ug and u, Table | ES, Table Il
13 Us, Ug; Uy, Uy Table | Ef); and ESY, Table II
14 uy and uy, Table | and Eq. (22) Efs and ES), Table Il and Eq. (16)
15 Uy, Ug; Ug, Uyg Table | and Eq. (22) EQ; and ES), Table Il and Eq. (16)
16 u, and uyg Table | and Eq. (22) E8sand EE, Table Il and Eq. (23)
17 ayand u, Eq. (A1) and Table ] (DS UTNPTOVED) o1 @4 >
for ES)s + ES)0) Eq. (57)
18 u, and ug Table | E&), and E{); Table H
19 Uy Table | EQ, Table Il
20 ay and ug Eq. (A1) and Table | (DR UTINTRT VT P) 1B )
for ES () + EEo0) Eq. (66b)
21 us and ug Table | and Eq. (55) EL1) + ERL () Eq. (62)
22 b, and u,q Egs. (Ad) and (64) EL ) + ELL ) Eq. (63)
23 Uy Eq. (25) ES (), Eq. (29)
24 b andu,, Egs. (A2) and (59) (D IUTINRT DV 1P e
for EQ)s + ELL0) Eq. (58)
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TABLE VI

SIXTH-ORDER MANY-BODY THEORY. Il.

Comparison of directly calculated MPn energies (n = 1, 2, 3, 4, 5, and 6) with MPn energies from full Ci
(FCI) calculations for some smali electron systems (all energies in hartree)

EM MPn MPn-FClI EM MPn MPn-FClI

1)  H,0,'A,, R,=0967A, 6=107.6°,6-21GBasis 5) NH,,2B,, 15R,, 6=103.2°,6-31G
E(HF) —75.888432 —75.888430 E(HF) —55.405143 —55.405143

E@ —~0.120897 ~0.120865 E® -0.062116 —0.062116

E® —0.003302 —0.003303 E® -0.011394 —0.011394

E® —0.004856 —0.004849 E® —0.008695 —0.008695

E® —0.000488 -0.000488 E® —0.005776 —0.005776

E® —0.000436 —0.000435 E® —0.004888 —0.004887

2) BH,'S* R,=1.232A [4s2pi1d/2sip] Basis 6) NH,,?B,, 20R,, 6=103.2°,6-31G
E(HF) —25.125260 —25.125260 E(HF)  -55.381931 —55.381931

E® —0.060333 —0.060297 E® —0.031539 —0.031539

E® —0.016472 —-0.016482 E® —0.006208 —0.006208

E® —0.005925 —0.005924 E® —0.002508 -0.002508

E® —0.002540 —0.002540 E® ~0.001234 —0.001234

E(©) —0.001228 -0.001226 E® —0.000845 —0.000846

3) CH, 'A, R,=1.102A 6=1047" [4s2pid/2sip] 7) Be,'S; R,=525A 7s3p1d Basis
E(HF) —38.876360 —38.876358 E(HF)  —29.138980 —29.138980

g® —0.092785 —-0.092657 E® —0.061091 —0.061081

E® —0.017902 —-0.017926 E® —-0.020766 —0.020769

E® —0.005481 —0.005476 E® —0.009118 —0.009118

E® —0.002017 —0.002018 E® —-0.004283 —0.004283

E® —0.000973 —0.000973 E® —-0.002101 —-0.002107

4) NH,2%B,, R,=1013A 0=103.2°,631G  8) CN?s* R,=1.1619A STO-3G Basis
E(HF) —55.532248 —55.532248 E(HF) —91.01943 —91.01943

E® —-0.085512 —0.085512 E® —0.09469 —0.09469

E® —0.009815 —0.009815 E® —0.00792 —-0.00792

E® —0.003612 —0.003613 E® —0.01335 -0.01335

E® —0.001192 —0.001192 E® —0.00683 —0.00683

E® —0.000464 —0.000463 E® —0.00633 —0.00634

Although the agreement between FCI-MP6 and

our MP6 data seems to suggest reliability of the
new MP6 program, it does not prove that the latter
is without any errors. Since all test molecules are
rather small possessing just a limited number of
electrons, higher excitations such as P or H do not
contribute significantly to the final correlation en-
ergy. As a consequence, any errors in these terms
do not show up in the comparison between
FCI-MP6 and MP6 energies. This also holds for
any other low-value term and has to be considered
in the testing. Therefore, we have used additional
procedures to check calculated MP6 results. For
example, we have programmed large parts of the
MP6 routines in an alternative way, which is docu-
mented in Table VIL

In the case of the energy terms associated with
disconnected cluster operators (see 1 in Table VI,
we have programmed alternative procedures that

do not take advantage of intermediate arrays and,
therefore, are much more costly. For example, we
have directly evaluated contributions such as
ESho(D and ESH(ID + ES) (D by using Egs.
(36) and (68) rather than the appropriate equations
in the Appendix [(A33)-(A42), (A58)-(A80)] that
are based on intermediate arrays. In the case of
E&s + EQoD, Efs + Efo(D, EQ}s + EGHoM
and Ef}; + Ef, alternatives to those equations

given in the text (see Table VII) are given in Egs.
(70)—(73):

EQ + Eo(D

=<q>

+ (@,

AT A A
(fe) 1e1e] |o,)

[(Ta) T(l)] T\

@,) . 0)
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TABLE VII

Checking of the MP6 program.®

Checking possibility

Energy terms checked

Comments

1. Programming of afternative formulas
Eq. (28) vs. Eqgs. (A19)-(A32)
Eq. (27) vs. Egs. (A15)-(A18)
Eq. (36) vs. Egs. (A33)-(A42)
Eq. (47) vs. Eq. (70)
Eq. (51b) vs. Eq. (71)
Egs. {(57)-(58) vs. Eq. (72)
Eqgs. {62)-(63) vs. Eq. (73)

Eq. (66a) vs. Eq. (66b)

Eq. (68) vs. Egs. (A58)-(A80)

2. Use of MP5 results: First-order cluster operators lead to MP5 terms, which can directly be checked.

72 replaced by 7% in Eq. (16)
(T®Nt replaced by (Ti")! in Eq. (39)
72 replaced by 73" in Eq. (40)
78 replaced by 75 in Eq. (41)
72 replaced by T4 in Eq. (48a)
TP replaced by 74" in u, of Eq. (31)
72 replaced by 75" in uy, us,

and u, of Tables | and |l
uyli, a) [ uyli,a)
—— lor

] replaced by b?

A7 Af
in Table il
uy(ij,ab) uglij, ab) laced b
or replace
o a5 P y
bgP in Table Il
uglijk, abc) )
——— 5 replaced by b#¢ in
ifk
Table Il
ugijkl, abed)
g—n— replaced by zaiPag’
A%
in Table Il
uylij,ab) uyolij,ab) reolaced
or
A?ib A?ib P
by bfP in Eq. (23)
uglij, ab) uqo(if, ab) renlaced
or
A% AP P

by b3® similar to Eq. (23)
uq,{ijk, abc)

abc
Aljk

in Eq. (29)
u44(ijk, abe)

abc
Al

in Eq. (32)
u4,lijkl, abed) replaced by

abc

replaced by b

replaced by b7g°

tagPagf in Egs. (30) and (33)
uqolij, ab) replaced by (ij|lab) in Eq. (34)

VT replaced by VT§" in Eq. (66a)

ELL o) + ESL o),

ESL0 + Eoln,

ES8)oUn

EQs+ EFW

Ef8s + EfS)

ES)s + ES) ()

Efdr+ Efo

(DR ITINNRTRTT M oIy e
for EEL() + ES QM)

ES’M(]&&TE%(I%)AQ

Efdq

Ef3p + ESdQW)
Ef3o + Ef8a0)

Eo + EGho0)
Efls + EFRN

EfJon

Efdp, ERYp, EFYy. and EGR,
EBbo. EBbr and EFY, EBY;

EQ)s and EE); (or EGY)

ESs and ES; (or E49);)

Eh

Efgr

Efo

Effg and E§}o

EL)a),

IFON()

EAo(l), and E{Zq(1)

ES o

(D RUTSNRTWVT ) 0o
for ESA () + ESL

Checking of the Q loop

Calculations are carried
out with and without
intermediate arrays

MPS5 term(s) used for checking
ESY

EED + EGLW)

2£43

2EES

Ef + ER0

EfJ)

Ef) and EF) and EQY

ES). EED, EF?. and EF)

Efland EQ

E& and ES}

Ef}

ES)

ES (or EEL)

EES

ER)

Ef

EEL(N and £

ES

EGH0)

?In each case, calculated energy terms differed by not more than 10 ~'° hartree.
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e + Eff()
A t— A A
= (|[(f2) 7] t1@

EQ)s + ESho(D)

+(
B + o
P
- Z (@,|(T9) V]e, XE, - E)

i ) o

q>0>. (71)

)

T<’>T<2>] ‘¢0>.
(72)

{ (T(l) ‘7} T(Z)T(Z)

7)o

2 (vﬂn)c|¢°>]

- EMPD (@, |(T®) TP|0,). @3

A program part tested in this way was consid-
ered to be correct if the difference in energy values
obtained by different programs is smaller or equal
to 107'? hartree.

A second way of efficiently searching for errors
in the MP6 program is to replace second-order
amplitudes by the appropriate first-order ampli-
tudes to get the corresponding fifth-order energy
contributions, which can be directly compared with
existing MP5 results [9, 13]. As shown in Table VII,
this procedure is straightforward and can be ex-
tended to (partial) third-order amplitudes to be
replaced by second-order amplitudes or products
of first-order amplitudes. In each case, it was veri-
fied that the energy contributions obtained at MP5
did not differ from the corresponding directly cal-
culated MP5 terms by more than 107!° hartree.
After checking all MP6 energy contributions in the
various ways listed in Table VII, we concluded
that MP6 program and MP6 energies described in
this work are reliable. The MP6 program was in-
stalled on a CRY Y-MP to be run within the ab
initio package COLOGNEY%4 [8].

Conclusions

In the present work, we have described the
implementation of a MP6 program for routine cal-
culations. For this purpose, we have developed
two-electron integral formulas for all MP6 energy
contributions starting from the cluster operator

SIXTH-ORDER MANY-BODY THEORY. II.

formulation of MP6 discussed in the first article of
this series [1]. Particular care has been taken to
reduce computational cost by introducing interme-
diate arrays in connection with the calculation of
contributions resulting from disconnected cluster
operator terms. In this way, the actual computa-
tional cost have been reduced from maximally
O(M™) to maximally O(M?). The four energy
terms which lead to this cost factor are the terms
calculated in the Q loop of the program (Table V).
The second largest cost factor is presented by the
terms calculated in the T loop. For the reason of
reducing 1 /0 operations some of the cheaper oper-
ations are integrated into the T and Q loops al-
though this leads to somewhat higher computa-
tional cost.

Based on the integral formulas presented in this
work, a MP6 program for routine calculations has
been developed and implemented on a CRAY Y-
MP. The reliability of calculated MP6 correlation
energies has been checked by a three-pronged ap-
proach: First, MP6 benchmark calculations have
been carried out for 8 different electron systems,
for which a decomposition of FCI results in terms
of MPn correlation energies are available [11, 12].
MP6 and MP6-FCI results agree within 107°
hartree, which gives indication that MP6 energies
calculated in this work are reliable. However, final
proof for the reliability of calculated MP6 energies
is obtained by carrying out two additional testing
possibilities. These involve the development of al-
ternative program versions. Hence, in the second
step, we have programmed energy contributions
that result from disconnected cluster operators
without the use of intermediate arrays thus lead-
ing to computationally more demanding program
versions. The remaining sixth-order contributions
have been checked by taking advantage of rela-
tionships between fifth-order and sixth-order en-
ergy contributions. In all cases, MP6 energies were
found to be accurate up to 107'° hartree suggest-
ing that all terms checked in this way are correctly
programmed. First applications of the MP6 method
have been presented. A more detailed account of
calculated MP6 correlation energies will be given
in the third part of this series [2].
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Appendix

The evaluation of terms such as E§(’T)Q(II) +
T00 and EQPT(II) + EQPQ(II) etc can be sim-
plified by using intermediate arrays. To demon-
strate this, we first introduce appropriate formulas
for first-order and second-order amplitudes a?’ 2T
b””, and b,"]’,’f, respectively, in terms of two-electron
mtegrals over spin orbitals.

a = (6 + € = &= &) Cablli.  (AD)

b! = —(¢ — ¢, !

[ Y (mallefyad, + = Z (mnl| |ie)as¢ ]

m, ef mn, e

(A2)

b“b—(e+e - €, —eb)
X[—2—(2<ab|lef)uf{+ Z(mnHij)a;‘n”n)
ef mn

- ¥ Y (=D"P(i/jlasb){mbl Ije>a:-‘f;z}-
me P
(A3)
biff =(e; + €+ € — € — € — )

ijk
X Y (=P P(i/jkla/be)
P
x| ¥ bl leiyass Z(malljk)a?,ﬁ,]. (A4)

In addition, we introduce the intermediate arrays
X,—X;9, which represent contractions between dou-
ble amplitudes or double and triple amplitudes:

x,(a,b) = = Za” ’ (A5)
l] c
x,(i, j) = = Z aifaty, (A6)
k ab
xy(ia, jb) = Y a¥aly, (A7)
ke

X4(1],kl) = "'Za”akl, (A8)
xg(ab, cd) = = Za“" i, (A9)
x(1, f) = — Z Yaitbi,  (A10)
ij ab
x,(i,kl, f) = = Z a“”b (A11)
] ab
xg(a, m,cd) = = Z as’bid, (A12)
1] b
xo(kl, f,ijm) = 5 }:a;dbf;’,,{, (A13)
xo(c, im, af) = Za,‘( bife. (A14)

Intermediate arrays x;—xs; can be evaluated in
O(M?®) steps while x,—xg and xy—x;, require
O(M7) and O(M?) steps, respectively. '

DETERMINATION OF E&,(D + EF),0D,
[EQ. (27)]

Energy contributions E&o(D + ES}o(D), are
evaluated with the help of the new array w(i, a)
according to

ESoUD + ESro(Ma = L bw (i, a). (A15)
i, a

Array wy(i, a) is constructed utilizing the defini-
tions of arrays x;-xs, zs5(i, bc, f), and z.(jk, ma)
(see Table IID):

wl(i,a)
= — Z z5(i, be, f) x5(be, af )

2 be, f

~ Y z5(i, ac, f)x(c, f)
o

+ Y z(k, ac, f) x;(ke, if)
ke, f

- E%(k/f)a?[
k. f

1
+= Y z,(jk, m, a) x,(jk, im)
2 jk,m

- Y z,(ik, m, a) x,(k, m)

k,m
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+ Y, z,(ik, m, ) x,(kc, ma)

km, ¢

=Y y,(m, 0)a%, (Al16)

where the additional arrays y(k, f) and y,(m, c)
are given by

1
nlk, f) =5 Y akzs(j, be, f) (A7)
i, be

and

N =

y(m, 0y = = Y a¥z(jk, m,b). (Al8)
j b

Analysis of Eq. (A16) indicates that each term of
w,(i, a) does not require more than O(M ®) compu-
tational steps.

DETERMINATION OF Eif},(ID + E§) (1),
[EQ. (28)]

The energy terms ES),(ID + ES) (D), are cal-
culated according to

ESoD + ES)o(IDa

1
=2 > be]-bwz(ij, ab) (A19)

ij ab
in which the array w,(ij, ab) is defined by
w,(ij, ab)
--¥ zp‘,(—npp(a/b)a?fm(b, e)
+ ¥ L (=D PG/patt y,(j, m)

m P

+ Y alys(ab, c, f) + ¥ all ye(ij, k, )
o f k,n

+ Y Y (-D PG/ ay,(jb, ke)

k,e P

+ Y (abllef > ys(ij, e, f)
ef

+ Y (mnilij) yo(m, n, ab)

mn

— Y (=D"(i/jlasb)
[)

SIXTH-ORDER MANY-BODY THEORY. II.

X[Z (mallie)y,,(j, b, m,e)

me

— Yty (b, ke)], (A20)
ke

and the intermediate arrays y;-y,; by Egs.
(A21)~(A29):

y3(b, e)

1
=-=-) a;’Z{xu(kl, ef)
24y

+ Y <bdllefyx,(d, )
d,f

+ Y, (md||le)x,(ld, mb)

ml, d
— Y (mbll|ley x,(I,m), (A21)
ml

1
yy(j,m) = — 5 Y. (mnl |kl x,(kl, jn)
ki, n

+ Y {mnl 1) x,(1, n)
nl
+ Y (mdl|le) x,(1d, je)

Id, e
=Y (mdlljedx,(d,e), (A22)
d, e

ys(ab, c, f) = g,(—l)PP(a/b)

X dz‘,<bd||ef>x5(cd,ae)

+ Z;(mblllf>x3(lc, ma)|, (A23)
ye(ij, k, n) = );,(—1)"1)(1'/]')

x [2 Cmnl |1y x KL, im)

ml
+ Y (ndl | je) x5(kd, ie)]
d, e

-y a x,5(ke, ne), (A24)
ce

y,(jb, ke) = Y alf [ x,, (K, ef ) + x1,(KL, ¢f)],

ILf
(A25)
ys(ij, e, f) = Z“f‘fxl(cff) + 2 a xy(ke, jf),
c k,c
(A26)
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yo(m, n,ab) = Y a%t x,(k, n) + Y a% x;(kc, nb),
k k,c
(A27)

Yio(j, b, m, )
= Y apx,(lc, je) + Y aly x,(d, e)
e d

1
~ Yakx,(k,m) + = Y apix,(kl, jm),
k 2%
(A28)

yn(j, b, m,e)
= X [<kdl|jf ) xs(ed, bf)
d, f

—bdllef > x,5(kd, jf)]

— Y [{knl |j1) x5(le, nb)
n,l

—nbllle) x,(kl, jn)]

+ 3 [a}’,‘,’, x13(kc, me) + (kblime) x,(me, jc)
m,c

—(mcl | je) x5(ke, mb)] . (A29)

The additional arrays x,,(kl, ef), x;,(mn, ¢d), and
x,3(kc, me) are due to contractions of double ampli-
tudes 457 with two-electron integrals:

1
xu(k, o) = = T (cdllehai,  (A30)
cd
1
x,(kl, ef) = 5 Y (Kl imn)yad,,  (A31)
x,5(kc, me) = Y {md||le)afd. (A32)

1, d

All intermediate arrays contained in w,(ij, ab) do
not require more than O(M°®) computational steps.

DETERMINATION OF Ef),(D [EQ. (36)]

If the term E{), (I is dissected into three parts,
each part can be evaluated with the help of inter-
mediate arrays x;-x; in no more than O(M®)
computational steps.

ESLoD = 3 ) {mnllef)

mn ef
X [wy(mn, ef ), + wy(mn, ef),
+3ws(mn, ef ). ]. (A33)

Arrays wy(mn, ef),, wy(mn, ef),, and w,(mn, ef),
are determined by Egs. (A34)-(A36):

wy(mn, ef), = — Y. afy,s(kl, mn)
Kl
+ Y x5(ab, ef ) y,,(ab, mn), (A34)

ab

wy(mn, ef), = Zafnbzym(nfr Ib)
Ib

+ Y x,(jb, me) y,s(nf, jb), (A35)
jb
wy(mn, ef), = — Y x,(kl, mn)y,,(Kl, ef )
k!
(A36)

+ ) ast, yis(ca, ef),
ca

where arrays y;,~y,, are given by
y(k, ef) = Y agix (b, ) - Za{;jxg,(ke, jd),
b

jd
(A37)

yis(ca, ef) = Y x,(ia, ke) x,(if, kc)
ik
— Y xs5(ab, fd) x;(eb, cd)
bd

+ x,(a, flx,(c, e, (A38)

Yialnf, 1) = — T (KL, jm) x,(jb, k)
kj

+ x,(1, m)x,(b, f)
= Y x,(Ib, kf) x,(k, n)
k

+ Y x5(lc, kf) x,(kb, nc)
ke

+ Y x5(ba, of ) x;(Ic, na), (A39)

ac

yis(nf, jb)
1
= — Y agfxy(ke, nb) + = Y af{x,(kl, nj)
ke 2%

—- Y aitx,(d, f), (A40)
d

Yoo (K, mn)

= Zx4(klr jnYx,(j, m) — x,(1, n)x,(k, m)
j
= Loxgli, mj) x,(kj, ni)

i
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— Y x,(Ib, mc) x5(ke, nb), (A41)
be
Yy (ab, mn) = Y a% x,(ke, nb).  (A42)
ke

DETERMINATION OF E), + Ef),(D [EQ.
(40)]

We refrain from using uy(ijkl, abcd) for the eval-
uation of E{}, + E€),(I) and rewrite Eq. (40):

EQp + EQo(D
= <¢Oi(~f§2))*‘7 (1)T(2)|q) >

- (@d|(1)' (Vi)

(| () (V1) |

+ (20| (1) T(VEE)

In Eq. (A43), the first term can be obtained by

(@

)
@)

o). (A23)

P
)
)c

<f3<2>>*(fo>fz@)C|¢o>

5 ¥ Y bfkew,(ijk, abe),  (A44)
( D ik abe
where array w,(ijk, abc) is defined by
w,y(ijk, abc)
= (oge| [PEOTR] |0 ) (A45)

= Y (-1)"P(i/jkla/be)
P

+ Y z,(jk, m, a)b’:

m
+ corresponding terms with double
amplitudes a; and b, interchanged]

(A46)

Array w,(ijk, abc) resembles u,(ijk, abc) of Eq. (24)
and, similar to u;;, can be evaluated in O(M7)
steps.

SIXTH-ORDER MANY-BODY THEORY. Il

The second term in Eq. (A43) can be combined
with the matrix element

A T A —A
(@0](19) T(VE0) Joo)
of the energy term Ef}; + Ef},(D) thus leading to

a simpler form, in which the operator T{? does no
longer occur.

(a2 2T [,

+ (o,
+ (@

(1 )T‘Z) vIp) l¢>
< ‘ (1) VT(Z)T(Z) \<p0>

( 1)) T(Z)( T(Z) ‘q)0>

(A47)

=_ E za "lws(ij, ab) + 4bfu,(j, b)].
ij ab

(A48)

This expression involves only O(M®) steps be-
cause ws(ij, ab) is equivalent to u,,(ij, ab) when
replacing the double amplitudes a, by amplitudes
b, [see also Eq. (45)].

The last term in Eq. (A43) can be evaluated
according to Eq. (A49):

(@, (:f§2>)*f;1>(\7f2<2>)c|¢0>
= Zuz(i/ a)ulﬁ(i/ 11),

(A49)
which requires O(M7) steps.
DETERMINATION OF MATRIX ELEMENT

<<1>0|2l(r")*lzrmw")cm > IN ENERGY
TERM E(ors + E‘om(l)

The matrix element

o o)

can be evaluated in terms of the intermediate
array u;,(l, d) [Eq. (59)]:
cp,d>
c

u,(l,d)
Y. x,5(la, ec) x,(cd, ae)

a,c,e

k,c

[y ] ()

() ] VD)

=Y x,(1, ) x e, d)
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+ Y xy(il, ke) x5(kd, ie)

i,k,e

+ Y xy5(kd, eb) x;(Ib, ke)
k,b,e

+ Y x,(cd, ma) x,(la, mc)

m,a,c

=Y x5(d, m)x,(1, m)

- Y x,4(jd, im)x (i, jm)

m,i,j

+ Y x,,(b, km) x,(kd, mb),

k,m,b

(A50)

where w¢(k, ¢) is defined by
we(k, ¢)
= Y (jellbe) x,(jb, ke) — 3. <bellke) x,(b, e)

jb,e b,e

1
- 2x14(i,e)af,f -3 Y (abl|ke) x5(ab, ce)

ab, e

+ Y. {mallik) x5(ia, mc)

- Z (k| lme) x,(i, m)
i
+3 ¥ <jtlme) x,(ij, mk)
ij,m

- X x5(b, mag;,.

m, b

(A51)

Arrays x,,~¥,q represent contractions of double
amplitudes a, with two-electron integrals as given
in Egs. (A52)-(A57):

1
x,(1,e) = 5 Y att{iel lab), (A52)
i, ab
i cdf :
x5(d, m) = 5 Y ai(jklimey,  (A53)
jk, c
1
x(il, ke) = ) Za?,b( kel lab), (A54)
ab
1
x,,(cd, ma) = 5 L ai(jkllmay,  (A55)
jk
xg(la, ec) = Y at’{iel |bc), (A56)
i, b
xy0(jd, im) = Y agi(ikl lme). (A57)
k,c

None of the intermediate arrays in u,(l,d) in-
volves more than O(M*®) computational steps.

DETERMINATION OF E(S),(I1) + E{S},(1D)

[EQ. (69)]

For simplicity, we split ESy-(ID) + ES}o(ID) into
the four parts of Eq. (A58):

EQr (D + ESpo(D)
= [E&. (D + ES (D],
+{EG D + ES (D],
+[ESp (D + ESy (D],
+[E§}r D) + E§h(D],, (A58)

which differ in the contraction indices of products
between double amplitudes a, and two-electron
integrals {(md|lef) and <(mnl|lif): (a)
T e ai5(md| lef) and E,; ag(mnlllf); (b)
Y, a’(md|lef> and ¥, al{mnllif)); (c)
Zf a}‘f’(mdl lef > and Zf aj-‘/f(mnl lIf>) as well as (d)
Ton 8 (mnlllfy and E,; afKmd|lef). The four
parts are given by Eqs. (A59)-(A62):

[ EE,(D + E§ (D],

1
==X X a?}’ai?{Z(—I)Pp(ab/cdlk/ijl)
P

32 ij, ab ki, cd

X T Y (=D P(e/d) Y (mdllef yags, bl

f r nte

~ Y (=1 Plc/abdlii/D Y, Y (-1
P m P

<P/ Y llf>u£{,b;‘,-‘i,‘,’}
nf

1
-5 T L aat{ T omdlle)

ij, ab ki, cd m, ef

ce 1ab ae ,cfb __ ce Labf ae bc
x(akmbijlf+ zaimbk{j aimbkj/ 2”1mb:f,’k)

= X (mmllIfY(ag bl + 248 bis),

mn, f

_ cfabd _ af pobd
2“i£bk1m ak{:bijm)}l

(A59)
| E&- (D + ES) (D],

1
==Y Y a?;’ai‘{‘;(—1)PP(ab/cdli/jkl)
p

32 ij, ab ki, cd

1 ’
3> (5 L X (=" Pe/d)ml o b5

ef P’
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+ Y (=D P /K Y (mnl Ilf>b]fk‘f)a?$
P’ nf

1
=X X a?}’ai?{ Y Cmdllef Y(—att b5t
m, ef

i, ab ki, cd
_ cb pae ab 1,ce ch tea
2a;, b + akmbij/r + zuimbjk/)

— Z <m”||lf>(a?§,bj’;fj +2‘1ilfnb?fd

ijn
mn, f
1 _cd b d b
+ faimblanf - a?mblgjr{
~ b + daih sl . (A60)

[ES) (D + ESh (D],

1
- — X X aad ¥ (~1)" Pa/bedlij/kl)
P

32 ij, ab kI, cd

Xy
f

L (=D P(d/be) ¥ (md lef Vbl
p’ me

+ % ¥ Y (=D P /D mnl I Ybgh, | a2f

mn P’

1
7 XX atait{ Gl (atf ol

if, ab ki, cd

Il

1 _cfyabe afy,che _ cft,abe
+ 245 b, — “k{bijm 2ak{bljm

+2agfbrbe + 4a§‘[bb“’)

ijm jkm

+ X Cmnl )] 3(a2fbgth, — afbpdt)
mn, f
i + at] (A6D)
[E (D + ES (D],

1
- -5 L Tt

32 ij, ab ki, cd
X { Y (— 1" P(ab/cdll /ijk)
P

X Y (mnl If Yasy, b/

mn

+ Y (=1 " P(d/abclij /K1)
P

x ¥ (md] lef>uf{b,§;‘f;,}
of

1
- —2 L T atat{ T Gl

16 ij, ab kI, cd mn, f

SIXTH-ORDER MANY-BODY THEORY. Ii.

X (ast, bt + ait bidf + 2, b

mnijk mnvijk mn¥ijk

+ X Cmd)lef Y(atfbgst + agfbgt — 2atfbi )}.

kjm
m, ef
(A62)

In order to evaluate these parts in no more than
O(M?) computational steps, we need to define the
additional intermediate arrays w,—w,; in terms of
arrays x;—Xqo:

w,(md, ef) = Y x,(ld, me) x,(1, f)
1

+ Y x3(jb, me)x4(d, j, ), (A63)
jb

we(mn, If) = Y x,(1d, nf) x,(m, d)
d

+ Y x,(jb, nf) x,(1, jm, b), (A64)
j.b

1
wy(ic, df) = > Y. aiix,(i, kI, f)
K
— Y atixg(c, k, fa), (A65)
k,a

w,(ic, ml) = Y adx,(ik, md)
k,d

1
+5 Y x5(c, m, ad)a?, (A66)
ad
wll(md, ef) = Z xZ(j/ m) xg(d/ j/ ef)
j
=Y x,(Id, mb) x4(b, 1, ef), (A67)
Lb

wlZ(m’ n/ l/ f)

= sz(j, n)x7(l, m]’f)
j

+ Y x,(1d, nb) xg(b, m, fd)
bd

+ x,(I, W) x(m, f)
=Y x, (KL, in) x,(i, km, f)

ik
1
t3 3 x,(ij, kn) xo(Kl, f, ijm)
ij, k

+ Y x5(ia, nc) xo(Ic, im, af ), (A68)

i,ac
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wys(k, 1, ¢, d)
1 4 .o
=5 Z x4(l]/ km)xzo(md, c, l]l)
2 ij,m

— Y x3(ja, mc) x,y(md, a, jkI), (A69)

ja, m

wy,(md, ef )
= — Y x,(b, )xe(d, m, be)
b

— Y x5(cd, af ) x4(a, m, ce)
— Y x,(d, if)x,(i, Im, e)
il

+ x,(d, f)x,(m, e)

+ Y adx,(cf, e, kim)
kl, c

+ Y x3(jb, If ) x,,(Id, jm, be), (A70)
jb, 1

wys(mn, If)
= Y x,(b, f)x,(I, mn, b)
b

= X x;(d, jf)x,(j, mn, d)
j.d

1
+ = Y a¥x,(cf, d, kmn)
2404

— Y x,(jb, k) xo(Kl, b, jmn), (A71)
j kb

wis(mn, If) = Y x,(mn, kD) x(k, )
x

1
+5 Y x,Gj, mm)x,(1, i, f),
i

(A72)

1
wy,(md, ef ) = 5 Y x.(ef, ab) x4(d, m, ab)
ab

+ Y x5(cd, ef Y xs(m, ), (A73)
wls(kl lc,d) = — ZXU(IZC, lf)xg(a, k, df)
a,f

+ Y x40l md) x,(i, km, ),

(A74)

with

x,0(md, ¢, ijl) = md|lef Ybii/, (A75)

x5, (cf, e, kim) = s(ab, f Ybiy..

2K
of
Y x (A76)
ab

N = N =

Equations (A59)-(A62) can be rewritten in the
following way:

[E$) (D + ES)o(D)],
=Y Y (mdllef Yw,(md, ef )

md ef

— ¥ Y (mnl lif dwg(mn, If)

mn If

— Y Y xy,(ic, df Yw,(ic, df)

i,c df
+ Y ¥ x4 Gic, mDw,,(ic, ml), (A77)

mni,c

[EQ-(D + EQ (D],

1
= 2 Y Y (md lef Yw,,(md, ef )

md of

+ 20 2 (mnlllf Ywy,(m, n, 1, f)

mn If

+ Y afwy,(k, 1, d),
ki, cd

[E$)- (D + ESo(D)] .
= Y Y (md)lef Ywy (md, ef)

md ef

(A78)

1
+5 L L mnllIf ywis(mn, If), (A79)
mn If
[ES. (D) + ES (D],

1
= —=| X X Amnllif yw,,(mn, If)
2 mn If

+ ¥ X (mdl lef Ywy, (md, ef)
md  ef

+ Y adwg(k, 1, ¢, d).
K, cd

(A80)

Analysis of arrays w,-w,g reveals that computa-
tionally the most demanding steps are the deter-
mination of w;,~w;5, which depend on x4, xy,
Xy, and x,;, respectively, and accordingly, in-
volve O(M?) steps. All other intermediate arrays
do not require more than O(M?7) steps.
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