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ABSTRACT rn 
The general expression for the sixth-order Msller-Plesset (MP6) energy, E(MP6), has 
been dissected in the principal part d and the renormalization part 9. Since 2 contains 
unlinked diagram contributions, which are canceled by corresponding terms of the 
principal part d, E(MP6) has been derived solely from the linked diagram terms of the 
principal part d. These have been identified by a simple procedure that starts by 
separating d into connected and disconnected cluster operator diagrams and adding 
terms associated with the former fully to the correlation energy. After closing all open 
disconnected cluster operator diagrams, one can again distinguish between connected 
and disconnected energy diagrams, of which only the former lead to linked diagram 
representations and, therefore, contributions to E(MP6). The connected diagram parts of 
d have been collected in four energy terms E(MP6),, E(MP6),, E(MP6),, and E(MP6),. 
The sum of these terms has led to an appropriate energy formula for E(MP6) in terms of 
first- and second-order cluster operators. 0 1996 John Wiley & Sons, Inc. 

Introduction 

any-body perturbation theory (MBPT) in M connection with the Merller-Plesset (MP) 
perturbation operator [l] is one of the most often 
used approaches to add dynamic correlation cor- 
rections to ab initio energies based on the 
Hartree-Fock (HF) approximation [ 2-91. The at- 
tractiveness of MP theory results from a number of 

*To whom correspondence should be addressed. 

advantages. For example, MP perturbation theory 
offers a hierarchy of well-defined methods that 
provide increasing accuracy with increasing order 
n. Correlation corrections are included stepwise in 
a systematic way that facilitates their analysis and 
interpretation. At each order n, MPn methods are 
size-extensive and this will also hold if parts of the 
MPn correlation energy are considered. Since the 
calculation of MP correlation corrections is carried 
out in single, noniterative steps, the MP approach 
is the most economic ab initio method for obtain- 
ing dynamic correlation corrections. Although 
MBPT theory in general or MP theory in specific 
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does not provide a wave function associated with 
a given correlation energy of order n, it is possible 
at each order n to calculate molecular properties in 
form of response properties using analytical en- 
ergy derivatives [lo, 111. 

As is indicated in Table I, MBPT methods are 
practical up to fourth-order and become more dif- 
ficult to apply at higher orders. Second-order MP 
(MP2) theory covers double ( D )  excitations and, 
accordingly, describes pair correlation effects [ 3,4]. 
At third-order MI’ (MP3) theory, coupling between 
D excitations is introduced and in this way the 
well-known exaggeration of pair correlation effects 
at MP2 is partially corrected [51. At fourth-order 
MP (MP4) theory, single (S), triple (TI, and 
quadruple ( Q )  excitations are added to the D 
excitations, thus yielding four energy contribu- 
tions EY) with A = S, D, T, and Q which to- 
gether lead to the MP4 correlation energy E(MP4) 
[6,7]. Although the calculation of the contribution 
Eg) seems to involve a cost factor of O ( M 8 )  where 
M is the number of basis functions, a stepwise 
evaluation of the Q term using intermediate arrays 
reduces the actual computational cost of calculat- 
ing Eg) to O ( M 6 ) .  The largest cost factor for 
calculating E(MP4) results from the evaluation of 
the T contribution ES4) which is proportional to 
O( M 7, (Table I). 

At fifth-order MP (MP5) theory, couplings be- 
tween S, D, T, and Q excitations are introduced 
[8,9]. There are 14 coupling terms EL5;, which 
because of the equivalence of terms EfA and Ei51 
reduce to 9 unique terms (Fig. 1). Again, contribu- 
tions such as EgA, the calculation of which would 
require O(M*O) operations in a one-step proce- 
dure, can be simplified by using intermediate ar- 
rays so that the actual cost for the determination of 

TABLE I 
Description of MPn methods ( n  = 2,3,. . ., 8). 

No. of 
No. of nonequivalent 

Order n total terms terms cost 

2 1 1 o ( ~ 5 )  

4 4 4 ow71 

6 55 36 o ( ~ 9 )  

3 1 1 O W 6 )  

5 14 9 O W 8 )  

7 221 141 O(M’’) 
8 91 5 583 O(M”)  

the MP5 correlation energy is O(M8) .  At MP5, a 
similar observation can be made as in the case of 
MP3: New correlation effects added in the previ- 
ous (even-numbered) order are reduced by the 
introduction of coupIings between the correspond- 
ing excitations. This happens at all odd orders of 
MP perturbation theory and, therefore, it can lead 
to an oscillatory behavior of calculated molecular 
properties obtained at increasing orders of pertur- 
bation theory [lo, 111. Since new excitations are not 
added at odd orders, odd orders of perturbation 
theory are mostly considered as being not very 
attractive for application to chemical problems. 
That is why MP2 and MP4 are normally used in 
correlation corrected ab initio investigations while 
there are relatively few studies based on either 
MP3 or MP5 theory. 

Although investigations using higher orders of 
perturbation theory ( n  > 5) have been carried out 
for some few-electron molecules [ 12,131, there is 
presently no method available by which routine 
investigations for sixth-order MI’ (MP6) theory can 
be carried out. There are 55 energy contributions 
of the type El5Ac, which reduce to 36 because of 
symmetry [141. In the upper half of Figure 1, the 
energy contributions E r d c , ,  , at nth order are given 
in a graphical way. The rows of the diagram corre- 
spond to a given order n. Each energy contribution 
at this order n corresponds to a path starting at 
A = S, D, T, or Q in the row corresponding to 
EYic,, . and leading down to the bottom row, which 
contains the fourth-order terms Ef). For example, 
one obtains 14 paths at fifth-order, namely the SS, 
SD, ST, DS, DD, DT,  DQ, TS, TD, TT, TQ, QD, 
QT, and the QQ path. At sixth-order, one has to 
consider that T and Q excitations can couple with 
pentuple ( P )  and hextuple ( H )  excitations. There- 
fore, the diagram extends to the right when the 
paths go down to levels n - 1, etc. However, any 
allowed path can only start and end at A = S, D, 
T, Q, which is indicated by (wiggled) separation 
lines for the starting level n in Figure 1. 

In the lower half of Figure 1 all 55 energy paths 
of MP6 are listed, 19 of which are equivalent 
because of symmetry. Hence, there remain 36 
unique paths corresponding to 36 unique energy 
terms EL6iC, which have to be calculated to deter- 
mine the MP6 correlation energy. 

In this and Part I1 of this series, we will present 
the basic theory and explicit formulas to carry out 
MP6 calculations using both algebraic and a dia- 
grammatic approaches. The following reasons have 
motivated our work. 
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MP6 is after MP2 and MP4 the next even 
order method that should be of interest be- 
cause of the introduction of new correlation 
effects. 
With MP6 one has three energies (MP2, MP4, 
MP6) in the class of even-order methods 
and three in the class of odd-order methods 
(MP1 = HF, MP3, MP5). In this way, one 
gets a somewhat more realistic basis to test 
the convergence behavior of MPn series [15]. 
Inspection of Table I and Figure 1 reveals 
that MP6 is actually the last method that can 
be developed using traditional techniques. 
MP7 has already a total of 221 terms, 141 of 
which are unique. Therefore, setting up MP7 
or even higher MPn methods will require 
some form of automated method develop- 
ment based on computer algebra languages. 
The cost of a MP6 calculation is proportional 
to O(M9) (see Table I). This is too expensive 

for calculations on larger molecules, but still 
gives a change for systematic studies on small 
molecules. 

5. Apart from this, there is the possibility of 
developing useful approximated MP6 meth- 
ods, which are less costly than the full MP6 
approach because they include just the more 
important energy contributions E f A c  rather 
than the full set of 36 energy terms. 

6. The development of MP7 and even higher 
MPn methods becomes rather difficult (see 
Table I and Refs. 16 and 17) and, therefore, 
this work will require new techniques using 
computer algebra and/or modern program- 
ming languages. New programming strate- 
gies have to be developed, for which MP6 is 
an excellent testing ground because it repre- 
sents already that degree of complication that 
will be encountered at all higher levels of 
MPn theory. 
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In the present work, we will start from the 
general formulation of nth order perturbation the- 
ory to derive appropriate formulas for all 36 sixth- 
order energy terms that have to be calcu- 
lated to get the MP6 correlation energy. While 
these terms are actually clear from the diagram 
shown in Figure 1, their actual evaluation has to 
be done in a different way in order to keep compu- 
tational cost at a recent level. In the following 
study [MI, we will present the transformation of 
the algebraic energy formulas into two-electron 
integral formulas and the structuring of a suitable 
computer program. We will also discuss the imple- 
mentation of MP6 and present first applications of 
the MP6 method. Finally, in a third study [191, we 
will develop efficient MP6 methods that can be 
used in connection with MP5 and MP4 methods. 

Theory 

In standard MP perturbation theory, the Hamil- 
tonian is given by 

fi = 8, + Q, (1) 

where go and are defined by 

fi0 = = c( i ,  + g,), (2) 
P P 

Q =  c FP;?' - cg,. (3) 
P < 9  P 

In Eq. (2), A, denotes the one-electron part of the 
Hamiltonian and 2, covers Coulomb and ex- 
change operators which describe two-electron in- 
teractions. The MP energy EGJ = E(MPn) at nth 
order can be written as 

E(MPn) = (@oll?6(n-')l@o), (4) 

where I Q0 ) is the Hartree-Fock (HF) reference 
wave function and the wave operator 6 at nth 
order is given by 

with 6o being the reduced resolvent: 

(6) 

In our previous work [141, we have made use of 
Eqs. (4) and (5) to derive the MI' energy expres- 
sion at sixth-order as a sum of four parts d, 9, 'Z, 
and 9. 

The principal part d is given by Eq. (8) while parts 
9, 'Z, and 9 given in Eqs. (91, (101, and (11) 
correspond to the renormalization part 9. 

where S, D,  T ,  Q, P ,  and H excitations are de- 
noted by subscripts s, d, t, q,  p ,  and h. For general 
excitations X ,  Y, etc., we will use subscripts x, y, 
etc. 

In Eqs. (8)-(11) the following terms have been 
used: 

18 VOL.59. NO. 1 



SIXTH-ORDER MANY-BODY PERTURBATION THEORY. 1 

and 
D 

f$')[@,) = c [ @ d ) ( E o  - Ed)-'Vd0. (14) 

Energies E,, E d ,  Ex, and E, of Eqs. (81414) are 
eigenvalues of the unperturbed Hamiltonian A, 
corresponding to the eigenfunctions I@, ), l Q d >  
(doubly excited), I ax ) ( x-fold excited), and I a,, ) 
( y-fold excited). Operator f$I) is the double excita- 
tion cluster operator at first-order perturbation 
theory. At second-order perturbation theory, there 
are the single, double, and triple excitation cluster 
operators fj'), f$') and fj'), respectively: 

d 

(16) 

fi')[@,) = Cl@,)(E, - Et)-'( @t[vf$l)l@o), (17) 

which will be used in the derivation of E(MP6). 
con- 

tains unlinked diagram contributions. According 
to the linked diagram theorem [20], the unlinked 
diagram terms of Eqs. (91-41) must be canceled 
by corresponding terms of the principal part d in 
order to guarantee proper dependence of the en- 
ergy E(MP6) on the size of the system (size exten- 
sivity [21]). Accordingly, only the linked diagram 
terms of part d contribute to E(MP6) in its final 
form. 

Since unlinked diagram terms contain discon- 
nected closed parts in their graphical representa- 
tion, a convenient way of distinguishing between 
linked and unlinked diagram terms of the princi- 
pal part d is to check whether a given term 

T 

t 

The renormalization term 9' = 9 + '8 + 

d ( X , ,  Y ,  X J :  

& ( X I ,  Y, X , )  

(XI, X ,  = S , D , T , Q ; Y  = S , D , T , Q , P , H )  (18) 

contains disconnected cluster operator parts in its 
graphical representation. For example, for X I ,  
X ,  = S ,  D,  T and Y = S, D, the diagrammatic 
representations of d( X , ,  Y, X,)  can only contain 
connected diagram parts and therefore, the corre- 
sponding terms represent linked diagram contri- 
butions, which fully contribute to the energy 
E(MP6). In such a case, we call the whole term 
d( X,,  Y, X,)  a connected cluster operator diagram 
term. For example, the terms d X, ,  T, X,)  ( X,,  X ,  
= D, T) and d ( T ,  Q, T)  are also associated with 
connected cluster operator diagram terms. But for 
X ,  = Q, d( X I ,  Y, Q )  can be written as 

d ( X , r Y t Q )  

1 
Xi Y Q 

= c c c ( @ o ~ ( P ) t v ~ @ x , ) E o  - Ex,)- 
XI Y 4 

I ,  

XI Y 

(19) 

where a disconnected cluster operator +(f$'))' ap- 
pears, which corresponds to a disconnected dia- 
gram part in the graphical representation of 
d( X , ,  Y, Q )  and, accordingly, leads to linked and 
unlinked diagram contributions to the energy. 
Thereby, @ ( X I ,  Y, Q ) ,  contrary to the connected 
cluster operator diagram terms d( X , ,  Y, X,) 
( X , ,  X ,  = S ,  D,  T, Y = S, D, etc.), contributes only 
partially to E(MP6). In this case, we call the whole 
term a disconnected cluster operator diagram term 
because of the presence of disconnected diagram 
parts in the graphical representation. The other 
terms of principal part d all involve disconnected 
cluster operator diagrams. In order to show this, 
we introduce graphical representations of pertur- 
bation operator v and cluster operators fjn) ( i  = 
1,2,3) at nth order perturbation theory, taking the 
HF wave function I@,) as a reference function, 
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(21) 

(22) 

In Eqs. (201423) as well as in the following 
equations, diagrams are given in a simplified form 
since they will only be used to distinguish be- 
tween linked and unlinked diagram terms. In terms 
of Eq. (22) one can express the cluster operator 
@$*))’ in a diagrammatic form shown in Eq. (24). 

Using Eqs. (20)-(23) one can identify other dis- 
connected diagram parts resulting from produzts 
of the operator v and the cluster operators T’’) 
( i  = 1,2,3): 

(26) 

which appear in the terms &(XI, T, S ) ,  
d( X,, Q, D), and d( X,, P, T ) ,  respectively. All 
disconnected diagram terms are found in these 
terms as well as in &(XI, Y, Q). 

In summary, all terms of the principal part d 
can be identified as being associated with con- 
nected or disconnected cluster operator diagrams. 
The latter can be further categorized by distin- 
guishing between disconnected diagram parts as- 
sociated with T, Q, or P excitations. Accordingly, 
we dissect all terms associated with the discon- 
nected cluster operator diagrams of & into three 
parts. The first part covers Q contributions given 
in Eqs. (24) and (26), namely dX,, Y, Q )  and 
&( X,, Q, D). The second and the third part corre- 
spond to T and P contributions given by Eqs. (25) 
and (271, namely &(XI, T, S )  and d ( X , ,  P, T ) .  

A simple procedure is applied to identify all 
linked diagram (LD) contributions to the correla- 

tion energy E(MP6). No matter whether a given 
diagram represents a wave operator or energy part 
of &, a connected diagram always leads to a linked 
energy diagram and, therefore, a contribution to 
the correlation energy. The disconnected diagrams 
can be open wave operator or closed energy dia- 
grams, which upon closure of the former can be all 
grouped into connected or disconnected energy 
diagrams. Again, only the former represent LD 
terms, which have to be added to the correlation 
energy. In this way, all LD terms are identified 
and the calculation of E(MP6) =dLD is possible. 

In setting up the expression for E(MP6) one has 
to realize that under certain circumstances simpli- 
fications are possible when parts of & are calcu- 
lated at the same time. For example, parts of 
&(XI, Y, Q )  (Y = T ,  Q, P )  can be combined with 
&(XI, T, S ) ,  &(XI, Q, 0)  and d ( X , ,  P ,  T )  thus 
leading to a reduction of the corresponding com- 
putational cost as will be discussed below. There- 
fore, it is useful to analyze the term &( X,, Y, Q )  
by diagrammatic techniques before focusing on 
d X, ,  T ,  9, &( X,, Q, 0>, and -@’(XI, P ,  TI. 

In the following, we will derive explicit expres- 
sions for the LD terms of d in form of the 36 
energy contributions EfAc with A ,  B ,  C = 

S ,  D ,  T ,  Q, P ,  H.  We will give each energy contri- 
bution in a cluster operator form, which can easily 
be converted into two-electron integral forms [181. 
For this purpose, sixth-order energy E(MP6) = dLD 
will be split into four parts E(MP6),, E(MP6),, 
E(MP6), and E(MP6),, respectively, following the 
analysis of the principal part & in terms of con- 
nected and disconnected cluster operator diagram 
contributions. E(MP6), contains 16 energy terms 
E!& corresponding to connected cluster operator 
diagram terms. E(MP6), also covers 16 energy 
terms which result from disconnected Q cluster 
operators. The remaining four terms are given by 
E(MP6), and E(MP6), which correspond to 
d X , ,  T ,  S )  (three T contributions) and 
d( X,, P, T) (one P contribution), respectively. Ex- 
plicit formulas for E(MP6),, E(MP6),, E(MP61, 
and E(MP6), will be derived in the following 
sections. 

DERIVATION OF E(MPG),, FROM d(X,, Y,X,) 
WITHX,=S ,D,T;  Y = S , D , X , = S , D , T  

In this case, Eq. (8) does not contain any un- 
linked diagram terms and, accordingly, it is 
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straightforward to express E(MP6),, by connected part (@J Ti+(f-j1’>2]DI@o): 

Note that = E g i s ,  etc., which leads to a re- 
duction from 18 to 12 terms E f i c  in Eq. (28), 
which have to be weighted by appropriate factors 
of 1 or 2. 

DERIVATION OF E(MP6)ib FROM &(Xi Y, X , )  
WITH X, = D, T, Y= T, X ,  = D, T; X ,  = T, 
Y =  9, X ,  = T 

Again, the principal part d( X , ,  Y, X,)  contains 
just linked diagram terms, which lead to four 
energy contributions El6& covering T effects: 

where subscript C (or D )  indicates limitation to 
”connected” (or “disconnected”) cluster operator 
diagrams so that dX,, Y, Q )  can also be sepa- 
rated into d( X, ,  Y, Qc) and d( XI, Y, Q D ) :  

Y, Qc)  

Hence, E(MP6)i = E(MP6)1, + E(MP6),, covers in 
total 16 energy terms, for which explicit formulas 
are given in Eqs. (Al)-(A16) of the Appendix. In 
none of these 16 cases is it possible to further 
simply the corresponding energy expressions and 
to reduce computational cost when evaluating 
them. This, however, is different for the following 
energy contribution E(MP6)2, E(MP6),, and 
E(MP6), . 

Equations (32) and (33) cover for X ,  = Q four 
possibilities, namely .AQc, Y, Qc), d Q D ,  Y, QC). 

d ( Q c ,  Y ,  Q D ) ,  and d ( Q D ,  Y ,  Q D ) .  The first term 
contains just linked diagram terms, while the last 
term and the remaining terms d ( Q D ,  Y, Qc)  = 
d ( Q c ,  Y ,  Q D )  can cover linked and/or unlinked 
diagrams, which has to be investigated in each 
case. For convenience, we split E(MP6)2, into three 
parts: (1) Y = D,  (2) Y = T ,  Q, P ,  and (3) Y = H ,  
which are discussed in the following. 

DERIVATION OF E(MP6),, FROM d(X1, Y, 9) 
WITH X ,  = S, D, T, 0; Y= D, T, 9 ,P ,H;  X, = 9 
&(XI, Y ,  Q )  is given by Eq. (191, in which the Q 

effects can be diagramm$ically described by the 
connected part ( QY I[ v;(TJ1))’ lc I Q0 ) and the dis- 

DERIVATION OF E(MP6),,, FROM &(A’,, Y, 9) 
WITH X ,  = S, D, T, 0; Y =  0; X, = 9 
When Y runs over all D excitations in Eq. (32), 

the first three terms in d( X , ,  D, Qc)  correspond to 
connected, closed (linked) diagrams leading to the 
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energy. contributions E$2,, EgL,, and E#,. For 
XI = Q, d ( Q C ,  D, Qc)  represents a linked diagram 
part, which is equal to Egb?. If, however, either 
Eq. (32l or (33) contains a disconnected part such 
as I+[( ~ 4 ~ ) ) ~  I' VID: 

then, this will lead to an unlinked diagram contri- 
bution as can be seen from Eq. (35): 

This means that all possible contributions from 
d X,, D, Q D )  with X, = S, D, T ,  Q correspond to 
unlinked diagrams, which can be disregarded. 
Hence, there is no contribution from 4 X,, D, Q D )  
to E(MP6) and, accordingly, E(MP6),,, is given by 

E(MP6)2aI = 2E$3, + 2Egb, + 2E$6AQ + Egb,. 
(36) 

Explicit expressions for the energy contributions of 
Eq. (36) are given in Eqs. (A17)-(A20) of the Ap- 
pendix. 

DERIVATION OF E(MP6),+ FROM d(Xl, Y, 0) 
WITHX,=S ,D,T ,O;  Y = T , Q , P ; X , = Q  

In this case, the term (@.,I[ ~+(f$l))z]Dl@o) ( y  = 
t ,  q, p >  in Eq. (33) represents disconnected, open- 
diagram parts: 

w w----- v (39) 

The term d( X,, Y, Q D )  contains both linked and 
unlinked diagrams, where the former lead to par- 
tial energy contributions Ef)y (I). Because of com- 
putational considerations, it is advisable to eval- 
uate contributions Ef:ya(I) in connection with 
energy terms Ef,)Ts [ E(MP6),1, Ef:aD [ E(MP6),,], 
and E$jPT [ E(MP6),]. The complementary energy 
contributions E$:yQ(II) [ E f : y a  = Ef:yQ(I) + 
E$:$,(II)] are contained in d ( X , ,  Y, Q,) of 
Eq. (32), which includes for Y = T or Q just linked 
diagrams. The case Y = P can be excluded since 
d X , ,  P,  Q,) does not contribute to E(MP6). This 
can be seen if one has the operator [v~(f2)21c 
acting on the reference wave function lao): It is 
impossible to generate p-fold excited wave func- 
tions lap). 

The term d( X , ,  Y, Qc) covers seven partial en- 
ergy contributions, which are summarized in 
E(MP6)2,2 according to 

' ?  

The computation of E$Y,(II) and E&$I) can be 
simplified by splitting E$'$,(II) and E&,(II) in 
two parts 11, and 11, according to Eqs. (41)-(42), 
and combining part 11, with E$YQ(II) and Egk,(II). 

Utilizing the factorization theorem [221, namely 
(xy1-l = ( x  + y)-'(x-' + y-'1, Eq. (43) can be 
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This is done by rewriting the bracket part of Eq. 
(43) according to Eqs. (45a) and (45b): 

= 5 d s  ~ ( @ o l v I @ n )  ( @ 0 1 ( f P ) t + )  

x[(Eo - E,)pl(@dlf~l@t> 

+ ( Eo - Ed)-' ( @.,I f:l@f)] 
= (@oI ( f~2) ) t ( f i1 ) ) t~ I@~) (Eo  - Et),  (45b) 

where f., and fd denote elementary singles and 
doubles substitution operators (e.g., F,I@.,> = I@.,> 
and fdI@,> = I @ d ) )  and the following identity has 
been used in Eq. (45) C231: 

In a similar way we can derive the sum E$hQ(1I) + 
E$&Q(II)a: 

E$bQ(II) + E$'kQ(1Oa 

Since the energy denominators in Eqs. (43) and 
(47a) involve T and Q energies, respectively, their 
calculation requires O ( M 7 )  and O(M9) steps. By 
rewriting (43) and (47a) according to (44) and (4%) 
and eliminating the T and Q energy denomina- 
tors, the cost for calculating E$YQ(II) and E&Q(II) 
is reduced to O ( M 6 ) .  In view of this, it is advis- 
able to eliminate T ,  Q, P,  H energy denominators 
in the expression for principal part sd [Eq. (811. 

The total contribution of the connected part 
d( X,, Y, Qc) [Eq. (40)] to E(MP6) is given by 

where symmetric terms are covered by a factor of 
2 in the case of Eg$,(II) = E$'$,(II>, E$6$Q(II), and 
E$6AQ(II). Explicit expressions for E$'$Q(II)b, 
E&,(II), E$$,(II), E$6$Q(II), and E$6AQ(II) are given 
in Eqs. (A23), (A30), (A26), (A32), and (A34) of the 
Appendix. 

DERIVATION OF E(MP6),,3 FROM 

When setting Y = H in Eq. (19), the connected 
part of d leads to the energy term E$'kQ, which 
can be developed in the following way: 

d ( X , ,  YJ,) WITH x ,  = a Y =  H; x ,  = 0 
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By utilizing the identity (factorization theorem) 
[22]: 

1 1  - + - + -  
I (  

- 
1 

- -  
xyz x + y + 2 xy xz y2 

the connected part of d ( Q ,  H ,  Q )  simplifies to 

(50) 

Using a series of intermediate arrays, evaluation of 
the two terms of Eq. (50) requires just O(M6) 
computational steps so that the calculation of E$AQ 
is not very time demanding in an MP6 energy 
computation. 

DERWATION OF E(MPG),,, FROM d ( X , ,  Y, X ,  ) 
WITH X ,  = D, T, 0; Y =  0; X ,  = D 

After discussing Q contributions already in con- 
nection with E(MP6),, and E(MP6),,, there re- 
main just three Q terms resulting from 
d ( X l ,  Q, 0)  with X, = D, T, Q. 

c . d X l r  Q, 0 )  
D ,  T ,  Q 

Xl 

It is of computational advantage to combine the 
first term of Eq. (51), d ( D ,  Q, D ) ,  with 
d( D, Q, Q D )  of Eq. (33) ( X, = D, Y = Q )  using the 
same approach as discussed in connection with Eq. 
(47). This leads to 

d ( D ,  Q ,  0) Q, Q D )  

(52) 

which contributes to E(MP6) (by its connected 
part) the two energy terms E$bD and E&&) 

E$LD + E$hQ(I) 

= ( I ( f p  ) *J1’fj2’2’ l@o)c  
= (cDol(fp)+( vfjvy))c~@o). (53) 

Analogously, the combination of d T ,  Q, D) 
[ X ,  = T in Eq. (501 with &(TI Q, Q D )  defined by 
Eq. (33) leads to 

d(T, Q, 0 )  +&(TI Q, Q D )  

Q 
= 2c ( @ o ~ ( f ~ z ) ) t ~ ~ @ , ) E o  - E,)Y’ 

9 

(54) 

Analysis of Eq. (54) reveals that no unlinked dia- 
gram terms occur in the sum d(T, Q, 0)  + 
d(T, Q, QD),  which means that Eq. (54) represents 
the energy contributions 2[ E$6AD + E$6AQ(I)] [see 
Eq. (A331 in the Appendix]. 

Combination of d ( Q ,  Q, D )  of Eq. (51) and 
d ( Q ,  Q, Q D )  of Eq. (33) leads to 

d(Q, Q,  D )  + = d Q r  Q, Q D )  
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where the connected part, 

represents the energy contributions Et&,  + 
E$&& An explicit expression for these energy 
terms is given in Eq. (A29) of the Appendix. 

The final E(MP6),, term can be written as 

The three parts in Eq. (56) require O ( M 6 ) ,  O ( M 7 ) ,  
and O ( M  6 ,  computational steps. However, sepa- 
rate evaluation of Egb,, E$6&D, and E$hD in- 
volves at least O ( M 8 )  operations because of the 
presence of the Q energy denominator. 

Finally, the total E(MP61, contribution is ob- 
tained according to 

E(MP6)z = E(MP6)2al + E(MP6)2a2 
+ E(MP6)zq + E(MP6)zb. (57) 

DERIVATION OF E(MPG), FROM d ( X , ,  Y, X ,  ) 
WITH X ,  = S, D, T, 0; Y =  T; X ,  = S 

The term d( XI, T, S )  is given by 

with X, = S, D, T, Q. Note that contributions from 
d( XI, T, X,) for X, = D, T, Q have already been 
covered by Eqs. (19) and (29). For the purpose of 
finding the linked diagram contributions of 
d( X,, T, S), we pursue the same procedure as in 
the case of E$TP,',(II) and E8JQ(IOa [Eqs. (43) and 
(4411. Adding d( XI, T, Q D )  of Eq. (33) (Y  = T )  to 

and 

(60) 

Using Eq. (45b), Eqs. (59) and (60) can be simpli- 
fied to Eqs. (61) and (621, respectively: 

d( X i ,  T ,  S )  +d( Xi, T ,  Q D )  

= (2 - 6 XI,  s ) ( @ o ~ ( f ~ , ) ) + ~ ~ 2 ) f ~ ~ ) ~ @ o )  
( i  = 1.,2,3 when X, = S, D , T ) ,  (61) 

d(Q, T ,  S) + d ( Q t  T ,  Q D )  

The last two terms in Eq. (61) (X, = D, T )  are 
linked diagram terms corresponding to 2[ Eg$s + 
Eg+,(I)] [Eq. (A25)I and 2[E$ys + Eq'(l(1)l [Eq. 
(A31)] while the connected parts of the first term 
in Eq. (61) and the term in Eq. (62), namely 

and 

are identical to E$Ys + E$Ya(I) and E$$s + E$$a(I) 
given by Eqs. (A21) and (A24) of the Appendix. 
Hence, the energy term E(MP6), can be calculated 
according to 

E(MP6)3 = E&Ts + E$YQ(I) + 2[ EgJS + Eg$a(I)] 

+ 2[ EYJs + E$6$a(I)] + E$$s + E$$a(I). (63) 
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DERIVATION OF E(MP6), FROM M ( X , ,  Y, X ,  ) 
WITH X ,  = T, 0; Y= P; X ,  = T, 0 
Finally, we consider contributions from P exci- 

tations contained in M ( X l ,  P ,  X , )  of Eq. (18) for 
the case that X,, X ,  = T ,  Q. M ( X , ,  P ,  X , )  covers 
four energy terms, of which d ( T ,  P ,  Q )  and 
d Q ,  P ,  Q )  have already been covered by Eq. (33). 
When replacing f i2)  [(f42))fl by Ti2) [(fl2)lt or 
i[(fi2'")'I2 and Q by P in Eq. (52), we get 

M ( T ,  P ,  T )  + 4 T ,  P ,  Q )  

or 

The connected parts of Eqs. (64) and (65) give all P 
contributions to E(MP6): 

Explicit expressions for EFJT + E$Ya and E$bT + 
EgbQ are given in Eqs. (A36)-(A41) of the Ap- 
pendix. 

Adding all contributions E(MP6), ( i  = 1,2,3,4), 
the final expression for E(MP6) is given by: 

E(MP6) = E(MP6)i + E(MP6)2 + E(MP6)3 
+ E(MP6)4 

= Ei6,', + 2E&%)D + 2E(6' S S T  + E(6) SDS 

+ 2E$2D + 2Ei& + E$iD + 2EgiT 

+ E$bD + 2Egbr + E$YT + E$%T 

Conclusions 

The general expression for the sixth-order MP 
correlation energy, E(MP61, has been dissected in 
the principal part @' and renormalization terms 9, 
E', and g. Since the renormalization terms contain 
unlinked diagram contributions, which are can- 
celed by corresponding terms of the principal part 
d, E(MP6) is derived solely from the linked dia- 
gram terms of the principal part d. To identify the 
latter, we have investigated which of the terms 
M( X , ,  Y, X,) is associated with connected and dis- 
connected cluster operator diagrams. connected 
diagrams lead to linked diagram representations 
and, therefore, contributions to E(MP6). Discon- 
nected diagrams, upon closing, yield both linked 
and unlinked diagrams, which has to be consid- 
ered in the derivation of E(MP6). 

We have dissected the principal part d into 
four major contributions, namely a first one with 
just connected cluster operator contributions, a 
second one with disconnected Q cluster operator 
contributions, a third one with the corresponding 
T contributions, and a fourth one with the corre- 
sponding P contributions. Out of the latter three 
parts, we have extracted the linked diagram terms 
leading to energies E(MP6),, E(MP6),, and 
E(MP6),. Adding to these terms the linked dia- 
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gram parts of the first term, collected iil E(MP6),, 
an appropriate energy formula in terms of first- 
and second-order cluster operators has been de- 
rived for sixth-order MP perturbation theory, 
which can be converted into two-electron integral 
formulas and programmed for a computer (see 
Ref. [l8l>. 
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Appendix 

In the following, we give explicit expressions 
for all 36 energy contributions to E(MP6) in terms 
of cluster operators. 
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where 

and 

where 

and 
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