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ABSTRACT: Adiabatic internal frequencies are compared with c-vector frequencies
and intrinsic frequencies. It is shown that c-vector modes are not suitable to characterize
molecular fragments f since they are not localized in f and their definition leads ton n
unreasonable frequency values. Intrinsic frequencies suffer from a strong dependence on
the set of internal parameters chosen to describe the geometry of the molecule. Apart
from this, they represent averaged frequencies, for which mass effects and electronic
effects are not properly separated. Adiabatic frequencies are based on a dynamic
principle, separate properly mass effects and electronic effects and do not depend in any

Ž .way on the set of internal parameters. This is shown for HFr6-31G d, p vibrational
frequencies of ethene, dichloroethene, benzene, the cyclooctatetraene dication,
benzocyclobutadiene, and some of their isotopomers. Q 1998 John Wiley & Sons, Inc. Int J
Quant Chem 67: 11]27, 1998

Introduction

n the first article of this series, henceforth calledI w xarticle I 1 , we presented a new way of defin-
ing internal modes associated with molecular frag-
ments f and internal parameters z describingn n
these fragments. Because of the way of construct-
ing these new internal modes, we have coined the
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term ‘‘adiabatic internal modes.’’ The goal of using
adiabatic internal modes is an easier and more
chemically oriented understanding of vibrational
spectra. Measured frequencies of vibrational spec-
tra correspond to normal mode frequencies, which
are difficult to understand since normal modes
represent delocalized modes. Adiabatic internal
modes, however, are localized in a molecular frag-
ment and, therefore, they are perfectly suited to
describe, e.g., the properties of chemical bonds.

Although the theory of adiabatic modes pro-
vides a new basis for analyzing and understanding
vibrational spectra, it is not immediately clear
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whether such a new approach is needed. There
have been previous investigations, which are rele-
vant to the problem of defining appropriate inter-

w xnal vibrational motions 2]5 , although in these
investigations the actual intention was to analyze
normal mode frequencies and force constants in
dependence of the structure of the vibrating
molecule rather than to define internal vibrational
modes. It was the primary goal of this work to
investigate these previous attempts, to unravel
their basics in the context of the vibrational mode
analysis, and to compare alternatives of defining
internal modes with the adiabatic internal modes
suggested in article I. This comparison will be
done on theoretical grounds as well as by carrying
out appropriate calculations.

We will pursue the objectives of this work by
discussing in the next section the potential energy

Ž .distribution PED analysis used in vibrational
spectroscopy since it uses implicitly internal vibra-

w xtional modes without referring to them 2]4 . In
the third section, we investigate the intrinsic inter-
nal frequencies that can be considered as internal

w xfrequencies without a specific internal mode 5 .
Finally, in the fourth section, the vibrational spec-
tra of some selected molecules will be discussed
that clearly show the advantages and disadvan-
tages of the various definitions of internal vibra-
tional modes. Throughout this article, we use the

w xnotation introduced in article I 1 , in particular,
we will abbreviate the differences Dx, Dz , etc., by
x, z , etc., to simplify the formulas.

Previous Attempts to Define
Internal Motions

There have been several previous attempts to
extract chemically useful information out of a nor-
mal mode analysis. For example, one could as-
sume that each normal mode l is localized in am

molecular fragment f associated with an internaln

coordinate q . Then, the normal mode frequencyn

v would be identical to the characteristic frag-m

Ž .ment frequency v f s v . It is one of the majorn n

goals in vibrational spectroscopy to determine
Žfragment frequencies v e.g., the frequency of an

.C[C bond, a CsO group, etc. , which can be used
to identify and to describe functional groups in a

w xmolecule 6, 7 . However, normal modes l do notm

represent internal modes in the general case, which

becomes clear when expressing the normal mode
vectors in internal coordinate space yielding vec-
tors d and relating d to l :m m m

N

Ž .l s Cd s c D 1Ým m m mm
ms1

Ž w Ž . xD : an element of matrix D D s d ,mm mm m m
which collects N s 3K y L normal mode vec-v ib
tors d ; K : number of atoms; L: number of rota-m

.tions and translations . A mode l could only func-m

Ž .tion as internal mode if d s d and l s c .m m mm m m
However, there is always mass coupling between
the c vectors because the G matrix is nondiago-m

Ž Ž . w x.nal see Eq. 20 of article I 1 , thus leading to
Ž .d / d and l / c . The often-used approachm m mm m m
to get fragment frequencies from normal mode
frequencies and to extract chemical information
from vibrational spectra can only be useful if be-
cause of large mass differences mass coupling is
not large.

Ž .The potential energy distribution PED analysis
that is based on the work of Morino and Kuchitsu
w x w x w x2 , Pulay and Torok 3 , and others 4 provides a¨ ¨
more advanced approach to the problem of ex-
tracting chemical information from measured vi-
brational spectra. However, it requires knowledge
of the force constant matrix f and normal mode
vectors l as determined, e.g., by quantum chemi-m

cal calculations. In the PED analysis, a density
matrix P is defined, the elements of which give the
distribution of normal modes l over internalm

modes v . The latter are implicitly chosen to be then
U Ž .c-vectors of Eq. 1 without making any reference

w xto this fact 2]4 :

Ž .v s c 2am m

Ž . Ž .z s q m s 1, . . . , N 2bm m

Ž .N: number of internal parameters or coordinates .
The standard expression for the normal mode fre-
quencies:

lqfl km m m2 Ž .v s s s k G , 3m m mmq y1l Ml Gm m mm

relates the square of v to the force constant k ofm m

normal mode m and the diagonal element G ofmm

w xWilsons G matrix 6 . One obtains the PED density
Ž .matrix for normal mode l by inserting Eq. 1 intom

the expression for the force constant k s lqflm m m

* We use the term c-vectors according to the notation intro-
w xduced by Neto. See 8 .
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and dividing this expression by k :m

D D cqfc D D Fnm mm n m nm mm nmmŽ . Ž .P s s . 4n , m P ED ql fl km m m

Ž .By using Eq. 4 , normal mode l can be character-m

ized in terms of internal vibrational modes c m
associated with internal coordinates q .m

A deficiency of the PED analysis is that it does
not lead to an internal mode frequency. This prob-

Ž . w xlem was solved by Boatz and Gordon BG 5 ,
who extended the PED analysis by defining an
‘‘intrinsic frequency’’ v associated with anm , BG
internal mode v . Since intrinsic frequencies repre-m
sent an alternative choice of defining internal mode
frequencies, we will discuss them in the following
section in detail, in particular, focusing on their
advantages and disadvantages.

Analysis of Intrinsic
Internal Frequencies

Although it was not shown in the original arti-
w xcle of BG 5 , their method for calculating intrinsic

Ž .internal frequencies is based on Eq. 2 , which can
be shown by expressing the normal mode frequen-

Ž . Ž .cies v of Eq. 3 with the help of Eq. 1 :m

N N N1
2 q 2v s D D c fc s v ,Ý Ý Ým nm mm n m nmql Mlm m ns1 ms1 ns1

Ž .5

where the square of the coupling frequency v isnm

Ž .defined by 6 :

N1
2 q Ž .v s D D c fc . 6Ýnm nm mm n mql Mlm m ms1

By adding the coupling frequencies for a particular
Ž . Ž .internal parameter coordinate z q over alln n

normal modes l , one obtains the intrinsic fre-m

quencies v of BG asn, BG

N
2 2 Ž .v s v , 7Ýn , BG nm

ms1

which is clearly related to the internal mode vector
c rather than the normal mode vector l .n m

One of the major disadvantages of the intrinsic
w xfrequencies v defined by BG 5 is that theyn, BG

represent averages over normal mode frequencies.

Ž . Ž .By transforming 6 into 8 ,

N
2 2 m Ž .v s v P , 8Ýnm m nm

ms1

where the density matrix element P m is definedn m
Ž .in Eq. 4 , one can express v according to Eq.n, BG

Ž .9 :

2 2 Ž .v s A v , 9Ýn , BG nm m
m

with the amplitude A given bynm

m Ž .A s P . 10Ýnm nm
m

Ž .Equation 9 reveals that the normal mode fre-
quencies v are weighted with the correspondingm

Ž . Ž .amplitudes A for parameter coordinate z qnm n n
in normal mode l , i.e., they indeed representm

averaged frequencies.
In principle, the BG method for determining

intrinsic frequencies could be carried out for any
set of vectors v . If a nonredundant parameter setn
is used, the intrinsic frequencies of BG will have
the same values for v s c and for v s a as is
shown in the following:

Ž . Ž .Equation 7 can be rewritten in the form of 11 :

N qvib Ž .mnD D Fnm2 Ž .v s . 11Ýn , BG ql Mlm mms1

ŽSince vectors d are eigenvectors of matrix F seem

Ž . w x.Eq. 20 of article I 1 , it follows that

q Ž .D FD s k 12

and

q y1 Ž .D F s kD , 13

where k is a diagonal matrix containing the force
Ž .constants of the normal modes. Inserting 13 into

Ž .11 leads to

2 Ž y1 . Ž .v s DLD , 14nnn , BG

where L is a diagonal matrix containing the nor-
Ž .mal mode frequencies v . Eigenvalue Eq. 20 ofm

w xarticle I 1 can be rewritten in matrix form accord-
ing to

y1 Ž .FD s G DL . 15
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Ž .From 15 , it follows that

y1 Ž .DLD s GF. 16

Ž . Ž .Finally, inserting 16 into 14 leads to the GF
formula for the intrinsic frequencies of BG:

2 Ž . Ž .v s GF . 17nnn , BG

Ž .When using c-vectors, Eq. 17 can be transformed
Ž .into Eq. 18 :

y12 q qw Ž . Ž .x Ž .v s C MC C fC . 18nnn , BG

Similarly, one can use matrix A, in which the
Ž .adiabatic vectors a given by Eq. 39 of article In

w x Ž .1 are stored columnwise. This leads to Eq. 19 :

y12 q qŽ . w Ž . Ž .x Ž .v s A MA A fA , 19nnn , BG adiab at ic

in which the intrinsic frequencies are calculated
with the help of adiabatic vectors. In the case of a

Ž .nonredundant coordinate set, both Eqs. 18 and
Ž .19 give the same result as one can show in Eqs.
Ž . Ž .20 ] 30 .

Since adiabatic vectors a and c-vectors spann
the same space, a matrix T exists that transforms C
into A:

Ž .A s CT. 20

Ž .Multiplying Eq. 20 from the left by B and using
the identity

Ž .BC s I 21

Ž .leads to Eq. 22 :

Ž .T s BA, 22

Ž . Ž . w xwhich with the help of Eqs. 38 ] 40 of article I 1
Ž .can be rewritten in the form of 23 :

Nvib
0Ž . Ž .mmT s BL Q , 23Ým n m n

ms1

where matrix L contains the normal mode vectors
Ž . Ž .l . From Eqs. 1 and 21 , it follows thatm

Ž .BL s D. 24

Ž . 0Using the fact that matrix k in 12 is diagonal, Qmn
Ž . w xof Eq. 38 in article I 1 can be transformed into

Ž . Ž .25 and 26 :

y1N q qv i b Ž .mnÝ d Fd Dns1 n n0 Ž .Q s 25mn y1N q qv i b Ž .nrÝ D d Fd Dn , rs1 nn r n

Ž y1 y1 .mnd F
0 Ž .Q s . 26mn y1Ž .F n n

Ž . Ž . Ž .Combining Eqs. 26 , 24 , and 23 , one obtains

y1 Ž .T s F « , 27

where « is a diagonal matrix given by

dnm Ž .« s . 28n m y1Ž .F nn

Ž . Ž .Inserting 20 into Eq. 19 leads to

Ž 2 . Ž y1 . Ž .v s T GFT , 29nnn , BG adiab at ic

Ž . Ž . Ž .and inserting 27 and 28 into 29 leads to Eq.
Ž .30 :

Ž 2 . Ž . Ž .v s FG . 30nnn , BG adiab at ic

Ž . Ž . Ž .From Eq. 30 , 17 or, equivalently, 18 immedi-
ately follows because F and G are symmetric. This
is proof that the same intrinsic frequencies are
obtained no matter whether they are calculated

Ž .with either adiabatic vectors v s a or c-vectors
Ž .v s c provided that a nonredundant coordinate
set is used.

w xThe intrinsic frequencies defined by BG 5 suf-
fer from several disadvantages:

1. The intrinsic frequencies v are not basedn, BG
on a dynamical principle, but are constructed
as averages over all normal mode frequen-

w Ž .xcies v using amplitudes A see Eq. 9 .m nm

Accordingly, one can expect that some of the
physics of the vibrational motion is lost in
the intrinsic frequencies.

2. Frequencies v depend on the parametern, BG
set used to describe the geometry of the
molecule, which means that the choice of

Ž .coordinates q m / n indirectly determinesm
the frequency value of the internal mode
associated with parameter z s q . This is an n
result of the definition of amplitudes A , asnm

Ž m . wsums over density matrix elements P seenm
Ž .xEq. 10 , which are unstable due to a strong

Žparameter set dependence for a detailed dis-
w x.cussion, see article III 9 . As a consequence,

the internal frequencies of a molecule can
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vary considerably if the set of internal pa-
Žrameters is altered see also the fourth sec-

.tion .
3. The BG intrinsic frequencies can be negative

because amplitudes A are sometimes neg-nm

ative. In case of a molecule in its equilibrium
geometry, this leads to false information on
the potential energy surface in question.

4. As a result of the parameter set dependence,
a nonsymmetric choice of parameters can lead
to the fact that parameters, which are sym-
metry-equivalent, have different intrinsic fre-
quencies. BG avoided this problem by adding
redundant parameters to the parameter set
w x5 . Judging from our experience, this leads
to a more symmetric choice of c-vectors and, by
this, the latter approach the form of adiabatic
vectors. At the same time, however, the c-
vectors lose their normalization, which means
that z is no longer equal to z U and calcu-n n
lated intrinsic frequencies v correspondn, BG
to z rbqc rather than to z itself. The factn n n n
that bqc / 1 has to do with the calculationn n

y1 Ž .of G needed for solving Eq. 31 :

y1 q y1 Ž .C s M B G , 31

even in those cases where Gy1 does not exist.
This is done by calculating the generalized

y w xinverse G 10 . It can easily be shown that
GGy/ I and, therefore, bqc / 1.n n

5. For intrinsic frequencies v , electronic andn, BG
mass effects are not separated properly. This

Ž .can be seen from Eq. 32 :

2 Ž . Ž .v s GF s G F q G F , 32n n Ýn , BG nn nn nm nm
m/n

Ž .which results directly from Eq. 17 . The first
Ž .term in Eq. 32 represents the direct contri-

bution of internal mode v associated withn
internal parameter z to frequency v 2 ,n n, BG
while the second term represents contribu-
tions that result from couplings between in-

Žternal mode v associated with parametern
. Žz and other internal modes v associatedn m

Ž .with parameters z , m / n . The termm
Ž .G F of 32 corresponds to v as definednn nn n

Ž . w xin Eq. 54 of article I 1 with v s c . If an n
nonredundant parameter set is used, bqcn n

Ž .will not appear in the denominator of 54 of
w xarticle I 1 since it is equal to 1.

The problems caused by the second term
Ž .in Eq. 32 can be demonstrated considering

isotopomers X]Y and X U]Y U , where the
stars indicate isotopes of X and Y. The BG
intrinsic frequencies for the stretching mo-
tions of X]Y and X U]Y U should differ just
because of the difference in the isotope
masses, i.e., the ratio of the two frequencies
should be equal to the ratio of the reduced
masses of X]Y and X U]Y U , respectively,
since electronic effects should be the same:

1 12U2 Ž . Ž .v s v , 33n , BG n , BG UG Gnn nn

where v is the intrinsic stretching fre-n, BG
quency of fragment X]Y ; vU , the corre-n, BG
sponding frequency of fragment X U]Y U ;
1rG , the reduced mass for X]Y ; and 1rGU ,nn nn

U U Ž .the reduced mass for X ]Y . Equation 33
compares the stretching force constants of
X]Y and X U]Y U according to the definition

w Ž . w x.given by BG see, e.g., Eq. 21 in 5 , which
have to be the same because of identical
electronic structures for X]Y and X U]Y U.

Ž . 2Using Eq. 32 to calculate the ratio v rn, BG
Ž U .2 Žv starred values refer to fragmentn, BG

U U .X ]Y , one obtains

v 2 G F q Ý G rG Fn , BG n n n n m/ n nm nn n ms .U U U2U G F q Ý G rG FŽ .v n n n n m/ n nm nn n mn , BG

Ž .34

The first term in the product on the right-
Ž . Ž .hand side of Eq. 34 leads to Eq. 33 . How-

Ž .ever, Eq. 34 will only become identical to
Ž .Eq. 33 if the second factor of the product is

equal to one. There is no reason to believe
Ž .that this is the case and, therefore, Eq. 34

clearly shows that the definition of intrinsic
wvibrational frequencies suggested by BG Eq.

Ž .x32 leads to force constants depending on
both electronic structure and mass effects

Ž .contrary to what is required by Eq. 33 . In
other words, electronic and mass effects are
not separated properly in the definition of
the intrinsic frequencies as can be seen from

Ž .Eq. 32 , in which only the first term on the
right side provides a correct separation of
electronic and mass effects.

6. In their article, BG claimed that intrinsic
stretching frequencies are not so sensitive to
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the choice of the parameter set, which means
w xthat they do not couple so much 5 . In the

same article, the authors defined special rules
for torsional motions since they couple with
other internal motions more strongly than
stretching motions do. This can directly be

Ž .explained using Eq. 32 , in which the cou-
pling is reflected by G matrix elements Gnm
s bqMy1 b , where b is a column vector ofn m
the B matrix with elements

Ž .­ q xn
B s .ni ž /­ xi xsx 0

If parameter q is associated with a stretchingn
motion, then there will be not so many parameters

Ž .q m / n that can couple to q via the matrixm n
element G . However, in the case of bending orn m
torsional motions, the B matrix elements corre-
sponding to the internal parameters representing
these motions will lead to more elements Gnm
different from zero. Coupling of internal motions
increases with the number of atoms participating
in the motion. This means that torsional motions
will couple more than bending or stretching mo-
tions. Symmetry-adapted combinations of primi-
tive motions such as stretching, bending, or tor-
sional motions will lead to even larger couplings
since more atoms participate in these vibrations.

From a theoretical point of view, the intrinsic
frequencies have a number of deficiencies that
have to be considered when using them for the
analysis of vibrational spectra. We will investigate
in the next section to what extent these shortcom-
ings of the intrinsic frequencies can influence the
interpretation of calculated vibrational spectra.

Analysis of Vibrational Spectra In
Terms of Internal Modes

Vibrational spectra of a series of acyclic, cyclic,
and polycyclic molecules were investigated using
ab initio theory and the harmonic approximation
of vibrational modes. Calculated vibrational nor-
mal modes were analyzed in terms of internal
modes with the help of the program routine ADIA
w x11 that is based on the theory described in this

w xand article I 1 and that was included in the
w xprogram package COLOGNE 12 .

Adiabatic mode vectors a were calculated withm
Ž . Ž . w xEqs. 38 and 39 of article I 1 . The corresponding

force constants k , fragment masses m , and adia-a a
batic frequencies v were evaluated according toa

Ž . Ž .Eqs. 35 ] 37 :

q Ž .k s a fa 35a n n

1 1
Ž .m s s 36a q y1 Gb M b nnn n

aqfan n2 q Ž .v s s a fa ? G s k ? G . 37a n n nn a n n1rGn n

All geometries and vibrational frequencies dis-
cussed in the following were calculated at the

Ž .Hartree]Fock HF level employing the standard
Ž .VDZP basis 6-31G d, p of Pople and co-workers

w x Ž .13 . Most of the HFr6-31G d, p results, although
interesting from a chemical point of view, will not
be interesting for the present comparison of inter-
nal mode frequencies and, therefore, will be pub-

w xlished elsewhere 14 . For most acyclic molecules,
it is difficult to judge whether one definition of an
internal frequency is more useful than the other
although calculated internal frequencies for the
same internal parameter may differ considerably.
Advantages and disadvantages of different types
of internal frequencies become obvious when cyclic
molecules are investigated and, therefore, we will
focus in this article on some selected cases that
clearly demonstrate which definition of internal
frequencies is more suitable for chemical purposes.

In particular, we will compare the internal mode
Ž Ž . w x. wfrequencies v Eq. 54 of article I 1 , v Eq.n n, BG

Ž .x w Ž w x.9 , and V Article I, Eq. 45 1 to confirm then
properties of internal modes derived theoretically.
For each molecule investigated, we consider both

Ž .adiabatic internal modes v s a and c-vectorn n
Ž .modes v s c . Results referring to the first choicen n

will be indicated by subscript a, while those refer-
ring to the second choice will be denoted by sub-
script c. The internal frequencies will explicitly be

Ž . Ž .given in the form v AB , v ABC , etc. For alla c
examples studied, we have used z s q sincen n
internal coordinates are mostly used in chemistry.

Ž . Ž .Beside bond lengths r AB , angles a ABC , and
Ž .dihedral angles t ABCD , we will use also out-of-

Ž .plane angles g ABCD , where atoms C and D are
bonded to B and the angle g describes the bend-
ing of A out of the plane BCD. Only planar
hydrocarbon molecules are discussed to remove
coupling between in-plane and out-of-plane pa-
rameters.

VOL. 67, NO. 116



NEW WAY OF ANALYZING VIBRATIONAL SPECTRA. II

FRAGMENT FREQUENCIES Vn

Ž .The fragment frequencies V defined in Eq. 45n
w xof article I 1 are not suitable candidates for the

internal frequencies of a molecule because all
atomic masses of the molecule influence the value
of V rather than just the atomic masses of then
fragment f described by the internal parametern
q . This is confirmed by the data presented inn
Table I and Figure 1, in which internal frequencies
v , v , v , V , and V are listed for ethene anda BG c a c
1,2-dichloroethene. Since Cl possesses an elec-

Ž .tronegativity x s 2.83 comparable to that of C
Ž . w xx s 2.50 15 and since conjugation of Cl with
the C5C double bond is small as a result of

Ž . Ž .insufficient Cl 3 pp ]C 2 pp overlap, the C5C
double bond should possess similar properties in
both molecules. This, e.g., is confirmed by the

Ž .HFr6-31G d, p CC bond lengths given in Figure 1
˚ ˚Ž .C H : 1.316 A; C H Cl : 1.312 A .2 4 2 2 2

Internal CC stretching frequencies v , v , anda BG

v are in line with this prediction since Dv sc
Ž . Ž . y1v CC, C H y v CC, C H Cl - 10 cm in2 4 2 2 2

Ž .each of these cases Fig. 1 . However, both V anda

V reveal a dramatic decrease of the stretchingc
Ž . y1 Žfrequency by 294 V , Fig. 1 and 766 cm V ,a c

.Fig. 1 when substituting ethene by two Cl atoms,
which chemically is not justified and simply re-
flects an increase in masses M when convertingn

C H into C H Cl . Clearly, both V and V are2 4 2 2 2 a c

not suitable internal vibrational mode frequencies
as was anticipated already in article I. Internal
frequencies v , v , and v are better suited toa BG c

reveal the similarity of the C5C double bonds in
the two molecules. Therefore, we will concentrate

TABLE I
( ) (Internal parameters q and internal frequencies v V n = a: adiabatic internal frequencies; n = BG:n n n

)intrinsic frequencies; n = c: c-vector frequencies calculated for ethene and 1,2-dichloroethene at the
a( )HF ///// 6-31G d, p level of theory.

Parameter set

n A B C D q v v v V Vn a BG c a c

Ethene
1 C2 C1 1.316 1798 1770 1813 1729 1677
2 H3 C2 1.076 3344 3345 3353 3324 3307
3 H4 C1 1.076 3344 3345 3353 3324 3307
4 H5 C2 1.076 3344 3345 3353 3324 3307
5 H6 C1 1.076 3344 3345 3353 3324 3307
6 H3 C2 C1 121.7 1279 1395 1448 1118 1385
7 H5 C2 C1 121.7 1279 1395 1448 1118 1385
8 H4 C1 C2 121.7 1279 1395 1448 1118 1385
9 H6 C1 C2 121.7 1279 1395 1448 1118 1385

10 H4 C1 C2 H3 0 1119 1126 1417 1118 1118
11 H6 C1 C2 H5 0 1119 1126 1417 1118 1118
12 H5 C2 C1 H4 180.0 1118 1092 1488 1117 1092
cis-1,2-Dichloroethene

1 C2 C1 1.312 1798 1768 1821 1435 911
2 Cl3 C2 1.721 909 853 938 792 699
3 Cl4 C1 1.721 909 853 938 792 699
4 H5 C2 1.072 3402 3402 3406 3330 3289
5 H6 C1 1.072 3402 3402 3406 3330 3289
6 Cl3 C2 C1 125.7 646 557 735 267 271
7 Cl4 C1 C2 125.7 646 557 735 267 271
8 H5 C2 C1 120.2 1315 1424 1513 517 1367
9 H6 C1 C2 120.2 1315 1424 1513 517 1367

10 Cl4 C1 C2 Cl3 0 510 469 635 473 526
11 H6 C1 C2 H5 0 1060 1058 1360 1059 899
12 H5 C2 C1 Cl4 180.0 796 813 1096 669 813

a ˚ y 1Distances in A, angles in degrees, frequencies in cm . Nuclei A, B, C, and D are numbered as in Figure 1.
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( )FIGURE 1. HF / 6-31G d, p bond length and internal
(frequency v of the CC bonds in C H and C H Cl see2 4 2 2 2

)text .

in the following on these frequencies and refrain
from any further discussion of frequencies V ora
V .c

COMPARISON OF INTERNAL FREQUENCIES
v , v , AND v .a c BG

Differences in internal frequencies v , v , anda c
v become obvious for molecules, for which in-BG
ternal coordinates couple strongly or for which a
chemically useful choice of a parameter set is diffi-
cult. These problems are encountered for ring com-
pounds and, accordingly, we will investigate ben-

Ž . Ž .zene 1a and the cyclooctatetraene-dication 2a as
appropriate nontrivial examples.

In Figures 2 and 3, the parameter sets used for
Ž .1a and 2a are shown. Adiabatic frequencies v ,a

Ž .c-vector frequencies v , and for the sake of com-c
Ž . w xparison, intrinsic frequencies of BG v 5 areBG

Ž .given in Tables II and III. Results show that a
frequencies v , v , and v all fulfill the symme-a c BG

Žtry criteria symmetry-equivalent internal modes
. Ž .have to have the same frequency values and b

internal frequencies for related internal modes as-
sociated with similar internal parameters are about
the same. However, there are some important dif-
ferences, which will be discussed.

For all cases considered, c-vector frequencies vc
are always the largest ones, which is due to the

w Ž .xconstraint BC s I see Eq. 41 . For the internal
modes associated with the carbon frame, intrinsic
frequencies of BG attain lower values than do

Ž .adiabatic ones. For example, in 1a: v CC s 1406,a
Ž . Ž . Ž .v CC s 1370; v CCC s 997, v CCC s 714BG a BG

y1 w Ž .x Ž .cm see Table II a , and in 2a: v CC s 1325,a
Ž . Ž . Ž .v CC s 1293; v CCC s 802, v CCC s 671BG a BG

y1 w Ž .xcm see Table III a . The intrinsic frequencies
are lowered because a redundant parameter set of

Ž . Ž .15 24 rather than 12 18 internal parameters is
Ž .used for the carbon frame of 1a 2a . The decrease

of intrinsic frequencies with the number of param-
w xeters used was discussed previously by BG 5 and

simply reflects the fact that intrinsic frequencies
are averaged frequencies that become smaller the
more internal coordinates are included into the
parameter set. The calculated values of v , v , anda c

wv for the CH stretching modes of 1a v s 3348,BG a
y1 Ž .xv s 3353, v s 3346 cm ; Table II a and 2ac BG

w y1v s 3349, v s 3351, v s 3347 cm ; Tablea c BG
Ž .xIII a are similar since the CH stretching motion is

largely decoupled from the internal motions asso-
ciated with the ring parameters. The set of g-pa-
rameters describing HCCC out-of-plane motions is
nonredundant and, therefore, v values areBG

wlarger than the corresponding v values 1a: v sa a
y1 Ž .969, v s 1051 cm ; see Table III a ; 2a: v sBG a

y1 Ž .x607, v s 1148 cm ; see Table III a where dif-BG
ferences can be as large as 500 cmy1, reflecting the
strong parameter dependence of intrinsic frequen-
cies.

PARAMETER SET INDEPENDENCE OF
ADIABATIC FREQUENCIES va

The major advantage of adiabatic internal fre-
quencies v is that they can be calculated usinga
only a limited number of parameters of interest

Ž .without constructing a complete nonredundant
parameter set. Alternatively, one can also use any
set of redundant parameters without changing the
values of the adiabatic frequencies, i.e., v valuesa
are completely independent of the parameter set
used to describe the molecule in question. This
independence of the parameter set is an important
property of v , which clearly shows that the dif-a
ferences in calculated internal frequencies of frag-
ments f directly reflect differences in the elec-n
tronic structure of the fragments rather than being
contaminated by the choice of internal parameters.

BG tried to circumvent the problem that intrin-
sic frequencies depend on the choice of the param-
eter set by setting up four empirical rules for
handling symmetric molecules so that a reasonable

w xparameter set is obtained in this case 5 . While
these rules can successfully be used in many cases,
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( ) ( ) ( ) ( )FIGURE 2. Parameter sets used for a benzene 1a and b 1,2-dideuterobenzene 1b . Numbering of atoms and the
( )notation of parameters torsional angles t and out-of-plane bending angles g are explicitly given. Bond lengths and

bond angles covered in the parameter set are indicated by a perpendicular line through the bond line and an arc
connecting the bonds involved in the bending motion.

they do not solve problems in the case of nonsym-
metric molecules, for which the four BG rules
cannot be applied. In the latter case, one can no
longer say whether a given difference in v andn

v of two related fragments f and f resultsm n m

form the particular choice of the parameter set or
is due to a difference in electronic structure. This

will be illustrated in the following:
Using the parameter set chosen for 1a, one can

probably handle all substituted benzene com-
pounds without noticing any inherent problems
connected with the use of intrinsic frequencies.
One simply takes as appropriate internal parame-
ters all bond lengths, all symmetry-equivalent in-
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( ) ( ) ( )FIGURE 3. Parameter sets used for a the cyclooctatetraene dication 2a and b the 1,2-dideuterocyclooctatetraene
( ) (dication 2b . Numbering of atoms and the notation of parameters torsional angles t and out-of-plane bending angles

)g are explicitly given. Bond lengths and bond angles covered in the parameter set are indicated by a perpendicular
line through the bond line and an arc connecting the bonds involved in the bending motion.
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TABLE II
(Internal parameters q and internal frequencies v n = a; adiabatic internal frequencies; n = BG: intrinsicn n

) ( ) ( ) ( ) ( )frequencies; n = c: c-vector frequencies calculated for a benzene 1a and b 1,2-dideuterobenzene 1b
a( )at the HF ///// 6-31G d, p level of theory.

( ) ( ) ( ) ( )n Parameter set a X = H 1a b X = D 1b

X = H X = D A B C D q v v v v v vn a BG c a BG c

1 1 C1 C2 1.386 1406 1370 1491 1406 1480 2196
2 2 C2 C3 1.386 1406 1370 1491 1406 1307 1729
3 3 C3 C4 1.386 1406 1370 1491 1406 1439 1671
4 C4 C5 1.386 1406 1370 1491
5 4 C5 C6 1.386 1406 1370 1491 1406 1439 1671
6 5 C6 C1 1.386 1406 1370 1491 1406 1307 1729
7 6 C1 C2 C3 120.0 997 714 1110 997 725 4152
8 7 C2 C3 C4 120.0 997 714 1110 997 1328 2462
9 C3 C4 C5 120.0 997 714 1110

10 C4 C5 C6 120.0 997 714 1110
11 8 C5 C6 C1 120.0 997 714 1110 997 1328 2462
12 9 C6 C1 C2 120.0 997 714 1110 997 725 4152
13 10 C6 C1 C2 C3 0.0 653 422 913 653 422 913
14 11 C2 C3 C4 C5 0.0 653 422 913 653 422 913
15 12 C4 C5 C6 C1 0.0 653 422 913 653 422 913
16 13 X7 C1 1.076 3348 3346 3353 2458 2452 2462
17 14 X8 C2 1.076 3348 3346 3353 2458 2452 2462
18 15 H9 C3 1.076 3348 3346 3353 3348 3346 3353
19 16 H10 C4 1.076 3348 3346 3353 3348 3346 3353
20 17 H11 C5 1.076 3348 3346 3353 3348 3346 3353
21 18 H12 C6 1.076 3348 3346 3353 3348 3346 3353
22 19 X7 C1 C6 120.0 1403 1441 1498 1087 1086 1161

20 D8 C2 C3 120.0 1087 1086 1161
23 H8 C2 C1 120.0 1403 1441 1498
24 21 H9 C3 C2 120.0 1403 1441 1498 1403 1441 1498
25 H10 C4 C3 120.0 1403 1441 1498

22 H10 C4 C5 120.0 1403 1441 1498
26 23 H11 C5 C4 120.0 1403 1441 1498 1403 1441 1498
27 H12 C6 C5 120.0 1403 1441 1498

24 H12 C6 C1 120.0 1403 1441 1498
28 25 X7 C1 C2 C6 0 969 1051 1168 809 831 975
29 26 X8 C2 C3 C1 0 969 1051 1168 809 831 975
30 27 H9 C3 C4 C2 0 969 1051 1168 969 1051 1168
31 28 H10 C4 C5 C3 0 969 1051 1168 969 1051 1168
32 29 H11 C5 C6 C4 0 969 1051 1168 969 1051 1168
33 30 H12 C6 C1 C5 0 969 1051 1168 969 1051 1168

a ˚ y 1Distances in A, angles in degrees, frequencies in cm . Nuclei A, B, C, and D are numbered according to Figure 2. Parameters
( ) ( )28]33 X = H, 1a and 25]30 X = D, 1b correspond to out-of-plane bending angles g .

ternal bond angles, a set of symmetry-equivalent
external bond angles, and a minimum of symme-

w xtry equivalent torsional angles 5 . Problems be-
come obvious when one wants to investigate a
cyclic molecule for which there exist different
choices of the CC stretching motions as e.g., for

w x Ž .1,6-methano 10 annulene 3 .
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TABLE III
(Internal parameters q and internal frequencies v n = a; adiabatic internal frequencies; n = BG: intrinsicn n

) ( ) ( ) ( )frequencies; n = c: c-vector frequencies calculated for a cyclooctatetraene dication 2a and b
a( ) ( )1,2-dideuterocyclooctatetraene dication 2b at the HF ///// 6-31G d, p level of theory.

( ) ( )Parameter set X = H 2a X = D 2bX = H X = D
n n A B C D q v v v v v vn a BG c a BG c

1 1 C1 C2 1.400 1325 1293 1411 1325 1412 2099
2 2 C2 C3 1.400 1325 1293 1411 1325 1243 1732
3 3 C3 C4 1.400 1325 1293 1411 1325 1267 1534
4 4 C4 C5 1.400 1325 1293 1411 1325 1462 1670
5 C5 C6 1.400 1325 1293 1411
6 5 C6 C7 1.400 1325 1293 1411 1325 1462 1670
7 6 C7 C8 1.400 1325 1293 1411 1325 1267 1534
8 7 C8 C1 1.400 1325 1293 1411 1325 1243 1732
9 8 C1 C2 C3 135.0 802 671 951 802 595 5741

10 9 C2 C3 C4 135.0 802 671 951 802 768 4284
11 10 C3 C4 C5 135.0 802 671 951 802 1120 2348
12 C4 C5 C6 135.0 802 671 951
13 C5 C6 C7 135.0 802 671 951
14 11 C6 C7 C8 135.0 802 671 951 802 1120 2348
15 12 C7 C8 C1 135.0 802 671 951 802 768 4284
16 13 C8 C1 C2 135.0 802 671 951 802 595 5741
17 14 C1 C2 C3 C4 0 248 y312 705 248 y684 3706
18 15 C2 C3 C4 C5 0 248 y312 705 248 y257 2178
19 C3 C4 C5 C6 0 248 y312 705
20 C4 C5 C6 C7 0 248 y312 705
21 C5 C6 C7 C8 0 248 y312 705
22 16 C6 C7 C8 C1 0 248 y312 705 248 y257 2178
23 17 C7 C8 C1 C2 0 248 y312 705 248 y684 3706
24 18 C8 C1 C2 C3 0 248 y312 705 248 535 4448
25 19 X9 C1 1.077 3349 3347 3351 2459 2455 2460
26 20 X10 C2 1.077 3349 3347 3351 2459 2455 2460
27 21 H11 C3 1.077 3349 3347 3351 3349 3347 3351
28 22 H12 C4 1.077 3349 3347 3351 3349 3347 3351
29 23 H13 C5 1.077 3349 3347 3351 3349 3347 3351
30 24 H14 C6 1.077 3349 3347 3351 3349 3347 3351
31 25 H15 C7 1.077 3349 3347 3351 3349 3347 3351
32 26 H16 C8 1.077 3349 3347 3351 3349 3347 3351
33 27 X9 C1 C2 112.5 1473 1582 1664 1136 1175 1283
34 H10 C2 C3 112.5 1473 1582 1664

28 D10 C2 C1 1136 1175 1283
35 H11 C3 C4 112.5 1473 1582 1664

29 H11 C3 C2 1473 1582 1664
36 H12 C4 C5 112.5 1473 1582 1664

30 H12 C4 C3 1473 1582 1664
37 H13 C5 C6 112.5 1473 1582 1664

31 H13 C5 C4 1473 1582 1664
38 32 H14 C6 C7 112.5 1473 1582 1664 1473 1582 1664
39 33 H15 C7 C8 112.5 1473 1582 1664 1473 1582 1664
40 34 H16 C8 C1 112.5 1473 1582 1664 1473 1582 1664
41 35 X9 C1 C2 C8 0 607 1148 1282 523 945 1104
42 36 X10 C2 C3 C1 0 607 1148 1282 523 945 1104
43 37 H11 C3 C4 C2 0 607 1148 1282 607 1148 1282
44 38 H12 C4 C5 C3 0 607 1148 1282 607 1148 1282
45 39 H13 C5 C6 C4 0 607 1148 1282 607 1148 1282
46 40 H14 C6 C7 C5 0 607 1148 1282 607 1148 1282
47 41 H15 C7 C8 C6 0 607 1148 1282 607 1148 1282
48 42 H16 C8 C1 C7 0 607 1148 1282 607 1148 1282

a ˚ y 1Distances in A, angles in degrees, frequencies in cm . Nuclei A, B, C, and D are numbered according to Figure 3. Parameters
( ) ( )41]48 X = H, 2a and 35]42 X = D, 2b correspond to out-of-plane bending angles g .
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In this case, it would not be clear whether the
C C distance should be included in the set of1 6
internal parameters because depending on the sub-
stituents at C one observes C C distances be-11 1 6

˚ w xtween 1.6 and 2.2 A 16 . An appropriate choice
Ž .would be that shown in Figure 2 b for 1,2-dideu-

Ž .terobenzene 1b for which the bond length C C4 5
Ž .corresponding to C C in 3 as well as the two1 6
associated internal CCC bond angles are not in-
cluded in the parameter set. While it is hardly
possible to predict whether a parameter set corre-
sponding to that of 1a or to that of 1b leads to
more reasonable intrinsic frequencies for 3, one
can check the situation for 1b since one knows the
exact answer in this case: D-substituents as in 1b
do not change the electronic structure of 1 and,
therefore, all internal motions apart from those
involving the D atoms have to remain unchanged:

Ž . Ž .dv s v 1a y v 1b s 0n n

Ž . Ž .for f not containing D 38an

Ž . Ž .dv s v 1b y v 1b s 0n m

Žfor f and f being symmetry-n m

. Ž .equivalent fragments . 38b

Any deviation of dv from zero reflects the depen-
dence of v on the parameter set chosen, wheren
we define a characteristic dv as the difference
between maximum and minimum value of a set of
internal frequencies calculated for related internal
motions such as all CC stretching or all CCC

w Ž .xbending motions Eq. 38b .
Ž .As shown in Table II b , adiabatic frequencies

v are completely parameter set independent sincea
all dv values are equal to zero for each set of
equivalent internal motions associated with the

w Ž . y1same internal parameters v CC s 1406 cm ,a
Ž . Ž . y1 Ž .dv CC s 0, v CCC s 997 cm , dv CCC s 0,a a a
xetc. . This confirms that adiabatic internal motions

reflect features of the electronic structure rather
than the choice of the internal parameter set. In the
case of 3, it would not matter whether the C C1 6
parameter would be considered in the analysis or
not. For all possible parameter sets, a particular
internal motion of 3 would always possess the
same adiabatic frequency.

On the other hand, c-vector frequencies for CC
stretching motions of 1b calculated with the pa-

Ž .rameter set indicated in Figure 2 b vary between
1671 and 2196 cmy1, thus yielding a characteristic

Ž . y1 wparameter set error of dv CC s 525 cm Tablec
Ž .xII b . Apart from this, v frequencies adopt un-c

physically large values for CC stretching motions
w Ž . y1 Ž .xv C C s 2196 cm , Table II b and CCCc 1 2

w Ž . y1bending motions v C C C s 4152 cm ,c 1 2 3
Ž . y1 .dv CCC s 1690 cm , which are considerablyc

larger than the corresponding adiabatic or intrinsic
w y1frequencies 1406, 1480 and 997, 725 cm ; see

Ž .xTable II b . As mentioned above, the c-vectors are
defined by the constrain BC s I, which enforces
an unphysical form of the c-vector for the C C1 2
stretching motion as is shown in Figure 4. Stretch-
ing of C C automatically involves a stretching of1 2

w Ž .xbond C C Fig. 4 a in the c-vector description,4 5
which almost doubles the stretching frequency. On
the other hand, the adiabatic vector describing the
C C stretching motion is largely localized in the1 2

w Ž .xC C fragment Fig. 4 b and, therefore, provides1 2
a physically reasonable account of the stretching
mode.

In the case of the intrinsic frequencies of BG,
one also finds relatively large characteristic param-

w Ž . y1eter set errors for 1b dv CC s 174 cm ;BG
Ž . y1 Ž .xdv CCC s 603 cm , Table II b . Three out ofBG

five CC stretching frequencies are different indicat-
ing a dependence on the D atoms although these
atoms do not change the electronic structure of 1.

( )FIGURE 4. Graphical representation of a the c-vector
( )stretching motion and b the adiabatic stretching motion

of bond C1C2 in benzene. Displacements of atoms are
indicated by arrows.
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Clearly, c-vector frequencies and intrinsic frequen-
cies do not lead to a physically or chemically
reasonable description of the internal modes of 3
and, therefore, cannot be recommended. Of course,
in the case of 1b, one could reinstall the parameter

w Ž .xset of 1a Fig. 2 a and get a reasonable account of
internal modes. This is possible since the exact
answer is known a priori, but, however, becomes
impossible to solve in the case of substituents that
change the electronic structure of 1.

This is also revealed by the second example
investigated in this connection, namely, the 1,2-di-

Ž . Ž .deuterocyclooctatetraenedication 2b Fig. 3 , for
which the D symmetry of 2a is lowered to C8 h 2 v
and, again, a less symmetrical parameter set is

w Ž .xused Fig. 3 b to anticipate results for molecules
with lower or no symmetry at all. Compared to 1,
the characteristic parameter set error of the intrin-
sic frequencies of the CC stretching motion in-

Ž . y1creases to dv CC s 219 cm in the case of 2bBG

w Ž .xsee Table III b , which reflects some dependence
on the number of CC bonds forming the ring. The
parameter set error for the CCC bending motions

w Ž .is somewhat smaller for 2b dv CCC s 525BG
y1 xcm than for 1b; however, it is still relatively

Ž .large 63% compared to an averaged intrinsic
CCC bending frequency of 828 cmy1.

There are molecules for which one can test
different nonredundant parameter sets complying
with the four rules of BG and still obtain relatively
large deviations in calculated intrinsic frequencies.
As an example, we consider benzocyclobutadiene
Ž . Ž .4 Fig. 5 , for which we have tested four different
parameter sets. The common parameters of these

Ž .sets are given in Figure 5 in normal print while
the differences between them are caused by the
choice of the additional bond length parameter r
Ž . Ž .set 1 , bond length parameter w set 2 , parame-1

Ž .ter w set 3 , or, alternatively, all three of them at2
Ž .same time set 4 . The calculated BG intrinsic fre-

( ) ( )FIGURE 5. Parameter sets and HF / 6-31G d, p equilibrium geometry of benzocyclobutadiene 4 . Numbering of
( )atoms and the notation of parameters torsional angles t and out-of-plane bending angles g is explicitly given. Bond

lengths and bond angles covered in the parameter set are indicated by a perpendicular line through the bond line and
an arc connecting the bonds involved in the bending motion.
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Ž .quencies Table IV for the CC stretching motions
Ž .s , s , t , t ; see Fig. 5 change considerably in1 2 1 2
dependence of the choice of r, w , w . For example,1 2
by replacing r by w , the intrinsic frequency of the1

Ž .motion associated with s and s changes by dv s1 2
y1 y1 Ž .s 150 cm from 1135 to 1285 cm Table IV . At

the same time, the intrinsic frequency correspond-
ing to parameters t and t decreases from 1710 to1 2

y1 Ž . y11639 cm , leading to dv t s 71 cm . Replace-
ment of w by w does not lead to a significant1 2
change in intrinsic frequencies, while the intrinsic
frequencies of the internal motions associated with
parameters u and u do not change at all. Clearly,1 2
it is difficult to predict these changes and to indi-
cate which parameter set leads to the most reason-
able description of 4.

To avoid these problems of obtaining reliable
intrinsic frequencies, one can use parameter set 4
containing two additional redundant parameters.
This automatically leads to a decrease in frequency

Žvalues associated with parameters r, w , w from1 2
1609, 1382, and 1717 cmy1 to 1492, 1241, 1667

y1 .cm , Table IV resulting in dv values of 117, 141,
and 50 cmy1, respectively. Clearly, these changes
just caused by a variation of the parameter set
used make it difficult to relate intrinsic frequency
values to other fragment properties such as bond
lengths or bond energies in the case of diatomic
fragments.

INTERNAL FREQUENCIES OF
TORSIONAL MOTIONS

Adiabatic and c-vector frequencies associated
w Ž .xwith torsional parameters t Fig. 3 a , which de-

scribe the out-of-plane motions of the C atoms of
w y1 Ž .x2, are all positive 248 and 705 cm ; Table III a

in line with the fact that 2 in its equilibrium

geometry adopts a planar form. On the other hand,
the eight torsional intrinsic frequencies are nega-

w Ž .xtive Table III a despite the fact that the choice of
the torsional parameters complies with the rules

Žsuggested by BG minimum number of symmetry
. w xequivalent torsional angles 5 . As a matter of fact,

it is impossible to select a set of symmetry-equiv-
alent torsional angles that leads to positive values
for the torsional intrinsic frequencies. This is shown
in Table V where all possible sets of symmetry
equivalent torsional parameters and their associ-
ated intrinsic frequencies are listed.

Similar problems with the intrinsic frequencies
of torsional motions occur in the case of 4 despite
the fact that the minimum number of symmetry-
equivalent torsional angles required by the BG

Ž .rules is chosen Fig. 5 . The torsional intrinsic fre-
quencies associated with parameters t , t ,3456 4561
t , t , and t are equal to 676, 981, 981,5432 6178 3287
y763, and y716 cmy1, respectively. However, by
adding the torsional angles t and t , which1782 6123

w xactually is in conflict with the fourth BG rule 5 ,
one obtains positive torsional frequencies of 376,
329, 329, 328, 328, 545, and 610 cmy1. These exam-
ples show that the intrinsic frequencies lead to
incorrect descriptions which suggest for both 2 and
4 nonplanar geometries. These problems are not
encountered in the case of adiabatic frequencies,
which are all positive in the case of the torsional
motions of 2 and 4.

Conclusions

A detailed comparison of adiabatic internal fre-
quencies, intrinsic internal frequencies, and c-vec-
tor internal frequencies reveals advantages of va
and disadvantages of v and v .n, BG c

TABLE IV
Internal stretching frequencies v and v of the carbon framework of benzocyclobutadiene calculated atn, B G a

a( ) ( )the HF ///// 6-31G d, p level of theory for different parameter sets see text .

Set 1 Set 2 Set 3 Set 4 Sets 1 ]4
v v v v vn, B G n, B G n, B G n, B G a

r 1609 } } 1492 1547
w1 } 1382 } 1241 1332
w 2 } } 1717 1667 1720

s1, s2 1135 1285 1285 1200 1254
t1, t2 1710 1639 1639 1660 1607
u1, u2 1154 1154 1154 1154 1120

a Frequencies in cmy 1. Parameters are defined in Figure 5.
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TABLE V
Intrinsic frequencies of BG calculated for the internal torsional motions of the cyclooctatetraene-dication at the

( )HF ///// 6-31G d, p level of theory; all possible combinations of five to maximally eight torsional parameters
aare considered.

Parameter Frequencies

t y312 y257 y394 y375 y357 y389 y368 y3621234
t y312 y684 y395 y375 y379 y385 y389 y357 y3322345
t y312 535 y3213456
t y312 y684 y395 y482 y345 y415 y357 y395 y354 y357 y3024567
t y312 y257 y161 y497 y383 y438 y328 y337 y368 y3215678
t y312 y395 y497 y283 y266 y325 y337 y357 y3326781
t y312 y367 y383 y266 y328 y354 y3627812
t y312 y395 y440 y415 y438 y395 y3578123

a Frequencies in cmy 1. Torsional parameters are defined in Figure 2.

1. Contrary to adiabatic internal frequencies, in-
trinsic frequencies are based on an averaging
procedure rather than a dynamic principle.
As a consequence, intrinsic frequencies can-
not fully reflect the physics of vibrational
motions.

2. Intrinsic frequencies v depend stronglyn, BG
on the parameter set used to describe the
geometry of the molecule. For example, by
increasing the size of the parameter set, in-
trinsic frequencies decrease in magnitude.
Adiabatic frequencies are completely inde-
pendent of the choice of the parameter set.

3. Intrinsic frequencies can become negative be-
cause the amplitudes A defining v innm n, BG

Ž .Eq. 9 can be negative. As shown for the
equilibrium geometry of molecules 2 and 4,
this leads to false information on the poten-
tial energy surface in question. In all these
cases, adiabatic frequencies are positive in
agreement with the fact that equilibrium ge-
ometries are investigated.

4. To make sure that intrinsic frequencies asso-
ciated with symmetry-equivalent parameters
adopt the same values, certain rules have to
be applied which lead to redundant parame-
ter sets and to an artificial reduction of the
values of intrinsic frequencies. Adiabatic fre-
quencies contain the same value for both
redundant and nonredundant parameter sets.

5. Using the GF formulation of intrinsic fre-
w Ž . Ž .xquencies Eq. 32 ] 34 , we have demon-

strated that for these internal frequencies
electronic and mass effects are not separated

properly thus spoiling the description of elec-
tronic effects with the help of intrinsic fre-
quencies. For the adiabatic frequencies, elec-
tronic and mass effects are strictly separated,
which makes these frequencies perfectly
suited for the description of the electronic
structure of molecules.

6. Despite these deficiencies, intrinsic frequen-
cies can be useful for acyclic molecules with
low symmetry, for which the problems dis-
cussed above are not apparent. In these cases,
intrinsic frequencies are certainly better than
c-vector frequencies, which suffer from the

Ž .fact that a they depend on the constrain
Ž .BC s I and b they are not localized in the

molecular fragment f that they should de-n
Ž .scribe. The examples given see Tables I]III

clearly suggest that one should refrain from
using these frequencies.

w x7. In article I 1 , we considered various possi-
bilities of defining adiabatic internal masses,
which led to internal frequencies v , V , V ,a a c
etc. The discussion of the internal frequencies

Žof ethene and cis-1,2-dichloroethene Table I
.and Fig. 1 clearly reveals that V frequencies

are not useful since they are defined without
using a fragment characteristic mass and,
therefore, mass effects disguise electronic ef-
fects in these internal frequencies. In

Ž . y1C H , V CC changes by 766 cm when2 4 c
two H atoms are replaced by Cl atoms even
though the CC bond does not change largely
with regard to its electronic nature and bond
length.
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The comparison of internal frequencies carried
out in this work clearly shows that the adiabatic
internal frequencies represent the best choice of
describing molecular fragments and assigning typ-
ical frequencies to any two-, three-, or n-atom unit.
This leads to a new basis for describing chemical
bonds in polyatomic molecules, which was previ-
ously not possible. The superiority of adiabatic
frequencies compared to intrinsic frequencies will
become even more obvious if one thinks about the
calculation of characteristic frequencies for internal
motions such as scissoring, rocking, twisting, or
wagging of functional AH groups. Calculation ofn
the intrinsic frequencies leads to large parameter
set errors dv that hardly provide a basis for char-
acterization of these modes.

It will be a topic of further work to investigate
in which situations it is of advantage to apply
adiabatic modes. Possible are the analysis of vibra-
tional spectra in terms of adiabatic modes, the
description of structural units using the properties
of adiabatic modes, the determination of molecular
geometries with the help of vibrational spec-
troscopy, and the description of reaction mecha-
nism. Some of these topics will be discussed in the

w xfollowing articles of this series 9, 17 .
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