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ABSTRACT m 
Based on a cluster operator formulation of sixth-order Msller-Plesset (MP6) perturbation 
theory equations for the calculation of MP6 in terms of spin-orbital two-electron integrals 
are derived. Efficiency has been gained by systematically using intermediate arrays for 
the determination of energy contributions resulting from disconnected cluster operators. 
In this way, the maximum cost factor of O(Ml2)  (M  being number of basis functions) is 
reduced to O(M9). The implementation of MP6 on a computer is described. The 
reliability of calculated MP6 correlation energies has been checked in three different 
ways, namely (a) by comparison with full configuration interaction (CI) results, (b) by 
using alternative computational routines that do not involve intermediate arrays, and (c) 
by taking advantage of relationships between fifth-order and sixth-order energy 
contributions. First applications of the MP6 method are presented. 0 1996 John Wiley & 
Sons, Inc. 

Introduction 

his is the second article in a series of four T studies [l-31, which will describe the devel- 
opment and application of sixth-order many-body 
perturbation theory (MBPT) in connection with the 
Merller-Plesset (ME') perturbation operator [ 41 for 
the purpose of getting improved correlation ener- 
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gies for atoms and molecules in a routine way. At 
sixth-order MP-MBPT (MP6), correlation effects 
are described by single (S), double ( D ) ,  triple (TI, 
quadruple (Q),  pentuple ( P  ), and hextuple ( H )  
excitations, where the P and H excitations lead to 
new correlation effects not covered by any of the 
perturbation methods of lower order. In addition, 
MP6 provides a refined description of the coupling 
between different excitations, which helps to fur- 
ther reduce an overestimation of correlation effects 
at lower orders. Of course, coupling between P or 
H excitations is not included at MP6 and, there- 
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fore, the correlation effects associated with P and 
H excitations will be somewhat exaggerated at the 
sixth-order level. 

In the first article in the series [l], we have 
derived explicit expressions for the 36 energy con- 
tributions to the sixth-order energy E(MP6) using 
a cluster operator notation. In this study, we will 
transform the 36 energy terms into appropriate 
spin-orbital two-electron integral formulas, which 
can directly be calculated with a computer pro- 
vided appropriate computer programs are devel- 
oped. Because of this, we will also describe the 
implementation of such programs on a vector com- 
puter and discuss first application of the MP6 
method to atoms and molecules. Then, in the third 
article [ 21, we will present various size-extensive 
MP6 methods, which can be used to analyze dif- 
ferent energy contributions to E(MP6) or to apply 
MP6 to larger than the small test molecules we 
will discuss in this study. 

Although the development of the E(MP6) ex- 
pression in the first series El] has been done in an 
algebraic way, the derivation of each part of 
E(MP6) was based on the characteristics of its 
diagrammatic representation. All terms of the gen- 
eral E(MP6) expression can be associated with 
connected and disconnected cluster operator dia- 
grams. This dissection facilitates the identification 
of linked and unlinked diagram terms. We have 
distinguished between four major contributions to 
E(MP6), namely E(MP6),, E(MP6),, E(MP6),, and 
E(MP6),. The first part, E(MP6),, covers just con- 
tributions resulting from connected cluster opera- 
tor diagrams, which lead to linked diagram terms 
and, according to the linked diagram theorem [51, 
fully contribute to the E(MP6) energy. The other 
parts cover contributions from the T, Q, or P 
disconnected cluster operators flf2, $f;, or fzf3. 
E(MP6), covers those Q contributions which lead 
to linked diagram terms. Similarly, E(MP6), cov- 
ers the linked diagram terms resulting from T 
contributions while E(MP6), contains the corre- 
sponding P contributions. 

In this study, we will stepwise transform the 
cluster operator expressions of the first study into 
two-electron integral formulas. This will be 
straightforward in the case of those terms resulting 
from connected cluster operator diagrams. How- 
ever, for the disconnected cluster operator diagram 
contributions involving higher excitations (e.g., 
E$AQ, E$LQ) transformation will result into two- 

electron integral formulas, which are very costly to 
calculate on a computer. In these cases, the intro- 
duction of intermediate arrays that reduce compu- 
tational cost will be essential. In the case of MP6, 
there are several possibilities to define intermedi- 
ate arrays and to reduce the computational cost to 
a minimum. We will present here one way which 
we have found to be suitable for setting up a MP6 
computer program. 

In the following section, an E(MP6) energy ex- 
pression will be derived in terms of two-electron 
integrals that can be programmed for a computer. 
For this purpose, we will first consider all con- 
nected cluster operator terms of E(MP6),. Then, 
we will discuss disconnected Q cluster operator 
terms contained in E(MP6),, followed by the dis- 
connected T cluster operator contributions of 
E(MP6), and the disconnected P cluster operator 
contributions of E(MP6),. In this way, we follow 
the procedure applied in the first article of the 
series for the derivation of the energy formula in 
terms of cluster operators. In the third section, we 
will describe the implementation of an appropriate 
program for the calculation of the sixth-order cor- 
relation energy E(MP6) on a vector computer. In 
this connection, we will particularly focus on the 
testing of the reliability of calculated E(MP6) val- 
ues because this is a major problem in programs of 
this size and degree of complication. Finally, some 
applications of the new MP6 method will be dis- 
cussed. 

Derivation of the Sixth-Order Energy 
E(MP6) in Terms of Two-Electron 
Integral Formulas 

We first consider the energy terms E$',),'yx, asso- 
ciated with connected cluster operator diagrams 
(see Eqs. (28) and (29) of ill), 

( i  or j = 1 ,2 ,3  for X, or X, = S, D, T ), 
(1) 

where excitations Y = S, D,  T, Q are denoted by 
subscript y = s, d ,  f, q. For P, H or general excita- 
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tions X ,  we will use subscripts p ,  h, and x, re- 
spectively. In Eq. (l), energies E,  and E ,  a;e 
eigenvalues of the unperturbed Hamiltonian H, 
corresponding to the Hartree-Fock (HF) reference 
function I@.,) and the y-fold excited eigenfunction 
I@,). The MI' perturbation operator v and total 
Hamiltonian are defined by 

and 

8=8,+Q.  (3) 

The cluster operators fj2) ( i  = 1,2,3) at second- 
order perturbation theory are given by 

X 
fj2)1@,) = Cb,l@,) 

X 

( X  = S, D,T for i = 1,2,3) (4) 

where the amplitudes b, (x  = s, d,  t )  are defined 
by 

b, = ( E ,  - E x ) ~ l ( @ x ~ ~ f ~ l ) ~ @ o ) ,  (5) 

at first-order with the double excitation cluster 
being 

D 

fll)l@C)) = c a d l @ d )  (6) 
d 

and the first-order amplitude ad being 

Both first-order and second-order amplitudes can 
easily be expressed in terms of two-electron inte- 
grals as is shown in Eqs. (Al)-(A4) of the Ap- 
pendix. 

DERIVATION OF TWO-ELECTRON INTEGRAL 
FORMULAS FOR E(MP6), 

The sum of all energy terms Ef:yx2 defined in 
Eq. (1) is equal to E(MP6), [l] and can be ex- 
pressed by Eq. (8): 

S , D . T S , D  D,T  T 

E(MP6)i=[ c c + c c + 5 51 
x , , x ,  y x , , x ,  Y x , , x ,  y 

XE!&X2. (8)  

E(MP6), covers 16 different energy terms result- 
ing from S, D, and T excitations. When converting 
the matrix elements (@yl~f/2)l@o) ( y  = s, d ,  t ,  q; 
i = 1,2,3) in Eq. (1) into a two-electron integral 
form, one obtains the arrays ul-u9 listed in Table 
I. With the help of arrays u1-u9, one can derive 
two-electron integral formulas for the 16 energy 
terms of E(MI'6), in a relatively simple form. For 
example, 

(12) 

In Eqs. (9)-(13), indices i ,  1, k,  2 , .  . . denote occu- 
pied spin orbitals while a, b, c, d, . . . represent vir- 
tual spin orbitals. According to Table I, calculation 
of arrays u,(ij, ab) [or u7(ijk, abc)], u,(ijk, abc), and 
u9(ijkl, abcd) requires O(M7) ,  O ( M s ) ,  and O(M9) 
computational steps while calculation of the other 
arrays involves just O ( M 6 )  or even less steps (M 
being number of basis functions). 

Two-electron integral expressions for all 16 
terms of E(MP6), can be constructed with the help 
of Tables I and 11. Comparing the various E(MI'61, 
terms in Table 11, it becomes obvious that evalua- 
tion of E$.AT is most costly because it requires 
calculation of array u9(ijkl, abcd). 

DERIVATION OF TWO-ELECTRON INTEGRAL 
FORMULAS FOR E(MP6), 

The energy part E(MP61, = E(MI'6),, + 
E(MP6), contains contributions associated with 
the disconnected Q cluster operator [ 11. E(MPG),, 
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TABLE I 
Definition of arrays u,-ug.= 

Arrays Expressions Two-electron integral formulas cost 

u7(ijkr abc) 
u,(ijk, abc) 

‘(-l)‘E,,P(i/j) [P(i / jk)]  denotes the sum of the identity and the permutation(s) of i with j (and k) while the permutation symbol 
P( i / j l a /b )  [or P(i / jkla/ab)] stands for P ( i / j ) P ( a / b )  [or P(iljk)P(a/bc)]. Note that in a symbol such as P(iljkl1ablcd) 
[= P(i/jk/)P(ab/cd)] permutations a - b and c - d are excluded. 

covers all en5rgy terms involving the disconnected 
operator +( These are the contributions 
( @ y ~ [ ~ ~ ( f ~ ’ ~ ~ 2 1 c l @ o )  with (1) y = d and (2) y = t ,  
q,  and (3)  y = h, namely (@ql[~(l/3!)(f$’))31~~@o) 
and (@Jf$’)[ ~~(f i l ) )z lc l@o),  which correspond to 
the connected part of ( @ q l v l @ h ) ( E o  - 
Eh)-’( @hlV+(f$1))21@O). Hence, E(MP6),, can be 
expressed by the following equations: 

E (MP6)2 a 

= E(MP6)2al + E(MP6)2a2 + E(MP6)2a3, 
(14) 

where 
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TABLE II 
Definition of the 16 energy terms of E(MP61, [Eq. (8)l as products of arrays u, and ui ( i ,  j = 1,. . . ,9).' 

a a  hi ,  A:!, A$, and A:Ed are given by 

E(MP6)2a3 

In Eq. (15), all energy terms contain the same 
matrix element (Q . , I [~~(~~1 '>21c l@, ) ,  for which a 
two-electron integral form is given by Eqs. (21) 
and (221, respectively. 

m P  

Here, the permutation symbol P(i/j) [or P(a/b)l 
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TABLE 111 
Definition of intermediate arrays zl-zlg. 

Intermediate array Expression cost 

denotes the sum of the identity and the permuta- 
tion of i ( a )  and j (b ) .  The arrays z,(ij, mn), z,(b, e), 
z,( j ,  m), and z4( ia, nf), which appear in expression 
(22), are defined in Table 111. They represent inter- 
mediate arrays introduced to reduce the calcula- 
tion of u,,(ij, ab) from O ( M s )  to O ( M 6 )  steps. 

With the help of arrays u4(ij, ab), u,(ij, ub), 
u6(ij, ab), and u,,(ij, ab) (see Table I), one can de- 
rive two-electron integral formulas for each energy 
term of E(MP6),,1 in Eq. (16). For example, E$%Q 
is given by Eq. (23): 

1 u&j, ab)u,,(ij, ab) 

4 ij nb 
=-EX . (23) 

Similar expressions are obtained for EgAQ, ES6JQ, 
and EgAQ.. by replacing u,(ij, ab)  in Eq. (23) by 
arrays u5(y,  ab), u,(ij, ab), and ulo(ij, ab). 

The determination of E(MP6),,+ involves the 
calculation of matrix elements 

Ei + E .  - E ,  - €* 1 

The latter are given by ull and u12, respectively, in 
Eqs. (24), (25), and (26): 

ull(ijk, ubc) 

(24) 
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u12 ( ijkl , abcd) 

where the intermediate arrays z J i ,  bc, f), 
z6( j k ,  mu), z,(cd, jkl ,  m), and z,(bcd, kl, el  are given 
in Table 111. Utilizing arrays ull( i jk ,  abc) and 
u12( ijkl, abcd) [Eqs. (25) and (26)], expressions 
(27)-(33) can be derived for the seven energy terms 
of E(MP6),,2 shown in Eq. (18): 

E~?,(II) + E$$,(II>, 

ubCu ( i ’ k , a b c )  , (27) 1 = Gal[- c ]k 11 I 
1 

ia jk, bc 

Egb,(II) + E$&,(II>, 

1 
= - c c afibb;~u, , ( i jkl ,abcd) ,  (28) 

ij, ab kl, cd 

(29) 

The calculation of E(MP6),,2 is clearly more costly 
than the calculation of E(MPG),,,, which requires 
just O( M computational steps. The most expen- 
sive terms of E(MP6)z,2 lead to O(M9) computa- 
tional steps. Equations (27) and (28) reveal that the 
T and Q energy denominators disappear. This 
permits a considerable reduction of the computa- 
tional cost. For example, the evaluation of EiyQ(1I) 
+ E$$,(II), and E$bQ(II) + E$AQ(1I), can be re- 
duced from O ( M 7 )  and O(M9) to no more than 
O ( M 6 )  steps by using a series of intermediate 
arrays [see Eqs. (A5)-(A14), (A15HA18) and 
(A19)-(A32) of the Appendix]. 

E(MP6)z,3 is the only MP6 term, which covers 
H contributions. However, Eq. (19) does no longer 
depend on the H energy denominator (E, - E,J1 
[l]. The calculation of the energy term Eg).,, in Eq. 
(20) requires just O(M 6 ,  computational steps, 
which can be shown by separating the term E$kQ 
( = E(MP6),,3) into two parts, namely E$).,,(I) and 
E$).,,(II). E$),&) is give by 

1 

(34) 

where we have used the following general nota- 
tion [6]: 
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In summary, the calculation of the term E$AD + 
E$AQ(I) involves just O( M 6 )  steps. However, the 
determination of E(MP61, requires O( M 7, opera- 
tions due to the calculation of the triple ampli- 
tudes b$ in the contribution Eg6AD + Eh6AQ(1). 

DERIVATION OF TWO-ELECTRON INTEGRAL 
FORMULAS FOR E(MP61, 

T effects due to the disconnected T cluster 
operator f;')fi1) are covered by E(MP6),, which is 
given by Eqs. (43) and (44): 

E(MP613 

(43) 

By introducing arrays ~ 1 3 ( i ,  a )  and u,,<ij, ab)  de- 
fined by Eqs. (45) and (46), 

the first two bracket terms in Eq. (44) can be 
calculated according to Eqs. (47)-(49): 

In Eq. (48b), we have used the fact that 

Arrays uI3(i, a )  and ul,(ij, ab)  appear in the CCSD 
projection equations [ 71, which represents an 
O ( M 6 )  method. Hence, the evaluation of E$Ys + 
E$yQ(I) and Egis + Eg$,(I) requires only O ( M 6 )  
operations. 

For the last two parts of Eq. (44), namely E$!JS 
+ ES6JQ(I) and E& + E$iQ(I), the computational 
cost correspond to O ( M 7 )  and O ( M 6 ) .  To show 
this, the E$qs + E$!JQ(1) is split into three parts: 
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where first and last part are evaluated according to 
Eqs. (52) and (53) using arrays u15(ijk, abc) and 
u16(i, a )  defined in Eqs. (54) and (551, respectively. 

with 6: = ( e l  - e,)b:. Arrays z9(i, bc, f) and 
z,,(jk, I ,  a)  of Eq. (541, which both require O(M5) 
operations, are given in Table 111. 

The second part of Eq. (51b), namely 
(@ol(f~2))tf~2)(~f~1))~l@o) can be combined with 
some part of Ek6AD + ES6AQ(I) [Eq. (4011 as is ex- 
plained in Eqs. (A43)-(A49) of the Appendix. 
There, it is also shown that this leads to a reduc- 
tion of computational cost from O(M7)  to O(M6). 
Thus, the most demanding step in the computa- 
tion of Ek6Js + Ek6JQ(1) is the evaluation of 
u15(ijk, abc) of Eq. (54), which involves O(M7)  
steps. 

The final term of Eq. (44), E$Js + EgJQ(I), con- 
tains two parts: 

The first part of the right side of Eq. (56) adopts 
the two-electron integral form: 

while the second part can be written as 

where array u17(I, d )  is defined by 

Array u17(I, d )  can be evaluated according to Eqs. 
(A50)-(A57) of the Appendix, where the computa- 
tional cost is given by O(M6) operations. Hence, 
the evaluation of both Egis + E$$,(I) and E$Ys + 
ES6JQ(I) involves just O(M 7 ,  steps. 

DERIVATION OF TWO-ELECTRON INTEGRAL 
FORMULAS FOR E(MP6), 
The analysis of E(MP6), reveals that calculation 

of the terms resulting from the disconnected T 
cluster operator flf2 does not lead to higher com- 
putational cost than calculation of those ter*ms that 
result from the connected T operator T3. This 
conclusion also holds in the case of the P cluster 
operator. In the following, we will demonstrate 
that the computational requirements of the te;m,s 
resulting from the disconnected P operator T2T3 
are not the highest of an E(MP6) calculation since 
they require just O(M8)  steps. 

The P term E(MP61, is given by 
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For computational reasons, the first bracket term 
of Eq. (60) is separated into parts I and 11: 

which can be calculated according to Eqs. (62) and 
(63): 

and 

Array u18(ijk, abc) of Eq. (63) is given by 

(63) 

(64) 

where arrays z11-z17 [ -  O(M7)l are defined in 
Table 111. Array u16(i, a) in Eq. (55) requires O(M7) 
operations because it depends on the triple ampli- 
tudes b$. Evaluation of E&(I) + E$gQ(I) and 
E$YT(II) + E$yQ(II) leads to O(M7) and O(M8) 
steps, respectively. 

The second bracket term of Eq. (60) can also be 
split into two parts: 

In Eq. (65), term I can be calculated according to 

E$bT(I> + E$bQ(I) 
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where array u19(i, a) is determined by 

using intermediate array z18( j, a, bc), which repre 
sents contractions of the triple amplitudes b, with 
the double amplitudes ad (see Table 111). Accord- 
ingly, the computational requirements for the 
calculation of E&(I) + E&$I) are determined 
by the evaluation of the triple amplitudes b, 
1- O(M7)1. 

The second bracket of Eq. (65) is given by 

1 
= - c C a~~;; 'u, ,( i jkZ,abcd),  (68) 

32 ij, ab kl, cd 

where array u20(ijkZ, abcd) is defined by 

uZ0(ijkl, abcd) 

1 1 + - c C(-l)P 'P ' (k/ l ) (mnl  lv)bif$ L$ 

- - C ( - l)PP(ab/ctill/ijk) 

x C (mnl ly)u$nb;;f 

- - c( - l )PP(d /abc l~ /k l )  

2 mn P' 

2 ,  

1 

mn 

1 

2 ,  
x C ( mdllef) a$b,';A. (69) 

e f  

Since the evaluation of uz0(ijkl, abcd) involves 
O(M"> steps, one has to use intermediate arrays 
to reduce the computational cost for the evaluation 
of E$'),,(II) + E@,(II). In the Appendix [Eqs. 
(A58)-(A80)] it is described that E&-(II) + 
E$bQ(II) can be split into four parts, each of which 
can be evaluated in no more than O(M8) compu- 
tational steps using several intermediate arrays. 

Implementation of a MP6 Computer 
Program 

In the previous section, we derived two-electron 
integral formulas for all 36 MP6 energy terms 
grouped into the four energy parts E(MP6),, 
E(MP6),, E(MP6),, and E(MP6),. The most expen- 
sive terms [ 2 O(M8)] that have to be calculated to 
obtain the energy E(MP6) are summarized in 
Table IV. 

In each case, we have checked how by the use 
of intermediate arrays the computational cost can 
be reduced to a minimum, and we have found that 
this can be done for all the disconnected cluster 
operator terms associated with T, Q, or P excita- 

TABLE IV 
MP6 energy contributions requiring high 
computational cost. 

Energy contribution Expression Cost 
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tions in €(MP6),, €(MP6),, and E(MP61,. How- 
ever, in some cases it is of advantage to combine 
the calculation of disconnected cluster operator 
terms with that of related connected cluster opera- 
tor terms involving a higher cost factor rather than 
calculating each MP6 term individually. In this 
way, superfluous input/output (I/O) operations 
are suppressed in exchange of a slight increase in 
computational cost. We have found that in this 
way the calculation of E(MP6) becomes much more 
efficient. 

In Table V, all MP6 energy contributions are 
listed in the sequence they are calculated within 
the ab initio program package COLOGNE94 [81. 
First, the double amplitudes ad from a MP2 calcu- 
lation are used to calculate the second-order am- 
plitudes b, ( x  = s, d ,  t )  according to Eqs. (A2)-(A4) 
of the Appendix. Utilizing first- and second-order 
amplitudes, the terms €$iT(1I) + €$k,(II) [Eq. 

(2711, E$LD + €$&,(I) [Eq. (42)l of steps 1 and 2 as 
well as some matrix elements for €$bT(I) + €$+,(I) 
[Eq. (6611 of step 3 (Table V) are calculated. Next, 
array us is determined, which has to be available 
for carrying out the loop over T excitations, which 
leads to the calculation of €giT [Eq. (1111 and €k6JT 
[Eq. (12)] in step 4 and requires O ( M s )  operations. 
Although less costly, contributions Eg&s, E$&,(I>, 
ES6JS, €$!$,(I), and €g&D are calculated at the same 
time. In this way the MP6 program is simplified 
and separated calculations involving a large 
amount of 1/0 avoided. 

In step 5, the two contributions €gLD [Eq. (3911 
and €&,(I) [Eq. (3911 are computed. Computa- 
tionally most demanding is step 6, in which one 
has to loop over all Q excitations to evaluate the 
O ( M 9 )  terms Ei6hT [Eq. (13)], €k6hQ(1I) [Eq. (33)1, 
and €$L,(II), [Eq. (30)l. In the Q loop, also some 
less costly terms such as €$bQ(II> + E$L,(II>, [Eq. 
(2811 and ES6AD + Eg6dQ(1) [Eq. (4011 are calculated 
to reduce extensive 1/0 operations. Step 7 leads to 
€g&,(II) [Eq. (31)] and €$6$Q(II) [Eq. (32)], where 
calculation of the latter term also requires O ( M 8 )  
operations. The evaluation of a number of MP6 
contributions requires just O ( M  7> or less compu- 
tational steps. Actually, determination of these 
terms can be connected with the calculation of 
appropriate MP5 terms [6,91, which leads to a 
clear structuring of steps 10-19. In step 22, the last 
O ( M s )  term, Ek6&(1I) + €$yQ(II) [Eq. (6311, is eval- 
uated. The calculation of E(MP6) is finished by 

(6811, €$&Q(II) [Eq. (36)1, €$yQ(II> + €$&,(ID, [Eq. 

complementing energy contributions E$+&Ob [ Eq. 
(29)] and Egis [Eq. (58)] in steps 23 and 24. 

We have set up a MP6 program in such a way 
that it can also be run with a program package 
such as Gaussian [lo]. In addition, we have pro- 
grammed somewhat modified routes to E(MP6), 
which are needed for testing purposes (see below) 
or which help to evaluate partial contributions to 
the MP6 correlation energy. 

Testing and Application of the MP6 
Computer Program 

Computer codes such as the MP6 program are 
rather complicated although they are set up in the 
same way as lower-order MPn programs have 
been set up [6,9,10]. Beside the actual develop- 
ment work, the programming work, and the work 
necessary to reduce run times of the MP6 pro- 
gram, it is a major part of the work and in the end 
most time consuming to make sure that the final 
computer codes are free of errors. We have used 
three different ways of checking the MP6 com- 
puter programs. 

First, we have compared calculated E(MP6) val- 
ues with results from full configuration interaction 
(FCI) calculations. These authors have shown that 
high-order MPn energies (up to n = 48) can be 
obtained from FCI calculations published by 
Handy and co-workers [11,12]. In this way, FCI- 
based MP6 energies (FCI-MP6) have been calcu- 
lated for a number of small elec%on systems in- 
cluding H,O,’A,, (Re = 0.967 A, 0 = 107.6’1, 
NH,?B,, both at equilibrium geometry (Re = 1.013 
A, o = 103.2” ) and at “stretched geomoetries” with 
1.5R, and 2R,, BH,l8, ( R ,  = 1.232 A), Be,,’Z+ 

and CN?Zf (Re = 1.1619 A). In Table VI, 
FCI-MPn energies for n = 2,3,4,5,6 from the 
work of Handy and co-workers [11,12] are listed 
and compared with the corresponding MPn ener- 
gies obtained in this work. Lower orders than 
n = 6 are included into the comparison to identify 
differences in energy caused by geometries or other 
computational differences that may result from the 
limited information possible in a publication. 

For all electron systems listed in Table VI, calcu- 
lated MP6 correlation energy contributions agree 
with the corresponding FCI-MP6 values within 

hartree, which is also the difference between 
many of the lower-order correlation contributions. 

(R, = 5.25 A), CH,;A, ( R ,  = 1.~02 A, e = 104.~3, 
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TABLE V 
Implementation of the MP6 program. 

Required arrays 
Step and comments Expression Calculated MP6 contributions Expression 

1 

2 

3 

4 

5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 

18 
19 

20 

21 
22 
23 

24 

ad and bt 

ad and b, 

b,, bd, bt, and U s .  

The T loop is 
carried out 

ad and bd 

u9 

4 2  

ad and b, 
The Q loop is 

carried out 
u7, and uii 
b, and uI3 
ad and ul0 
Calculation of 

steps 10-19 
is based on MP5 

u5 and ul0 
u1 and up 
u5 and u4 

u, and u , ~  

u4 and uio 

ad and u4 

u59 u6; up, u3 

uls u3; u10 

u4 and u6 

u3 

ad and us 

u3 and ui6 
b, and ui8 

u11 

b, and u , ~  

Eqs. (Al l  and (A41 

Eqs. (Al l  and (A4) 

Eqs. (A2)-(A4), and 
Table I 

Eqs. (Al l  and (A31 
Table I 
Eq. (26) 
Eqs. (All and (A3) 

Table I and Eq. (25) 
Eqs. (A21 and (45) 
Eqs. (A l l  and (22) 

Table I and Eq. (22) 
Table I 
Table I 
Table I 
Table I and Eq. (22) 
Table I and Eq. (22) 
Table I and Eq. (22) 

Eq. (Al) and Table I 

Table I 
Table I 

Eq. (Al l  and Table I 

Table I and Eq. (55) 
Eqs. (A4) and (64) 
Eq. (25) 

Eqs. (A21 and (59) 

Eqs. (A58)-(A80) and 
(A33) - (A42) 

Eqs. (Al5)-(A18) 

Eq. (42) 

Eq. (66b) 
Eqs. (1 1 ) and (1 2) 
Eq. (48a) 
Eq. (51a) 
Table I I  
Eq. (39) 
Eqs. (13) and (33) 
Eq. (30) 

Eq. (40) 
Eqs. (A19)-(A32) 

Eqs. (31) and (32) 
Eq. (47) 
Eq. (34) 

Table I1 and Eq. (16) 
Table I1 
Table I I  
Table I1 
Table I I  and Eq. (16) 
Table II and Eq. (1 6) 
Table I I  and Eq. (23) 

Eq. (57) 
Table I1 
Table II 

Eq. (66b) 
Eq. (62) 
Eq. (63) 
Eq. (29) 

Eq. (58) 
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TABLE VI 
Comparison of directly calculated MPn energies ( n  = 1 , 2,3,4, 5, and 6) with MPn energies from full CI 
(FCI) calculations for some small electron systems (all energies in hartree) 

Re = 0.967 A, 
- 75.888432 
- 0.1 20897 
- 0.003302 
- 0.004856 
- 0.000488 
- 0.000436 

Re = 1.232 A, 
- 25.1 25260 
- 0.060333 
- 0.01 6472 
- 0.005925 
- 0.002540 
- 0.001 228 

Re = 1.102 A, 
- 38.876360 
- 0.092785 
- 0.01 7902 
- 0.005481 
- 0.00201 7 
- 0.000973 

Re = 1.013 A, 
- 55.532248 
- 0.08551 2 
- 0.00981 5 
- 0.00361 2 
- 0.001 192 
- 0.000464 

0 

8 = 107.6", 6-21 G Basis 5) 
- 75.888430 
- 0.1 20865 
- 0.003303 
- 0.004849 
- 0.000488 
- 0.000435 

[4s2pld/2slpl  Basis 6) 
- 25.1 25260 
- 0.060297 
- 0.01 6482 
- 0.005924 
- 0.002540 
- 0.001 226 

8 =  104.7" [ 4 ~ 2 p l d / 2 ~ l p ]  7) 
- 38.876358 
- 0.092657 
- 0.01 7926 
- 0.005476 
- 0.00201 8 
- 0.000973 

0 = 103.2", 6-31G 8) 
- 55.532248 
- 0.08551 2 
- 0.00981 5 
- 0.003613 
- 0.001 192 
- 0.000463 

MPn MPn-FCI 

1.5 Re, 
- 55.4051 43 
- 0.0621 16 
- 0.01 1394 
- 0.008695 
- 0.005776 
- 0.004888 

2.0 Re, 
- 55.381 931 
- 0.031 539 
- 0.006208 
- 0.002508 
-0.001234 
- 0.000845 
Re = 5.25 A 
- 29.1 38980 
- 0.061 091 
- 0.020766 
- 0.0091 18 
- 0.004283 
- 0.0021 01 

Re = 1.1619 A 
- 91.01 943 
- 0.09469 
- 0.00792 
- 0.01 335 
- 0.00683 
- 0.00633 

8 = 103.2", 6-31 G 
-55.405143 
- 0.0621 16 
-0.01 1394 
-0.008695 
- 0.005776 
-0.004887 

e = i03.2~,6-31 G 
- 55.381 931 
- 0.031 539 
- 0.006208 
- 0.002508 
- 0.001 234 
- 0.000846 

7s3pld Basis 
- 29.138980 
- 0.061 081 
- 0.020769 
- 0.0091 18 
- 0.004283 
- 0.0021 07 

STO-3G Basis 
- 91.01 943 
- 0.09469 
- 0.00792 
- 0.01 335 
- 0.00683 
- 0.00634 

Although the agreement between FCI-MP6 and 
our MP6 data seems to suggest reliability of the 
new MP6 program, it does not prove that the latter 
is without any errors. Since all test molecules are 
rather small possessing just a limited number of 
electrons, higher excitations such as P or H do not 
contribute significantly to the final correlation en- 
ergy. As a consequence, any errors in these terms 
do not show up in the comparison between 
FCI-MP6 and MP6 energies. This also holds for 
any other low-value term and has to be considered 
in the testing. Therefore, we have used additional 
procedures to check calculated MP6 results. For 
example, we have programmed large parts of the 
MP6 routines in an alternative way, which is docu- 
mented in Table VII. 

In the case of the energy terms associated with 
disconnected cluster operators (see 1 in Table VII), 
we have programmed alternative procedures that 

do not take advantage of intermediate arrays and, 
therefore, are much more costly. For example, we 
have directly evaluated contributions such as 
E$L,(II) and E$b,(II) + E$b,(II) by using Eqs. 
(36) and (68) rather than the appropriate equations 
in the Appendix [(A33)-(A42), (A58)-(A80)] that 
are based on intermediate arrays. In the case of 
E$& + E$yQ(I), E& + E$..$,(I), E$$s + E$ia(I) 
and E W T  + E$?,, alternatives to those equations 
given in the text (see Table VII) are given in Eqs. 
(70)-(73): 
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TABLE VII 
Checking of the MP6 program.' 

Checking possibility Energy terms checked Comments 

7. Programming of alternative formulas 
Eq. (28) VS. Eqs. (Al9)-(A32) 
Eq. (27) vS. Eqs. (Al5)-(A18) 
Eq. (36) VS. Eqs. (A33)-(A42) 
Eq. (47) vs. Eq. (70) 
Eq. (51 b) vs. Eq. (71) 
Eqs. (57)-(58) VS. Eq. (72) 
Eqs. (62)-(63) VS. Eq. (73) 

Eq. (66a) vs. Eq. (66b) 

Eq. (68) VS. Eqs. (A58)-(ABO) 

Eb6@0 + E&JII)~ 
€y7&)(ll) + €gAJ(Il), 
EgA,(ll) 
ELYS + €&.&(I) 
E f"s + €{?,(I) 
E& + Egj,(l) 
Ef% + EfYo 
( @ 0 1; [ ( f , c V I  2 f . p  (VfJl)) IQ0 )c 

for €&(I) + €@,(I) 
E&(II) + €gJ,(Il) 

2. Use ofMf5 results: First-order cluster operators lead to MP5 terms, which can directly be checked. 

Checking of the Q loop 

Calculations are carried 
out with and without 
intermediate arrays 

q) replaced by fg) in Eq. (16) 
(e))+ replaced by (f!!))+ in Eq. (39) v) replaced by c) in Eq. (40) 
q) replaced by f:) in Eq. (41) 

f ! )  replaced by fg) in Eq. (48a) 
f"," replaced by fl!) in u, of Eq. (31) 

replaced by c) in up, u5, 
and u7 of Tables I and II 

u l ( i , a )  u3(i ,  a )  
[or replaced by b; 

in Table II 

b:" in Table I I  
u,(ijk, abc)  

~ * b c  replaced by b$" in Ef?r 
Ilk 

Table II 
u9(ijk/ ,  abcd) 

Aabcd replaced by ga:baf 
,Ikl 

in Table II 

by bEb in Eq. (23) 

by b t b  similar to Eq. (23) 
ull (ijk,-abc) 

I lk 
Aabc replaced by b:fc 

in Eq. (29) 
u l l ( i j k ,  abc) 

replaced by b:;" 
A,"k" 

in Eq. (32) 
u12(ijkl, abcd) replaced by 

iaZbaf in Eqs. (30) and (33) 
~ , ~ ( i j ,  ab) replaced by (ij lab)  in Eq. (34) 

vf j2)  replaced by VfJ ' )  in Eq. (66a) 

each case, calculated energy terms differed by not more than lo-' '  hartree. 
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(72) 

E$YT + E$YQ 

(73) 

A program part tested in this way was consid- 
ered to be correct if the difference in energy values 
obtained by different programs is smaller or equal 
to lo-'' hartree. 

A second way of efficiently searching for errors 
in the MP6 program is to replace second-order 
amplitudes by the appropriate first-order ampli- 
tudes to get the corresponding fifth-order energy 
contributions, which can be directly compared with 
existing MP5 results [9,13]. As shown in Table VII, 
this procedure is straightforward and can be ex- 
tended to (partial) third-order amplitudes to be 
replaced by second-order amplitudes or products 
of first-order amplitudes. In each case, it was veri- 
fied that the energy contributions obtained at MP5 
did not differ from the corresponding directly cal- 
culated MP5 terms by more than lo-'' hartree. 
After checking all MP6 energy contributions in the 
various ways listed in Table VII, we concluded 
that MP6 program and MP6 energies described in 
this work are reliable. The MP6 program was in- 
stalled on a CRY Y-MP to be run within the ab 
initio package COLOGNE94 [8]. 

Conclusions 

In the present work, we have described the 
implementation of a MP6 program for routine cal- 
culations. For this purpose, we have developed 
two-electron integral formulas for all MP6 energy 
contributions starting from the cluster operator 

formulation of MP6 discussed in the first article of 
this series [ll. Particular care has been taken to 
reduce computational cost by introducing interme- 
diate arrays in connection with the calculation of 
contributions resulting from disconnected cluster 
operator terms. In this way, the actual computa- 
tional cost have been reduced from maximally 
0(Ml2)  to maximally O(M9). The four energy 
terms which lead to this cost factor are the terms 
calculated in the Q loop of the program (Table V). 
The second largest cost factor is presented by the 
terms calculated in the T loop. For the reason of 
reducing 1/0 operations some of the cheaper oper- 
ations are integrated into the T and Q loops al- 
though this leads to somewhat higher computa- 
tional cost. 

Based on the integral formulas presented in this 
work, a MP6 program for routine calculations has 
been developed and implemented on a CRAY Y- 
MP. The reliability of calculated MP6 correlation 
energies has been checked by a three-pronged ap- 
proach: First, MP6 benchmark calculations have 
been carried out for 8 different electron systems, 
for which a decomposition of FCI results in terms 
of MPn correlation energies are available [ l l ,  121. 
MP6 and MP6-FCI results agree within 
hartree, which gives indication that MP6 energies 
calculated in this work are reliable. However, final 
proof for the reliability of calculated MP6 energies 
is obtained by carrying out two additional testing 
possibilities. These involve the development of al- 
ternative program versions. Hence, in the second 
step, we have programmed energy contributions 
that result from disconnected cluster operators 
without the use of intermediate arrays thus lead- 
ing to computationally more demanding program 
versions. The remaining sixth-order contributions 
have been checked by taking advantage of rela- 
tionships between fifth-order and sixth-order en- 
ergy contributions. In all cases, MP6 energies were 
found to be accurate up to lo-'' hartree suggest- 
ing that all terms checked in this way are correctly 
programmed. First applications of the MP6 method 
have been presented. A more detailed account of 
calculated MP6 correlation energies will be given 
in the third part of this series [2]. 
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Appendix 

The evaluation of terms such as E&yQ(II) + 
E$+,(II),, E$'b,(II) + E$'AQ(1IIa, E&,(II), Eh6AD + 
E.i-6:p(I) and E$bT(II) + E$&,(II), etc., can be sim- 
plified by using intermediate arrays. To demon- 
strate this, we first introduce appropriate formulas 
for first-order and second-order amplitudes a$', bq, 
b,"l", and b,$, respectively, in terms of two-electron 
integrals over spin orbitals. 

In addition, we introduce the intermediate arrays 
xl-xIo, which represent contractions between dou- 
ble amplitudes or double and triple amplitudes: 

1 
x,(a, b )  = - Cupi'u:;, 

1 
x2(i, j) = - C a ~ ~ u $ ,  

(A51 
2 ij, c 

(A61 

x,(ia, jb) = Cu;iuj",c, (A7) 
k , a b  

kc 

Intermediate arrays x1-x5 can be evaluated in 
O ( M 6 )  steps while x6-x, and x9-xIo require 
O ( M 7 )  and O ( M 8 )  steps, respectively. 

Energy contributions E&Y6,",(II) + E&Q(II)o are 
evaluated with the help of the new array wl(i, a)  
according to 

E$YQ(II) + E&,(II)a = Cb:w,(i, a) .  (A15) 
i. a 

Array w,(i,a) is constructed utilizing the defini- 
tions of arrays x1-x5, z5(i, bc,f), and z6( jk, ma) 
(see Table 111): 
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where the additional arrays yl(k, f) and y2(m, c )  
are given by 

and 

Analysis of Eq. (A16) indicates that each term of 
wl(i, a )  does not require more than O ( M 6 )  compu- 
tational steps. 

The energy terms E$&~(II) + E ~ ~ ~ ( I I ) ~  are cal- 
culated according to 

in which the array w,(ij, ab)  is defined by 

w,<ij, ab)  

and the intermediate arrays y3-yll by Eqs. 
(A21)-(A29): 
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The additional arrays x,,(kZ, ef), x,,(mn, cd), and 
x13( kc, me) are due to contractions of double ampli- 
tudes a:; with two-electron integrals: 

All intermediate arrays contained in w,(ij, ab)  do 
not require more than O ( M 6 >  computational steps. 

DETERMINATION OF h"~,&(II) [EQ. (36)l 
If the term E$L,(II) is dissected into three parts, 

each part can be evaluated with the help of inter- 
mediate arrays x1-x5 in no more than O ( M 6 )  
computational steps. 

Arrays w,(rnn, efIa, w3(mn, ef)br  and w3(mnr 
are determined by Eqs. (A34)-(A36): 

w3(mn, ef), = - Ca$y, , (k l ,  mn) 
kl 

where arrays y12-y17 are given by 
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We refrain from using u,(ijkZ, abcd) for the eval- 
uation of E$!D + E$6&JI) and rewrite Eq. (40): 

In Eq. (A43), the first term can be obtained by 

where array w4(ijk, abc) is defined by 

+ c z6( j k ,  m,  a)  b:: 

+ corresponding terms with double 
ni 

1 amplitudes a d  and bd interchanged 

Array w4(ijk, abc) resembles ull(ijk, abc) of Eq. (24) 
and, similar to ull, can be evaluated in O ( M 7 )  
steps. 

The second term in Eq. (A43) can be combined 
with the matrix element 

of the energy term E$?s + Ek6iQ(1) thus leading to 
a simpler form, in which the operator fi') does no 
longer occur. 

(A481 

This expression involves only O ( M 6 )  steps be- 
cause w,(ij, ab)  is equivalent to u14(ijr ab) when 
replacing the double amplitudes a d  by amplitudes 

The last term in Eq. (A43) can be evaluated 
bd [see also Eq. (45)]. 

according to Eq. (A49): 

which requires O ( M  7 ,  steps. 

DETERhJINATION OFA MATRIX ELEMENT 
( a0 1; 
TERM flo& + flo$,(I) 
The matrix element 

1' T)(-w2'))cl@o) IN ENERGY 

can be evaluated in terms of the intermediate 
array ~ 1 7 ( l ,  d )  [Eq. (59)l: 

u17(l! d )  
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DETERMINATION OF fl&(II) + @&!&I) 
IEQ. (69)l 
For simplicity, we split E$&,(II) + E$&,(II) into 

the four parts of Eq. (A58): 

which differ in the contraction indices of products 
between double amplitudes ad and two-electron 
integrals ( m d l  lef) and  ( m n l  IZf): (a) 
C,,, a;h(mdl Ief) and C,, aiL<mnl Ilf); (b) 
C,, ~ ; ~ ~ < m d l  lef) and C, a4i(rnnl Ilf)); ( c )  
Cf u$ mdl lef) and X, a;{(mnl IZf)) as well as (d) 
C,,, aifn(mnl llf) and C, a$(mdl ref). The four 
parts are given by Eqs. (A59)-(A62): 
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In order to evaluate these parts in no more than 
O ( M  computational steps, we need to define the 
additional intermediate arrays w7-w18 in terms of 
arrays xl-xlo: 
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with 

(A801 

Analysis of arrays w7-w18 reveals that computa- 
tionally the most demanding steps are the deter- 
mination of wl2-wI5, which depend on x9, xlo, 
x,,, and xZl, respectively, and accordingly, in- 
volve O(M8) steps. All other intermediate arrays 
do not require more than O(M7)  steps. 

+ C C Ief)wl7(md, 4)  
md ef 

+ C af;'w,,(k, c, d ) .  
kl ,  cd 
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