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ABSTRACT: The reaction path connects a chemical potential
energy landscape and the conceptual descriptions of chemical
mechanisms and reactivity. In recent years, a class of predictor−
corrector integrators has been developed and shown to provide an
excellent compromise between computational efficiency and numer-
ical accuracy. Models based on projected frequencies along the
reaction path and coupling matrix elements, such as Reaction Path
Hamiltonian (RPH) and Unified Reaction Valley Approach (URVA),
require highly accurate integration of the reaction path. In this report,
the Euler Predictor−Corrector (EulerPC) and Hessian-based
Predictor−Corrector (HPC) methods are shown to be inadequate for studying reaction path curvature, which is a central
component of the RPH and URVA models. The source of this apparent failure is explored, and a solution is developed.
Importantly, the resulting enhanced EulerPC and HPC integrators do not require more intensive CPU or memory requirements
than their predecessors.

1. INTRODUCTION
Accurate integration of the steepest-descent reaction pathway is
the critical first step in nearly all mechanistic and kinetics
models based on the transition state theory.1,2 Perhaps the
most widely−used reaction pathway definition is Fukui’s
intrinsic reaction coordinate (IRC).3 The IRC is the steepest-
descent path initiated at the transition structure (TS), a first-
order saddle-point on the potential energy surface (PES), by
stepping forward and backward along the Hessian eigenvector
corresponding to the imaginary frequency. The pathway is
followed in mass-weighted Cartesian coordinates. As a function
of the reaction coordinate s, the atomic positions x(s) are
propagated according to

= − | |
d
ds

x g x
g x

( )
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where g(x) is the energy gradient at x. Despite the conceptual
simplicity of eq 1, it can exhibit stiff character and be difficult to
integrate in regions of the path where the gradient is small.
In quantum chemistry applications, reaction path based

methods can be readily employed with model chemistries for
which analytic energy derivatives are available. For such work,
the choice of an integrator must carefully balance cost and
accuracy considerations. As a result, a number of specialized
methods have been developed.4−31 Among these, the integrator
of Hratchian and Schlegel and the related method of Hratchian
and co-workers have been shown to provide an excellent cost/
accuracy balance for examinations of energy and coordinate
profiles along the reaction path.28−31 In general, these
integrators provide an accuracy similar to the widely used
second-order implicit method of Gonzalez and Schlegel

(GS2),24,25 while also being 2 to 5 times less computationally
expensive.
Recently, it was shown that HPC and EulerPC integrators

provide reaction pathways accurately enough to produce
excellent projected frequency profiles for a particularly
challenging reaction.32 This degree of accuracy is necessary if
one is to use an IRC for evaluating a rate constant using the
well-known variational transition state theory (VTST)
approach.33−35 For reaction path Hamiltonian (RPH) and
related models, it is further necessary to evaluate the reaction
path curvature and coupling matrix elements.36 One such
method is the Unified Reaction Valley Approach (URVA) of
Kraka and co-workers.37−39 URVA uses the reaction path
curvature and its decomposition into curvature coupling
elements to provide a detailed mechanistic account.
In previous quantum chemistry based URVA investigations,

the IRC integration using the GS2 method has represented a
significant component of the total computational effort. Given
the success of HPC and EulerPC for evaluating projected
frequency profiles, it seems reasonable to apply these methods
in URVA studies. In this way, one would hope to decrease the
IRC expense by as much as 75%. Disappointingly, preliminary
work clearly showed that HPC and EulerPC integrators fall flat
in the evaluation of reaction path curvature.
Figure 1 displays the scalar curvature (see below for a full

definition) along the IRC for the rearrangement reaction HNC
→ HCN computed at the B3LYP/6-31G(d,p) level of
theory.40−44 The figure includes reference results from an
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IRC calculation using the GS2 method with a numerical
integration step size of 0.02 amu1/2 Bohr. Figure 1 also includes
results using GS2, Local Quadratic Approximation (LQA),
EulerPC, and HPC integrators with a step size of 0.05 amu1/2

Bohr. Although EulerPC and HPC agree with the reference
profile near the TS, these curves exhibit significant deviations
from the reference outside of −1.5 ≤ s ≤ 2.0 amu1/2 Bohr.
In this report, we describe a critical enhancement to EulerPC

and HPC methods that corrects errors in curvature profiles
such as those observed in Figure 1 (section 2). This
improvement does not increase the computational expense of
either method. Section 3 begins with initial numerical
examinations of the improved predictor−corrector integrators
on an empirical surface, followed by a reconsideration of the
HNC → HCN reaction using the enhanced predictor−
corrector (PC) integration methods. Concluding remarks are
given in section 4.

2. METHODS
We begin this section by defining the reaction path curvature
vector. We then briefly outline the EulerPC and HPC
integrators as previously implemented. Readers interested in a
complete description of these methods should consult the
original papers.28−31 Last, we describe enhancements to
EulerPC and HPC necessary for correcting the errors observed
in Figure 1.
2.1. Reaction Path Curvature. Expanding in the reaction

coordinate s, the reaction path is given by

= + + +s s sx x v v( ) (0) (0) 1
2

(0) ...0 1 2
(2)

where v0 and v1 are the reaction path tangent and curvature,
respectively. The first-order term, v0, is defined as

=s d s
ds
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and the second-order term is given by
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The path tangent and curvature can also be written in terms
of energy derivatives. The tangent, which is equivalent to the
steepest descent expression of eq 1, can be expressed in terms
of the energy first derivative
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The reaction path curvature depends on the energy second
derivatives
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where H is the second derivative, or Hessian, matrix (Hij =
(∂2E)/(∂xi∂xj)).
If the magnitude of the energy gradient approaches zero, as is

the case in the neighborhood of PES stationary points such as
the TS, both the tangent and curvature expressions become ill-
defined. At the TS, the tangent is given by the transition vector
(the Hessian eigenvector corresponding to the imaginary
frequency), and the curvature vector is given by

= − − −−sv H v Hv I F v v F v v( ) [ 2( ) ] [ ( ) ]t t1 0 0 1 1 0 0 1 0 0 (7)

In eq 7, I is the identity matrix (Iij = δij) and F1 is a projection
of the energy third derivatives (Fijk = (∂3E)/(∂xi∂xj∂xk)) onto
the reaction path tangent

∑=F F vij
k

ijk k
1 0

(8)

Because the curvature vector depends on the second-order
change in the reaction pathway, it is especially sensitive to slight
errors in the IRC integration.

2.2. EulerPC and HPC Reaction Path Following
Integrators. Three basic computational steps are joined to
make up PC integrators: a predictor integration step (P), one
or more function evaluation steps (E), and a corrector
integration step (C). EulerPC and HPC reaction path following
integrators employ a P−E−C sequence. After a sizable P
integration step is taken, the PES and its derivative(s) are
evaluated (an E step). Using information from this E step and
the previous integration step (the initiation point for the
current P step), a local fitted surface is constructed, and a highly
accurate C step integration is carried out.
For EulerPC, the P component makes use of first-order Euler

integration; HPC makes use of the second-order LQA
integrator of Page and McIver.15,16 The surface fitting and
corrector integration for EulerPC and HPC are carried out
using the same approaches. The corrector integration scheme is
the modified Bulirsch−Stoer method.28,45−47 The local surface
fitting is done using modified-Shepard interpolation, or distance
weighted interpolants (DWI).48,49 These surfaces are written as
weighted linear combinations of Taylor series expansions about
the two input data points

= +− − ̃ ̃E w T w Tx x x x x( ) ( ) ( ) ( ) ( )i i i iDWI 1 1 (9)

where w and T are the weighting functions and Taylor
expansions. Subscripts i−1 and i ̃ indicate the previous step’s
end point and the current P end point, respectively.
In previous implementations of these two integrators,28−31

the DWI weighting functions have been given by
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Figure 1. The scalar curvature as a function of reaction coordinate for
the HCN → HNC rearrangement reaction comparing GS2 (+), LQA
(Δ), EulerPC (×), and HPC (○) reaction path integration methods. A
numerical integration step size of 0.05 amu1/2 Bohr is used for all cases.
The solid line shows the result of a reference calculation using the GS2
method with a step size of 0.02 amu1/2 Bohr.
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where Δxi−1 = x − xi−1 and Δxi ̃ = x − xĩ. Note that the weights
given in eq 10 are normalized and correspond to primitive (pre-
normalization) weights of |Δx|−2. The Taylor expansions are
given by

= + Δ + Δ Δ

= + Δ + Δ Δ
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E, g, and H are the energy, gradient, and Hessian at the points
indicated by each term’s subscript.
2.3. Improved EulerPC and HPC Integrators. An

interesting observation from Figure 1 is that EulerPC and
HPC yield essentially identical erroneous scalar curvature
profiles. In previous studies, it has been shown that while the P
integration steps can be quite different for these two methods,
the robust corrector integration scheme tends to put both
integrators onto the same solution pathway.30,32 We, therefore,
hypothesized that the source of the errors in scalar curvature
stems from a deficiency in the DWI fitted surface. Again, the
reaction path curvature is sensitive to rapid changes in the
energy second derivatives along the reaction path, especially in
regions where the energy gradient is small. This is obvious from
the curvature expression at the TS, where the gradient is zero.
As shown in eq 7, the curvature is explicitly dependent on the
projection of the energy third derivatives onto the reaction
coordinate.
The corrector integrator can only be as accurate as the DWI

representation of the PES, which we determined to be the
source of the PC based curvature errors observed in Figure 1. It
is known that a DWI surface becomes exact to nth order if two
conditions are met.50 First, the primitive weighting functions
must decay as |Δx|−(n+1). Second, the Taylor expansions must
include the nth order contribution. Since EulerPC and HPC
implementations used in all previous works employed weights
that go as |Δx|−2 and Taylor expansions truncated at second-
order, it seemed that modifications to both aspects of the DWI
fitting procedure would be necessary to achieve accurate scalar
curvature profiles. Therefore, we propose two improvements to
these PC integrators, which throughout the remainder of this
work will be referred to as enhanced or improved EulerPC and
HPC methods.
The two necessary enhancements have been incorporated by

generalizing our DWI surface fitting program. One general-
ization has been to allow any primitive weighting function of
the form |Δx|−p. The results shown in the following section
have been obtained with p = 4, which is a sufficient value to
ensure that the DWI weighting functions preserve third-order
accuracy. Because evaluation of the full set of third derivatives
becomes prohibitively expensive with system size when using
electronic structure methods (whether computed analytically or
numerically), the Taylor series expansions have been modified
to include only third-order terms on the line between the two
input data points, xi−1 and xĩ. This simplification is reasonable
since the curvature does not directly depend on the third-order
structure perpendicular to the reaction path. Furthermore, we
apply the sensible approximation that the energy third
derivatives along this line are constant and, thus, both Ti−1
and Ti ̃ include the same third derivatives. Now, the Taylor
expansions used in DWI fits using the improved methods are
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where the matrix F̅ is
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and the vector f is
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Importantly, adding the approximate third-order term in eq 12
does not affect CPU or memory scalings for DWI evaluations.
The scaling for both cost metrics remains 6(Na

2) (where Na is
the number of atomic centers).

3. RESULTS AND DISCUSSION
To examine the performance of the EulerPC and HPC
integrators described in the previous section, two test cases
have been chosen. We begin this section considering a model
PES. Then, we return to the HCN rearrangement reaction from
the Introduction to determine if the improved EulerPC and
HPC integrators are able to accurately produce the scalar
curvature profile. Electronic structure, geometry optimization,
and IRC calculations have been carried out using a local
development version of the Gaussian program suite.51 The
URVA analysis was done with the URVA program.52

3.1. Two-Dimensional PES Model. The first test case
studied is the two-dimensional model given by

π= − − − − −⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥E x y x( , ) arccot e cot

2 4
2ey y x( sin ) /22

(15)

As pointed out in other work,23 this surface is useful for testing
reaction path integrators, particularly when considering path
curvature. Both the IRC solution and the reaction path
curvature can be determined analytically. The IRC is given by

=y xsin (16)

and the curvature is

κ =
+

⎡
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⎤
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x
x

sin
(1 cos )

2 2
2 3

(17)

Plots of the scalar curvature on this surface using GS2, LQA,
EulerPC, and HPC integrators are shown in Figure 2. Three
different integration step sizes have been considered: 0.2, 0.4,
and 0.6. For all cases, the reaction path integration was
initialized at (−π,0) and terminated when the reaction
coordinate reached s = 7.640, which corresponds to (π,0)
when the analytic path is followed.
In agreement with previous work by Gonzalez and

Schlegel,23 it is clear that LQA has difficulty following the
reaction path well enough to accurately map the scalar
curvature profile. With the smallest step size considered, the
curve in Figure 2 exhibits artificial curvature minima and
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significantly underestimates the maxima. Using either of the
larger integration steps, the curvature profile wildly over-
estimates the maxima. Indeed, the maximum in the range of the
path included in these tests is 3.9 (the analytic maximum scalar
curvature is 1.0). The GS2 method is much better behaved and
appears to give qualitatively correct curvature profiles for all
three step sizes shown. However, with the largest step of Δs =
0.60, the maxima are still overestimated by more than 25%.
As compared with GS2 and LQA, results using EulerPC and

HPC shown in Figure 2 are quite similar to those observed in
Figure 1. First, HPC performs better than LQA. This is
expected since HPC is necessarily designed to correct LQA
errors. Second, neither PC scheme performs as well as GS2.
Third, the EulerPC profile is essentially identical to the HPC
curve, which, again, suggests that remaining integration errors
are likely due to limitations of the corrector integration
component that is common to both PC methods.
The reaction path integrations on this surface were also

carried out using the enhanced EulerPC and HPC methods
proposed in section 2. Scalar curvature profiles from those
calculations are shown in Figure 3. As before, reaction path

integrations were carried out using step sizes of 0.2, 0.4, and
0.6. It is clear that the enhanced PC integrators provide a
marked improvement over the original EulerPC and HPC
methods. For Δs = 0.20, scalar curvature profiles using
enhanced EulerPC and HPC methods are in perfect agreement
with the analytic solution of eq 17. Increasing the numerical
integration step size leads to some degradation in the curvature
results. Nevertheless, both enhanced PC approaches offer
equivalent or better results compared with GS2. This is
especially notable since GS2 involves an iterative solution (in
practice by employing constrained optimizations) to solve each
IRC step. In general, the number of PES evaluations required
per integration point increases with step size. In contrast, the
PC methods used here require only one PES evaluation per
IRC point regardless of the numerical integration step size. The
GS2 calculations shown in Figure 2 using a step size of 0.60
averaged 3.2 optimization cycles per IRC point.
Recently, it was shown that the quality of projected

frequency reaction profiles using EulerPC and HPC integrators
are essentially unaffected by Hessian updating.32 Indeed,
considering three different integration step sizes (Δs = 0.04,

Figure 2. The scalar curvature as a function of reaction coordinate on
the model surface given by eq 15 comparing GS2 (+), LQA (Δ),
EulerPC (×), and HPC (○) integration methods. Numerical
integration step sizes of (a) 0.20, (b) 0.40, and (c) 0.60 are shown.
The analytic solution is given by the solid line.

Figure 3. The scalar curvature as a function of reaction coordinate on
the model surface given by eq 15 using the enhanced EulerPC (×) and
HPC (○) reaction path integration methods. Numerical integration
step sizes of (a) 0.20, (b) 0.40, (c) and 0.60 are shown. The analytic
solution is given by the solid line.
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0.08, and 0.10 au) it was shown in that work that employing
Hessian updating for as many as 10 IRC points between
analytic Hessian and projected frequency evaluations yields
results essentially identical to cases where analytic Hessians are
computed at all IRC steps. With those results in mind, we have
carried out an analogous series of tests in this study. Figure 4

compares the analytic curvature profile with enhanced EulerPC
and HPC results using a numerical integration step size of 0.10
and analytic second derivatives evaluated every two, five, and 10
steps. Bofill’s scheme53 has been used to update the Hessian
matrix at intermediate steps. With this step size, the calculation
with analytic Hessians every other step results in the same
number of second-derivative evaluations along the reaction
path as the Δs = 0.20 case shown in Figure 3. It is clear from
Figure 4 that with Hessian updating these two PC integrators
still provide a rather accurate description of the scalar curvature.
Indeed, recalculating the Hessian every two or five steps does
not yield any noticeable error in the scalar curvature profile.
Even when the analytic Hessian evaluations are carried out only
every 10 steps, the results are still in better agreement with the
exact solution than those derived from Δs = 0.4 paths using
analytic Hessians at all steps (Figure 3).
3.2. HCN Isomerization Reaction. Having established that

the PC integration enhancements introduced in this work
correct observed errors in scalar curvature profiles on a model
potential surface, we applied these methods to the HCN
rearrangement reaction. As discussed in the Introduction, the
curvature profiles given by EulerPC and HPC integration
methods both exhibit substantial qualitative and quantitative
errors (see Figure 1). Figure 5 shows scalar curvature plots for
this reaction using enhanced EulerPC and HPC integrators

with numerical integration step sizes of 0.05, 0.10, and 0.20
amu1/2 Bohr. For comparison, the GS2 results (using a step size
of 0.02 amu1/2 Bohr) are also shown. With the larger two step
sizes considered, the EulerPC curve slightly overshoots the
maximum around Δs = −0.7 amu1/2 Bohr. Also, the Δs = 0.20
amu1/2 Bohr HPC path begins to deviate from the reference
solution when approaching the reactant well. Otherwise, the
agreement with GS2 is excellent.
The curvature along the reaction path for this reaction has

also been evaluated by using analytic Hessians every 2, 5, or 10
IRC points; intermediate integration steps made use of Hessian
updating.53 The path curvature has been determined only at
points where analytic Hessians are available. Results of these
calculations are shown in Figure 6. Curvature profiles for these
three cases display near perfect agreement with the all-analytic
Hessian results in the region near the TS. As the IRC heads
into reactant and product PES minima, Hessian updating
introduces some errors in the scalar curvature profiles. It is
interesting to note that these observed errors occur in regions
where the path exhibits large curvature. Because Hessian
updating methods numerically determine changes in the
second-derivative matrix in one or two dimensions at a time,
the quality of these schemes will necessarily be compromised
when stepping along extended portions of a pathway with large
curvature. Still, the error in the scalar curvature at the two ends
of the reaction path are relatively small, with a maximum
relative error of roughly 10% around s = −3.3 Bohr amu1/2.
Certainly, reaction path curvature calculations using periodic
Hessian updating for initial exploratory studies may be a useful
technique given the significant cost savings associated with
updating for sizable electronic structure studies. Another
possible suggestion one might take away from the results in
Figure 6 relates to developing automated approaches for
determining when Hessian updating can safely be employed in

Figure 4. The scalar curvature as a function of reaction coordinate on
the model surface given by eq 15 with analytic Hessians evaluated at all
steps (solid line), every 2 (×), 5 (○), and 10 (□) integration steps
using enhanced (a) EulerPC and (b) HPC integrators. An integration
step size of 0.10 has been used in all cases.

Figure 5. The scalar curvature as a function of reaction coordinate for
the HCN → HNC rearrangement reaction using enhanced (a)
EulerPC and (b) HPC integrators with numerical integration step
sizes of 0.05 (+), 0.10 (Δ), and 0.20 (○) amu1/2 Bohr.
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reaction path calculations. One possibility may be to use
Hessian updating in regions of the path where small curvature
is detected and to employ full analytic Hessian evaluations in
regions of the path where the curvature is large or rapidly
changing. Automated Hessian updating schemes of this sort
may be explored in future studies.
A key feature of URVA is the analysis of the reaction path

curvature. The electronic structure changes of the reaction
complex are reflected by the scalar path curvature plotted as a
function of s. Curvature minima (Mn) correspond to minimal
transient structures with minimal changes whereas curvature
maxima (Km) describe the chemical processes, such as bond
breaking/forming, rehybridization, etc.37−39,54 In this way,
meaningful checkpoints along a chemical reaction path are
obtained that can be used to unravel the mechanism of a
chemical reaction. The curvature minima Mn can be used to
partition the reaction into reaction phases, which stretch from
one curvature minimum to the next and enclose a curvature
maximum or enhancement representing a particular change of
the reaction complex. Different types of chemical reactions
possess a different curvature pattern, which can be used as the
fingerprint of the reaction. Further details can be gained by a
decomposition of the scalar reaction path curvature into normal
mode curvature coupling coefficients Bn,s and a decomposition
in terms of local mode curvature coupling coefficients
Ak,s.

37−39,54 Both the scalar curvature as well as the normal
and local mode curvature coupling coefficients are sensitive to
inaccuracies of the reaction path caused by deficiencies of the
integrator used. As discussed above, this is particularly true in
the vicinity of stationary points where the energy gradient g(x)
approaches zero and eqs 5 and 6 become ill-defined.

For many chemical reactions, such as addition reactions of
the type XHn + H2,

55 the scalar curvature in both the entrance
and exit channels is negligibly small because these regions are
dominated by van der Waals interactions. Therefore,
inaccuracies in the reaction path curvature do not play a
major role, and GS2, HPC, and EulerPC methods lead to the
same results.55 However, in the case of rearrangement reactions
(such as carbene rearrangements) or rotations about multiple
bonds (such as ethylene, allene), which involve major
rehybridization right from the start, the curvature in entrance
and exit channels is large and, therefore, is strongly affected by
path inaccuracies. The same is true for isomerization reactions
starting from a linear arrangement such as the HCN
isomerization. An infinitesimal bending of the reactant leads
to a sudden change in symmetry, which causes a large reaction
path curvature in the entrance channel. The same is true for the
reverse reaction.
The HCN reaction complex (Cs symmetry) possesses two

vibrational modes orthogonal to the reaction path. In Figure 7,
the scalar reaction path curvature and its decomposition into
local mode coupling coefficients B1,s and B2,s are shown as a
function of s. Figure 7a results are based on the HPC integrator,
and Figure 7b results are based on the enhanced HPC
integrator. In Figure 7c, the differences between both methods
are given. As is obvious from Figure 7c, large differences occur
in regions of small energy gradient g(x), around the TS, in the
entrance channel, and most strongly in the exit channel.
Applying the HPC integrator the curvature rises in the entrance
channel from a zero value at s = −3.4 amu1/2 Bohr within two s
units to a value of 0.43 amu−1/2 Bohr−1. In the exit channel, the
curvature first drops down to a third transient point M3 at s =
3.9 amu1/2 Bohr−1 and rises steeply within the next two s units
reaching the end of the exit channel. The transient points M1
and M2 correspond to nonclassical structures of the reaction
complex, separated by the curvature maximum K2, while M3
seems to be an artifact of the integrator rather than the starting
point of another reaction phase (see Figure 8). Comparison
with the GS2 and the enhanced HPC integrator results (Figure
7b) clearly confirms this. It is noteworthy that B2,s is more
affected than B1,s. In Figure 9, the harmonic frequencies ω1 and
ω2 are shown as a function of s. Both HPC and enhanced HPC
give the same results, which confirms that only properties
depending on energy third derivative information along the
reaction path are affected by path inaccuracies. Obviously,
changes of ω2 along s are much larger than those of ω1. ω2
couples more strongly with the reaction path than ω1 and, as a
consequence, displays much stronger the reaction path
inaccuracies. In summary, the TS region, entrance, and exit
channel of the HCN isomerization are described correctly with
the enhanced HPC integrator. In particular, there is no artificial
transient point M3 leading to a fourth reaction phase without
any chemical relevance.

4. CONCLUSIONS
The possibility of using EulerPC or HPC reaction path
following integrators for evaluating scalar curvature profiles has
been investigated. Despite the success of these methods for
finding projected frequency profiles, it has been shown here
that both PC schemes give pathways that yield scalar curvature
profiles with large quantitative and qualitative errors. We have
identified the source of this failure and proposed improvements
that do not change the formal scaling of CPU or memory cost
metrics. The enhanced EulerPC and HPC integrators have

Figure 6. The scalar curvature as a function of reaction coordinate for
the HCN → HNC rearrangement reaction with analytic Hessians
evaluated at all steps (solid line), every 2 (×), 5 (○), and 10 (□)
integration steps using enhanced (a) EulerPC and (b) HPC
integrators. An integration step size of 0.05 amu1/2 Bohr has been
used in all cases.
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been tested with an analytic two-dimensional model surface and
a chemical reaction studied with the B3LYP/6-31G(d,p) model
chemistry. For both test systems, the enhanced PC integrators
developed in this work perform extremely well.

The use of Hessian updating between periodic analytic
second-derivative evaluations, as an approach to decrease the
overall cost of IRC calculations using electronic structure
methods, has also been explored. It appears that such a scheme
works quite well with the improved EulerPC and HPC
methods. However, in regions of the reaction pathway where
the magnitude of the curvature remains large for some length of
the reaction coordinate, Hessian updating appears to degrade
the quality of the IRC. In these regions, it may be necessary to
analytically evaluate the Hessian with greater frequency,
perhaps at every integration step. In future work, these
integrators will be used to explore chemical reaction
mechanisms with the URVA and other related methods.

Figure 7. Decomposition of the scalar reaction path curvature (bold
black line) of the HCN → HNC rearrangement reaction in terms of
normal mode curvature coupling coefficients Bn,s(s) (colored lines).
Vertical dashed lines separate the reaction phases. The position of the
transition state corresponds to s = 0 amu1/2 Bohr; (a) using the HPC
integrator, (b) using the enhanced HCP integrator with a numerical
integration step size of 0.05 amu1/2 Bohr; (c) differences between both
methods. B3LYP/6-31G(d,p) calculations.

Figure 8. Geometries (normal print) and NBO charges56,57 (italics) of
the HCN → HNC rearrangement reaction complex at the transition
state TS, curvature minima M1−M3, and curvature maximum K1
using the HPC integrator with a numerical integration step size of 0.02
amu1/2 Bohr; bond lengths in Å, bond angles in degree, charges in
electron, B3LYP/6-31G(d,p) calculations.

Figure 9. Harmonic vibrational frequencies ωn as a function of the
reaction coordinate. Vertical dashed lines separate the reaction phases.
The position of the transition state corresponds to s = 0 amu1/2 Bohr.
B3LYP/6-31G(d,p) calculations.
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