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reaction parameter; SRPH = solution reaction path Hamilto-
nian.

1 INTRODUCTION

Key issues in chemistry are the description and under-
standing of mechanism and dynamics of chemical reactions.
In principle, this understanding can be obtained by designing
and carrying out suitable experiments. However, in practice
it is rather difficult to get a detailed mechanistic and dynamic
description of even the simplest chemical reactions. This has to
do with the fact that apart from reactants, products, and possi-
ble stable intermediates, all other molecular forms encountered
during a reaction have such a short lifetime that standard
experimental means are not sufficient to detect and describe
them. Progress in modern laser spectroscopy seems to pro-
vide an access to transient species with lifetimes in the pico-
to femtosecond region;1 however, much more development in
this research area is needed to make this approach a standard
experimental method for describing reaction mechanism and
reaction dynamics in detail.

Today, computational investigations utilizing state-of-the
art methods of quantum chemistry, in particular ab initio
methods, provide the major source of knowledge on reaction
mechanism and reaction dynamics. For this purpose, the inter-
actions between the atomic and/or molecular species involved
in a reaction are calculated and analyzed with the help of ab
initio methods.
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1.1 The Potential Energy Surface

Atomic or molecular interactions are investigated on the
basis of the Born-Oppenheimer approximation, which sepa-
rates electronic and nuclear motions and is the starting point
for getting an electronic wave function and an electronic inter-
action energy for a clamped nuclei situation. For every possible
configuration of the nuclei of a molecule, a potential energy
can be determined with the help of electronic structure calcu-
lations (ab initio, semiempirical). The function that describes
how the potential energy V changes as the nuclei move rela-
tive to one another defines the porential energy hypersurface
(PES), which is the many-dimensional generalization of the
well known diatomic potential energy curve. Hence, a direct
consequence of the Born-Oppenheimer approximation is the
concept of PES,%? which is used to describe changes in the
potential energy of a reaction complex during the course of a
chemical reaction.

Knowledge about the PES of a given reaction system is
essential for investigating reaction mechanism and reaction
dynamics and, thus the PES plays a central role in our under-
standing of chemical reactivity.? The PES function V(R) for a
reaction complex composed of K atoms depends on (3K — L)
internuclear coordinates R = (R, Ro, ..., R3g_1) where L is
the number of overall translations and external rotations of the
reaction complex (L = 6 for a nonlinear, L = 5 for a linear
reaction complex), which are of no relevance for the descrip-
tion of the electronic interactions between the reaction part-
ners. Calculation and characterization of the multi-dimensional
function V(R) presents one of the major challenges in mod-
em quantum chemistry. Despite the rapid progress in ab initio
methodology and computer techniques since the mid-1970s,
there remain major obstacles when determining V(R): (1) The
calculation of V(R) to chemical accuracy, i.e., better than
1 keal mol™!, remains an elusive goal for any save the sim-
plest reaction systems. (2) A general procedure for obtaining
accurate, analytic representations of V(R) has not vet been
developed, and (3) the complex, multi-dimensional function
V(R) is not in a form that can readily be analyzed and used
to extract simple, useful, yet theoretically sound, chemical
concepts.

1.2 The Mountaineer’s Terminology for PES
Descriptions

From daily life, we are familiar with gravitational potential
energy experienced when climbing up a mountain path to
Cross a mountain region with high peaks. Such a path always
follows a mountain valley up to a pass between two peaks
and, then, descends through a second valley on the other
side of the mountain region. The mountaineer’s terminology
and his experience with gravitational potential energy is used
when describing a multi-dimensional PES. Accordingly, one
speaks of energy wells (minima), energy peaks or hilltops
(maxima), energy valleys, energy passes (saddlepoints), etc.,
when explaining the features of a PES.

The chemically relevant parts of the PES are minima, val-
leys, and a saddlepoint between two valleys. The location of
the energy minima in (3K — L)-dimensional space determines
geometries and energies of reactants and products. The cur-
vature in the various directions of space at a minimum, ie.,
the steepness of the walls of an energy well, is related to
the vibrational properties of a molecule, such as the harmonic

force constants and the corresponding vibrational frequencies.
Two energy minima on different sides of an energy saddlepos
are connecled by two valley paths that start at the reactans
product minimum and end at the saddlepoint. Together the walle
ley paths form a contiguous path from reactants to prod
on the PES, which is called the reaction path (RP). -
The saddlepoint has the property of being an energy rmame
mum in the path direction, but a minimum in all other dives
tions perpendicular to the RP. The chemical significance of i
saddlepoint is that it is the location of the transition state (T
of the reaction leading from reactants to products. The encres
of the TS determines the barrier height and thus whether a rez 3
tion takes place (low barrier) or not (high barrier). Moleculss
trajectories that cross the saddlepoint region from the reas
tant to the product minimum side are unlikely to return
the reactant side. Hence, the saddlepoint is a dynamic -
neck, which will particularly be true if the barrier is high =
reaction probability and reaction rate are low.

1.3 The Dimensionality Dilemma of PES Studies

It has been estimated that for the description of the PES of
reaction system with K atoms about 10 points are required for
each coordinate to characterize PES properties in the directiom
of this coordinate and therefore about 10°5~L gb initio calcs
lations are needed for a reasonable PES description. In the
case of a three-atom system (K = 3, L = 6) this would meam
10° calculations; K = 6 and L = 6 requites 10'2 ab initio cal
culations. Even with modern computer technology this is mot
feasible and, therefore, it is an elusive goal to determine the
PES function V(R) for larger reaction systems. 3

Out of this dimensionality dilemma, a strategy for system—
atically simplifying the problem of determining the compless
PES of a reaction system has been developed: (1) Determi-
nation of the PES is constrained to that part which is energet-
ically relevant for the reaction in question. In particular, ome
concentrates on the RP (and the associated reaction valleysh
that connects reactants, TS, and products (static reduction).
(2) The dynamic investigation is restricted to the translational
mode along the RP and just those large amplitude modes .
(LAM) that strongly couple to the translational mode (dynamic
reduction). |

The first idea emerged when it became obvious that chemi-
cal reactions are local phenomena, i.c., only a limited number
of atoms is involved in the actual reaction. For example, just
two or three atoms participate in most cases of bond breaking
or forming processes while the rest of the molecule is only
slightly influenced. Accordingly, chemists usually describe a
reaction in terms of a local coordinate such as a bond dis-
tance or an approach parameter. This leads to one-dimensional
simplifications of the PES that give the energy change fora
specific reaction process in terms of the particular local coor-
dinate associated with the reaction (Figure 1). .

Although representations such as that of Figure 1 can be
found in all chemical textbooks and are the basis for a
qualitative or semiquantitative analysis of chemical reaction
mechanism, they contain two serious simplifications: (a) For
most reactions of a polyatomic reaction complex, the RP
cannot be described using a single coordinate. The RP is
curved in the (3K — L)-dimensional configuration space and
to describe the curvature correctly one needs nearly all the
coordinates, where of course some coordinates may be more
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Figure 1 (2) Energy profile of a standard chemical reaction involv-
mmg reactant, transition state (TS), and product given as a function
of a local internal coordinate R (solid line) and the correct (intrinsic)
seaction coordinate s (dashed line). (b) Perspective drawing of the cor-
m=sponding PES. Reproduced with permission from H. B. Schlegel,
Adv. Chem. Phys., 27, 249-286. Copyright (1987) John Wiley & Sons

smportant than others in the description. (b) Given a set of
3K — L) internal or Cartesian coordinates, only the location
of the stationary points can uniquely be determined on the PES
while the RP connecting the stationary points depends on the
eoordinates chosen, i.e., its unique definition requires special
ooordinates leading to an intrinsic reaction coordinate (IRC)
as indicated in Figure 1.5 If the RP is described by the correct
IRC, one will often find an energetically lower TS than that
obtained for a RP calculated with a local internal coordinate
R (Figure 1).

Points (a) and (b) are responsible for the fact that most
mechanistic work based on quantum chemical calculations
goncentrates on reactants, TS, and products rather than cal-
culating the whole RP. As mentioned above, reactants, TS,
and products occupy minima and (first-order) saddlepoints on
the PES, which have the property of being independent of the
ooordinates (e.g., Cartesian or internal) chosen for the descrip-
@ion of the reaction complex. Reliable calculations of the prop-
exties of reactants, TS, and products lead to a determination of

reaction barrier and reaction energy, reveal typical geometry
changes during the reaction, and provide a first insight into
the electronic structure of the reaction complex. Hence, local-
ization and investigation of the stationary points of the PES
along a RP is a reasonable starting point for the description
and understanding of reaction mechanism.

1.4 Methods for Investigating the PES

A hierarchy of approximate methods for describing the
PES region, which is relevant for a given reaction, has been
developed to compromise between the dimensionality problem
of a complete PES investigation and the need for reliable
mechanistic and dynamic insight into a chemical reaction.

Investigation of the Stationary Points along the RP: The ener-
getics, geometrical changes, and changes of other properties
taking place during a chemical reaction are determined by ana-
lyzing the corresponding properties of the stationary points.
Qualitative insight into the reaction dynamics is possible.
Computational costs are feasible for relatively large reaction
systems even when using rather expensive ab initio methods of
high accuracy and reliability. However, a prerequisite for this
and any of the following approximations is that the location
of the TS (saddlepoint) is correctly determined.

Investigation of the total RP by using appropriate coordinates:
The RP is explored by proceeding on it in a stepwise man-
ner using appropriate mathematical techniques and an appro-
priate mass-weighted coordinate system. Simplified, but use-
ful, descriptions of the reaction dynamics become possible.
Depending on the number of points calculated along the RP
and the ab initio method used, computational costs are still
tolerable.

Investigation of the reaction valley in the harmonic approxima-
tion: At each path point, the orthogonal directions to the RP
are described by a quadratic (harmonic) approximation of the
potential V(R), which implies the calculation of the second
derivatives of V(R) with regard to the internal coordinates. A
coupling of translational and vibrational motions of the reac-
tion complex can be described, which is the basis for a more
quantitative investigation of reaction mechanism and reaction
dynamics.# Calculations can be done for most of the reac-
tion systems considered by approach (2). Of course, a routine,
inexpensive calculation of the matrix of second derivatives of
V(R) is desirable.

Investigation of the reaction valley by considering anharmonic
corrections:® To calculate the correct shape of the reaction
valley in directions orthogonal to the RP, third and fourth
derivatives of V(R) with regard to the internal coordinates
R have to be calculated, which leads to a drastic increase of
computational cost and limits this approach to relatively small
reaction complexes.

Investigation of reaction surfaces and reaction hypersur-
faces:® If the translational motion of the reaction complex
couples with other LAMs of the complex, the RP can be
sharply curved in the regions with strong coupling. The actual
trajectory of the reaction complex deviates far from the RP
and a correct dynamic description can only be achieved if the
reaction valley is extended to a minimum energy reaction sur-
face or hypersurface, which embeds all LAMs. Calculations
needed to describe the reaction (hyper) surface can become
rather expensive and, therefore, this approach is limited to
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small reaction systems and low-dimensional reaction surfaces.
Investigation of larger regions or the complete PES: This can
be done by calculating extended point grids and fitting them
to an analytical function that represents V (R). Because of the
large computational cost typical of this approach, it has been
done for a limited number of rather small reaction systems
comprising not much more than three or four heavy atoms.?

Investigations along the line of (3), (4), or (5) can be carried
out with the reaction path Hamiltonian (RPH) of Miller,
Handy, and Adams® or one of its extensions®=3 since the
RPH provides a basis for useful mechanistic and dynamic
investigations of chemical reactions. The majority of these
investigations is constrained to chemical reactions taking place
in the gas phase, although extensions of the RPH concept to
the solution phase have also been suggested and applied.1?
In the following, the methodology of the RPH approach is
described.

2 METHODOLOGY

To apply the RPH one has to carry out the following
calculations:

(1) Localization of the stationary points, i.e., minima and
first order saddlepoint, on that part of the PES which is
associated with the chemical reaction to be investigated.

(2) Following the RP stepwise from one stationary point to
the next and calculating various properties of the reaction
complex at the points along the path investigated.

(3) Calculation of the elements of the RPH, in particular
couplings between vibrational modes (mode-mode cou-
plings or Coriolis couplings) and couplings between the

translational mode along the RP and vibrational modes-

(mode-reaction path couplings or curvature couplings).*
(4)  Analysis of the information collected along the RP to get
a description of the reaction mechanism.

Steps (1)—(4) constitute the first part of an investigation using
the RPH, which is followed by further calculations needed to
describe the dynamics of the reaction:

(5) Solution of the coupled equations of motion for the
nuclear degrees of freedom of the reaction complex.

(6) Calculation of the rate constant by statistical averaging
and summing-up of the probabilities of detailed state-to-
state processes.

Steps (5) and (6) are discussed in Rates of Chemical Reac-
tions; Transition State Theory; and Unimolecular Reaction
Dynanics. Here, the focus will be on the first four steps of
the procedure outlined above.

2.1 Quantum Chemical Methods Used in Connection
with the RPH

The basic requirement for a quantum chemical method
to be used in connection with the RPH is that all points
along the RP are consistently described. Accordingly, one
might assume that high accuracy ab initio methods alone will
lead to reliable results in connection with the RPH. Because
of computational limitations, early work with the RPH was

done with rather simple methods such as Hartree-Fock (HF)
theory in connection with minimal or split valence basis
sets. Reconsidering these investigations in the light of more
elaborate investigations with correlation-corrected ab initio
methods and larger basis sets, it is astonishing that many
mechanistic and dynamic features of the reactions considered
are correctly described at a low accuracy level. Hence, for
many reactions a qualitative insight is gained by using methods
such as HF/STO-3G, HF/3-21G or HF/6-31G(d,p).

More recent investigations with the RPH employ standard
correlation-corrected methods such as Mgller—Plesset (MP)
perturbation theory (see Mgller-Plesset Perturbation Theory)
at second or fourth order (MP2, MP4) or coupled cluster (CC)
methods (see Coupled-cluster Theory) in connection with DZP
or TZP basis sets. The repertoire of methods has recently been
extended by applying density functional theory (DFT) (see
Density Functional Theory (DFT), Hartree-Fock (HF), and
the Self-consistent Field) and some convincing results have
been published (see Section 3).

Because of cost considerations, researchers have tried to
combine low level calculations that are used to follow the
RP with high level calculations applied just to the stationary
points along the RP. Truhlar and co-workers have worked _
out appropriate correction functions that adjust the potential,
frequencies, moments of inertia, etc. obtained with a low level
method to the high level results obtained at the stationary
points (and some other points). These dual level descriptions
have been found to improve the accuracy of reaction rate
calculations.™

There is also work with the RPH based on semiempirical
methods.'? However, semiempirical methods are parametrized
for equilibrium geometries and, accordingly, do not necessar-
ily represent all parts of a reaction valley in a consistent way.
Because of this, Truhlar and co-workers have proposed mod-
ifications of known semiempirical methods so that all their
adjustable parameters are varied to reproduce experimental or
ab initio data for specific reactions.!? Since most of the semi-
empirical methods presently in use are based on the NDDOQ
approach, the term specific reaction parameter NDDO model
(NDDO-SRP) has been coined.!? The SRP parametrization
changes the NDDO model from being qualitatively incorrect to
semiquantitatively accurate and, accordingly, provides a much
cheaper basis to apply the RPH.

Both the duval-level descriptions and the NDDO-SRP
approach have to be applied with care since they can lead to
discontinuities and spurious minima in the PES function. Also,
there are cases for which the reparametrization of a NDDQ
method is too difficult to provide more than just a qualita-
tive insight into the reaction dynamics.® Clearly, dual-level
description and NDDO-SRP methods are only of limited value
for a detailed investigation of reaction mechanism, energy
transfer, and energy dissipation with the help of the RPH.

2.2 Methods to Locate Stationary Points on the PES
2.2.1 Definition of Stationary Points

The important regions of the PES are those which harbour
minima and first order saddlepoints. Minima correspond to
the equilibrium geometries of reactants, products, and possible
stable intermediates of a chemical reaction. A saddlepoint
of first order is the highest energy point on the minimum
energy path connecting two minima.!# Tt is the mountain pass
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connecting the reactant valley to the product valley, which
must be surmounted before the chemical reaction can take
place (ignoring tunneling, of course). Both minima and first
order saddlepoints are stationary or critical points (chemists
prefer to use the former term). At the stationary points, the
gradient of V(R) vanishes, i.e., all elements of the gradient
expressed in internal coordinates are zero:

V(R)
ORy

8k = =0 k=12,...,3K-L 1)
- Since the elements of the gradient correspond to the forces
exerted on the nuclei, stationary points are characterized by the
 fact that there are no internal forces on the atoms. The nature
of a given stationary point can be described by the Hessian
matrix, i.e., the matrix of second derivatives of the energy,
- which defines the force constant matrix F with elements
PVR)
Fu= RAR, 2
' Af a minimum, the eigenvalues of F are all positive (3K —
L positive curvatures A;, matrix F is positive definite; see
‘“T=ble 1), which means that at this point the PES is curved in
‘all directions concavely upward. For first-order saddlepoints
=re is one and only one negative eigenvalue of F. In this
e, the PES is a minimum in (3K — L — 1) dimensions while
the remaining dimension it is a maximum. Since the PES
a smooth, contiguous function connecting all its minima,
e must be at least one first-order saddlepoint between two
mected minima. For a PES with n minima, there are indeed
— 1) first-order saddlepoints.!>16
Other stationary points on the PES may correspond to
Bisher-order saddlepoints with 2, ..., n negative eigenvalues
ot F or even to maxima with all elgenvalues being negative.
wever, these stationary points are chemically not relevant
@mce it is always possible for a reaction system to find a lower
smercy path that passes through a first-order rather than any
er-order saddlepoint.!4

Location of Stationary Points: Geometry Optimization

. A series of mathematical algorithms is now available to
Beate stationary points on the PES (see Geometry Optimiza-
- 1 and Geometry Optimization: 2).77~1 These can be
ped into methods that use (a) just the energy, (b) energy
energy gradient, or (c) energy, energy gradient, and Hes-
matrix of the energy. Energy-only methods are the least
ones, however search strategies for stationary points

1 Stationary Points on a Potential Energy Surface V(R)

Location
Curvature A of
Ai>0 Reactant or
fori=1,...,3K-L Product
M <0A >0 Transition
@ first order fori=2,...,3K—L State
= i r<Ofori=1,...,n
dh,,her order A;>O0fori=n+1,...,3Kk—L (chemically
o> 1 not
relevant)
ri<Ofori=1,...,3K—L

based on energy-only methods often converge rather slowly
and, therefore, they are seldom used for determining the min-
ima and saddlepoints on an ab initio PES. Because of the
availability of analytical first and often also second energy
derivatives for HF-based and correlation-corrected ab ini-
tio methods,2021 gradient (first derivative), Newton (second
derivatives), or combination methods are nowadays preferably
used for the location of stationary points.!”~1°

One of the most cited representatives of the Newton meth-
ods is the Newton-Raphson approach,?? for which the PES
function V(R) is expanded at a point R close to the stationary
point Ry, by a Taylor series expansion:

3K-L

VR)=Vo@®R) + Y &(Ro)AR;
k

3K—-L

1
+5 2 > FuRo)ARAR (a)
k,i
1
V(R)=Vo@®R)+g AR + EAR+FAR (3b)
with ARk =i Rk — RO,k (4)

and the expansion being truncated at the second-order terms.
At a stationary point, condition (1) must be satisfied. Hence,
the Newton-Raphson step to be taken to get from the current
point to the stationary point is given by equation (5):

AR =Ry —Ro=—F~'g ©)
where Rney is the new point reached by carrying out (5). If
V(R) is quadratic in the region containing Ry and R, the
new point will be identical to the stationary point. Since this
is usually not the case, an iterative procedure is required to find
Rgp,. To determine if the point Ry predicted by equation (5)
is a stationary point, g (Rnew) Will be computed. If |g (Rpew)|
is larger than a given threshold &, equation (5) will be re-
evaluated until |g (Ryew)| < €. To make the search for Ry, more
efficient, the length of the correction vector AR is adjusted by
determining the point along AR for which the energy of the
gradient length ||g|| is a minimum??, i.e., an optimal parameter
« is introduced to minimize E(Rg + ¢AR) or ||g (Ro + ¢AR))|.
This procedure ensures that the new point is the optimum point
along the correction vector for the next iteration.

Since the cost of computing second derivatives is sub-
stantially higher than the cost of computing energy and
gradient, one uses quasi-Newton algorithms for which the
Hessian is not explicitly computed during the iterative search
for a stationary point.?® Accordingly, quasi-Newton methods
take an intermediate position between gradient and Newton
methods. Their cost requirements are comparable to gradient
methods, however their performance approaches that of the
Newton-Raphson method.?® In the case of a quasi-Newton
method, an initial Hessian matrix is updated in each search
step utilizing the computed changes in the gradient. Quasi-
Newton methods differ by the initial guess for the Hessian
(force constant) matrix F, which may be the unit matrix or
an estimated force constant matrix, and the manner in which
the Hessian or its inverse is updated during the course of the
optimization 131933

While it is possible to find starting geometries for equi-
librium optimizations of most reactants and products that are
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within or at least in the vicinity of the quadratically conver-
gent region so that Newton or quasi-Newton methods rapidly
lead to the corresponding minimum, this is often no longer
true in the case of saddlepoint geometries. For a given starting
point in a TS search, the local Hessian matrix may not have
the correct structure leading to (3K — L — 1) positive and one
negative eigenvalue. In this case, a step must be chosen in a
direction leading to the TS region. To solve this problem, a
quasi-Newton-like algorithm has been proposed by Simons and
co-workers®*?5 and improved by Baker2®, which follows that
mode that leads to the TS in question (mode-following?”). For
this purpose, one assumes that the mode with the lowest eigen-
value A, leads uphill toward the saddlepoint. If A,, happens to
be positive, a shift parameter A is calculated so that A, — A
becomes negative while the corresponding differences for all
other eigenvalues are still positive so that in these directions
a minimum optimization can still be performed.

Due to the availability of effective search methods, the
localization of stationary points on the PES has become rou-
tine. Nevertheless, in particularly difficult cases further refine-
ments of available algorithms may be needed.

2.3 Reaction Path and Reaction Path Following Methods

2.3.1 Definition of the Reaction Path: The Steepest Descent
Path

In the literature, the term reaction path is interchange-
ably used with terms such as ‘reaction coordinate’, ‘steepest
descent path’, ‘path of least energy’, ‘minimum energy path’,
etc.1%28-30 Apart from this, the definition of a RP is often con-
fused by mixing it with ill-defined concepts such as the distin-
guished reaction coordinate (see Figure 1). Even today, many
textbooks discuss the mechanism and the dynamics of chemi-
cal reactions assuming that one of the internal coordinates of
the reaction complex varies monotonically from reactants to
products and, therefore, is best suited as a distinguished reac-
tion coordinate. This assumption suffers from the fact that it is
not always possible to relate an appropriate reaction coordinate
to one of the internal coordinates. Furthermore, if a distin-
guished reaction coordinate can be chosen, there will be no
guarantee that the RP passes through the first-order saddlepoint
and, thereby, defines the lowest energy barrier separating reac-
tants from products. Finally, the other internal coordinates may
depend discontinuously on the distinguished reaction coordi-
nate because of strong coupling between the internal coordi-
nates and an arbitrarily chosen reaction coordinate.

A more objective way to define the RP is to start at the
first order saddlepoint separating reactants from products and
to follow the steepest descent path in one direction to reactants
and in the other direction to products as was first suggested by
Fukui® although the concept appears to have a long history.
The steepest descent path follows the gradient of the PES
function V(R). It is the path that molasses would follow
flowing downhill. One can show by expanding V(R) to first
order at a given point of the path that for the steepest descent
path the length of the step in any given internal coordinate is
proportional to the negative of the gradient of the energy in
that direction:

AR, = —ag; (6)

where « is a proportionality constant that defines an optimal
step length along the path. Equation (6) is no longer true at

the first order saddlepoint since the gradient vanishes at this
point. In this case, one has to expand V(R) to second order to
show that the direction of the steepest descent path is given by
the eigenvector associated with the negative eigenvalue of the
Hessian matrix. Hence, the steepest descent path passes con-
tinuously from reactants to products through the saddlepoint.3

Although the steepest descent path traces out a reasonable
RP, it is first of all just a mathematical recipe that cannot
necessarily be used to describe the dynamics of a chemical
reaction. Its major flaw is that, contrary to the stationary points,
it depends on the choice of the coordinate system and, in this
respect, does not represent a unique path.32

2.3.2  Definition of the Reaction Path: The Intrinsic Reaction
Path

The dynamics of a reaction complex is connected with the
intrinsic reaction coordinate (IRC) or, better, intrinsic reaction
path (IRC path), which is simply the steepest descent path
expressed in mass-weighted Cartesian coordinates. The IRC
path was first used by Eliason and Hirschfelder™, and later
investigated in great detail by Fukui and co-workers.34

The necessity of mass scaling can be explained by the
example of two noninteracting H, molecules at their equilib-
tium geometries.'” For small deviations from the equilibrium
geometry, a contour line diagram of the corresponding PES
expressed in terms of the two displacement coordinates X; and
X (Figure 2a) is given by a series of concentric circles, which
indicate that the function V(X;, X,) increases in all direc-
tions uniformly upon stretching (X;z > 0) or compressing
(X1,2 <= 0) the H-H bond lengths. When the two H-H bond
lengths are stretched by the same amount X; = X», the poten-
tial energy V increases by an amount AV = V(X;, X3) — Vg
(Figure 2a). Upon relaxing the molecules, a force acts on the
system in the direction of the negative of the gradient vector
and AV is converted into kinetic energy. To understand the
dynamics of the system, it may be compared with a friction-
less billiard ball rolling down the slope of the PES. At point
(X1, X3), the acceleration X of the ball can be calculated from

mX +kX =0 (7a)

b g (7b)
m

(k: force comstant, m: mass; harmonic approximation; zero
velocity at point (X1, X)). It depends on the masses; however,
since the masses of the two subsystems are identical, the accel-
eration is parallel to the force (Figure 2a) and the frictionless
ball will roll back and forth with its trajectory being perpendic-
ular to the contour lines and passing through the equilibrium
point.

The situation will be different if the second H, molecule
is replaced by D,. Although the form of the PES does not
change since it is independent of the masses of isotopomers
(Figure 2b), the dynamics of the rolling ball does. At point
(X1, X>), the component of the acceleration vector in the
X> direction is half as large as the one in the X; direction
since the corresponding mass has doubled. Applied force and
acceleration are no longer parallel, which means that the
initial movement of the ball is no longer directed toward the
equilibrium point and is no longer perpendicular to the contour
lines. Physically this does not make sense since the ball should
still take the shortest path to the equilibrium point and this
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components of the acceleration vector are given at point (X1, X5)

path should be independent of the coordinates used. To fulfil
#his prerequisite, the PES is expressed in a mass-weighted
ooordinate system where both X and X, are multiplied with
e square root of the corresponding mass:

X = Xy (8a)
X = JmyXy (8b)

By this transformation the contour lines of the PES are elon-
ed (Figure 2c) even though the potential energy V (X1, X»)
as still the same form for the two isotopomers. The acceler-
3on vector is once again parallel to the applied force and the
all will roll directly toward the minimum, i.e., the dynamics

the H; - - - Hy system is restored. The ball follows the IRC
11

In more general terms, the connection between IRC path
d reaction dynamics can be made clear when considering

= classical equations of motion for nuclei moving on the
35

i=123,...3K) )

e X; denote the Cartesian coordinates of the nuclei of the
ion complex. Assuming that the nuclei move down the
h from the TS toward either reactant or product minimum
with an infinitesimal velocity, equation (9) can be integrated
b yield:

V(X)
miX; o, t it (10)
e set of equations (11) is obtained:
m1dX, . mpdX, _ mzdX; _ a1
WwX)  wvx) wx)
00X, 0X» X3

pich by introducing mass-weighted Cartesian coordinates
Sives:

(@ )

- Figure 2 Contour line diagrams of the potential V for the system of two noninteracting molecules: (a) V(X1, X,) for H, - - - H; (b) V(X1, X3)
$or H)---Dy; () V(x1, x2) for Hy---Dy. X and x denote normal and mass-weighted Cartesian displacement coordinates, respectively. The

X, 0

©)

X = \/I—IlHXI

. dn dy "
Vo) T W) v (120)
Ay oy oxp

Ay d  dx

b o TN (12b)

81 82 83

Since the gradient of V(R) is proportional to the force
acting on the atoms, equation (12) implies that the changes in
the mass-weighted coordinate x; are proportional to the force
in the direction of x;. The larger the force in this direction,
the longer the displacement in this direction is. The IRC path
corresponds to the classical trajectory obtained by starting at
the saddlepoint and moving with a constantly damped velocity
toward either the reactants or the products. Since the classical
equations of motion are independent of the choice of the
coordinate system, the IRC path is uniquely defined.

Although the use of 3K Cartesian coordinates to calculate
the IRC path for a K-atomic reaction complex is straightfor-
ward, Cartesian coordinates are not suitable for representing
the PES since the function V(R) does not depend on the L
overall translations and rotations of the reaction complex and,
accordingly, is only a function of (3K — L) internal coordi-
nates. To describe the motion of the nuclei on the PES, one has
to back-transform from the 3K Cartesian coordinates {X;} to
(3K — L) internal coordinates {R;} where the three translations
and three rotations are eliminated by the center of mass and
Eckart conditions.>® However, the space in which the internal
motions are separated from translations and rotations is Riema-
nian rather than Euclidean.’” One has to define an appropriate
matrix in this space by the tensor elements ay ;:

0X; aX;
i =3 m (&) (&) a3

and, then, to express the IRC equation in terms of internal
coordinates {R;}:
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oR R
Zau( 1) ;az,k(gj):-- (14)

The elements aj; of the inverse matrix are given by

3K 3K
_ 1 1 78R\ [OR
it =G = 2 b =3 o () (%) o9
i T l (] 1] 1)

where Gy ; and By ; are elements of Wilson’s G and B matrices,
respectively.®® For all sets of internal coordinates {R;} derived
from 3K Cartesian coordinates by the use of equation (12),
solution of equation (14) will yield the same IRC path.

Fukui and co-workers® showed that the IRC path is the
shortest path from a minimum to the saddlepoint with the
length being equal to the barrier height. Igawa and Fukutome*
showed that the IRC path corresponds to the least motion path,
which is the most favorable RP according to the principle of
least motion in chemical reactions.*! Since the IRC path is
uniquely defined, mathematically rigorous, and conceptually
appealing, it is the appropriate path to investigate reaction
mechanism and reaction dynamics.

2.3.3 Reaction Path Following Methods

The RP can be represented as a Taylor series in s expanded
about xg(sp) for any point xg(sp) on the RP (except at the
saddlepoint)!%*2

x5(5) = xs(s0) + ¢ (S — So) + 2)(S — S0 +

+ ics 1§ — So (16)

where the expansion coefficients cg) depend only on the energy
derivatives evaluated at x5(sg). The reaction coordinate vector
xg(s) depends parametrically on the path length s, which is
defined as the mass-weighted Cartesian distance along the path

ds? =) " d? 17

The first two coefficients in expansion (16) correspond to
the normalized reaction path vector (path tangent) # (s) and the
reaction path curvature vector & (s) (see Figure 3):

o drsts) g7 . 18
©= = Tiger =@ L
lg*@Il = [g{s) Mg ()1/* (18b)
dt(s)  dxs(s)
== =" 5 =k® (19a)
k(s) = k)l = k) k(s)]'? (19b)

where the superscript x denotes mass-weighting and the
Euclidian norm of gradient and curvature vector are also given.
The curvature vector corresponds to the principal normal vec-
tor of the RP curve and is directed toward the concave side
of the RP. It is obtained by differentiating equation (19a) with
respect to s by use of the chain rule (gradient g* depends on
s only implicitly through its dependence on xg) :

k(s) = Iz x( 3 T (FF () — ()Y F ()t ()} ()] (20)

» dx(s)

centrifugal force * ds

= (s)

convex side
x,(s)

concave side

reaction path principal normal

Figure 3 Schematic representation of reaction path vector ¢(s)
curvature vector k (s) at a point s of a curved reaction path xg(s)

Formulae for higher derivatives ¢ (s) have been given
Page and Mclver*? and Gonzales and Schlegel (see Reactiom
Path Following).®

The number of terms included in expansion (16) stronghy
affects the stability and effectiveness of the algorithms for
calculating a RP. The simplest and hence most commonlky
used methods are the Euler methods, which neglect all terms
in equation (16) higher than first order. So-called Euler single
step methods use only the energy gradient at a given s, @
predict the next point xs(sy+1) of the path:

X5 (Smt1) = X5(sSm) — Ast(s) (21)

where As is the step size. Gradient-following methods often
trace out an approximate RP that meanders (‘oscillates™)
around the true path. One can avoid these oscillations by using
very small step sizes or applying a stiff differential equa-
tion solver.? Alternatively, an Euler stabilization method*®
can be employed, in which the Euler single step (predictor
step) is combined with a corrector step. For example, Ishida,
Morokuma, and Komornicki*® added a one-dimensional search
step along the bisector of the old and new gradient to damp
out oscillations of the Euler single step.*6

Since all Euler methods neglect the curvature term im
equation (16), they are not suited for the description of stronghy
curved paths. A method suggested by Gonzales and Schlegel®®
addresses this deficiency by choosing the new point s,, 1 so that
the approximate path between s, and s, is the arc of a circle
and the gradient vectors g (s,,) and g (s,,+1) are tangents to this
approximate path. If the two tangents to the circle intersect
at point 5%, the three points sm, Spi1s and s, form an
isosceles triangle. The pivot point sy, , ; is found by first taking
a step of length As/2 along gradient g(sy). At point s% .,
a constrained optimization is carried out on the surface of a
sphere of radius As/2 and centred at s}, , | leading to s, using
second derivative information (either exact or approximate).

Page and Mclver*? proposed an algorithm which takes the
curvature term of equation (16) into account and, accordingly,
leads to a local quadratic approximation of the RP at s,.
In this way, a RP can be determined which has the correct
curvature at the point of expansion. Special efforts have to be
taken to determine the direction and curvature of the RP at the
saddlepoint. Since the gradient vanishes at this point, second
and third energy derivatives (Hessian and first derivatives of
the Hessian), have to be calculated according to the rule of
L’Hospital.*> Hence, the local quadratic approximation of Page
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and Mclver*? is more reliable at the saddlepoint and in all those
regions where the RP is strongly curved.*

Most computational investigations of the IRC path use
mass-weighted internal coordinates rather than Cartesian coor-
dinates. This is done by directly solving the equations of
motion in intemnal coordinates {ry} using the Wilson G
matrix: ¥

d [or W)\
3 () + (B2) =o @)
where the kinetic energy T is given by
T=iR'G'R=Litr 23)

In this way, the IRC path in terms of mass-weighted internal
ooordinates r is obtained:

drsGs) Gy
ds [g+Gg]l/2

(24)

. .

i analogy to equation (18a), i.e., the IRC path of equation (24)

s identical to the IRC path in mass-weighted Cartesian coor-
nates x.

.4 Bifurcating Reaction Paths

The energy gradient, which determines the direction of the
P, transforms according to the totally symmetric irreducible
esentation of the symmetry of the reaction complex.*® The
rinsic RP is also totally symmetric so that the reaction
somplex never loses its symmetry along the RP. Exceptions
this respect are the stationary points (minima, first-order
saddlepoints) where other than totally symmetric directions
= be taken by the reaction complex.

Yet another exception is encountered at unstable path
vints.** Suppose one walks down the path and the (3K —
— 1)-dimensional reaction valley becomes flatter and flatter
one direction, i.e., one eigenvalue of the Hessian matrix
eases to zero.”"! At the point for which the eigenvalue is
entical to zero, the path becomes unstable and bifurcates into
0 new paths. Following one of the two new RPs leads to a
wering of the symmetry of the reaction complex. However,
aen enforcing the original symmetry of the reaction complex,
e latter follows a ridge path between the two new reaction
alleys where the ridge path is unstable with regard to any

eral displacement in the direction of the eigenvector cor-
ssponding to the negative eigenvalue of the Hessian (force
jonstant) matrix.

Branching or bifurcation points can occur in all regions
ong the RP. Three different situations can be distinguished
igure 4):>! (a) The RP can split and merge again somewhere
the entrance or exit channel. The original path traces out
local energy ridge that is avoided (unstable region) by the

0 new paths. (b) There is the possibility that a chemically
E=asonable RP turns out to be unstable in the TS region. Then
ere are two paths of lower energy that avoid the original TS,
nich in this case turns out to be a second-order rather than
first-order saddlepoint. (c) Frequently, the RP splits in the
it channel into two new RP, which lead to two rather than
e product minimum. There is a third path that combines
e product minimum with the other via a new first-order
addlepoint, which corresponds to the minimum of the ridge
ath between the new RPs.

(a) ()

Reactant

Reactant

TS TS TS
Second order
TS
Product Product
©
Reactant
*
TS1

Bifurcation Point

Reactant ¢ TSI
P2 product ® ®Product
P1 TSZ pp

Figure 4 Schematic representation of three types of unstable RP
regions (denoted by a hashed line) with bifurcation points: (a) the
unstable region is located between TS and reactant (or product)
minimum; (b) the unstable region contains a second order saddlepoint;
(c) the unstable region coincides with the product (or reactant) region

Besides single bifurcations, there is also the possibility of
triple bifurcations (two eigenvalues of the Hessian become
zero) and even higher bifurcations. In principle, it is not
difficult to detect bifurcation points and algorithms have been
proposed to determine the location of a bifurcation point. 55!
However, it is somewhat more difficult to correctly follow a
bifurcating path.

Bifurcating RPs, in particular of type (a) (Figure 4), often
indicate a deficiency of the quantum chemical method used
to describe the RP. Therefore, their chemical relevance has
to be checked by higher level methods. In particular, if a
RP is investigated that has been obtained by some scaling
or fitting procedure, it will have to be checked whether
bifurcations of the RP are not simply a result of discontinuities
in the scaling procedure. However, if they are real, they will
complicate dynamic studies. Bifurcating RPs mostly indicate
the possibility of LAMs, which explicitly have to be included
in a dynamic model of the chemical reaction.

2.4 The Reaction Valley and the Reaction Path
Hamiltonian

2.4.1 Description of the Reaction Valley

To explore mechanism and dynamics of a chemical reaction
to a larger extent, the immediate vicinity of the RP on the PES
is included in the description. This can be done by considering
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the one-dimensional RP and the (3K — L — 1) (in the general
case: 3K — 7) directions orthogonal to the RP. Since the IRC
path defines the points of minimum energy a movement in any
direction orthogonal to the IRC path leads to an increase in
energy, i.., one has to climb up the ‘energy walls’ of a valley
on the PES. Accordingly, one can speak of a (3K — L — 1)-
dimensional reaction valley leading from reactants through the
saddlepoint to the products.

To describe the reaction valley an appropriate set of coor-
dinates is needed, where one of the coordinates describes the
motion along the path and the other coordinates describe the
transverse motions. Such coordinates have been termed natural
reaction coordinates. The idea of characterizing a reacting sys-
tem by natural coordinates has emerged out of early work of
Hofacker (1963)*2, in particular Marcus (1966)° (natural colli-
sion coordinates that define a RP as a curve where the classical
local vibrational and internal centrifugal forces balance), and
others.>*** Also influential was the work by Hougen, Bunker,
and Johns,’® who developed a model for treating the LAMs
which are frequently observed in vibrational -rotational spec-
troscopy, apart from all the other internal coordinates.

In 1980, Miller, Handy, and Adams* derived a classical
Hamiltonian for a reacting molecular system, which combined
the early ideas of Hofacker and Marcus, the IRC path of Fukui,
and the large amplitude model of Hougen, Bunker, and Johns.
Essential to their derivation was the idea of a reaction valley as
the scene of all mechanistic and dynamic steps accompanying
a chemical reaction. The valley can be compared with a stream
bed with (3K — L — 1) harmonic walls that are free to close
in or to widen out as one proceeds along the stream bed.
Miller, Handy, and Adams described the reacting system in
terms of a RP coordinate set being composed of the reaction
coordinate 5 and (3K — L — 1) complementary reaction valley
coordinates. In principal, one could use for the latter internal
coordinates; however, these define directions not necessarily
orthogonal to the path. Clearly, the reaction valley can better be
described by determining at each path point s the curvature of
the valley floor in directions perpendicular to the RP. This can
be done by considering that for a fixed value of s the potential
energy V(R) is a minimum in the (3K — L — 1)-dimensional
subspace orthogonal to the RP subspace. Expanding V(R) up
to second order, the curvatures of the valley and, by this,
its steepness can be calculated in the same way as is done
for a minimum in the full space. The only difference is that
the Hessian (force constant) matrix at point s is expressed in
mass-weighted coordinates and constructed by projecting out
not only rotations and translations of the reaction complex but
also its translational motion along the RP thus yielding the
mass-weighted projected force constant matrix K(s):

K(s) = [I— P TF*(s)[1 — P(5)] (23)

where (I —P(s)) is a projection onto the (3K —L — 1)-
dimensional subspace. By diagonalizing, i.e., solving the vibra-
tional eigenvalue equation (26):

K(5),,(5) = w2 () (s) (26)

(3K — L — 1) mass-weighted generalized normal modes ,,(s)
and their associated frequencies w,(s) are obtained while
L + 1 frequencies corresponding to translations, rotations, and
the motion along the RP are set equal to zero. The gener-
alized normal mode vectors are orthogonal to the RP and

span the (3K — L — 1)-dimensional subspace of the reactia
valley. Hence, the normal mode coordinates 0, (s) are pe
fectly suited for the description of the valley. The frequencies
@y (s) describe the curvature and the steepness of the valle
walls in the (3K — L — 1) directions. Large frequencies inda
cate steep energy walls while small frequencies describe a fiz
valley with only slowly increasing energy walls. One spea
of a harmonic reaction valley since the potential energy V i
expanded in this description just to second order. Each poin
x; in mass-weighted Cartesian coordinate space is given by

3K-L-1

xi=x)+ > L0, (
M

ie., as a linear combination of the path coordinate and the
orthogonal valley coordinates.

2.4.2 The Reaction Path Hamiltonian of Miller, Handy, and
Adams -

The original RPH of Miller, Handy, and Adams?* is
classical Hamiltonian that is formulated considering a numbes
of assumptions.

(1) The first one is the assumption of a harmonic reactio
valley, which can be fully described with the help of
the mass-weighted projected force constant matrix K(s)
evaluated at each path point of interest.

(2) As a consequence of the harmonic expansion of the
valley potential, just the kinetic part, but not the potentiz
energy part of the RPH contains the coupling terms
between different vibrational modes. Hence, the RPH
is an adiabatic Hamiltonian and a consequence of the
adiabaticity of the RPH is that the frequencies w,,(s) of
generalized normal modes with the same symmetry must
not cross.

(3) To further simplify the RPH, rotations of the reactiom
complex in three-dimensional space are excluded by
assuming zero angular momentum (J = 0). In this way,
the RPH does not contain a rotational part and possible
rotational -vibrational coupling terms.

(4) In addition, one assumes that the movement along
RP is very slow compared to the transverse vibrationz
motions (vibrationally adiabatic assumption). In this way:
it is guaranteed that all transverse vibrational modes stay
in the same eigenstate throughout the whole reaction, i.e_,
one can focus just on the vibrational ground states of the
transverse normal modes and calculate on this basis z
vibrationally adiabatic potential that reflects the influence
of the transverse vibrations on the energy profile along
the RP. :

With these assumptions, the RPH adopts the form of equa-
tion (28):4

HIs, ps: {QuHPL 1 =Tls, ps {QuHPL + VIs{Qu)]  (28a)
where (s,{Q,}) are the reaction valley coordinates and
(ps, {P)) denote their conjugated momenta. The potential ¥

is approximated at each point s by the potential V¢ at s plus
the potential for harmonic displacements perpendicular to the
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path:
3K-L-1

1
Vs AQuN = Vo) + 5 > ()00

"

(28b)

The kinetic energy is given by (for zero total angular momen-
tum);

3K—L—1 2
[ps =Y > " Buu(9)Q, (s)h(s)]

m

N =

T[s, DPs» {QM}{P/.L}] = SR 2
1+ > By Q,L(S)}
"

3K-L—1

L1
5 Y. BE® (29)
"

The first term corresponds to the kinetic energy part of the
movement along the RP including coupling terms between RP
and transverse motions. The second term represents the kinetic
energy part associated with a movement orthogonal to the path
direction. The numerator of the first term is the generalized
momentum of the RP motion and the denominator represents
an effective mass wegr, Which is of relevance for tunneling
mvestigations. The direction of the mode vector I,,(s) at s is
chosen in such a way that the product O, (s)B, s(s) becomes
negative when Q,, (s) is taken on the concave side of the RP
(Figure 3). Hence, curvature of the RP lowers the effective
mass and, accordingly, raises the tunneling probability.>” If
the sum in the denominator of the first term becomes smaller
than —1 in the case of large curvature, (ues)!/? <0 will
mdicate that the coordinate system of the RP is no longer
suitable and that the concept of the RPH has to be extended
by including those modes that are responsible for the large
curvature couplings.

24.3 Mechanistic and Dynamic Information Provided by the
RPH

There are two different types of terms in the RPH which
explicitly depend on the PES:

{a) Shape terms x,(s), Vo(s), and {w,(s)}: The shape of the
reaction valley leading from reactants over the barrier
to products is characterized by the reaction coordinate
vector X;(s), which determines the meandering of the
floor line of the reaction valley, the classical potential
energy Vo(s), which determines the height of the path,
and the vibrational frequencies {w, (s)}, which define the
width of the valley (low frequencies denote a wide valley,
high frequencies a narrow valley).

{b) The coupling terms {B,, s(s)} and {B,, ,(s)}: They reflect
the dynamic coupling between the motion along the path
and the transverse vibrations as well as a coupling among
the latter. Large {B,, s(s)} terms indicate that energy can
flow non-adiabatically from translation to vibration and
vice versa while the {B,, ,(s)} terms determine the energy

flow among the vibrations.>

From an analysis of the terms of the RPH, one obtains insight
mto qualitative features of reaction mechanism and reaction

dynamics.

(1) By adding the change in the vibrational energy,

AEY; (s) to the classical potential V(s), one obtains the
vibrationally adiabatic potential, which reflects the effect of
vibrational energy on the reaction:

Viap(s) = Vo(s) + AEY(s) (30)
where the (3K — L)-dimensional vector rn denotes the vibra-
tional state of the reaction complex, which according to the
vibrationally adiabatic assumption does not change during the
chemical reaction. In the harmonic approximation AE7, (s) is
simply:

3K-L-1 1
AE(s) = Z ("u + 5) Tilwy(s) — @u(—00)]

“

3K-L-1

= (n“+%)hAa)M(s) @1
m

For n = (0,0,...,0), V Vap
potential and AEeib(s) is the zero point energy of the system
at point s relative to that of the reactants (s = —o0). If the fre-
quency of one (or more) of the modes decreases substantially
during the course of the reaction, e.g., as in a bond breaking
process, then Aw, will be negative and vibrational excitation
for that mode will lead to a reduction in the vibrationally adi-
abatic barrier for the reaction and a corresponding increase in
the reaction rate.

(2) Energy dissipation during the course of the reaction
involves energy transfer from one mode to the other. The
magnitude of this transfer can be accessed by calculating the
mode-mode coupling coefficients B,, , (s), which are given by
the dot product between the normal mode vector I, and the
change of normal mode vector Z,,:%*2

Buun(s) = () 2 “( 1)

(s) is the ground state adiabatic

—By,u(5) (32)

where {I,,(s); 4 = 1,3K — L — 1} are the generalized normal
mode vectors at point 5. The B, ,(s) coefficients describe the
mixing between modes u and v induced by the motion of
the reaction complex along the RP. As this motion involves
a rotation of the vibrational modes about the RP, the B, , (s)
terms are referred to as Coriolis couplings. Their meaning will
become clear if one assumes that they are all equal to zero, i.e.,
there is no coupling between the transverse vibrational modes.
In this situation, the character of all frequencies w, (s) should
be preserved during the reaction, which is unlikely to happen.
For example, the stretching frequency of a breaking bond
will smoothly decrease to zero, thus crossing with frequencies
w,, (s) of other modes, some of which may have the same
symmetry. Hence, there will be strong couplings and nonzero
values of B, ,(s) in the case of avoided crossings, indicating
that in these regions of the RP energy can readily flow from
mode u to mode v.

(3) Translational -vibrational energy transfer during the
course of the reaction can be described with the help of the
coupling terms B, s(s), which are given as the dot product
between the reaction path vector £(s) and the change of the

normal mode vector I, (s):%4

v() )

dt
Byus(s) = {t(®)" =—{LE&)y —— ( =~k (s) (33)
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By, 5(s) describes the dynamic coupling between the RP and
vibrational mode £, (s). It is a measure of the mixing between
the motion along the RP and the vibrational motion in mode
u induced by the curvature of the RP in the (3K — L)-
dimensional space. As B, ,(s) becomes larger, the mixing
between the RP and vibrational mode u increases and energy
transfer from translation to vibration and vice versa becomes
more and more facile.® The total curvature of the RP is
defined as:%42

K—L—1 1/2
k(s) = f 5 Bi.,(s)} = k() k(s)}'/? (34)
"

where k(s) is the curvature vector from equation (20)(sec
Figure 3).

(4) For a normal chemical reaction, the dynamic coupling
between the motion along s and the motion along the {Q,}
caused by the curvature of the RP must be explicitly taken
into account. Translational to vibrational energy transfer during
the course of a reaction occurs in regions where curvature
k(s) is large. In the entrance channel, modes which have
large By, ;(s) values are donating modes, which means that
vibrational excitation of these modes will cause energy to
flow into the RP thus enhancing the rate of reaction. In the
exit channel, modes with large B, ;(s) values are accepting
modes. The reaction exoergicity can flow from the RP into
these modes and lead to vibrational excitation of the products.

The curvature terms are intimately related to the well
known propensity rules for abstraction reactions, in particular
the rules put forward in the late 1960s by Polanyi and co-
workers.>” These authors found that for saddlepoints located
in the exit channel, vibrational energy is far more effective
than translational energy in overcoming the barrier to reaction.
In this case, the curvature is expected to be large before the
saddlepoint is reached. Translational energy will efficiently
be drained into the transverse vibrational modes and, thus,
no longer available for surmounting the barrier. On the other
hand, vibrational energy in the modes strongly coupled to the
RP will be transformed into translational motion along the
RP and hence provides the energy needed to overcome the
barrier. When large curvatures are found on the product side,
just the opposite is true. Translational energy can be directly
used to overcome the barrier while vibrational energy will be
ineffective. The details, of course, depend on the magnitudes
and variations of the curvature coupling terms, By, 5(s).

Within the framework of variational TS theory, it has been
shown that the curvature of the RP, and hence the cou-
pling terms, strongly influence quantum mechanical tunneling
through the barrier.®* The larger the coupling terms, the more
facile tunneling is.

2.5 Calculation of the Terms of the Reaction Path
Hamiltonian

The mass-weighted projected force constant matrix K(s)
given by equation (25) has to be calculated and the eigenvalue
problem (26) has to be solved to obtain for a given path point
§ (3K — L — 1) mass-weighted generalized normal modes and
their associated frequencies. There are several strategies either
to calculate generalized normal modes at each path point or
at a selected number of path points. In any case, the number
of evaluations has to guarantee smooth curves of generalized
normal mode vectors I, (s) and frequencies w,, (s).

Since the calculation of the coupling coefficients requires
the correlation of the vibrational modes along the RP, a
prerequisite of using the RPH concept is that correct functions
wy () are determined. To calculate the vibrationally adiabatic
potentials, the vibrational energy levels of reactants, products,
and TS must be properly ordered and correlated. Since an
adiabatic RPH is used, functions @, (s) belonging to modes of
the same symmetry obey the noncrossing rule, i.e., they must
not cross.

Since most of the reactions investigated so far with the
RPH possess symmetry, ordering has been done utilizing the
symmetry of each vibrational function (‘adiabatic ordering’).
However, this ordering becomes problematic in the case of
reactions without any symmetry and, therefore, diabatic order-
ing has been suggested,! which is based on the overlap
between normal mode vectors calculated at two neighbor-
ing points s, and 5,4+ along the RP. Large overlap (>0.99)
between two mode vectors at the two path points suggests that
the corresponding normal mode frequencies represent points
on the same function w,, (s). Special care will have to be taken
to determine the overlap in crossing and noncrossing regions,
in particular if degenerate modes are involved. If two modes
of the same symmetry interact only weakly, the correspond-
ing functions @y, (s) and w,(s) will approach each other rather
closely before they depart. A resolution of the avoided cross-
ing is obtained by automatically reducing the step size in the
avoided crossing region and increasing it again after this path
region. %1

Once the functions w,(s) have been determined the cou-
pling coefficients can be calculated. The Coriolis coupling
coefficients involve the first derivative of the normal modes
with regard to the reaction coordinate. For most ab initio
methods, they cannot be calculated analytically since they
involve third derivatives of the energy. Accordingly, they are -
calculated by finite difference techniques where one exploits
the fact that the matrix of B, , coefficients is antisymmetric
(Bu,w = —B,, ;) for any point s and that coefficients involving
modes of different symmeiry vanish. The curvature coupling
coefficients are calculated by finite difference techniques mul-
tiplying the first derivative of a given normal mode with the
reaction path vector. Alternatively, they can be calculated ana-
lytically as the product of normal mode vector and curvature
vector where calculation of the latter requires just gradient and
Hessian matrix (see equations 33 and 20). Since the reaction
path vector is totally symmetric, curvature couplings involving
normal modes of lower symmetry also vanish. Once the cur-
vature coupling coefficients are calculated, the curvature of the
RP is calculated with the help of equation (34).

2.6 Methods for Analyzing Elements of the Reaction
Path Hamiltonian

Chemists usually understand the geometry and conforma-
tion of a molecular system such as the reaction complex in
terms of internal coordinates. Therefore, it is logical to decom-
pose the reaction path vector in terms of internal coordinates
and to see which coordinate is dominating the direction of the
path. For the same reason, it is useful to express the energy
gradient in terms of internal coordinates so that the forces
exerted on the nuclei at a given path point can be analyzed
in connection with the geometrical description of the reaction
complex.
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It is more difficult to understand changes in normal modes
and coupling coefficients along the RP in terms of simple
geometrical pictures based on internal coordinates. Normal
modes [, are delocalized modes that in most cases cannot
be correlated with localized or internal modes, each of which
is associated with just one particular internal coordinate. The
ideal case for a chemist to interpret vibrational motions would
be that for each normal mode the relationship /, = v, holds
where v, is a localized internal mode such as, for example,
the stretching mode of a bond (associated with the bond
length), the bending motion of a three-atom unit (associated
with the bond angle), or a twisting mode of a four-atom
mnit (associated with a torsional angle). However, because of
electronic and mass coupling internal vibrational modes mix
to yield delocalized normal modes, which can no longer be
associated with a single internal coordinate.

2.6.1 Analysis of Normal Modes and Curvature Vector

Konkoli and Cremer® have recently suggested internal
wibrational modes that are suited to analyzing delocalized
mormal modes in terms of local modes. Their definition
of internal modes is based on the fact that mass coupling
between internal modes is much stronger than electronic
coupling. If one can suppress mass coupling, then a solu-
mon for the definition of a local mode associated with just
one internal coordinate can be found. Konkoli and Cremer
solved the problem by modifying the Euler-Lagrange equa-
tions in such a way that all nuclear masses (and thus also all
momenta) of a molecule, except those of the nuclei associ-
ated with a particular internal coordinate, are set to zero. In
this way, the modified Euler-Lagrange equations define a set
of local modes that are strictly constrained to that molecu-
lar fragment, which is described by the internal coordinate in
guestion.

The internal modes thus obtained are called adiabatic modes
because they can alternatively be viewed as those modes that
result when minimizing the energy of a vibrating molecule
by relaxing for a given vibrational mode all nuclear positions
except those defined by the pulsation of the internal coordinate
in question.®! Adiabatic internal vibrational modes comply
with the symmetry of the molecule and are independent of
the choice of the set of internal coordinates used to describe
the molecule. Furthermore, they are perfectly suited to char-
acterize normal vibrational modes in the common language of
chemistry that attempts to express molecular properties in the
form of internal coordinates.

Adiabatic internal modes can be defined for equilibrium
points on the PES as well as for all points along the RP
where in the latter case it is required that the harmonic part
of the energy in equation (28b) is minimized with regard
o displacements in the (3K — L — 1)-dimensional vibrational
space while relaxing all internal parameters but one. In this
way, generalized adiabatic modes ay(s) together with the
corresponding adiabatic frequencies wy(s) and force constants
k:(s) are calculated where k& denotes a particular internal
coordinate Ry.

With the help of the generalized adiabatic modes a(s),
both normal modes I, (s) and curvature vector k(s) can be
analysed utilizing appropriately defined amplitudes Ay, (1;s)
and Ay ;(k;5):%

(L (I () (s)]
A, ) = N 35
) = e RO OFOE]
+
pts) = MO 6

[a;" (s)M(s)a(s)]/?

which describe generalized normal modes (equation 35) and
the curvature vector k(s) (equation 36) in terms of general-
ized adiabatic modes associated with internal coordinates used
in the description of the reaction complex. The matrix F guar-
antees a dynamic characterization of normal modes while the
matrix M provides a kinetic characterization. Amplitude Ay
has the same dimension as B, s and, for [, = ak, amplitude
Ay s and coefficient B, ; are equal.

2.6.2 Analysis of the Reaction Path Vector

Kato and Morokuma®® suggested a procedure for analyzing
the reaction path vector in terms of basis vectors u*(s):

ui(s) = M~ (5)bi(s) €

where by is a vector of the B matrix, see equation (15).

Konkoli, Kraka, and Cremer®® have shown that the basis
vectors uy correspond to the internal modes that characterize
the movement along the RP and, therefore, represent the
equivalent to the adiabatic internal modes which are used
for the analysis of the transverse normal vibrational modes.
Accordingly, an amplitude A ; based on the matrix M can be
defined as:

[g" (M () (s)
[g* (M1 (s)g ()Ib;" (M~ ()bic(5)]

which considers the kinetic aspect of the translational motion
along the RP. With these amplitudes, the reaction path vector
can be decomposed into internal coordinate components for
each point along the RP.

Aps(E,s) = (38)

2.6.3 Calculation of Other Properties Along the Reaction
Path

Once all elements of the RPH have been determined, the
evolution of the reaction complex along the RP can be dis-
played. For example, plots of the internal coordinates in depen-
dence of s provide valuable information about the way the
reacting atoms approach each other, interact, and then separate.
In the case of polyatomic systems these two-dimensional pic-
tures display the complex structural changes taking place in
(3K — L)-dimensional space in an understandable form and
can be used to generate three-dimensional images of the stru-
ctural changes along the RP.

When calculating the elements of the RPH, it does not
require much additional effort to calculate also other prop-
erties of the reaction complex that depend on s. An example
can be found in the investigation of the isomerization reac-
tion of the methoxy radical to the hydroxymethyl radical by
Colwell and Handy,64 where the authors also determined the
dipole moment and the components of the polarization ten-
sor as a function of s. A systematic step in this reaction
has been made by Konkoli, Kraka, and Cremer,% who ana-
lyzed the electron density distribution p(r, s) of the reaction
complex along the RP, calculating difference density distribu-
tion Ap(r, s) (equation 39), Laplace concentrations VZp(r, s),
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and difference Laplace concentrations (equation 40):

Ap(r, s) = p(r, s)[reaction complex]

— p(r, s)[procomplex] (39)
MV o(r, )} = Volr, s)[reaction complex]
— V2 p(r, s)[procomplex] (40)

as well as response properties such as multipole moments and
other one-electron properties. If difference density distributions
are used, particular care has to be taken with regard to the
choice of the reference density of the procomplex and the
correction of basis set superposition errors,

Plots of the molecular orbitals or the electron density along
the RP provide valuable insight into electronic effects which
govern the reaction and can be discussed in connection with
the energetics of the reaction, structural changes, changes in
forces, force constants, coupling coefficients, etc., thus provid-
ing a very detailed description of the reaction. In Table 2,a
summary of RP, reaction valley, and reaction complex prop-
ertics and their impact on reaction mechanism and dynamics
of chemical reactions is given.

2.7 Modifications and Extensions of the RPH

Since the RPH concept is based on several assumptions,
relaxation of one or more of these assumptions leads to more
general RPH approaches. Also, there are chemical reactions
for which the original RPH of Miller, Handy, and Adams?
can no longer be applied because of its limitations and then
extensions of the concept become necessary. Figure 5 is an
overview of the modifications and extensions of the original
RPH concept which will be discussed in the following text.

2.7.1 The Diabatic Reaction Path Hamiltornian

Although in many cases a reasonable simplification, it is
certainly more realistic to abandon the assumption of a har-
monic reaction valley and to use a valley potential with appro-
priate anharmonic corrections. Hence, the potential energy part
in the RPH adopts the form of equation (41);7:65

1 1
V(0D = Vo) + 5 3 @00 + 5,33 Z)\j Coua(5)
* i v

X 0, OLELE + 1 YN TS Conols)
Thov Ao

X 0 ()0, (5)0:.(5)Qs () 41

where the coefficients of the cubic and the quartic term are
given by:

Con® =5 2V o e @)
s 7 T & Bxfaxjaxk B LA .
and
B 'V (s)
Cunals) = Z ; g Z:: St gty )

X L (D ($)1,5(5) (43)

The coefficients C cover (besides intramode anharmonic
contributions) mode-mode coupling in the potential energy

Table 2 Reaction Path, Reaction Valley, and Reaction Complex
Properties

Property Information

1. Reaction Path

IRC s Length of RP

Classical potential Vo(s) Height of RP

Reaction path vector £(s) Direction of RP

Coordinate amplitude Aps(t;5) Dominant internal
coordinate of #(s)

Curvature vector k() Curvature of RP

Rotation of & (s)-plane (s) Distinction of reaction
phases

2. Reaction Valley

Normal mode coordinates ~ Q,,(s) Direction of the valley

Normal mode frequencies @y (5) Curvature of the valley

Adiabatic force constants  ,(s) Curvature of the valley

and frequencies W, (s) in internal coordinates
Adiabatic amplitudes Aru(d; 5) Analysis of normal
modes
Curvature couplings Bs(s) Energy transfer and rate
enhancement
Adiabatic mode-curvature Ay (k: s) Influence of adiabatic
couplings modes on curvature
Coriolis couplings B,,,(5) Energy dissipation
3. Reaction Complex
Classical potential Vo(s) Energetics of reaction

Internal coordinates R(s)
Moments of inertia tensor I (s)

Geometry of complex
Rotation of complex

Internal forces fr(s) Attraction, repulsion
between atoms

Electron density plr.s) Electronic structure of
reaction complex

Laplace concentration —V2o(r;s)

Atomic charges gx (s)

Dipole moment (s)

Polarizability «(s)

Magnetic susceptibility x(s)

Information on reaction dynamics: V(s), I,(s), wy (5), Bys(s),
B,.,(s) — rate constant, tunneling effect, prediction of vibrational
mode specific enhancement of reaction rates, vibrational energy
dissipation, product vibrational state distributions

Information on reaction mechanism: V(s), R(s), Fr(s), pr;s),
—=V20(r;s), qr(s), (), a(s), x(s), £(s), Ags(t; 5), k(5),

Aps(k;5) — distinction of reaction phases, location of van der Waals
region and TS region, sequencing of bond breaking and bond
forming processes, analysis in terms of attractive and repulsive
forces, dependence on substituents

part of the RPH and, therefore, are called potential energy
couplings. Contrary to the original adiabatic RPH, frequencies
wy(s) corresponding to modes of the same symmetry can now
cross, i.e., they undergo a local Fermi resonance in the crossing
region. A RPH corresponding to the potential of equation (41)
is called a diabatic RPH.

A diabatic RPH may also be used within the harmonic
reaction valley approach when one considers not the curved
RP but a least motion path that interpolates linearly between
two boundary points of a path region with strong curvature
(see Section 2.7.4). Such a ‘straight line’ path is useful for
tunneling descriptions in connection with hydrogen transfer
reactions.% The kinetic part of the RPH no longer contains
curvature couplings since a straight line has zero curvature.
The remaining Coriolis couplings in the kinetic energy can be
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Hamiltonian (RSH)
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vibrationally adiabatic
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| momentum RPH
275
Quantum mechanical
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Figure 5 Overview of modifications and extensions of the RPH concept (numbers refer to the section in which a particular extension of the

"RPH is discussed)

mansferred to the potential energy part by an appropriate trans-
formation so that the kinetic energy part no longer contains
ecoupling terms, which is important if one wants to quantize
the RPH. The potential V along the straight line path adopts
the form of equation (44):%¢

V(s {Quh) = Vo(s) = Y Cu()Qu(s)
"

1
5 2D QuAu($)0u() (44)
v

where the linear term is a direct consequence of the fact that
the straight line path is no longer a minimum energy path.
The diagonal elements A, ,(s) can be interpreted as diabatic
frequencies, which can cross independent of the symmetry of
the corresponding normal modes. The off-diagonal elements
A, ,(s) in the potential coupling terms describe transitions
- from mode u to mode v. Despite the harmonic approximation
of the potential given in equation (44) the associated RPH is
diabatic.%

- 272 Inclusion of Total Angular Momentum

A more realistic RPH approach should include angular
momentum J by considering the rotational symmetry of a poly-
atomic reaction complex in three-dimensional space and the
conservation of total angular momentum.3® For this purpose,
the three components of J, J, J,, and J,, must be expressed
m terms of the canonical variables of rotation, e.g., by using
the action-angle variables (J, g5), (M, gu), (K, gx), where J
is the magnitude of J, M and K its projection onto space-
fixed and body-fixed z-axes, and gy, gy, gx their conjugated

angle variables.® Since J and M are conserved quantities, the
Hamiltonian does not depend on g; and gj,. The direction of
the space-fixed axis is arbitrary and, therefore, the Hamilto-
nian is also independent of M. For a given value of J, the
rotational part of the Hamiltonian can be written as:’

el (K, qi;s) = A()(J* — K?) cos? gk + B(s)(J* — K?) sin? g
+ C()K? (45)

where A(s), B(s), C(s) are the rotational constants for a given
value of s.

New types of coupling terms have to be considered, which
describe the coupling between rotation and the motion along
the path and the coupling between rotations and vibrations.*
The latter is described (in first order) by the cross-product of
the eigenvectors of the transverse vibrational modes and by
centrifugal distortion terms.

2.7.3 From a Reaction Path to a Reaction Surface

In the case of the reaction Cl + HCl — CIH + Cl, which
in view of the masses of the atoms involved can be called a
‘heavy-light-heavy’ atom transfer reaction, the RP is sharply
curved.® As a consequence, the dynamic motion of the reac-
tion complex deviates strongly from the RP into the region
of strong curvature. Similar observations can be made in
other hydrogen transfer reactions. In these cases, the basic
assumption of the original RPH, namely that the (3K — L)-
dimensional coordinate space can be spanned by one LAM
being connected with the displacements s along the RP and
(3K — L — 1) small amplitude motions (SAM) being associ-
ated with the normal coordinates Q, orthogonal to the RP,
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breaks down. One has to treat all LAMs (the ‘system’) sep-
arately from the SAMs (the ‘bath’) in the RPH to obtain a
reasonable description of the dynamics of the reaction.®

Nauts and Chapuisat’ proposed partitioning the (3K — L)
internal coordinates of the reaction complex into z internal
coordinates R,f, which provide a description of the LAMs, and
(3K — L — n) normal coordinates @, describing the SAMs.
The coordinates Rf span an n-dimensional reaction surface
(reaction hypersurface, reaction volume, reaction hypervol-
ume), which is orthogonal to the remaining (3K — L — n)-
dimensional subspace of the SAMs. For a minimum energy
surface, zero angular momentum, and harmonic energy walls,
the reaction surface Hamiltonian (RSH) takes the form of equa-
tion (46):8

1
HIURL, (P, 10,0, 1Pl = 57, P (G ) ()

1
+Vo®) + 2 > wp (RO (RY) (46)
it

where the matrix G (related to the Wilson G matrix) is parti-
tioned into elements Ggg, G, etc., according to a partitioning
of the total space into the space of the surface coordinates {R}}
and the space of the normal mode coordinates {0,}. Cou-
plings between on- and off-surface modes are covered by the
elements of the Gpg submatrix.

There are several obstacles that make the use of the RSH
difficult. First, the choice of the coordinates {R,f} is not trivial
and requires either chemical intuition or a preliminary calcu-
lation with the RPH that reveals all LAMs. Once coordinates
R} have been selected, the reaction surface has to be mapped
out by constrained geometry optimizations for a grid of {RS}
points. This in itself can be already very time consuming apart
from the fact that an analytical function Vo(R®) has to be
derived to carry out the dynamics calculations. Frequencies,
normal modes, and coupling coefficients are complicated func-
tions of RS, which are difficult to calculate and to interpret.

If coordinates R are correctly determined and the reaction
surface embodies all LAMs determining the dynamics of the
reaction, then the coupling with the transverse vibrational
modes will be small. It is possible to neglect all off-diagonal
G-matrix elements, which contain these couplings, and to use a
zeroth-order RSH, which is still practical. In this way, the RSH
has been used to investigate the intramolecular proton transfer
in malonaldehyde™ or the double proton transfer in the formic
acid dimer.”" It has been shown that tunneling is reasonably
described when using the RSH; however, depending on the
choice of the reaction surface coordinates, tunneling splittings
can differ by several orders of magnitude.”

2.7.4  The Dynamic Reaction Path Hamiltonian

Recently, Taketsugu and Gordon’ suggested a ‘dynamic’
RPH based on reaction coordinate s and a curvature coordi-
nate p that should be effective when the RP is sharply curved
and the original adiabatic RPH becomes inappropriate. The
dynamic RPH generalizes the natural collision coordinates
of Marcus (used to describe a collinear reaction of the type
A+BC — AB +C®) to a K-atomic reaction complex. The
curvature coordinate o defines displacements along the cur-
vature vector k (s) and, accordingly, is suited to describe any
coupling between the translational motion along the RP and a

transverse vibrational motion that causes a large curvature ve
tor. Couplings with the remaining (3K — L — 2) normal moé
1, do not play any role and can be ignored. Hence, the
takes in this case the form of equation (47):72

7

L S V(s)+ 1p
211 + pk(s)]? 2P0

His, ps, p, Pps {Q_u.]: {Pu}] ==
1, 2 Lo, 1,

+ iwp(s)p + Z {EPM + Ew”(s

x Q2(s) — kﬂ,p(s)QM(s)} (

where p, is the conjugated momentum of p,k, ,(s)
dV2(5)/80,.,, is an off-diagonal element of the force constz
matrix, which describes a potential energy coupling between
and Q. Coriolis coupling terms of the (3K — I. — 2) norms
modes are neglected. Kinetic energy coupling between s az
p is described by the term pk(s) while couplings between
and Q,, are covered by the curvature k(s).

The dynamic RPH is related to the RSH (Section 2.7.3)
so far as a reaction surface is used in the form of a flexih
reaction plane defined by the reaction path vector ¢ (s) and d
curvature vector & (s) (see Figure 6). Since the curvature vecta
orients itself at each new path point in configuration space
the reaction plane always adjusts to the direction of stronges
RP curvature. Accordingly, use of the reaction plane does ne
require a preselection of LAM coordinates and the calculatic
of a minimum energy reaction surface. In addition, the rotati
of the reaction plane provides a measure for determiniz
the sequence of interactions between translational motion as
transverse LAMSs.”? All LAMs and all deviations from th
RP because of sharp curvature are covered without increasis
the dimensions of the reaction surface. Of course, in thos

t(sy)

reaction

least motion
path

Kk(s1)

% least motion
reaction path
plane

Xs(s)

Figure 6 Schematic illustration of a RP with two reaction plane
defined by reaction path vector and curvature vector at path positio
51 and 53
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egions where there are rapid changes in the reaction plane,
e reacting system will move away from the two-dimensional
ane and then the more complete description by the RSH is
appropriate.

27.5 A Quantum Mechanical RPH

Only a few attempts have been made to replace the classical
RPH by a (semi-)quantum mechanical RPH. For example, this
can be done for the kinetic part of the RPH by replacing all
momenta by the corresponding quantum mechanical operators.
This is particularly easy in the case of a diabatic RPH based
on a zero curvature (‘straight line’) RP assumption for which
1 coupling terms are removed from the kinetic energy.* Also,
e harmonic potential can be quantized, as done by Billing,”
vho derived in this way a semi-classical RPH that is useful
jor dynamics calculations (see Mixed Quantum-Classical
Wethods).

27.6 A Solution Reaction Path Hamiltonian (SRPH) for
Reactions in Polar Solvents

The RPH concept has been used by Lee and Hynes!? to
evelop a model for the description of chemical reactions in
olar solvents where the solvent is treated as a polarizable con-
nuum characterized by its dielectric constant. The progress of
e reaction from reactants to products is described by a single
poordinate Xge (ignoring any other internal molecular modes),
hich is chosen on the basis of chemical intuition rather than
mgorous definition. For example, in the case of the ionic disso-
mation AB — A + B~ the reaction coordinate Xg. is simply
pe distance between atoms A and B.

Essential for the approach of Lee and Hynes'?® is the
ariation of the charge distribution in the reaction complex
ith Xg.. In the ionic dissociation reaction, the charge on
sach atom will increase strongly along the RP and, as a
bonsequence, solvation will become stronger with increasing
Iz.. This increase in charge is described by charge distribution
mctions for each atom of the reaction complex that cover the
iting cases of reactant and product. Solvent polarization,
ad thus the free enthalpy Geq(Xwe) of the reaction complex
the solvent, is calculated for each point along the RP
sing the charge distribution functions. Any deviation from
e solvent polarization obtained for a path point Xg. is
acasured by a solvent coordinate X, which is defined by
different charge distribution in the reaction complex at Xge
d the corresponding nonequilibrium solvent polarization. By
palogy with the RPH, the coordinate X, is associated with
e LAM along the RP while coordinate Xg, corresponds to
a orthogonal motion covering all solvent rearrangements. A
armonic reaction valley is described by the free enthalpy
mction G(XRC, XSol):

G(XRe> Xso1) = Geq(Xre) + 3 K501 (Xre)[AXs01(XRe)*  (48)

vhere the first term is the equilibrium free enthalpy, i.e., the
olvent polarization has adjusted to the charge distribution
the reaction complex at point Xge, and the second term
Eives the free enthalpy part due to deviation from equilibrium
olarization at Xge.

As indicated in Figure 7 any displacement AX g, leads to an
ease of the free enthalpy, and thus a valley emerges that can
e described by the harmonic approximation of equation (48).

Geq(XRe)

AT+ B

AB —_—

AXsol

Figure 7 Schematic illustration of the free enthalpy reaction valley
for the ionic dissociation AB — A* 4+ B~ in a polar solvent. The
solvent becomes more stiff as X, increases

Lee and Hynes!® show that the steepness of the solvation
valley can be described by a ‘“force constant’ K g (XRre ), Which
is related to the solvent polarization mass pge(Xgre) and a
solvent frequency wso, Which is independent of the reaction
coordinate:

sl (XRre) = ws_o21K Sol (XRre) (49)

Figure 7 shows that with increasing charge on atoms A and
B (increasing Xge) of an ionic dissociation reaction a deviation
from the equilibrium polarization of the solvent becomes more
and more difficult because of the increasing steepness of the
solvent valley. In other words, solvation plays a larger role for
the generated ions than for the neutral AB molecule.

Despite the simplified choice of the coordinate system,
it is possible to define intrinsic reaction coordinates, which
becomes somewhat more difficult than for the gas phase
RPH because of the dependence of the effective solvent
polarization mass on the coordinate Xge.1? In terms of the
intrinsic coordinates xge and xsoj, the SRPH is given by:

1
H (xRe, PRes XSols PSol) = m(ﬂ%{e + P3a1) + Gltre, Xs01) (50)

where A(x) is a scale factor defined by the effective solvent
polarization mass at the TS. Evaluating the IRC path as a
sequence of points, with s being the arc length along the
path, the changes of the reaction complex in solution can be
discussed as functions of s as in the case of the original RPH
model. By combining the SRPH model with variational TS
theory, reaction rates of reactions in polar solvents can be
evaluated.!

3 APPLICATIONS

Since 1980, a considerable number of investigations has
been carried out which utilized the RPH of Miller, Handy, and
Adams* or one of its extensions. Most of these calculations
focused on reaction dynamics and presented rate constants,
tunneling effects, or other dynamic properties of chemical reac-
tions. Since these topics are covered by other articles of this
volume, in this article a summary of the mechanistic informa-
tion obtained from an application of the RPH is discussed.
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3.1 An Overview of Applications Based on the RPH

Table 3 gives some information on those RPH studies car-
ried out since 1980, which provide in addition to reaction
dynamics some insight into the reaction mechanism, e.g., by
showing and discussing the dependence of energy, geometry,
frequencies, and coupling coefficients on the reaction coor-
dinate s. There are a number of points that become obvious
when considering the work summarized in Table 3.

(1) Most reaction systems investigated so far with the help of
the RPH or its extensions are rather simple, comprising
just two- or three-heavy-atom systems.

(2) The majority of ab initic methods employed in these
studies are of the low level type and provide little
accuracy.

(3) Apart from cost considerations that dictate the choice
of the ab initio method used, there are still technical
difficulties in calculating the elements of the RPH.

(4) In most of the RPH studies published so far, the mecha-
nistic information provided by this approach is not fully
exploited.

Table 3 Applications of the RPH and its Extensions with Emphasis on Ab Initio Based RP Studies

However, there is recent work indicating that some or all
of these shortcomings will be overcome in the near future.
For example, Konkoli, Kraka, and Cremer®! have improved
the RPH approach so that it can readily be applied to reaction
systems with six and more heavy atoms as their investiga-
tion of the Diels—Alder reaction between ethene and buta-
diene shows. There are some applications that use modem
correlation corrected methods such as MP2, QCISD, or GVB-
CISD (Table 3). Particularly promising seems to be the use of
DFT although further improvements of DFT are needed® to
describe loosely bound TSs and the reaction complex in the
van der Waals region of the RP. DFT is attractive because of
its relatively low computational cost and the fact that a consid-
erable part of correlation corrections is covered, which gives
DFT results of MP2 or even better accuracy.

There is also a large potential in dual level methods™ that
provide a systematic basis for scaling potential function, fre-
quency functions, and other s-dependent properties obtained
at lower levels of theory with the help of high-accuracy cal-
culations at selected points along the RP. More experience is
needed to make scaling a reliable procedure and to obtain in

Reaction Method Basis set Authors Year
I. RPH studies
1 HCN — CNH HF DZP Gray, Miller 1980 74
2 H,CO—- H, +CO HF DZ Waite, Gray, Miller 1983 75 3
3 H,C=C:— H-C=C-H CIDS TZ 4+ P Carrington, Miller, 1984 8
4 CH;0 — CH,OH ROHF DZ Colwell, Handy 1985 64
5 Li+FH— LiF+H CISD DZ + P + diff Dunning, Kraka, Eades 1987
6 OH+H; -~ H,0+H GVB-CISD VDZ +P Dunning, Harding, Kraka 1989 77
7 H+HCO — H, +CO MCSCF VDZ+ P Dunning, Harding, Kraka 1989 TS
§ CH3+H, - CH;+H UHF STO-3G Baldrige et al. 1989 78
9 CH3+H, »>CH;+H UQCISD 6-311G(d,p) Truong ' 1994 81
10 CH3+H; - CHs+H DFT 6-311G(d,p) Truong, Duncan 1994 82
11 CH;+H; - CH;+H UMP2 6-31G(d,p) Konkoli, Kraka, Cremer 1996 63
12 H™ +CH3;F — CH, +F~ HF 431G Ryaboy 1989 79
13  aziridine inversion® HF 3-21G Rom, Ryaboy, Moiseyev 1993 80
14 CH(*TZ7)+H, -» CH(B)+H UHF 6-31G Liu, Ma, Li 1994 83
15 H+H-CC-H — H-CC+H; UHF 6-31G Fang, Fu 1994 84
16 CH4+Pd — CH3-Pd-H CNDO/S Mamaev et al. 1995 85
17 CH4+F — CH; +FH UMP2 6-31G(d,p) Corchado, Espinosa-Garcia 1996 86
18 C,H4 + FH — CH;CFH, HF 431G Kato, Morokuma 1980 58
19 C,H4 + FH — CH3;CFH, MP2 6-31G(d,p) Kraka et al. 1997 87
20 C4Hg+ CHy — CSH‘l’O HF 6-31G(d) Kraka et al. 1997 87
I1. Extended RPH studies
21 H transfer in malonealdehyde® RHF STO-3G Carrington, Miller 1986 70
22  H,H transfer in formic acid dimer HF + MCPF MIDI4 Shida, Barbara, Almlof 1991 71
23 OH+H; - H,0+H analytical PES Billing 1990 73
24 CI” + CH5Cl — CICH; + Cl1 analytical PES Billin 1992 73
25 CI” 4+ CHsCl — CICH; +CI™ analytical PES Lee, Hynes 1988 10
26 CHs;+H; - CHs+H CASSCF 6-31G(d.p) Taketsugu, Gordon 1996 72
27 H,C=S MP2 6-31G(d,p) Minichino, Barone 1994 65
a
NH H, H
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l |
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s way useful RPH descriptions at relatively low computa-
al cost.

In general, the RP is investigated only in the immediate
acmmity of the TS. This has to do with cost considerations
smd the fact that some RP following algorithms fail in the
der Waals region where the PES becomes rather flat and
ere it is difficult to find the floor-line of a more and more
sshing reaction valley. Oscillations in the tailing parts of
RP curvature or the coupling coefficients document these
Emculties and are mostly the reason why the RP search is
pped at a rather early point, excluding most of the van
Waals region (see Section 3.2.2). Often there are also
amks or other inconsistencies in published graphs of w,(s),
pecfiicients By, (s) or B,(s) even in the TS region, which
dearly are a result of deficiencies of the algorithms used
the choice of an inappropriate step size As. A particular
gatscal point is the ordering of frequencies w,, (s) along the RP
ach. for example, is needed to get correct mode-mode and
wature coupling coefficients. Most of the reaction systems
=d in Table 3 possess relatively high symmetry, which
makes an adiabatic ordering of frequencies ‘by hand’ possible
becomes obvious from some of the published graphs. An
pmated diabatic ordering method has recently been worked
by Konkoli, Kraka, and Cremer, which can solve this
meoblem and which has successfully been applied to reaction
plexes with more than 40 vibrational frequencies.!

- Yet another technical problem is the numerical differentia-
which is applied to calculate RP curvature and coupling
=fiicients. This problem is related to the choice of the step
As, which when chosen to be rather small leads to a
md increase of calculational cost, but when chosen too large
olies a contamination of calculated derivatives by higher-
mder derivatives. The consequences of the latter choice are,
example, false curvature peaks, inaccurate values of cur-
sre and coupling coefficients, as well as a blurring of fine
zamures of these quantities. A solution to this problem should
% provided by the use of variable step sizes along the RP,
pely large step sizes in those regions which are not inter-
sstmg for mechanistic and dynamic investigations, and small
=p sizes in all other regions of the RP.

Apart from these technical and method related problems,
- eristic of most of the RPH studies listed in Table 3,
f=re is also a basic problem. In none of the studies published
@ far has the full potential of the RPH with regard to providing
=chanistic insight into a chemical reaction been exploited. An
ssception is the recent work by Konkoli, Kraka, and Cremer,®
sch concentrates on mechanistic rather than dynamic aspects
af the RPH approach. This work will be discussed here.

The Unified Reaction Valley Analysis:
CH; +H, - CH;+H

A mechanistically oriented investigation based on the RPH
aprises two major steps: analysis of the RP and all those
sperties which are a function of the reaction coordinate s
vestigation of the one-dimensional reaction space); analysis
the (3K — L — 1)-dimensional vibrational space and all
pse properties that depend on the (3K —L — 1) normal
ordinates (investigation of the (3K — L — 1)-dimensional
=action valley). In a particular case, the analysis can consider
following RP and reaction valley properties.

Investigation of the one-dimensional reaction space:

(1) The energy profiles Vo(s) and Vyup(s) describe the
energetics of the reaction (energy barrier, reaction
energy).

(2) The geometry changes of the reaction complex as
a function of s provide the geometries of reactants,
TS, and products as well as all intermediate points
along the RP.

(3) The analysis of the RP vector £(s) in terms of inter-
nal coordinates reveals which geometrical parameter
of the reaction complex dominates the direction of
the RP, i.e., the path tangent.

(4) The analysis of the gradient expressed in internal
coordinates leads to the internal forces exerted on
the nuclei of the reaction complex as a function of s.

(5) The investigation of the electron density distribu-
tion p(r,s) along the path using difference den-
sity distributions Ap(r, s), Laplace concentrations
—V2p(r, s), and other density properties helps to
explain changes in the forces and the overall energy
along the RP.

(6) The calculation and analysis of various properties of
the reaction complex such as dipole moment, polar-
izability, magnetic susceptibility, etc., as a function
of s complements the description.

(b) Investigation of the (3K — L — 1)-dimensional reaction
valley:

(1) Investigation of normal mode frequencies as a func-
tion of s leads to the identification of avoided
mode-mode crossings and RP bifurcation points.

(2) Modes with a strong dependence on s can be
decomposed in terms of adiabatic internal modes
to unravel their dependence on certain geometrical
features of the reaction complex.

(3) The analysis of adiabatic force constants and adia-
batic frequencies associated with the internal coor-
dinates that describe the reaction complex provides
direct insight into how the reaction complex changes
along s.

(4) Analysis of the RP curvature k(s) helps to iden-
tify those path regions with strong curvature and a
coupling between translational and transverse vibra-
tional modes. For this purpose, the curvature is
investigated in terms of normal mode-curvature
coupling coefficients B, ; and adiabatic internal
mode-curvature coupling amplitudes Ay ;.

(5) Particular mode-mode coupling coefficients B, ,
are analyzed as a function of s.

(6) A mode-mode coupling pattern is determined to
describe possible mechanism of energy dissipation
between modes.

A combination of 3.2.1(1-6) and 3.2.2(1-6) leads to a
unified description of RP and reaction valley and provides
detailed insight into the reaction mechanism. This will be
shown in the following for the reaction

CH; +H, — CHs +H (51)

since this reaction is a benchmark example for many app-
lications and improvements of the RPH (see Table 3). The
internal coordinates of the reaction complex are defined in
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H4
R3(1) B

B2

R3(2)

Figure 8 Internal coordinates used to describe the reaction complex
CHj - - - Hz. Reproduced with permission from Z. Konkoli, E. Kraka,
and D. Cremer, J. Phys. Chem., 1997, 101, 1742-1757. Copyright
(1997) American Chemical Society

Figure 8, where a complete set of (3K — 6) coordinates has to
be given to apply the RPH. The investigation was carried out
with standard UMP2 methodology and a VDZ + P basis set
of the 6-31G(p,d) type.53

3.2.1 Investigation of the One-dimensional Reaction Space

Reaction (51) is known to be exothermic by 3.1 kcal mol™!
with an energy barrier of 10 kcal mol—! % UMP2/6-31G(d,p)
exaggerates both the exothermicity and the barrier of reac-
tion (51) somewhat as is indicated by calculated energies of
—8.1 and 14.2 kcal mol™!. Inclusion of zero-point energy cor-
rections leads to values of —4.6 and 16.2 kcal mol™! and shifts
the maximum of the vibrationally adiabatic potential slightly
into the entrance channel (Figure 9). The internal coordinates
of the reaction complex, which experience the largest changes
during the reaction, are the CH distance R2 (before and slightly
after the TS), the HH distance R1 (after the TS), and the
pyramidalization angle B(s) (before and after the TS, see
Figure 10). Strong curvature of the functions R1(s) (—0.2 <
s < 0.3 amu'/? Bohr) and R2(s) (0.5 < s < 0.7 amu'/? Bohr)
indicates that the corresponding bond is beginning to break
(R1) or is finishing its formation (R2).

Analysis of the RP vector (Figure 11) reveals that in the
entrance channel coordinate R2 is dominating the direction
of the RP while R1 is dominating #(s) in the exit channel.
This is not surprising, since R2 is the appropriate approach

20
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Figure 9 Potential Vo(s) (solid line) and V:’,ap(s) (dashed line)

for the reaction CH;+H, — CHy+H as calculated at the

UMP2/6-31G(d,p) level of theory
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Figure 11 Analysis of reaction path vector £(s) and gradient for
the reaction CHz + H, — CHy4 + H. (a) Characterization of £(s) in
terms of amplitudes Ay ,(¢;5) (see equation 38). (b) Decomposition
of the gradient in terms of attractive and repulsive internal forces.
Forces corresponding to the internal coordinate that dominates £(s)
a given range of the RP are indicated by thick solid lines

parameter for CH; + H, while R1 takes the same role for
CH4 +H. In the vicinity of the TS, the contributions from
R2 and R1 to the RP vector increase to a maximum where
the maximum of the amplitude for R2 at the TS is followed
by the corresponding maximum for R1 after the TS. The two
maxima can be associated with the actual chemical processes,
namely the forming of a new CH bond and the breaking of
the HH bond.

The amplitudes of the internal coordinate components of
the RP vector help to analyze the dependence of the forces
on the reaction coordinate 5. The forces that drive the reaction
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along the RP can be identified as those that are associated with
= dominating component of the RP vector as is indicated in
Figure 11(b) by thick solid lines. The force between H2 and
B3 (parameter R1) before and after the TS is always repulsive,
with maximal values at s = £0.5. The force between atoms
1 and H2 (parameter R2) increases from its zero value at
= equilibrium geometries of the reactants to a maximum of
mepulsion at s = —0.5 before it vanishes at the TS and becomes
swongly attractive with a minimum at s = 0.3 amu'/2 Bohr. In
= region between 0.4 and 0.8, R2 and R1 change their role
& the RP vector, which is accompanied by an increase of both
&= R2 and R1 forces to a repulsive maximum. Then in the
‘et channel all forces decay to the zero values of CHy in its
eguilibrium geometry.

- The changes in the forces as a function of s (Figure 11b)
cam be explained with the help of the electron difference
‘density distributions A p(r, 5) at selected values of s shown in
Figure 12. When the reacting molecules approach each other
WFigure 122, s = —3 amu'/? Bohr) the dominant interaction
& exchange (overlap) repulsion that leads to a depletion

negative charge in the region between the molecules as
dicated by a negative Ap(r) distribution (dashed lines in
‘Segure 12a). Exchange repulsion increases with decreasing R2
alue and leads to a maximum in the R2 force. At the same
ne. both CH3 and H, become polarized so that electron
emsity is shifted from the approach side to the back side of
= molecules (Figure 12b, s = —0.5 amu'/2 Bohr). Induction
Sorces caused by the build up of negative charge at C1 and
induced H2%+-H 3%~ dipole moment begin to compensate

of the exchange repulsion.
Figure 12(c) gives the situation of the TS, at which attrac-
e induction forces (enlarged by dispersion forces) and repul-
ave exchange forces exactly compensate each other. At this
point, polarization of the HH bond has proceeded to a point
e a significant amount of electron density flows out of
e bond region, i.e., the breaking of the HH bond has started
compare with the upward curving of R1(s) in Figure 10). At
= same time, the negative charge at C is polarized in the
ection of Hy, which represents the positive end of the HH
ond dipole. The two molecules start to attract each other,
ance the HH bond begins to break and simultaneously a CH
ond starts to form (Figure 12d). The R2 force adopts a mini-
am value half way in this process. In the second half of the
ond breaking and bond forming process, the R1 coordinate
arts to dominate the RP vector since H2 begins to separate
om the forming CH4 molecule. Exchange repulsion between

% and CH4; becomes important and causes a repulsion maxi-

am in the R1 force.

The analysis of other properties of the reaction complex

ong s support this description of the reaction mechanism

sed on the behavior of the RP vector, forces, and electron
g@ensity distribution. They all suggest that the reaction proceeds

pugh different stages that can clearly be distinguished. This

confirmed by an investigation of the reaction valley.

322 [nvestigation of the Reaction Valley

Most important for the description of the reaction valley
= the harmonic frequencies of the modes orthogonal to the
P. They have to be ordered for all points s considered and
en they can be presented as functions w,(s) as done in
gure 13 for reaction (51). The labeling of the frequencies

Figure 12 Electron difference density distribution A p(r, s) obtained
at(a) s = —3.0,(b) s = —0.5,(c) s =0, and (d) s = 0.3 amu!/2 Bohr
for the reaction CH; + H, — CHy + H. Solid contour lines indicate
an increase, dashed contour lines a decrease of electron density
relative to the electron density of the procomplex, i.e., noninteracting
CHj3, H;, CHy, and H. Reproduced with permission from Z. Konkoli,
E. Kraka, and D. Cremer, J. Phys. Chem., 1997, 101, 1742-1757.
Copyright (1997) American Chemical Society

is done considering the Cs, symmetry of the reaction complex
and the order they have in the entrance channel of the reaction.

The largest changes in w,(s) occur for modes 8 and 11,
which are both of a; symmetry. The adiabatic analysis of these
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Figure 13 Normal mode frequencies w,, (s) in cm™! for the reaction
CHj; + Hz — CHy + H. Symmetry symbols and numbering of normal
modes are given according to the order of normal modes calculated for
the reactants CH3; + Hp. The value @,(s) = 0 indicates the location of
the bifurcation point (s = 0.4 amu'/? Bohr). Imaginary le frequencies
calculated for s > 0.4 amu'/? Bohr are given as negative numbers.
Avoided crossings AC1, AC2, and AC3 are indicated

modes reveals that mode 11 corresponds to HH stretching in
the entrance channel and to CH stretching of a spectator bond
in the exit channel. These contributions are reverted in the
case of mode 8, which first corresponds to CH stretching of the
spectator bonds, changes then to HH stretching of the breaking
HH bond and, finally, represents CH stretching of the newly
formed CH bond. There is an avoided crossing (AC1) between
modes 8 and 11 at s = —0.3 amu'/? Bohr (Figure 13). Other
avoided crossings between modes of a; symmetry can be found
at s = 0.35 (AC2, #5 and 8) and 0.7 amu'/? Bohr (AC3, #8
and 11).

A branching point of the reaction is indicated by w,(s)
of the degenerate le-symmetrical modes (#1 and 2). The
harmonic frequencies of these modes become imaginary for
s > 0.4 amu'/? Bohr (indicated in Figure 13 by negative w,,(s)
values). The reaction valley splits at the branching point
into three separated reaction valleys, which correspond to a
reduction of the symmetry of the reaction complex from Cs,
to C;, i.e., the leaving H atom moves into one of the three
positions between two CH bonds of the methane molecule. The
energies in the new reaction valleys are just a small fraction
of a kcal mol~! below the energy values of the ridge path, for
which C;, symmetry of the reaction complex is conserved.
This indicates that in this region the RPH concept has to
be extended by considering another large amplitude motion,
which corresponds to a transfer of the leaving H atom from
one valley to the other. However, since the region beyond the
bifurcation point is energetically not interesting, most authors
have refrained from applying a reaction surface model to this
path region.

Adiabatic force constants calculated at equilibrium geome-
tries reflect electronic effects associated with a particular
molecular fragment and the internal coordinate describing this
fragment. This is no longer true in the case of the generalized
adiabatic force constants shown in Figure 14. By construction,
they cover two different effects: (a) the curvature of the reac-
tion valley orthogonal to the path direction; (b) the projection
effect from (3K — L)- to (3K — L — 1)-dimensional space.

Adiabatic force constants [mdyn/A]

5' y DRIl P ]
ot —f—r"" 1B 1

r I o ]
5 ik

3 25 2 -15 -1 05 0 05 1 15 2 25 3
Reaction coordinate s [amul"2 Bohr]
Figure 14 Generalized adiabatic force constants associated with the

internal coordinates used to describe the CHj - - - H; reaction complex
(Figure 8)

Konkoli, Kraka, and Cremer®® have shown that the adia-
batic internal modes (as any other local mode) do not necessar-
ily lie in the (3K — L — 1)-dimensional (hyper)plane spanned
by the normal mode vectors and for which the RP vector £(s)
is the normal vector. If the direction of an adiabatic mode vec-
tor is more or less orthogonal to the direction of £(s), then its
projection onto the (3K — L — 1)-dimensional subspace will
be dominated by the electronic effect (a). However, if the adi-
abatic mode vector points in a similar direction to £(s), then
its value in (3K — L — 1)-dimensional space will be relatively
large and mainly due to the projection. This means that a large
value of an adiabatic force constant k,(s) reveals those posi-
tions along the RP where the associated internal coordinate
becomes (almost) parallel with the RP direction. This comple-
ments information obtained from analysis of the vector £(s)
(Figure 11a). An exceedingly large adiabatic force constant is
found in the case of reaction (51) for the adiabatic mode asso-
ciated with R2 at the position of the TS and in the entrance
channel at s = —2.2 amu'/? Bohr (Figure 14). Clearly, the
maximum of k,[R2] at the TS corresponds to the maximum
of the R2 amplitude of the RP vector and indicates the begin-
ning of the CH bond formation. The second maximum in the
entrance channel has been described as identifying that point
at which a first ‘preparation’ of the reacting molecules for
the reaction occurs.® Under the impact of the approaching
H; molecule the CH3; molecule starts to pyramidalize, which
is accompanied by the conversion of a pure m-radical to a
o-radical and a lowering of local D3, to Cs3, symmetry. The
width of the R2-peak at s = —2.2 amu'/? Bohr indicates that
pyramidalization contrary to bond cleavage is a slow process.
This can easily be understood, considering the fact that at a
distance of 2-2.5 A (Figure 10) between the reacting mole-
cules interactions are moderate and only slowly increase with
decreasing value of R2. '

The adiabatic force constant associated with coordinate R3
does not change during the reaction, indicating that the CH
bonds of the CHj radical are spectator bonds. The changes in
the R1 and bending angle force constants are related to the
changes in the RP vector and the bifurcation of the RP.

The RP curvature k(s) (Figure 15) exhibits two distinct
peaks in the TS region at s = —0.1 and 0.7 amu!/? Bohr
(peaks K2 and K3), which are primarily associated with mode
8 and to a lesser extent with modes 5 and 11 as the curvature
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gmre 15 Characterization of the reaction path curvature &(s) (thick
d Iine) in terms of normal mode-curvature coupling coefficients
) (dashed lines) for the reaction CH3; + H, — CHy + H. The
mewe k(s) has been shifted by 0.5 units to more positive values
facilitate the distinction between k(s), and B, ;(s). Reproduced
@l permission from Z. Konkoli, E. Kraka, and D. Cremer, J. Phys.
. 1997, 101, 1742-1757. Copyright (1997) American Chemical

. ing coefficients reveal. There is also a small curvature
mamimum at s = —2.5 (peak K1, Figure 15) close to the
sition of the maximum of the generalized adiabatic force
mmstant associated with R2. Decomposition of the curvature
terms of adiabatic mode-curvature coupling amplitudes
] e 16) shows that peak K1 is indeed dominated by the
zative adiabatic R2 component, which means that curvature
or and adiabatic mode vector are collinear but point
opposite directions, indicating that the reacting system
@sts a shortening of the R2 distance since this implies
pramidalization of CH3. Once pyramidalization of CHj is
mated and attractive induction forces start to develop (see
e 11b and discussion of forces), the R2 adiabatic mode
or rotates in the direction of the curvature vector k(s)
s> —2.2 amu'/? Bohr). Clearly, the first curvature peak
be associated with the beginning pyramidalization of CH3
e the region between the first and second curvature peaks
& that region in which the reactants are prepared for the actual
gemical reaction, namely the bond breaking and forming
acess of reaction (51).
The second curvature peak is dominated by the R1 compo-
. thus indicating that the HH bond is beginning to break.
e maximum in the R2 component of the RP vector, as well
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Figure 16 Characterization of the reaction path curvature k(s) (thick
solid line) in terms of adiabatic mode-curvature coupling amplitudes
Ay s(k;s) (dashed lines) for the reaction CH; + H, — CHy4 + H. The
curve k(s) has been shifted by 0.5 units to more positive values
to facilitate the distinction between k(s) and Ay (k;s). Reproduced
with permission from Z. Konkoli, E. Kraka, and D. Cremer, J. Phys.
Chem., 1997, 101, 1742-1757. Copyright (1997) American Chemical
Society

as the maximum in the adiabatic force constant k,[R2], sug-
gest that HH bond cleavage is parallel to CH bond formation
(coordinate R2). These two processes seem to be essentially
finished at s = 0.6 amu!/? Bohr as indicated by the third cur-
vature peak, which is dominated by the R2 component. Peak
K3 identifies the point where the CH bond forming process
will be basically finished if the forward reaction CH3 + H; is
considered; for the reverse reaction CHy + H, it is the point
where bond C1H2 starts to cleave.

If one considers the changes in k(s) (Figure 16) parallel
to those in #(s) (Figure 11a) and k,(s) (Figure 14), a clear
picture of the HH bond breaking and CH bond forming process
will emerge. These processes occur in the region of curvature
peaks K2 and K3 (—0.1 < s < 0.6) as indicated by maxima
or minima of the amplitudes associated with the internal
parameters R1 and R2 describing these bonds, by the maxima
of the R2 and R1 amplitudes of the RP vector, and the TS
maximum of the adiabatic force constant k,[R2] (and a smaller
one of k,[R1]).

Mode-mode couplings that decide the exchange of energy
between different modes are particularly large at the positions
of avoided crossings as is shown in Figure 17 in the case
of the coupling coefficient between the a;-symmetrical modes
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Figure 17 Normal mode frequencies w, (s) of the 3a; and 2a; sym-
metric mode (#11 and 8) and the corresponding Coriolis coupling
coefficient By; g(s) for the reaction CHs + H; — CHy 4+ H. Repro-
duced with permission from Z. Konkoli, E. Kraka, and D. Cremer,
J. Phys. Chem., 1997, 101, 1742-1757. Copyright (1997) American
Chemical Society

11 and 8. There are distinct coupling peaks at the positions
of the two avoided crossings. In line with the discussion of
the w, (s) curves (Figure 13), interactions between the two a;-
modes are relatively weak at s = —0.3 amu'/? Bohr while they
are stronger at s = 0.6 amu'/? Bohr (Figure 17).

Significant mode-mode coupling leads to energy dissipa-
tion from one vibrational mode to the other. This will be
of importance if one tries to enhance the reaction rate by
channeling energy into vibrational mode 11 (e.g., by tun-
ing a laser to the frequency w;; of the reactants) that cou-
ples with the reaction mode in the entrance channel, as
revealed by the RP curvature k(s) (Figure 15). Part of this
energy will be dissipated into vibrational mode 8 because
of the 8,11-coupling at s = —0.3 amu'/? Bohr (Figure 17).
However, since the coupling is strongly localized, energy

dissipation will be small so that the rate enhancement is still
effective.

A condensed mode-mode coupling pattern is shown in
Figure 18, in which only the largest value of B, ,(s) is shown
for each combination of normal modes !, and I,. For reac-
tion (51), there are just two couplings that are of interest.
namely the coupling between the 1a;- and 2a;-symmetrical
mode (modes 5 and 8, Bs g = 12.2 amu~"/? Bohr~!) at s = 0.3
amu!/2 Bohr and the one at s = 0.7 amu!/? Bohr between
modes 8 (2a;) and 11 (3a;) (Figure 17). Clearly, the strongest
energy dissipation will involve modes 5 and 8, which is of
relevance for the reverse reaction. All other mode-mode cou-
plings (shown in the inserts of Figure 18) are smaller than 0.05
amu /2 Bohr ! and, therefore, play a minor role in energy
dissipation.

3.2.3 Discussion of the Reaction Mechanism

Although the TS is energetically the most important point
of the reaction, mechanistically it is better to speak of a
transition state region that reaches from curvature peak K2
to peak K3 and defines that part of the RP in which the
major chemical changes occur. Konkoli, Kraka, and Cremer®®
have suggested using the curvature diagram of Figure 16 to
distinguish between different regions along the RP, which
correspond to different changes of the reaction complex:

(1) Reactant region (to the left of curvature peak K1; R2 >
2.5 A): There are only weak interactions between the
reactants without any chemical relevance; the reactants
possess electronic structures that basically correspond to
those of their equilibrium geometries.

(2) Van der Waals region on reactant side (‘preparation
region’ between curvature peaks K1 and K2): The
reactants prepare for the reaction under the impact of
increasing interactions; pyramidalization of CHj3 and
polarization of Hy occurs.

Mode-mode coupling By, [amu™/? Bohr]

2,1 5.4 7.5

92 10,4 11,5

Mode-mode combinations

Figure 18 Mode-mode coupling pattern for the reaction CHz + Hp — CH, + H. The largest value of the coefficient B,, . (s) is given for each
of the 55 possible mode combinations. Reproduced with permission from Z. Konkoli, E. Kraka, and D. Cremer, J. Phys. Chem., 1997, 101,

1742-1757. Copyright (1997) American Chemical Society
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Transition state region (between curvature peaks K2 and
K3: see Figure 16): Bonds are broken or formed. The
actal chemical reaction takes place.

Van der Waals region on the product side (“finalization
zegion’ for the forward or ‘preparation’ region for the
reverse reaction): The products prepare for the reverse
reaction under the impact of increasing interactions.
Product region (to the right of curvature peak K3; R1 >
2 A): Very weak interactions between products without

- amy chemical relevance.

* = zeneral, it will be easy to identify the TS region because
k% characterized by large curvature peaks where the magni-
Wi of a curvature peak may be related to the magnitude of
electronic structure changes accompanying changes in a
=a mternal coordinate. In the case of reaction (51), the TS
is not centered at the location of the TS, but shifted to
83 amu'/? Bohr (Figure 16), which means that the posi-
of the TS is shifted from the center of the TS region to
emirance channel of the reaction. Obviously, this displace-
reflects the fact that for an exothermic reaction the TS
properties closer to those of the reactants than those of
products (‘early TS’) in line with the Hammond postulate.
ms smplies that the strong electronic changes that take place
me a reaction are just initiated at the TS as is confirmed
e analysis of k(s) and ¢(s).
- B Bas been suggested that the height of the curvature
salks 1S related to the resistance of the reaction complex to
mg out the electronic structure changes associated with
breaking or bond forming. HH bond breakage in the
meard reaction is much easier than CH bond breakage in
Feverse reaction, which is directly related to the fact that
I polarization of Hy and CH; (peak K1 in the van
= Waals region) is much easier than mutual polarization
# CH. and H (no extra curvature peak in the exit channel).
Beight of the R2-dominated curvature peak K3 is almost
o= as large as that of the R1-dominated curvature peak K2,
uch can be related to calculated energy barriers (Figure 9)
i 16 kcal mol~! in the forward reaction and 21 kcal mol ™!
B e reverse reaction. Hence, the ratio of the heights of the
mevature peaks K2 and K3 together with the position of the
S @ the TS region directly reveals the exothermic nature of
seaction and the nature of the TS as an early TS shifted
83 amu'/2 Bohr into the entrance channel.
The van der Waals region on the product side (‘finalization
smon’) is reduced to just a shoulder of the R2 curvature
m the exit channel as a consequence of the considerable
ess of the CHy molecule with regard to interactions with
mcoming H atom. The shoulder of the R2-dominated
ature peak K3 is associated with the R1 and B adiabatic
ational modes (Figure 16) and can be discussed in terms of
=duction of the HH distance and a local symmetry lowering
T; to C3, symmetry of the CHy molecule (considering
reverse reaction). Of course, this interpretation can only
qualitative since the path region in question is beyond
bifurcation point and, therefore, represents a ridge path
ween three new reaction valleys. In such a situation the
#H has to be extended to a reaction surface, which is not
mmevesting because of the minor energy changes occurring in
WS part of the PES.
- K one considers just the energy profile of Figure 9 and
- = seometry diagram of Figure 10, reaction (51) will have a

<

rather simple mechanism characterized Just by a breaking of
the HH and a simultaneous forming of the CH bond. However,
a detailed analysis based on the- RPH and summarized in
Figures 9 to 18 provides many insights that lead to a new
understanding of the reaction mechanism. Most important is
the description of electronic structure changes occurring in
the van der Waals region, since these prepare the reactants
for the actual bond breaking/forming processes. With the
help of the RPH approach one can exactly specify when
van der Waals interactions become relevant for the reaction
mechanism. Hence, the RPH concept provides the basis for a
complete mechanistic description of reaction 61).

4 CONCLUSIONS

The reaction path Hamiltonian (RPH) is the basis of a pow-
erful concept for investigating both the mechanism and the
dynamics of a chemical reaction. Its application requires the
handling of a number of computational techniques and a rel-
atively large amount of computer time. Progress in the devel-
opment of appropriate methods to find the stationary points of
a PES, to follow the RP, to detect branching points of the RP
and to calculate all quantities of the RPH has made it possible
to apply the RPH routinely nowadays even for larger reaction
systems. A number of techniques is available to keep compu-
tational cost at a reasonable level even when more accurate
correlation-corrected methods are applied. The usefulness of
the RPH for determining the dynamics of a chemical reaction
has been demonstrated in many cases. However, its potential
for providing detailed mechanistic insights into reactions is
still not fully exploited although recent work in this direction
is very promising.

Clearly, the RPH is based on a number of assumptions
and, therefore, it cannot be applied to all chemical reactions.
Improvements and modifications of the original RPH have
been suggested that extend the range of applicability consider-
ably. Nevertheless, more development work is needed in this
area.
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1 INTRODUCTION

Theory and calculations on the chemical reactions of poly-
atomic molecules are very active areas of research.!1=3 There
are several reasons for this. The most modern experimental
techniques using lasers and molecular beams are being applied
to study the microscopic details of such chemical reactions
including how different vibrational modes of polyatomic mole-
cules influence reactivity,* and measurements of the lifetimes
of reaction complexes. State-selected experiments of this type
require detailed quantum reactive scattering theory in their
interpretation. Furthermore, there is a need for the accurate
calculation of kinetic data such as rate constants of polyatomic
reactions that are sometimes difficult to study in the laboratory
but are important in areas such as atmospheric, combustion,
and interstellar chemistry.

Advances in quantum chemistry and scattering theory have
enabled essentially exact calculations to be performed on very
simple reactions of atoms with diatomic molecules such as®’

H+H, — H,+H

and the methods used can be extended to reactions of poly-
atomic molecules.® A rigorous theoretical treatment would nor-
mally involve three stages: (i) the accurate ab initio calculation
of energies for many different geometries of the interacting
atoms, (ii) fitting the calculated energy points to a suitable
potential energy function, and (iii) performing scattering cal-
culations (ideally using quantum mechanics) with this fitted
potential energy surface. Parts (i) and (ii) of this procedure are
fully discussed in other articles in this encyclopedia. Further-
more, part (iii) is discussed in detail elsewhere for the quantum
theory of atom-diatom reactions (see State fo State Reactive
Scattering) and other articles also discuss scattering calcula-
tions on polyatomic reactions using classical and semiclassical
methods (see Classical Trajectory Simulations: Final Condi-
tions and Mixed Quantum-Classical Methods). Here, there-
fore, we mainly concentrate on the quantum scattering theory
for reactions of polyatomic molecules (with polyatomic mean-
ing a molecule with three or more atoms). Also, we emphasize
reactions studied at the quantum state-to-state level as theories
for the direct calculation of rate constants are also described
in another article (see Rates of Chemical Reactions).
Consider a reaction involving four atoms, such as

AB(v, j) + CD(v, j') — ABC(ni, n2, n3) +D

where v and V' are vibrational levels and j and j’ rotational
levels of the diatomics AB and CD, while nj, ny, and nj
are quantum numbers for the symmetric stretch, bending, and



