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ABSTRACT: The concept of characterizing normal vibrational modes l in terms ofm

internal vibrational modes v typical of molecular fragments or structural subunits isn
developed. Essential for this concept is the amplitude AA that provides the basis for anm

quantitative comparison of modes l and v and, by this, facilitates the extraction ofm n
chemical information out of vibrational spectra. Twelve possibilities of defining amplitude

Ž . Ž .AA are tested with regard to a the physical basis of the definition of AA, b the
dependence of AA on the set of internal parameters chosen to describe the molecule, and
Ž .c the amount of chemical information transferred by AA. The two most promising
candidates for a generally applicable amplitude AA are based on adiabatic internal modes
and a comparison of l and v with the help of mass or force constant matrix. For them n
practical testing of amplitude AA, three different criteria are developed. Q 1998 John Wiley
& Sons, Inc. Int J Quant Chem 67: 29]40, 1998

Introduction

n vibrational spectroscopy, one measures theI infrared or Raman spectra of vibrating
molecules. From the spectra, the vibrational fre-
quencies n e x p are obtained by determining them
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positions of maximum intensity of the vibrational
bands. Utilizing previous measurements that have
led to the identification of structure-specific fre-
quencies n , one determines whether measuredn

vibrational frequencies n e x p can be related to fre-m

quencies of structural units such as CC double
w xbonds and keto groups 1 . If in a particular case a

sufficiently large number of identifications have
been made, it will be possible to verify or identify
the structure of a molecule with the help of vibra-
tional spectroscopy. This procedure is schemati-
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Ž . Ž .cally indicated in the sequence 1 ] 4 of Figure 1.
If this sequence is closed to a circle, the vibrational
spectrum and molecular structure can be related in
the sense that it is not only possible to determine
the structure of a molecule with the help of mea-
sured vibrational spectra but also to predict the
vibrational spectra of a given molecule once its

w Ž .structure is known i.e., predicting 1 on the basis
Ž . xof 4 in Fig. 1 .
While Figure 1 describes the ideal case, the

practice of vibrational spectroscopy is far from
identifying the exact structure of any molecule by
analysis of its vibrational spectra. Problems arise

( )FIGURE 1. Comparison of experimental outer circle
( )and theoretical vibrational spectroscopy inner circle . In

the experiment, a vibrational spectrum of a molecule is
( ) expmeasured 1 , normal mode frequencies n arem

( )determined 2 and analyzed to identify characteristic
exp ( )fragment frequencies n 3 that can be associatedn

with structural units so that the structure of the molecule
( )can be unravelled 4 . In the theoretical part of vibrational

( )spectroscopy, the normal mode analysis NMA is carried
( )out, which leads to normal mode coordinates Q a ,m

( )normal mode vibrations l b , and normal modem

( )frequencies v c, left side of inner circle . The NMA ism

complemented by the characterization of normal mode
( )CNM analysis, which connects internal parameters zn

( )describing the structural units of a molecule a with the
( )internal vibrational modes v b and the characteristicn

( )fragment frequencies v g , right side of inner circle .n
NMA and CNM are linked by the amplitude AA, which
provides the basis for the comparison of internal
vibrational modes v with normal vibrational modes l .n m

from the extraction of fragment-specific frequen-
cies n , which can be used to verify all structuraln

units as well as their connections within a
molecule. Certainly, there have been many accom-
plishments to assign typical frequencies n e x p tom

w xmolecular fragments f 1 ; however, in none ofn

these cases was it possible to generalize assign-
ments to any arbitrary molecular unit and to get in
this way a building-block principle for molecules
and their vibrational spectra.

In this situation, theory in general, but in partic-
ular ab initio theory, provides important addi-
tional information. First, it is possible to calculate
IR and Raman spectra in the harmonic approxima-

Ž .tion leading to v rather than n with satisfac-m m

tory accuracy in a routine manner. Automatically,
the normal modes I of the vibrating molecule arem

characterized in terms of normal coordinates Qm

and normal frequencies v as is indicated in Fig-m

Ž .ure 1 by the sequence a]c , which presents the
Ž .basis for the normal mode analysis NMA . Calcu-

lated frequencies v can be compared with mea-m

Žsured frequencies relating step c and step 2 in Fig.
.1 and, in this way, facilitate the identification of

an unknown compound since agreement of mea-
sured and calculated frequencies suggests that the
geometry used in the calculation represents the
geometry of the molecule investigated by vibra-
tional spectroscopy.

Apart from this, theory provides a second possi-
bility of structure determination with the help of
vibrational spectroscopy, which has not been used
so far, but may represent the key to the problem of
relating structure and vibrational spectra. By the-
oretical means, one can determine elementary
modes of suitable structural units or molecular
fragments f that are associated with internaln

coordinates q describing these fragments. Suchn
w xmodes we have called internal modes 2, 3 since

they play the same role in the understanding of
the vibrating molecule as internal coordinates play
in the understanding of molecular geometry and
conformation, i.e., internal modes add a dynamic
part to the static description of molecules with the
help of internal coordinates.

The internal modes, each of which is localized
in a different molecular fragment, present the basis

Ž .for characterizing normal modes CNM analysis .
For this purpose, one has to define an amplitude
AA , which specifies the contribution of a particu-nm

lar internal mode v to a given delocalized normaln
mode l . Utilizing amplitudes AA , one can de-m nm
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compose normal modes in terms of internal modes
and, in this way, exactly relate the normal modes
of a molecule to its structural units. This clearly
facilitates the use of vibrational spectroscopy as a
structure-determining tool and enriches its possi-
ble uses within chemistry.

Clearly, the assets of a useful, in itself noncon-
tradictory, and physically based CNM analysis are
the internal vibrational motions as well as the
amplitudes AA that relate internal modes to normal
modes. We presented in the first article of this

w xseries, henceforth called article I 2 , adiabatic inter-
nal modes a as the appropriate candidates forn
internal modes and compared their properties with
those of c-vector internal modes in article II of this

w xseries 3 . In this work, we focused on the possibil-
ities of decomposing normal modes into internal
modes using amplitudes AA. For this purpose, we
suggest appropriate definitions of AA and also in-
vestigate the so-called density matrix P, which is

Ž .used within the potential energy distribution PED
w xanalysis to characterize normal modes 4]7 . Each

amplitude will be tested with the help of appropri-
ate criteria that guarantee a physically reasonable
basis of the CNM analysis.

Description of Normal Modes with the
Help of Amplitudes AA

There are no explicit criteria that help to define
a suitable amplitude AA needed to describe the
contribution of internal modes to normal modes
and, then, to judge on the quality of this definition.
However, there are properties that are implicitly
assumed to be associated with amplitudes AA. These
can be formulated in the following way:

1. Symmetry-equivalent internal modes associ-
ated with symmetry-equivalent internal pa-
rameters must have the same amplitudes in
the case that the normal mode being decom-

Ž .posed is symmetric symmetry criterion .

2. The results of the CNM analysis should not
change significantly if some internal motions
with low amplitudes are changed or deleted
in the expansion of the normal modes as
might happen when changing a redundant
set of internal parameters into another set
Ž .stability of results .

3. Since it is not possible to directly evaluate
the quality of a given definition of AA , onenm

has to do this in an indirect way by compar-
ing a normal mode frequency with suitable
reference frequencies associated with internal
parameters z .U It is physically reasonable ton
expect that if all normal modes l are studiedm

Žfor fixed internal modes v associated withn
.fixed parameters z , then the magnitude ofn

amplitudes AA should become the smallernm

the larger the difference Dv between thenm

normal mode frequency v and the fixedm

reference frequency v is. If this is the case,n
one can say that the dynamical origin of the
normal mode principle will be fulfilled. In
Appendix A, a general correlation pattern for

ŽAA vs. Dv is derived dynamical origin ofnm nm

.normal mode concept .

Provided that the dynamical origin of the nor-
mal mode concept is correctly considered, the am-
plitude AA will adopt a large value if the fre-nm

quency difference Dv s v y v is relativelymn m n
small, which simply means that the internal mode
v associated with the internal parameter z domi-n n
nates the normal mode l and that the normalm

mode frequency v indicates the presence of them

structural unit f characterized by z and then n
internal mode frequency v :m

Ž . Ž . Ž .AA large « Dv small . 1nm m , n

Ž .Relationship 1 is the basis for the empirical as-
signment of measured frequencies to structural
units or fragments of a molecule.

Similarly, if there is a normal mode frequency
v placed far from an internal mode frequency vn n
associated with fragment f , then one will notn
expect a large amplitude since it is unlikely that
the internal mode v dominates the normal moden
l :m

Ž . Ž . Ž .Dv large « AA small . 2m , n nm

Hence, the case

Ž . Ž . Ž .Dv large « AA large 3m , n nm

should not occur. Of course, due to strong cou-
plings within the molecule, it can happen that
although a normal mode frequency v possesses am

similar value as that of the internal mode fre-

* We prefer to use the term internal parameter rather than
internal coordinate since the former covers all possible choices

Žof a coordinate puckering coordinates, natural coordinates,
.delocalized coordinates, etc.
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quency v , normal mode l has nothing in com-n m

mon with internal mode v . This will be indicatedn
by a low value of amplitude AA according tonm

Ž . Ž . Ž .Dv small and AA small . 4m , n nm

If amplitudes AA are plotted as a function ofnm

Dv , then the distribution of amplitude pointsmn
Ž .should be enveloped by a Lorentzian bell-shaped

Ž .curve Fig. 2 similar to the one describing the line
w xshape of spectroscopic bands 8 , since this curve

Ž . Ž .complies with expectations 1 ] 4 .

Definition of Internal Mode
Amplitudes AA

Any procedure to define an amplitude AA must
guarantee that normal and internal vibrational
modes are related in a physically reasonable way.
The change in an internal parameter z of an
molecule is associated with the vibrational mode
v of that structural unit f that is described by zn n n
w x2 . The vector v describes how the moleculen

Ž .vibrates when parameter z that initiates ‘‘leads’’n
the internal motion is slightly distorted from its
equilibrium value. From the NMA, one obtains
normal mode vectors l , each of which shows howm

the atoms of a molecule move when the normal
coordinate Q is changed. By comparing the nor-m

mal mode l with the internal mode v , the ampli-m n
tude AA is obtained that describes l in terms ofnm m

FIGURE 2. Different possibilities that can occur when
plotting amplitudes AA in dependence of the differencenm

Dv , between normal mode frequencies v andnm m

characteristic fragment frequencies v . The dashed linen
( )indicates the enveloping Lorentzian bell-shaped curve

that can be expected in the case of a physically
( )well-defined amplitude see text .

the vibration of the smaller structural unit fn
represented by displacement vector v . Clearly,n
amplitude AA has to be defined as a function of lnm m

and v :n

Ž . Ž .AA s f l , v . 5nm m n

In this article, we consider two choices for the
internal mode vector v , namely, v equal to then n

Ž w x.adiabatic internal mode vector a see article I 2n
and v equal to the vector c where the c-vectors ofn n
matrix C describe the transformation from Carte-

w xsian to internal coordinates 9, 10 . The choice v sn
c is implicitly assumed within the PED analysisn
w x Ž w x.4]7 see also article II 3 . As has been shown in

w x w xarticles I 2 and II 3 , adiabatic vectors a have an
better physical justification than do vectors c ,n
which should pay off when defining the amplitude
AA . However, a priori, one cannot guarantee thatnm

this pays off when defining and using amplitudes
for the CNM analysis and, therefore, explicit con-
sideration of the PED analysis both from a theoret-
ical and a practical point of view is needed.

Once v is chosen, one can compare the normaln
mode vibration l with the vibration v of a struc-m n
tural unit f by calculating the scalar productn
Ž .l , v . We define AA asm n nm

2Ž .l , vm n Ž .A s , 6nm Ž .Ž .v , v l , ln n m m

where we use symbol A to distinguish betweennm

a specific definition of AA and the general ampli-
Ž .tude AA . The denominator in 6 accounts fornm

proper normalization and guarantees that A willnm

adopt values between 0 and 1.

AMPLITUDES DERIVED FROM A DENSITY
MATRIX P

w xIn the PED analysis 4]7 , one defines a density
matrix P m that describes normal mode m in termsn m
of vibrations represented by vectors v . By expand-n

Ž .ing l in terms of vectors v according to Eq. 7 ,m n

Ž .l s v t , 7Ým n nm
n

Ž .and expressing the scalar product l , l accordingm m

Ž .to Eq. 8 ,

Ž . Ž . Ž .l , l s t t v , v , 8Ým m nm mm n m
n , m
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one obtains the general definition of the P matrix
Ž . Ž .elements by dividing Eq. 8 by l , l :m m

m Ž .1 s P , 9Ý nm
n , m

with

Ž .t t v , vnm mm n mm Ž .P s . 10nm Ž .l , lm m

Clearly, elements of the P matrix can fulfill the
role of amplitudes used in the CNM approach.

There is only one situation in which A-type and
P-type amplitudes lead to identical descriptions of
normal modes in terms of internal modes, namely,
that in which a set of orthogonal vectors v isn
chosen in the sense that

Ž . Ž . Ž .v , v s d v , v , 11n m n , m n n

and, accordingly, A s P m . However, generally,nm nn
internal modes v are not orthogonal and, there-n
fore, A- and P-type amplitudes lead to different
decompositions of normal modes l . From the def-m

w Ž .xinition of A amplitudes Eq. 6 , it is obvious that
A does not depend on how the other internalnm

Ž .parameters z m / n not associated with vectorm
v are chosen. As long as A is consideredn nm

for the same v and z , the overall choice of the setn n
of internal parameters does not effect the value of
the amplitude A . This is of advantage for anm

chemically oriented analysis of normal modes: For
example, if the contribution of one particular inter-
nal mode associated with the structural unit fn

Žand the internal parameter z e.g., a C5C bondn
.and its associated length to the N normal modes

of a molecule is of interest, the different values of
ŽA with m s 1, . . . , N N s 3K y L: numbernm v ib v ib

of vibrations; K : number of atoms; L: number of
.translations and rotations can be calculated and

compared without any need to define the other
internal parameters of the molecule.

Contrary to A-type amplitudes, P-type ampli-
tudes are parameter set dependent since the over-
all choice of parameters z , m / n determines them

m Ž .value of P given in Eq. 10 . This is confirmed innm
practice, which reveals that P-type amplitudes are
very sensitive to the choice of the parameter set,

w xwhich, in any case, has to be complete 11 to
m w xobtain a useful P value 12 .nm

DEFINITION OF SCALAR PRODUCTS

Ž .The scalar product a, b , which appears in the
w Ž .xdefinition of both the amplitude A Eq. 6 andnm

m Ž .the density matrix P 10 , can be defined in then m
most general way as

Ž . Ž .a, b s a O b , 12Ý i i j j
i , j

where O is an element of the metric matrix Oi j
and a and b are components of vectors a and b ini j
Cartesian space. For the metric O, there are three
natural choices, namely,

Ž .a O s di j i j

Ž .b O s Mi j i j

Ž . Ž .c O s f , 13i j i j

with M and f being elements of the mass andi j i j
Ž .force constant matrix, respectively. Equation 13a

provides an estimate whether the two vectors a
and b are spatially close, i.e., it measures their

Ž .‘‘spatial overlap’’. Equation 13b compares the
Ž .two vectors kinetically ‘‘mass comparison’’ and

Ž . ŽEq. 13c compares them dynamically ‘‘force com-
. Ž . Ž .parison’’ . Equations 13b and 13c reveal the

Žinfluence of the atomic masses via mass matrix
. ŽM or that of the electronic structure via force

.constant matrix f on the form of the normal mode
l . This is discussed in more detail in Appendix B.m

ABSOLUTE AND NORMALIZED AMPLITUDES

We speak in the case of amplitudes A and P as
Ž . Ž .defined in Eqs. 6 and 10 of absolute amplitudes. It

is common practice to renormalize amplitudes and
to express them in percentage according to Eq.
Ž .14 :

AAnm% Ž .AA s 100, 14nm Ý AAm mm

as a convenient way to compare them. This advan-
tage has to be balanced against the fact that be-

Ž .cause of Eq. 14 amplitudes are no longer inde-
pendent of the parameter set chosen.

Only if orthogonal vectors v are used, the sumn
m w Ž .xÝ P compare with Eq. 9 will become equal ton nn

Ž .one as can be seen when inserting Eqs. 11 and
Ž . Ž . m10 into Eq. 9 . In this case, the element Pnm
represents the fractional contribution of the inter-
nal mode v to the normal mode vibration l ,n m

Ž .which is schematically indicated in Figure 3 a .
Usually, internal modes v are not orthogonal and,n
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FIGURE 3. Symbolic characterization of a normal mode
l of a two-dimensional vibrational problem in terms ofm

( )two internal vibrations v and v . a For orthogonaln m
( m ) m mvectors v and v P = 0 , amplitudes P and Pn m nm nn mm

( ) madd up to one. b If v and v are not orthogonal, Pn m nm
( )shaded overlap region is not equal to zero and P-type

( )amplitudes do not add up to one. c Defining new
˜m m ˜m ˜m mP-type amplitudes P = P + P and P = P +nn nn nm mm mm

P m , overlap vanishes and amplitudes again add to one.nm

Ž .then, the representation of Figure 3 b applies, i.e.,
the density matrix element P m is used for defin-nm

ing the contributions of both v and v to then m

normal mode l . To retrieve the meaning of P m inm nn
Ž .Figure 3 a , one can sum the off-diagonal elements

P m into the diagonal elements P m and define innm nn
˜m m w xthis way a new density matrix P s Ý P 6nn m nm

˜mand, then, it can easily be shown that Ý P s 1n nn

for any set of nonorthogonal internal mode vectors
w Ž .xv compare with Fig. 3 c . It can happen thatn

˜msome of the new matrix elements P are no longern n
w xpositive 6 , which makes their interpretation diffi-

˜cult. Therefore, we refrain from using matrix P.

NOTATION FOR DIFFERENT TYPES
OF AMPLITUDES

Figure 4 summarizes the possible definitions of
amplitudes A or density matrix elements P m .nm n n
Considering that one can choose between two dif-

Žferent internal mode vectors v Av and Cv on then
. Ž . Ž .x-axis of Fig. 4 , according to Eqs. 6 and 10

Žbetween two weighting coefficients A and P y-
. Ž .axis of Fig. 4 and according to Eq. 13 between

Žthree different metrics O S, M, F on the z-axis of
.Fig. 4 , there are 12 possibilities, which have to be

tested:

AvAS AvPS Ž .O s S 15½ CvAS CvPS

AvAM AvPM Ž .O s M 16½ CvAM CvPM

AvAF AvPF Ž .O s f . 17½ CvAF CvPF

If amplitudes expressed in % are used, this will be
indicated by the superscript ‘‘%.’’

Characteristic Fragment Frequencies

The determination of characteristic fragment
frequencies v associated with the structural unitn
f is a major, yet not satisfactorily solved task ofn
vibrational spectroscopy. This has to do with the
fact that the motion of a molecular fragment f isn

FIGURE 4. The 12 possible definitions of amplitudes
( )determined by the choice of a internal vibration vectors

( ) ( ) (v Cv or Av on x-axis , b the type of amplitude A or Pn
) ( ) ( )on y-axis , and c the metric O S, M, f on z-axis .
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always coupled to the motions of the other struc-
tural units or fragments of the molecule. The mea-
sured frequencies are the ones arising from cou-
pled motions of several or all fragments of the
molecule. However, in some cases, the couplings
between the different fragment motions are not so
large so that it is possible to characterize a vibra-
tional motion and its corresponding frequency as
predominantly originating from the internal vibra-
tion of one particular fragment. Due to the nature
of electronic structure and the conservation of the
properties of certain structural elements in differ-
ent molecules, similar characteristic fragment fre-
quencies can be observed for the same structural
unit in different molecules. Today, it is considered
as an experimental fact that there are stable char-
acteristic frequencies of molecular fragments that

w xdo not change from one molecule to the other 1 .
In the literature, there are numerous attempts to
generalize the concept of a characteristic fragment
frequency v , of which we will discuss just threen

w xdifferent alternatives 2, 3, 11, 13 .

1. A serious attempt of associating normal mode
frequency n e x p with characteristic fragmentm

frequency n e x p was published by McKeann

who investigated the stretching mode of the
w xCH group in various hydrocarbons 13 . This

author solved the problem of mode]mode
coupling between internal modes by D-sub-
stitution of all H atoms but the one consid-
ered thus increasing mass differences and
reducing the amount of intramolecular
mode]mode coupling. His approach led to
characteristic CH stretching frequencies in
different molecules and, by this, to an unique
insight into the nature of the CH bond under

Ždifferent situations compare with the outer
.cycle of Fig. 1 . Certainly, it is possible to

obtain other characteristic fragment frequen-
cies in a systematic way although an enor-
mous amount of synthetic work is involved
to get suitable isotopomers in each case. In
addition, the measured fragment frequencies
will always be contaminated by some resid-
ual coupling. Therefore, one can predict that
it is hardly possible to solve, just by experi-
mental means, the problem of determining
fragment-specific frequencies.

2. Theory provides a better basis to determine
characteristic fragment frequencies v . Forn

example, one could consider to calculate vn
as an appropriate average of the normal mode

w xfrequencies v according to 3 :m

2 2 Ž .v s AA v 18Ýn nm m
m

using suitable amplitudes AA . However, thenm

Ž .deficiency of Eq. 18 is that there is no direct
Žconnection e.g., in form of a dynamic princi-

.ple between the internal mode vector v andn
the characteristic fragment frequency v . Then
intrinsic frequencies suggested by Boatz and

w xGordon 11 belong to the class of internal
Ž .frequencies defined by Eq. 18 and we have
w xalready shown in article II 3 that they, al-

though useful for many acyclic molecules,
are problematic in general.

3. Suppose that a normal mode l is dominatedm

by an internal mode v associated with then
fragment f . There are two factors that cann
influence the deviation dv of the normalm

mode frequency v from the fragment modem

frequency v as indicated by the symbolicn
Ž .formula 19 :

Ž . Ž . Ž .dv s dv mass q dv force , 19m m m

x x x
large large small

where in the normal case the deviation is
dominated by the mass effect rather than
changes in the electronic structure. A prereq-
uisite for obtaining stable internal modes vn
is the proper separation of mass and elec-

w xtronic effect. As shown in article I 2 , this
requirement is fulfilled for the adiabatic mode
vectors v s a , which represent the internaln n
vibration of molecular fragments f . Sincen
the adiabatic mode vectors are based on a
clear dynamical principle, their use should
clarify which of the possible definitions of
AA leads to the better correlation with Dvnm nm

according to the criteria discussed in the sec-
ond section.

Analysis and Comparison of
Amplitudes AAnm

Generally, there are two major uses of ampli-
tudes AA . First, they are needed to compare nor-nm

mal mode frequencies v with internal mode fre-m

quencies v and to extract in this way chemicallyn
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useful information out of measured or calculated
vibrational spectra. This is of major concern in this
work and, therefore, we will concentrate on this
objective. Second, one can characterize calculated
normal modes l in terms of internal modes vm n
using amplitudes AA . So far, this was done in thenm

w xPED analysis 4]7 , however, it is worthwhile to
investigate whether some of the shortcomings of
the PED analysis can be compensated by replacing
P matrix elements by amplitudes AA. In addition,
one could think of using amplitudes AA to deter-
mine internal mode frequencies v according ton

Ž .Eq. 18 . As mentioned, this approach is problem-
Ž .atic and, therefore, we will refer to 18 only in so

far as we compare intrinsic frequencies defined in
this way with other internal frequencies. Hence,
the major objective of this section will be the
comparison of normal mode frequencies with in-
ternal mode frequencies using one of the defini-
tions of an amplitude given in the third section.

On pure theoretical grounds, we can approach
the question of which of the 12 amplitudes given

Ž . Ž .in Eqs. 15 ] 17 is the most suitable one for the
task of comparing v with v or decomposing lm n m

in terms of v , in a stepwise manner following then
three axes x, y, and z in Figure 4.

COMPARISON OF a-VECTORS
WITH c-VECTORS

w xThis has been explicitly done in article II 3 ,
where it was shown that c-vectors suffer from the
constrain BC s I. Amplitudes A calculated withnm

c-vectors should be unstable with regard to
changes in the parameters describing a molecule
and, therefore, they should not be suited for a
comparison of normal modes and internal modes.
This excludes the six Cv . . . amplitudes of the pool

Ž . Ž .of amplitudes suggested in Eqs. 15 ] 17 .

COMPARISON OF A-TYPE AND
P-TYPE AMPLITUDES

In the third section, it was stated that A-type
amplitudes should be more useful than P-type
amplitudes since, contrary to the latter, they are
not parameter set dependent. Apart from this, it is
not clear how to use matrix P for the comparison
of normal and internal modes since this could be

Ž .done by a considering just the diagonal elements
Ž .of P, b summing off-diagonal elements into the

w x Ž .diagonal 6 , or c using some other way of con-
sidering all rather than just diagonal elements. It is

Ž .known that b leads sometimes to negative diago-
w xnal elements, which is difficult to interpret 6 .

Ž .Mostly, approach a is used even though it does
not contain the full information covered by the P
matrix. On theoretical grounds, A-type amplitudes
are clearly superior to P-type amplitudes, which
excludes the six P-based amplitude definitions of

Ž . Ž .Eqs. 15 ] 17 .

COMPARISON OF DIFFERENT METRICS O

A spatial comparison of two vectors or func-
tions, although common practice when one consid-
ers dipole moments, orbitals, etc., provides little
information in the case of the dynamic process of
vibrating molecules. Therefore, it is more useful to
use as metric matrix either the mass matrix M
Ž .kinematic comparison or the force constant ma-

Ž .trix f dynamic comparison .
In summary, of the 12 possible amplitudes given

Ž . Ž .in Eqs. 15 ] 17 , only two, namely, AvAM and
AvAF, which compare normal modes and internal
modes using adiabatic vectors a in connectionn

Ž .with the amplitude definition of Eq. 6 and the
metric M and f, seem to be suitable on theoretical
grounds for a comparison. In Appendix B, it is
shown that both AvAM and AvAF can be obtained

w Ž .from equations of motion see Eq. B12 ; for v sn
ŽM . ŽF. xa , A s AvAM and A s AvAF .n nm n v

Conclusions

Ž .The characterization of normal modes CNM is
a major goal in vibrational spectroscopy to extract
chemical useful information on structure and

Žbonding in molecules out of measured or calcu-
.lated vibrational spectra and, therefore, its realiza-

tion has been discussed in this work. The elements
of the CNM analysis are normal modes, elemen-
tary internal modes associated with a molecular
fragment or structural subunit f described byn
internal parameters z , and amplitudes AA , whichn nm

provide the basis for a direct comparison of nor-
mal modes and internal modes.

A general definition of amplitude AA in thenm

w Ž .xform of Eq. 6 has been given and compared
with the P matrix elements of the PED analysis
w x4]7 . Taking both A-type and P-type amplitudes
together and considering the different possibilities

Ž .of chosen internal mode vectors a or c andn n
Ž .metrics O S, M, f , 12 different definitions for an
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w Ž . Ž .xamplitude have been obtained Eqs. 15 ] 17 . The
Ž .theoretical analysis suggests that the use of Eq. 6

in connection with adiabatic internal motions and
metric matrices M and f yielding amplitudes
AvAM and AvAF should provide the best tools for
comparing normal modes and internal modes
within the CNM analysis.

In addition, procedures have been developed to
test suitable amplitudes in ab initio calculations.
Three possibilities have been discussed:

1. Amplitude vs. Dv correlation: Given all
normal vibrational modes and internal vibra-
tional modes of a molecule as well as their
corresponding frequencies, the distribution
of all amplitudes AA in dependence of dif-nm

ferences Dv s v y v should be en-nm n m

veloped by a Lorentzian curve as shown in
Figure 2. The scattering of AA in depen-nm

dence of differences Dv outside or insidenm

this enveloping curve provides a direct quali-
tative impression on the usefulness of the
chosen amplitude and its underlying dynam-
ical origin.

2. Uncertainty test of internal mode fre-
Ž .quency: While 1 provides a crude qualita-

tive test, its quantification is obvious. The
AA y Dv correlation diagram indicatesnm nm

that deficiencies of the amplitude definition
become apparent for points with large Dv
and large AA value. Accordingly, the quantity
h .nm

Ž .h s AA Dv , 20nm nm nm

which has the dimension of a frequency and
can be considered as an uncertainty of the
internal mode frequency, provides a quanti-
tative measurement of the usefulness of am-
plitude AA . In the normal case, the uncer-nm

tainty h should have small vanishingnm

values while an accumulation of large hnm

values indicates deficiencies of amplitudes
AA .nm

3. Stability test of AA with regard to variations
in the parameter set used: Amplitudes AAnm

of the same internal motions associated with
the same internal parameters z are calcu-n
lated for a sequence of different parameter
sets PSA, PSB, etc. The difference in ampli-

< Ž . Ž . <tudes D AA s AA PSA y AA PSB is cal-nm nm nm

culated for those internal motions covered by
all parameter sets and summed over all nor-

mal modes l to obtain D AA as a bar spectrumm

for the internal parameters z considered.n
The spectrum D AA]z provides a direct in-n
sight into the usefulness of the internal mode
vectors v and amplitudes AA within then nm

CNM analysis.

These three tests seem to be appropriate for practi-
cal investigations and we will use them in article

w xIV of this series 12 .

ACKNOWLEDGMENTS

This work was supported by the Swedish Natu-
Ž .ral Science Research Council NFR . All calcula-

tions were done on the CRAY YMPr416 of the
Ž .Nationellt Superdatorcentrum NSC , Linkoping,¨

Sweden. The authors thank the NSC for a generous
allotment of computer time.

Appendix A. The Relationship Between
AA and Dvnm nm

The relationship between amplitude AA andnm

ŽDv difference between normal mode frequencynm

.v and characteristic fragment frequency v canm n
Ž .be expressed by Eq. A1 :

1
Ž .AA s , A1nm 22 2v y Vm n

1 q 2ž /Gn

where V is defined byn

² < < :v f vn n2 Ž .V f A2n ² < < :v M vn n

and represents an internal reference frequency,
while G describes the coupling of the internaln
vibration v under consideration with all othern
vibrations v for m / n.m

Ž .Equation A1 can be derived by assuming a
two-dimensional configuration space spanned by
two elementary mode vectors v and v that for1 2
reasons of simplicity are considered to be orthogo-
nal. Mode vector v describes the vibration of the1
molecular fragment f , which is described by the1
internal parameter z , i.e., z is the ‘‘leading pa-1 1

w xrameter’’ of v 2 . Since a molecule with just two1
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vibrational degrees of freedom is not possible, one
can consider all other vibrational degrees of free-
dom covered by v .2

Ž .For a comparison of v with l m s 1, 2 , the1 m

amplitude AA has to be determined. The vibra-1m

Ž .tional problem expressed by Eq. A3

2 Ž .fl s Mlv A3

can be solved in the basis v , v according to Eq.1 2
Ž .A4 :

f f M Mc c11 12 11 121 1 2 Ž .s v , A4c cž / ž /ž / ž /f f M M2 221 22 21 22

where

² < < : Ž .f s v f v A5i j i j

² < < : Ž .M s v M v i , j s 1, 2 A6i j i j

Ž .l s c v q c v . A7m 1m 1 2 m 2

Ž .Equation A4 can be transformed into eigenvalue
Ž .Eq. A8 :

H H X Xc c11 12 1 1 2 Ž .s v A8aX Xc cž / ž /ž /H H 2 221 22

2 Ž .Hc s v c, A8b

with

y1r2 y1r2 Ž .H s M fM A9
X 1r2 Ž .c s M c. A10

If force and mass coupling between vectors v and1
Žv is vanishing small i.e., M and f are almost2

.diagonal , then one will observe a pure normal
mode frequency v close to the unperturbed fre-1
quency V associated with reference mode v :1 1

² < < :v f v1 12 Ž .V s H f , A111 11 ² < < :v M v1 1

where the term pure is used in the sense that

Ž .l s v A12m 1

Ž .To solve Eq. A8 , the following relations have to
be satisfied:

Ž 2 2 .Ž 2 . 2 Ž .v y V v y H s H A12a1 22 12

X Ž 2 2 . X Ž .H c s v y V c . A12b12 2 1 1

Ž .According to Eq. 8 , amplitude AA for the com-m1
parison of reference mode v with normal mode l1 m

Ž .is defined by Eq. A13 :

² < :2v l 11 Ž .AA s s , A132² < :² < :v v l l c1 1 2
1 q ž /c1

Ž .where the index m has been dropped and Eq. A7
Ž . Ž .has been used. Inserting Eqs. A12a and A12b

Ž .into A13 and assuming that

X X Ž .c rc f c rc , A142 1 2 1

Ž .one obtains Eq. A15 :

1
Ž .AA s , A152 2v y V1

1 q 2ž /G

Ž .which can be generalized to yield Eq. A1 . In
Ž .A15 , G represents a natural broadening fre-
quency given by

Ž .G s H , A1612

Ž .which in the case of Eq. A1 is replaced by the
Ž .average mixing term G . Equation A1 leads to an

Ž . w xLorentzian bell-shaped curve 8 .

Appendix B. Physical Meaning of
Amplitudes A(S), A(M), and A(F)

nm nm nm

Taking the definition of a general amplitude
Ž .given in Eq. 8 ,

2Ž .l , vm nŽR. Ž .A s , B1nm Ž .Ž .l , l v , vm m n n

where the superscript R indicates that the scalar
product can be defined in different ways:

² < < :¡ a I b~Ž . Ž .² < < :a, b s B2a f b¢² < < :a M b

ŽI: unit matrix; spatial comparison; f: force con-
stant matrix in Cartesian coordinates; dynamic

.comparison; M: mass matrix; kinetic comparison ,
one obtains three different types of amplitudes,
namely, AŽS. , AŽM., and AŽF. , which can take anynm nm nm

value between 0 and 1. The spatial overlap ampli-
tudes AŽS. give information on the geometricalnm
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relationship between vectors v and l , while then m

physical meaning of amplitudes AŽF. and AŽM. isnm nm

illustrated in this appendix.
Once the vibrational problem has been solved,

one can express the total vibrational energy in
Ž .terms of normal mode coordinates Q t :m

2 21 ˙ Ž . Ž . Ž .E s m Q t q k Q t . B3Ý ž /m m m m2
m

Inserting the general solution for the time depen-
Ž .dence of normal coordinates Q t ,m

˙ Ž .Q 0mŽ . Ž . Ž .Q t s sin v t q Q 0 cos v t B4m m m mvm

Ž . Ž .into the energy expression B3 leads to Eq. B5 :

2 21 ˙ Ž . Ž . Ž .E s m Q 0 q k Q 0 . B5Ý ž /m m m m2
m

At t s 0, an internal vibration described by vector
v is triggered in the molecular fragment f by an n
slight distortion of the associated internal parame-
ter z in the sense of the leading parameter princi-n

Ž w x.ple see article I 2 . The initial conditions for the
displacement vector x at t s 0 can be given by
w Ž . w x.compare with Eq. 4 of article I 2

Ž . U Ž . Ž .x 0 s v q 0 B6an n

Ž . U Ž . Ž .x 0 s v q 0 . B6b˙ ˙n n

Ž .When the molecule is distorted according to B6a
Ž .and B6b , it is possible to calculate which normal

modes are activated by this displacement.
The initial conditions expressed in normal coor-

Ž .dinates are given by Eqs. B7 :

Ž . Ž . U Ž . Ž .x 0 s l Q 0 s v q 0 B7aÝ v v n n
v

˙ UŽ . Ž . Ž . Ž .x 0 s l Q 0 s v q 0 . B7b˙ ˙Ý v v n n
v

Ž . Ž . ² <Multiplying B7a and B7b from the left by l fm
˙² < Ž . Ž .and l M, Q 0 and Q 0 can be expressed asm m m

U Ž . U Ž .functions of q 0 and q 0 :˙n n

² < < :l f vm n UŽ . Ž . Ž .Q 0 s q 0 B8am n² < < :l f lm m

² < < :l M vm n U˙ Ž . Ž . Ž .Q 0 s q 0 . B8b˙m n² < < :l M lm m

Ž . Ž . Ž .By inserting B8a and B8b into B5 , one obtains
Ž .Eq. B9 :

² < < :21 l M vm n 2U Ž .E s m q 0˙Ý m n22 ž ² < < :l M lm m m

² < < :2l f vm n 2U Ž . Ž .qk q 0 , B9m n2 /² < < :l f lm m

² < < :where m is recognized as l M l , and k , asm m m m

² < < : Ž .l f l . Equation B9 can be rearranged tom m

² < < :21 l M vm n 2U² < < : Ž .E s v M v q 0˙Ý n n n² < < :² < < :2 l M l v M vm m n nm

² < < :21 l f vm n 2U² < < : Ž . Ž .q v f v q 0 . B10Ý n n n² < < :² < < :2 l f l v f vm m n nm

With the help of the definition of AŽR. given in Eq.nm

Ž .B1 , one finally obtains

2 2U U1 ŽM . ŽF .Ž . Ž . Ž .E s A M q 0 q A k q 0 , B11˙Ý ž /nm n n nm n n2
m

² < < :where v M v s M is the effective mass andn n n
² < < :v f v s k the effective force constant of then n n
internal vibration represented by vector v .n

Ž .Equation B11 can be simplified to

ŽM . ŽF . Ž .E s A T q A V , B12Ž .Ý nm n nm n
m

where T and V are the kinetic and potentialn n
energies stored in the internal motion associated

Ž .with vector v . Equation B12 presents the basisn
for a discussion of the physical meaning of ampli-
tudes AŽM. and AŽF. : It reveals how kinetic energynm nm

T and potential energy V initially stored in then n
internal vibration v are redistributed over then
normal modes l . In principle, a normal mode lm m

can assess energy by extracting it either from the
kinetic energy or the potential energy of the inter-
nal vibration v . The ability of the normal mode ln m

to use one of these ways is determined by the
ŽM. ŽF. Ž .amplitudes A and A . Accordingly, Eq. B12nm nm

can explain the dynamic origin of a normal mode
l . For example, if one assumes that AŽF. s 0,m nm

AŽM. s 1 for normal mode l and AŽF. s AŽM. s 0nm m nn nn

for all other normal mode l , then the vibrationaln

energy of internal mode v will be totally trans-n
ferred to l , thus activating its vibrations. Them

nature of the vibrational mode l will be totallym

determined by the distribution of masses in the
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molecule and, therefore, one can say that the vi-
brational mode l kinetically originates from them

internal vibration v .n
The nature of the vibrational mode l will bem

totally determined by the electronic structure of
the molecule if AŽF. s 1, AŽM. s 0, and AŽF. snm nm nn

AŽM. s 0. In this case, one can say that normalnn

mode l electronically originates from the internalm

vibration v .n
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