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Spectra. I. Derivation of Adiabatic
Internal Modes

ZORAN KONKOLI, DIETER CREMER
Department of Theoretical Chemistry, University of Goteborg Kemigarden 3, S-41296 Goteborg,¨ ˚ ¨
Sweden

Received 24 March 1997; revised 30 September 1997; accepted 8 October 1997

ABSTRACT: A new way of analyzing measured or calculated vibrational spectra in
terms of internal vibrational modes associated with the internal parameters used to
describe geometry and conformation of a molecule is described. The internal modes are
determined by solving the Euler]Lagrange equations for molecular fragments fn
described by internal parameters z . An internal mode is localized in a molecularn
fragment by describing the rest of the molecule as a collection of massless points that just
define molecular geometry. Alternatively, one can consider the new fragment motions as
motions that are obtained after relaxing all parts of the vibrating molecule but the
fragment under consideration. Because of this property, the internal modes are called
adiabatic internal modes, and the associated force constants k , adiabatic force constants.a
Minimization of the kinetic energy of the vibrating fragment f yields the adiabatic massn

Ž .m corresponding to 1rG of Wilson’s G matrix and, by this, adiabatic frequencies v .a nn a
Adiabatic modes are perfectly suited to analyze and understand the vibrational spectra of
a molecule in terms of internal parameter modes in the same way as one understands
molecular geometry in terms of internal coordinates. Q 1998 John Wiley & Sons, Inc. Int J
Quant Chem 67: 1]9, 1998

Introduction

ibrational spectroscopy is one of the mostV useful experimental tools for describing
structural and electronic features of molecules

Correspondence to: D. Cremer.
Contract grant sponsor: Swedish Natural Science Research

Ž .Council NFR .

w x Ž .1]9 . The pattern of infrared IR or Raman bands
in a vibrational spectrum is directly related to the
bond pattern in a molecule, i.e., molecular struc-
ture, while the exact positions of the individual
bands reflect properties of the chemical bonds and
the electronic structure of the molecule. In princi-
ple, it should be possible to characterize each bond
of the molecule by an appropriate stretching fre-
quency and stretching force constant once the vi-
brational spectra of the molecule in question are
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known. This should also hold for any three- or
four-atom unit in a molecule provided that one
knows the corresponding properties of bending
and torsional motions. Chemists have learned to
understand the geometry and conformation of a
molecule in terms of internal coordinates such as
bond lengths, bond angles, and torsional angles.
Therefore, it would be chemically rewarding to
relate vibrational frequencies and force constants
to internal coordinates q or any other suitablen

internal parameter z , each of which is connectedn
with a two-, three-, or n-heavy atom unit f of then

molecule.
There are two major reasons why the measure-

ment of the vibrational spectra of a molecule does
not automatically lead to a description of its elec-
tronic structure, its bonding pattern, and its geom-
etry: First, a normal mode analysis of a measured
vibrational spectrum requires knowledge of the
full force constant matrix which in the normal case

w xis not available 1]6 . Second, even if the force
constant matrix is known, the normal mode analy-
sis will lead to ‘‘delocalized’’ molecular motions
Ž .expressed in normal mode coordinates Q , each of
which involves several atoms that not necessarily
form a chemically interesting unit. Therefore, it is
generally difficult to extract out of the normal
mode analysis chemically useful frequencies and
force constants of well-defined subunits of the
molecule.

In this and the following articles, we will
demonstrate with the help of ab initio calculations
that it is possible to derive largely ‘‘localized’’
molecular motions, each of which is associated
with a particular internal parameter that can be an
internal coordinate or any other useful coordinate.
For this purpose, we describe a new way of ana-
lyzing and describing the normal modes of a
molecule in terms of internal motions where the
latter term emphasizes that each motion is associ-
ated with a specific internal parameter. The infor-
mation gained from this analysis leads to a direct
description of bonding in a molecule and a de-
tailed analysis of electronic structure. We will show
in the following articles how this information can
be used to describe geometrical features and other
molecular properties on the basis of a combination
of IRrRaman measurements and ab initio vibra-
tional frequency calculations. This procedure will
be developed in the same spirit as that of the
NMRrab initiorchemical shift method for the de-

w xtermination of molecular geometries 10 .

We will proceed in the present article in the
following way: In the next section, we present the
leading parameter principle that provides a basis
for relating molecular properties to internal pa-
rameters and, accordingly, represents the starting
point for developing the concept of internal vibra-
tional modes. In the third section, the theory of the
adiabatic mode vectors is developed as the most
logical choice for the definition of internal vibra-
tional modes. The adiabatic principle is applied to
the commonly used harmonic approximation of
vibrational modes and adiabatic mode vectors are
derived from the normal modes of vibrational

Ž .spectroscopy the fourth section . Finally, in the
fifth section, internal force constants, internal
masses, and internal frequencies are determined
for internal modes in general and adiabatic modes
specifically.

Leading Parameter Principle and the
Concept of Internal Vibrations

If the nuclei of a molecule are displaced by Dx
Žfrom their equilibrium positions x x: column0

vector containing the 3K Cartesian nuclear coordi-
.nates x ; K : number of atoms , the correspondingi

change in an internal parameter z associated withn
the molecular fragment f will be given byn

3K

Ž .Dz s B D x , 1Ýn ni i
is1

w xwhere B is an element of the ‘‘B-matrix’’ 1 :ni

Ž .­z xn Ž .B s . 2ni ž /­ xi xsx 0

Ž .Parameter z x is defined by the choice of a suit-n
able set of coordinates describing the molecule
Žinternal coordinates, normal coordinates, symme-

w xtry coordinates, puckering coordinates 11 , delo-
w xcalized coordinates 12 , curvilinear coordinates,

.etc. . Apart from this, the term internal parameter is
used to emphasize the dual role coordinates play
in this work. First, they are used to describe the
configuration space, which relates to the fact that
3K y 6 coordinates are needed to define molecular
geometry in the general case. Second, each internal
parameter defines a specific molecular fragment
and, therefore, can be used to describe the proper-

Žties energy, dipole moment vector, polarizability
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.tensor, etc. of this fragment independently of how
the total configuration space is spanned.

Ž .Once z x has been defined, only those nuclearn
displacements are considered, which lead to a

Ž . Uchange in z x equal to constant Dz :n n

3K
U U Ž .Dz s B D x . 3Ýn ni i

is1

Clearly, Dz U should be chosen in such a way thatn
fragment f can be described in the best wayn

Ž .possible. Since Eq. 3 does not uniquely define the
displacement vector DxU , an additional condition
is needed so that the direction of the vector v inn

Ž .Eq. 4 is selected,

U U Ž .Dx s v Dz , 4n n

where the choice of the displacement vector v isn
based on chemical convenience as will be dis-

Ž .cussed in the following sections. Equations 3 and
Ž .4 lead to the normalization condition for v :n

3K

Ž . Ž .1 s B v , 5Ý ni n i
is1

Ž .where v is the ith component of vector v .n i n
Ž . Ž .With the help of Eqs. 4 and 5 , it is possible to

associate the vector v with the molecular frag-n
Ž .ment f . In the sense of Eq. 4 , one can say that an

U Ž .single parameter z determines leads the dis-n
placements of the nuclei of fragment f . Hence,n
z U can be called the leading parameter of the inter-n

Ž .nal molecular motion described by v and Eq. 4n
represents what one may call a leading parameter
principle.

To define the vibrational vector v , the leadingn
parameter principle has to be complemented by a
condition that reflects the dynamical aspects of a
nuclear motion and the properties of the molecular

Ž .energy E x . The internal parameter z localizesn
the vibration within a molecular fragment and
Ž .E x can be used to combine localization of the

internal mode with dynamical balance. For exam-
ple, one can require that the displacement forces
accompanying the vibration concentrate within a
molecular fragment f , i.e., outside the fragmentn
the forces exerted on the nuclei vanish so that the
latter adopt an equilibrium position typical of the
situation of the vibrating fragment.

A vibration that is localized within a certain
molecular fragment f will be called an internaln
vibration. Accordingly, v will be called an internaln

vibration vector or an internal displacement vector.
Once an internal displacement vector v has beenn
determined, it is possible to calculate quantities
such as the internal force constant k , the internaln
mass m , and, thereby, the internal frequency v .n n
The quantities k , m , and v can be used ton n n
characterize the fragment f associated with then

Ž U .pair z , v . If z is chosen as an internal coordi-n n n
nate q such as the bond length or bond angle,n
then f will correspond to a diatomic or triatomicn
molecular fragment chemically defined by the in-
ternal coordinates in question. Motions of these
fragments are bond stretching and angle bending,
respectively. The dynamics of the molecule can be
described in terms of localized internal modes
such as bond stretching, angle bending, etc., asso-

Žciated with simple internal coordinates q internaln
.parameters z rather than complicated combina-n

tions of Cartesian or internal coordinates as, e.g.,
the normal coordinates. This will facilitate the de-
scription and understanding of the dynamic mo-
tions of a molecule, in particular, since it connects

Ždynamic properties of the molecule with bond or
.other group properties.

Definition of Adiabatic Internal
Vibrations

In the following derivation, we abbreviate the
differences Dx, Dz , etc., by x, z , etc., for reasons of
simplicity. The dynamics of the nuclei of a
molecule can be determined by solving the

Ž .Euler]Lagrange Eqs. 6 :

Ž . Ž .d ­ L x, x ­ L x, x˙ ˙
y s 0, i s 1, . . . , 3K ,

dt ­ x ­ x˙i i

Ž .6

Ž . Ž . Ž .where L x, x s T x y V x is the Lagrangian;˙ ˙
Ž .T x , the kinetic energy,˙

1 qŽ . Ž .T x s x Mx 7˙ ˙ ˙2

Ž . Ž .M: mass matrix with elements m ; and V x , thei
potential energy function of the molecule

1 qŽ . Ž .V x s x fx, 82

Ž .which is obtained by expanding E x in a Taylor
series and neglecting terms higher than to second
order.
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Ž . Ž . w xThe solutions of 6 take the form of 9 1]6 :

Ž .x s l Q , 9m m

where Q is a normal coordinate, which oscillatesm

Ž .with the frequency v according to 10 :m

Ž . Ž . Ž . Ž .Q t s a cos v t q b sin v t . 10m m m

Ž . Ž . Ž .Inserting 8 and 9 into 7 leads to the basic
w xequation of vibrational spectroscopy 1]6 :

2 Ž .fl s v Ml , m s 1, . . . , N , 11m m m v ib

which is used to calculate the N s 3K y L nor-v ib
mal mode frequencies of a K-atomic molecule,
where L gives the number of zero eigenvalues in
Ž .11 resulting from translations and rotations of the
molecule.

Ž . Ž .Equations 4 and 9 are closely related since
the normal coordinate Q corresponds to the lead-m

ing parameter z U , and l , to the internal motionn m

Ž . Ž .v . The only difference between 4 and 9 is thatn
the normal mode vectors l are determined by Eq.m

Ž .11 while the nuclear displacement vectors v aren
chosen according to chemical criteria. The time

U Ž .dependence of z in 4 will be of the same formn
Ž .as in 10 with the normal mode frequency vm

being replaced by the internal frequency v .n
In vibrational spectroscopy, it is of advantage

Ž .to express Eq. 11 in terms of N internal coordi-
wnates q collected in the column vector q sn

Ž .qxq , . . . , q rather than Cartesian coordinates x.1 n
To specify the position of all nuclei in Cartesian
space, an additional set of L external coordinates

w Ž .qxe collected in the column vector e s e , . . . , ei 1 L
has to be given. The transformation from internal

Ž . w xcoordinates to Cartesian is given by Eq. 12 13 :

N L

Ž .x s C q q C e , 12Ý Ýi im m 0, ia a
ms1 as1

Ž .where C is an element of the 3K , N -rectangu-im
lar matrix C:

y1 q y1 Ž .C s M B G , 13

w xwith G being Wilson’s G-Matrix 1 :

y1 q Ž .G s BM B . 14

w xMatrix C was defined by Neto 13 . The following0
relationships hold:

Ž .BC s I 15

and

Ž .BC s 0. 160

The Lagrangian can be expressed according to
L s L q L , where L depends on externalint e x t e x t
coordinates and, therefore, is not relevant for the
vibrational problem. L determines the time de-int
pendence of the internal coordinates and is given
by

1 1q y1 qŽ . Ž .L q, q s q G q y q Fq, 17˙ ˙ ˙int 2 2

Ž .where F N = N is the force constant matrix in
Ž .internal coordinates with elements 18 :

q Ž .F s c fc , 18n m n m

with c being a column vector of matrix C. Solu-m
Ž .tion of the Euler]Lagrange Eqs. 19

Ž .¦­ L q, q̇int
p s Ž .19am ­ q̇m ¥m s 1, . . . , NŽ .d ­ L q, q̇int Ž .19bp sm §dt ­ qm

Ž .p : generalized momentum leads to Wilson’s GFm
formalism for determining vibrational frequencies

w xv 1 :m

2 y1 Ž .Fd s v G d , 20m m m

dqFdm m2 Ž .v s . 21m q y1d G dm m

Vector d represents the normal mode m in inter-m

nal coordinate space. It can be transformed to
Ž .Cartesian coordinate space according to Eq. 22 :

Ž .l s Cd . 22m m

Ž . ŽOne could assume that d s d d : Kro-m n nm nm

.necker delta since this leads to l s c for m s n.m n
However, even if displacements along vectors c n
and c do not couple, thus leading to a diagonal Fm

Ž .matrix with F s 0 no electronic coupling , therenm
is always mass coupling between the vectors c
because the G matrix is nondiagonal, which ac-

Ž .cording to Eq. 20 leads to d / d and l / c .nm nm m n
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Nevertheless, most vibrational spectroscopists will
assume a more diagonal character of the G matrix
if there is a large mass difference between the
atoms participating in the molecular motions. In
some way, the assumption l s c provides them n
only basis for an experimentalist to discuss mea-
sured frequencies in terms of internal mode fre-
quencies, thus implying that v s c . However,n n
v s c is not a satisfactory choice of an internaln n
vibration as will be shown in the following article
w x14 .

To obtain an internal vibrational mode v asso-n
ciated with the internal parameter z and then
molecular fragment f , we revert to Cartesiann
coordinate space for a moment and remove mass
coupling by simply assuming that all masses but
the ones which belong to the atoms of fragment fn
are zero. With this assumption, the equations of

Ž .motion 6 will lead to a pure internal vibration of
fragment f . Of course, such an internal vibrationn
is of little use for a chemist, who prefers to think in

Žterms of internal coordinates more generally, in-
.ternal parameters rather than Cartesian coordi-

Ž .nates. However, since m s 0 i g f implies thati m
the generalized momentum p s 0, one can extendi
the assumption of all atoms not belonging to f asn
being massless points just describing the molecu-
lar geometry and apply it to internal parameters

Žby assuming that all internal parameters z m /m
.n are associated with the generalized momentum

p s 0. With this assumption, the Euler]Lagrangem
Ž . Ž . Ž .Eqs. 19 take the form of 23 and 24 :

˙­ L z , zŽ .
Ž .p s / 0 23an ˙­zn

˙­ L z , zŽ .
Ž .p s s 0 ;m , m / n 23bm ˙­zm

­ V
Ž .p s 24aṅ ­zn

­ V
Ž .p s s 0 ;m / n. 24bṁ ­zm

Ž . Ž .Equations 24 can be solved by adding Eq. 25 :

Ž .p s l 25aṅ

­ V
Ž .l s . 25b

­zn

Ž . Ž .Equations 24b and 25b are used to express all
internal parameters z as functions of l:

Ž .z s z l1 1. . . . . . . . . . Ž .. 26
Ž .z s z lN N

Ž .Equation 27 determines the form of internal vi-
brations v because it defines one-dimensionaln
subspaces within the full configuration space. The
motion in a one-dimensional subspace can be de-
scribed by vector v , which can be found by lin-n

Žearization e.g., via a Taylor expansion at point
. Ž .l s 0 of Eq. 26 . If needed, the time dependence

of l can be found using generalized momenta

˙ ˙Ž . Ž .p s p z , z s p l , l 27Ž .n n n

Ž . Ž .in connection with Equations 25a and 26 . In this
way, one obtains an internal vibration v s a forn n
parameter z associated with fragment f .n n

Ž .A set of equations similar to 25 can be ob-
tained by applying a completely different ap-
proach. One can displace parameter z from itsn

Ž .equilibrium value z s 0 and keep it frozen andn
equal to a constant z U. At the same time, all othern
coordinates can relax until the molecular energy
attains its minimum. Hence, parameter z U leadsn

Ž .the corresponding motion as described in Eq. 4
Ž .leading parameter principle . For obvious reasons,
one can call the vibrations generated by z U adia-n

Ž .batic vibrations defined by 28 :

Ž . Ž .V z s min 28a
U Ž .z s const s z . 28bn n

Ž .Equation 28 can easily be solved using the
method of Lagrange multipliers:

­
Uw Ž . Ž .xV z y l z y z s 0 m s 1, . . . , N.n n­zm

Ž .29

Ž .This leads to Eqs. 30 :

­ V
Ž .l s 30a

­zn

­ V
Ž .0 s ;m , m / n , 30b

­zm

Ž . Ž .which are identical to Eqs. 24b and 25b . Hence,
the approximation based on the massless internal
parameters z is equivalent to the adiabatic approx-m
imation.
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Adiabatic Principle Applied to the
Harmonic Approximation

Assuming that the vibrational problem has been
solved in the harmonic approximation, the poten-
tial energy and each internal parameter z can ben
expressed as functions of N normal mode coor-v ib

w xdinates Q 1]6 :m

Nvib1
2Ž . Ž .V Q s k Q 31Ý m m2 ms1

Nvib

Ž . Ž .z Q s D Q , 32Ýn nm m
ms1

where matrix D collects in its columns vectors d .m

Ž . Ž .Inserting 31 into 28 and using the method of
Lagrange multipliers, one obtains

­
Uw Ž . Ž Ž . .x Ž .V Q y l z Q y z s 0 33n n­ Qm

and

DnmŽn. Ž .Q s l. 34m km

The superscript n denotes the solution for internal
parameter z , wheren

Ž . U Ž .z Q s z 35n n

Ž . Ž . Ž .as described above. Using Eqs. 32 , 34 , and 35 ,
l can be found as a function of z U :n

1
U Ž .l s z . 36nN 2vib DnmÝ kmms1

Ž . Ž .By inserting Eq. 36 into Eq. 34 , one obtains the
normal coordinates as a function of z U :n

Žn. 0 U Ž .Q s Q z , 37m m n n

where Q0 is a constant defined asmn

Dnm

km0 Ž .Q s . 38mn N 2vib DnnÝ knns1

Ž . UAccording to Eq. 37 , any change in parameter zn
leads to a movement of all normal coordinates
along adiabatic vector a , the components of whichn
in normal coordinate space are given by

Ž . 0 Ž .a s Q . 39mn m n

Ž .In view of Eq. 39 , it is straightforward to trans-
form adiabatic vectors into the space of Cartesian
displacements:

Nvib

Ž . Ž . Ž .a s l a i s 1, . . . , 3K , 40Ý mn im ni
ms1

where l is a component of the normal mode lim m

Ž .defined in Eq. 22 .

Definition of Internal Force Constant
k , Internal Mass m , and Internaln n
Frequency vn

Once the vector v , which determines the move-n
ment of the molecule under the influence of pa-
rameter z U , is known, one can define a forcen
constant, which corresponds to such a motion, by

Ž .inserting 4 into the expression for the potential
energy of the molecule in the harmonic approxi-

w Ž .xmation see Eq. 8 :

U 1 U 2Ž . Ž .V z s k z , 41n n n2

where the internal force constant k is given byn

q Ž .k s v fv . 42n n n

A typical mass M associated with the internaln
Ž .vibration v could be defined by inserting Eq. 4n

Ž . winto the expression for the kinetic energy T x see˙
Ž .xEq. 7 :

U 1 U 2˙ ˙ Ž .T z s M z , 43Ž .n n n2

where the internal mass M is given byn

q Ž .M s v Mv . 44n n n

Ž . Ž .From 42 and 44 , one obtains the characteristic
fragment frequency V :n

kn2 Ž .V s , 45n Mn
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where V rather than v is used to indicate that,
Ž . Ž .according to 44 and 45 , all masses of a molecule

are considered in the definition of V. Although Vn

was derived from a rigorous dynamical principle,
its definition is problematic because the value of
the internal frequency V becomes sensitive to then

environment of molecular fragment f which cann

lead to unphysical shifts of internal frequencies as
w xwill be shown in article II 14 .

Therefore, one has to proceed in a different way
to find a typical mass m that opposes any changen

in the internal parameter z . One possibility is ton

delete masses in the full mass matrix M that do
not contribute to parameter z . In this way, a newn

mass M 0 is obtained that can be used to calculaten
0 Ž .an intrinsic frequency V with Eq. 45 . For exam-n

ple, one could keep only the two masses connected
with a bond-stretching motion or the three masses
associated with a bending motion. It can easily be
shown that, provided the bond does not rotate or
translate, M 0 is exactly equal to the reduced massn

of the bond.
But this procedure will become questionable if

more complicated parameters such as symmetry-
adapted linear combinations of internal parame-
ters are studied. For example, the bending motion
of a planar molecule AB can be described by the3

angle combination a q b associated with masses

FIGURE 1. Internal coordinates of an AB molecule3
with nuclei A, B , B , and B and the nuclear masses1 2 3
m , m , m , and m , respectively.0 1 2 3

Ž .m , m , m , and m see Fig. 1 . Because of the0 1 2 3
planarity of the molecule, it holds that

Ž . Ž .Dg s yD a q b , 46

where g is associated with masses m , m , and0 1
m , leaving out mass m . Hence, M 0 can be de-3 2 n
fined in two different ways, leading to two differ-
ent V0 values, although both a q b and g aren
associated with one and the same internal bending
frequency. While in Cartesian space it is always
clear which set of coordinates belongs to which
mass, in internal coordinate space, it is not always
clear how to select all masses that might belong to
a given internal parameter z .n

Clearly, one has to find a more direct way of
defining the internal mass m associated with then
internal parameter z . Two conditions should ben
fulfilled in this connection. First, the mass mn
should be extractable from the functional form of
the internal parameter z . Second, m should di-n n
rectly be connected to the vibrational motion vn
caused by a change in z .n

To fulfill these two conditions, one has to ask
how the atoms of the molecule have to move so
that the kinetic energy adopts a minimum and the

˙ ˙Ugeneralized velocity z becomes identical with z ,n n
Ž . Ž .i.e., the system fulfills Eqs. 47 and 48 :

1 qŽ . Ž .T x s x Mx s min 47˙ ˙ ˙2

q q ˙U Ž .b x s b v z , 48˙n n n n

where vector b corresponds to the nth column ofn
q ˙Uw xthe B matrix 1]6 and b v z is the generalizedn n n

velocity of parameter z when the system movesn
Ž .according to 4 . Using the Lagrange multiplier l

Ž . Ž .and combining 47 and 48 , one obtains

­ 1
Uq q q ˙ Ž .x Mx y l b x y b v z s 0 49˙ ˙ ˙Ž .n n n nž /­ x 2˙i

and

y1 Ž .x s M b l. 50˙ n

Ž . Ž .By inserting Eq. 50 into 48 , the Lagrange multi-
Ž .plier l is given by 51 :

bqvn n U˙ Ž .l s z . 51nq y1b M bn n

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 7
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Ž . Ž .With Eq. 51 , x of 50 can be determined as a˙
˙U Ž .function of z . In turn, the kinetic energy of 47n

Ž .can be written according to 52 :

U 1 U 2˙ ˙ Ž .T z s m z , 52Ž .n n n2

with the internal mass m associated with parame-n
ter z being given byn

2qŽ .b vn n Ž .m s . 53n q y1b M bn n

Ž .The denominator of Eq. 53 can be recognized as
element G of the G matrix.nn

w Ž .xOnce the internal force constant k see Eq. 42n
w Ž .xand the internal mass m see Eq. 53 have beenn

derived, the internal frequency v is given by Eq.n
Ž .54 :

vqfvn n2 Ž .v s . 54n 12qŽ .b vn n Gnn

Ž .From Eq. 54 , two important conclusions can be
drawn:

1. If parameter z represents the change in then
bond distance of a diatomic molecular frag-
ment AB caused by AB bond stretching,
then 1rG will be exactly equal to the re-nn

Ž .duced mass defined by m m r m q m .A B A B
Ž .Equation 54 reveals that, in the general case,

1rG can be taken as the reduced massn n
associated with internal parameter z , non
matter which functional form z takes.n

Ž q .2 Ž .2. Term b v in the denominator of 54n n
guarantees proper normalization of vector v .n
It suggests that the force constant k shouldn

Ž .be calculated according to 55 rather than
Ž .42 :

Xq X Ž .k s v fv , 55n n n

with vX given byn

vnX Ž .v s . 56n qb vn n

Ž . XThis means that in Eq. 4 v is used rathern
than v :n

U X U Ž .x s v z . 57n n

Ž .If Eq. 57 is multiplied from the left by
q Ž q X . Ub , then one will obtain z s b v z . Be-n n n n n

Ž . q Xcause of Eq. 56 , b v s 1, which ensuresn n
that z and z U are the same during an inter-n n
nal vibration. This is of crucial importance
for the calculation of internal force constants.
Note that if v s a , v will be properly nor-n n n
malized in the sense that bqa s 1. The termn n
Ž q .2 Ž .b v in the denominator of 54 is onlyn n
important when z is not equal to z U. This isn n
the case for choosing c-vectors calculated with
redundant sets of parameters as internal
modes as will be discussed in the following

w xarticle 14 .

Summary and Conclusions

One of the major goals of vibrational spec-
troscopy is to associate measured frequencies with
structural features of a molecule and, thereby, to
facilitate its identification. These efforts have led to
a number of rules that concern the similarity and
transferability of force constants and frequencies
from one molecule to the other provided that they

w xcontain similar structural units 1]9 . To provide a
mathematical basis for the comparison of mea-
sured vibrational frequencies and force constants,
we have formulated the leading parameter principle
w Ž .xEq. 8 which enables one to investigate molecu-
lar fragments in terms of their internal vibrations

Ž .defined by the pair z , v .n n
We have discussed adiabatic vectors a as an

unique choice for internal vibrational mode vec-
tors v . The derivation of the adiabatic vectors hasn
been motivated by the observation that the masses
of the atoms of a molecule effectively hinder the
appearance of pure internal vibrations v associ-n
ated with fragment f . However, localized inter-n
nal vibrations v can be obtained by setting then
generalized momenta associated with those inter-
nal parameters not used for the description of
fragment f to zero and solving the Euler]n
Lagrange equations under this condition. This ap-
proach is equivalent to exciting the internal motion
v by a constant perturbation z U of the leadingn n
parameter associated with f and, then, relaxingn
the distortions of all other internal coordinates qm
until a minimum of the energy is obtained.

Once adiabatic internal vibrations are defined,
there are several choices for the definition of an
adiabatic internal vibrational frequency. We have
considered the three internal frequencies V , V0 ,n n
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and v that possess the following properties:n

1. Frequency V depends on all atomic massesn
of a molecule and, therefore, V is unlikelyn
to be a proper choice for an internal, frag-
ment characteristic frequency.

2. Frequency V0 depends on just those massesn
associated with the internal parameter z and,n
therefore, should be a better choice for a
fragment frequency. However, the definition
of V0 is not clear in the general case.n

3. Frequency v is directly derived from then
Ž .properties of the internal quantities z , vn n

by minimizing the kinetic energy under the
constraint that the generalized velocity of the
internal parameter z becomes identical withn
that of the leading parameter z U. In this way,n
an internal mass m is defined that directlyn

Ž .leads to the frequency v of Eq. 54 as then
best choice for an internal frequency.

The choice of m as an appropriate fragment massn
is confirmed by the fact that it represents a gener-
alized reduced mass 1rG . Furthermore, it guar-nn
antees that fragment frequencies do not depend on
the masses of those atoms that do not belong to fn
and, therefore are typical of f and its properties.n
Using the internal mass m and the internal fre-n
quency v , it is straightforward to calculate an

w Ž .xcharacteristic internal force constant k Eq. 55n
associated with parameter z and fragment f . Inn n
this way, the molecular fragment f is character-n
ized by the internal frequency v , the internaln
mass m , and the internal force constant k in ann n
unique way, which allows the comparison of dif-
ferent molecular fragments.

There are immediately a number of applications
of adiabatic internal modes that lead to a new
dimension in the analysis of vibrational spectra.
For example, the adiabatic vectors a defined inn
this work are perfectly suited to present a set of
localized internal modes that can be used to ana-
lyze delocalized normal modes. In the following

w xarticles, we will investigate this possibility 14]16 .
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