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1. Introduction

Many body perturbation theory (MBPT) methods using the Mgller-Plesset (MP)
perturbation operator [1] are the most popular correlation corrected ab initio meth-
ods in Quantum Chemistry for calculating dynamic electron correlation effects.
[2-9] The popularity of MP methods results from several reasons: (a) MP theory
leads to a hierarchy of well-defined methods, which provide increasing accuracy
with increasing order n. (b) Correlation effects are included stepwise in a system-
atic manner that facilitates their analysis and the understanding of the correlation
problem. (c) Most important is the fact that all MP methods are size-extensive.
[3,10] (d) Up to fourth order, MP energies can be calculated at relatively small
computational cost since calculations involve just single, noniterative evaluation
steps.

There are also some disadvantages of MP theory, which have to be mentioned.
(a) MP methods are not variational. (b) At a given order n of MP perturbation
theory, there exists not a well-defined wave function. (c) One observes often an
oscillatory or erratic rather than monotonic convergence behaviour of calculated
MPn energies. [11-14] The first two problems are of just minor consequence. For
example, it is more important to use a size-extensive rather than a variational
method for calculating electron correlation effects. Also, one can calculate molec-
ular properties in form of response properties using analytical energy derivatives
without ever referring to a wave function. [11,15] However, the third problem is
more serious: One has early observed that the MPn energy can strongly oscillate
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for small values of n before it converges to the full CI (FCI) energy value, which is
identical with the infinite order MP energy. [11-14] Oscillations are also found for
other properties such as the internal coordinates of molecular geometries, dipole
moments, vibrational frequencies or infrared intensities. [11]

Clearly, these oscillations make the use of MP methods less attractive, which
1s one of the major reasons why Coupled Cluster (CC) methods have replaced MP
method more and more in the nineties. [10,16-21] CC methods are related to MP
methods in so far as they are also size-extensive and non-variational. Of course, CC
methods are more expensive than MP methods since the CC wave function and, by
this, the CC energy has to be calculated iteratively. The gain from the extra cost
i1s increased accuracy that results from the fact that due to the exponential ansatz
CC contrary to MP includes infinite order effects. By this, it is guaranteed that
oscillations in the CC energy series are excluded and CC energies can effectively
compete with those of other high-accuracy ab initio methods. Since the infinite
order effects, it is much more difficult to keep track which correlation effects are
covered by a given CC method and which not. A solution to this problem can be

found by using MP theory to analyze the correlation contributions covered by a
given CC method. [22,23]

The last ten years have seen many attempts to improve the repertoire of
MP and CC methods for their effective use in Quantum Chemistry. The present
account of MP and CC theory does not intend to present a summary of this
work. Instead it exclusively concentrates on research carried out at Theoretical
Chemistry of the University of Goteborg to develop techniques for including higher
order correlation effects into MP or CC theory. [22-32] There is reason to believe
that higher order correlation effects will make it possible to successfully apply
single determinant theory even in the case of a typical multi-reference problem.
Apart from this, the analysis of higher order correlation effects provides a basis for
the understanding of the convergence behaviour of the MPn series and, by this,
of the electron correlation problem in general. Once the convergence behaviour
of the MPn series is well understood, the prediction of reliable FCI energies from
MPn energies for low n becomes possible. [27-29]

Knowledge about the MPn methods and their coverage of electron correlation
effects can directly be used to predict performance and accuracy of CC methods
since it is possible to express correlation contributions covered by CC in terms
of MP correlation effects. [22,23] For example, it is one of the key questions of
the last years whether approximate CC methods, which do not include all cluster
operators or handle part of the correlation problem by perturbation theory, can
replace full CC methods. [30-32] We will deal with these questions in this work,
which is structured in the following way.
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In chapter 2, we will present a procedure, by which MP. perturbation methods
can be developed to higher orders. This procedure is a combination of the two
traditional approaches in perturbation theory, namely the algebraic development
procedure applied at lower orders and the diagrammatic development procedure
applied at fourth and fifth order MP perturbation theory. We will show that by
the combination of the two traditional approaches one avoids their disadvantages
and is able to derive fourth order MP (MP4) [6,7] and fifth order MP (MP5) theory
[8,9] in a compact form expressed in terms of cluster operators of first and second
order. The cluster operator equations can easily be converted into a two-electron
integral equations and programmed for use on a computer.

In addition to the discussion of how to develop MPn methods, we will shortly
review cost requirements of MP methods where we will use the two-electron inte-
gral equations. We will stress the importance of the use of intermediate arrays in
the computation of MPn correlation energies since this is the best way of cutting
down computational cost for MPn methods. We will also discuss the various cor-
relation effects covered by MP theory at low orders to get a better understanding
of the accuracy of MPn methods presently used. [28,29]

In chapter 3, sixth order MP (MP6) perturbation theory [24-29,33] will be de-
veloped along the lines discussed in chapter 2, i.e. the development will start from
the general MP energy formula, then partition the principal term in connected and
disconnected cluster operator contributions, and, finally, extract all those terms
that represent linked diagram contributions [34] to the MP6 correlation energy.
The final cluster operator equations of the MP6 energy will be transformed term
by term into two-electron integral formulas. It will be shown that the most costly
terms are those that result from disconnected cluster operators. However, the
computational cost of the disconnected cluster operator terms can systematically
be reduced by using intermediate arrays. In this way, we will be able to give final
two-electron integral formulas that lead to a minimum of computational cost for
calculating the MP6 correlation energy. [24,25]

Also in chapter 3, the implementation of the first MP6 computer program for
routine calculations will be discussed where special emphasis will be laid on the
various ways of testing such a complicated program for programming errors. Some
applications of MP6 will be discussed. [25]

In chapter 4, a short summary of CC theory is given. The projection equations
of CC theory with single and double excitations (CCSD) [19] will be derived in
their connected form and compared with those of the corresponding quadratic
CI (QCI) approach, QCISD [35], which represents an approximation to the more
complete CCSD theory. It will be pointed out that the QCI approach as developed
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by Pople and co-workers [35] can not be extended to the triple (T) excitation level
because at this level it looses the property of size-extensivity.

In chapter 5, we will analyse CC and QCI methods on the basis of perturbation
theory. [22,23] A graphical method will be presented to assess the infinite order
effects of CC theory. It will be shown that high accuracy can be expected from
CC methods that include in some way T excitations that describe three-electron
correlation effects. Clearly, the best method in terms of accuracy is CCSDT [20]
while satisfactory results can also be expected from CCSD(T) [36] that includes
T effects in a perturbative way. Compared to the corresponding CC methods,
QCISD and QCISD(T) lack many energy contributions and, therefore, they are
unable to describe T effects in a balanced way. This will be clearly shown on the
basis of the perturbation analysis. [23]

In chapter 6, we will use the work on MP and CC methods to develop a hierar-
chy of size-extensive QCI methods. [30] For this purpose, a systematic procedure
of converting the non-size-extensive CI methods into extended CI methods, which
are size-extensive. [30] We will show that, if correctly applied, the original QCI
concept of Pople and co-workers [35] leads to just two size-extensive extended CI
(ECI) methods, namely QCISD = ECISD and ECISDT. [30] At the quadruple (Q)
excitation level as well as any higher excitation level, ECI methods merge with the
corresponding CC methods, which means that the original QCI concept does not
lead to a hierarchy of approximate CC methods. [30] However, using the linked
diagram theorem the ECI equations can be converted into a connected form and,
then, systematically simplified to projection equations with linear and quadratic
cluster operator terms. In this way, a hierarchy of size-extensive QCI methods is
developed that are parallel to the CC methods, but have the advantage of a rather
simple form that can easily be converted into a computer program. [30]

We will discuss in chapter 6, the development of the first size-extensive QCISDT
method and its application to simple electron systems for which FCI results are
known. [31,32) We will show that QCISDT leads to the same accuracy as CCSDT,
but has the advantage of being much easier to implement on a computer. In addi-
tion, QCISDT converges in many cases faster than CCSDT, which leads to time
savings. [32]

Finally, in chapter 7 we will summarize the most important aspects of this
review and shortly discuss the future of MBPT and CC theory.
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2. Mgller-Plesset Perturbation Theory

There are two different ways of developing MP methods for use in quantum chem-
ical calculations. The first way can be called the algebraic approach since it is
based on an algebraic derivation of matrix elements from general perturbation
theory formulas. It works very well for low order perturbation theory [4,5,7], how-
ever becomes problematic for higher orders. In the latter case, one can distinguish
between a principal term and one or several renormalization terms in the general
perturbation theory formula. The linked diagram theorem [34] shows that it is
superfluous to evaluate the renormalization terms since these are all cancelled by
appropriate parts of the principal term. One realizes this by writing principal
and renormalization terms in form of diagrams. The rerormalization terms cor-
respond to unlinked diagram contributions to the energy, which are cancelled by
the unlinked diagram contributions of the principal term. Only the linked diagram
contributions of the principal term determine the nth order MP correlation energy.

Because of the linked diagram theorem it is of advantage to derive the MP
energy formulas by diagrammatic techniques which immediately identify those
terms that really contribute to the correlation energy. Accordingly, diagrammatic
derivations of the third, fourth and even fifth order MP energy have been made,
which clearly demonstrated superiority over the algebraic approach. [6,8,37] How-
ever, the diagrammatic approach has also its disadvantages. This becomes obvious
when considering the increase in linked diagrams contributing to the correlation
energy. If one uses Brandow diagrams, there are 1, 3, 39, 840, and 28300 anti-
symmetrized diagrams at second, third, fourth, fifth, and sixth order, respectively.
This means that it is hardly possible to derive the sixth order correlation energy
in terms of linked diagrams.

Therefore, we have proposed a third approach for developing higher order
perturbation theory formulas. [24] This third approach is based on a combination
of algebraic and diagrammatic techniques and comprises the following steps.

1) Principal term and renormalization terms are derived from the general
perturbation theory formula.

2) Since it is clear that all renormalization terms will be cancelled by parts of
the principal term, derivation of the MPn equations concentrates just on the prin-
cipal term. This will be dissected into various parts according to the excitations
involved at the corresponding order of perturbation theory. The various parts will
be written in a cluster operator form.

3) Each part of the principal term characterized by S, D, T, Q, P, H, ete.
excitations can be described as representing connected or disconnected energy
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diagrams according to the nature of the cluster operators appearing in the energy
formula.

4) All connected (closed) energy terms correspond to linked diagram contri-
butions and enter the formula for the correlation energy while the disconnected
energy terms represent unlinked diagram contributions which according to the
linked diagram theorem can be discarded.

5) The final cluster operator form of the linked diagram contributions is trans-
formed into two-electron integral formulas. This is facilitated by the fact that all
those terms that originally involved disconnected cluster parts can be simplified
by using intermediate arrays.

The advantages of this approach are that

a) superfluous energy contributions are never determined within the algebraic
derivation and

b) a tedious analysis of all linked diagram terms is not necessary.

The latter point will become clear if step 3 as the key step of the procedure
1)-5) is described in more detail. Each cluster operator 7' can be described in
terms of simplified Brandow diagrams. [8] Combination of the 7" diagrams with
the diagrams of the perturbation operator V may lead to closed connected or
closed disconnected diagrams, which means that the corresponding matrix ele-
ments represent linked or unlinked energy contributions. It is also possible that
the combination of 7' and V diagrams leads to disconnected open diagrams. In
this case, the diagrams correspond to the wave operator and cover both linked
and unlinked contributions. One has to combine the wave operator part with
further parts of the energy formula to get a separation into connected closed (=
linked) and disconnected closed (= unlinked) energy diagrams. In any case, it is
possible to identify for each part of the principal term whether it contains just
linked or in addition unlinked diagram contributions. The diagrams one has to
use for this purpose are rather simple because they correspond to some basic op-
erators and need not to be specified with regard to hole and particle lines. [8]

2.1 DERIVATION OF THE M@LLER-PLESSET CORRELATION ENERGY
AT LOWER ORDERS

Using the procedure outlined above, we will derive in the following MP2, MP3,
MP4, and MP5 energy formula. For the perturbation expansion, the Hartree-Fock
(HF) wave function is used as zeroth order function.

ﬁglq’g) = E{]|¢(_|> (21)
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with

Ho=YF, =) (hy+dp) . (2:2)
P P

In Eq. (2.2), h denotes the one-electron part of the Hamiltonian and § covers
the sum over Coulomb operators jq and exchange operators I{'q, which describe
two-electron interactions between electrons p and q.

With these definitions, the eigen value Ey of Eq. (2.1) and HF energy Exp
are given by

Eq = (®¢|Ho|®o) (2.3a)

Enp = (®¢|H|®0) (2.3b)

In the following the HF spin orbitals are denoted by t,. It is assumed that they
are eigen functions of the Fock operator ﬁ'p with eigen value ¢,. Following a
widespread convention we will use indices ¢, 7, k, ... to label occupied spin orbitals
and indices a,b, ¢, ... to label unoccupied (virtual) spin orbitals. In cases where
the formulas hold for both type of spin orbitals indices p, ¢, 7, ... are used.

To solve the non-relativistic electronic Schrodinger equation
HY = EY (2.4)

one considers the true Hamiltonian H and the true wave function ¥ as related to
the HF Hamiltonian and HF wave function by a perturbation, i.e. H splits into
unperturbed Hamiltonian Hy and perturbation operator V: [1]

H=Hy+V (2.5)

Hence, the perturbation operator V is given as the difference between the exact
Hamiltonian H and the zeroth order Hamiltonian Hy:

V=D o= Didor: (2.6)

r<g

The energy E of Eq. (2.4) can be expanded in a perturbation series
B Bt B By n kB R B (2.7a)

or
E= Bt B B pips g L gC) (2.7b)




246 D. CREMER AND Z. HE

The energy difference AE = E — Eyp represents the correlation energy
AE=E-Eup=) E), (2.8)
n=Y

that is calculated as the sum of the Mgller-Plessent (MP) perturbation contribu-
tions at order n.

The MP energy E‘f.;'g, at nth order can be written as
Effh = (2[VA"~V]3,), (2.9)

where the wave operator  at nth order is given by Eq. (2.10):

n—1
Q™ = Gy |7 _ 5 Eg;;gmn—ml} (2.10)

m=1

with G being the reduced resolvent:
. D) (P
Go=) [26)(®u| (2.11)

For a given order n, the correlation energy contribution EJ{.:J)D takes the form of
Eq. (2.12)

Eﬁ?}, = (d’(]lf/(ég‘?)n_qu)(}) + renormalization terms (n>2) (2.12)

with V' being
V=V — (&|V|®) (2.13)

The first term of Eq. (2.12) is the principal term while all additional terms are
renormalization terms. The number of renormalization terms increases rapidly
with order n and , therefore, it is rather difficult algebraically to derive the energy
formula for increasing order n.

However, in this situation the linked diagram theorem [34] helps, which states
that only the linked diagram terms of Eq. (2.12) contribute to the correlation en-
ergy. All linked diagram contributions to the energy are contained in the principal
term while the renormalization terms represent Just unlinked diagram contribu-
tions, which are cancelled by the corresponding unlinked diagram contributions of
the principal term. Therefore, Eq.(2.12) can be simplified to give Eq. (2.14):

Eph = (®6|V(GoV)~1@0) 1 (2.14)
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where the L indicates limitation to "linked” diagrams. This means that a deriva-
tion of the energy formula can focus just on the linked diagram contributions of
the principal term. Linked diagram contributions to the energy can easily be iden-
tified by considering that they have to be closed and connected. If diagrams are
not closed, they represent wave operator diagrams. In this case, a linked diagram
can be either connected or disconnected, which makes it advisable to close the
diagram first to an energy diagram and then to decide whether it is of linked or
unlinked nature.

At second order MP (MP2) perturbation theory, there are no unlinked dia-
gram contributions in Eq. (2.12). The energy Eﬁ}a can be written as

Ejfp =(@0lV GoV [®0) (2.15a)
D

=Y (®0|V[®a)(Eo — Ea)~" (a|V|®0) (2.15b)
d

in which d corresponds to double (D) excitations. In the following, we will denote
single (S), triple (T), quadruple (Q), pentuple (P), and hextuple (H) excitations
by subscripts s, t, q, p and h. For general excitations X, Y, etc., we will use
subscripts x, y, etc.

In Eq. (2.15b), energies E,; are (in the same way as Fj) eigen values of the
zeroth-order Hamiltonian Hy corresponding to the eigen functions |®4) (|®0)).

We can rewrite Eq. (2.15b) by defining a D excitation cluster operator T:El) at
first order according to Eq. (2.16)

D
T§V1®0) = 3 ag|®a) (2.16)
d
where the first order D excitation amplitudes ag are given by
a4 = (E(] = Ed)_l(‘t'dwfl@g) (217)

With the cluster operator ,1;2(1) of Eq. (2.16), the second order energy adopts the
simple form of Eq. (2.18):
hip = (20| VT3 |@o) (218)
The analogous expression for the third order energy Eﬁ)p can be easily ob-
tained:

E3), =(@0|VGoV GV |®0) (2.19a)
D
= > (®|V|®a,)(Eo — Ea,)™ (®a,|V|®a;)
dy,d2
x (Eo — Ea,)” (®4,|V|®0) (2.19b)

=(®@o|VT5"|®) (2.19¢)
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The second order D excitation cluster operator Tn’.f) is given by

D
T2 %0) = > bal®a) (2.20)
d
with the second order amplitude b, being

b = (Eo — Eq)~Y(®4|VT5V|®,) (2.21)

At fourth order MP theory, one encounters for the first time beside the prin-
cipal term also a renormalization term. Using Eq. (2.14), the contribution Eﬁzo
is given by

Eifp =(@0|VGoV GoTGioV|®0) . (2.224)
$,D,T,Q
= 3 (ol V18.) (o - B @ VI (0))

T

= X (@l@)VID o) + (@ol(T50) [l‘/é@é")ﬁ] o)

t=1.2.3 €
(2.22b)
=E® + B 4 E}4)+E§-;) (2.23)

The renormalization term is associated with the disconnected cluster operator
(1)y2,
(@32)%

(@ol(ZE)! [ff%(ftj“)ZL [0) =(@ol(BSN DT )ol@0)  (2.24a)

(@ol(TENITED |B0) BS), (2.24b)

I

v ..\ \/l /\I fl

/\"v /X

(2.25a)
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T M (2.25b)
Té") : \ f f / (2.25¢)
Té") : \ f T f f / (2.254)

This is an unlinked diagram term, which can be disregarded in the MP4 cal-
culation. In Eq.s (2.22) and (2.24) the subscripts C and D denote restriction
to connected and disconnected diagrams. Simplified graphical representations of
perturbation operator V and cluster operators 'f’,-(“) (i=1,2,3) at nth order per-
turbation theory, are given in (2.25a)-(2.25d). [24] Obviously, unlinked diagram
terms result from a disconnected cluster operator and, therefore, terms involving
disconnected cluster operators such as Tg, Tlf‘z, etc., have to be analyzed.

In Eq. (2.22b), the S and T excitation cluster operators f"l(z) and 'f‘;?) are
defined by

S
T2)@0) = > b,|@.) (2.26)
and
y T
T2 1®0) = 5 bi| @) (2.27)
i
where the corresponding amplitudes b, and b, are given by
by = (Eo — E,)~(®,|VT"|®0) (2.28)
and
by = (Eo — Ey)~ (@, |V TV @) (2.29)

At fifth order, the MP correlation energy contribution Eﬁ)}, can be expressed

according to Eq. (2.30):
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Using the expression for G (Eq.(2.11)) and the cluster operators ’f’él) and ’f}(z) (i
= 1, 2, 3), one obtains

5,D,T,Q
Efe= 5 ((@l(T{")1V]@s,)(Eo - Eu,) ™ (22, |V12:,)

x(Bo = Be,)™'(®x,IV1§"100)) |
2

: = o 1
= Y (@l@)VIPI80) +2 3 (@ol(TENV S(T5) o)
i,j=1,2,3 i=2,3
+ (@0l 5TV 5 (760 @0)c (2:31)
=ES) +2ES) + ES) + 2BS)
+ 25“’) + E}? + 23(5} + 25}% +ES) (2.32)

The 14 terms of MP5 can be reduced to 9 unique terms by considering that Egg =

g’;, etc., and weighting each term by appropriate factors of one and two in Eq.
(2.32). The last three terms of Eq. (2.32), namely E}_)%, Eg%, nd Eg%, contain
the disconnected cluster operator (Tél))z. In addition, the term 5(5)( E_E-?)

contains the open disconnected diagram part (2.33):

(@[VI?|@0) - \/ \/ M
..... (2-33)

which contributes a linked energy diagram to EEW)P when closed by the triple cluster

operator (I‘(z)) . However, it is relevant for the derivation of the MP6 method
discussed in chapter 3 that term (2.33) can lead to unlinked diagram contributions
at higher orders of perturbation theory and, therefore, it is reasonable to place
the term E7s in a separate class, which at higher orders will be associated with
disconnected T contributions. In this way, Eﬁl, is partitioned into E(M P5);,
E(MP5),, and E(M P5)s:

E\), = E(MP5); + E(MP5); + E(MP5); (2.34)
where
E(MP5), =ES) + 2E$) + ES), + 2ES). + ES)
= 3 (@- 6 ¢0|( (2))'v:f;<2)|¢0)

i=1,2
+ 3 (2= 62, (@l (57) V1P| 20)

1=2,3

+ (®o|(Z50) 'V T5? | 0) (2.35)
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represents the contributions of the connected cluster operators,
E(MPS5); = 2B), + 2ES) + ES) (2.36)
the contributions from the disconnected Q cluster operators, and
E(MP5)3 = 2E{) (2.37)

a contribution, which at higher orders results from disconnected T cluster oper-
ators. It is straightforward to evaluate the contributions covered by E(MP5);,
however care has to be taken with regard to all terms associated with disconnected
cluster operators since they lead to both linked and unlinked diagrams. For ex-
ample, in the Q terms of E(M P5),, one has to identify those disconnected parts
of the wave operator that upon closure lead to unlinked diagrams, which can be
eliminated.

b T
B4 =(@ol(T{)V 5 (7)) 80)

=(@l()! |[752{7] 1e) (238)

As also found for the Q term of MP4, the disconnected diagram part [T/_’%(Tz(l))z] -
solely leads to unlinked diagram contributions so that Egé is determined just by
the connected diagram part [?:}(f‘é”ﬁ] o 2 shown in Eq.(2.38).

The second Q term of Eq. (2.36) can also be partitioned into two parts accord-
ing to the splitting into [P%(TS))L’] ry and [?%(T;”)E}D. However, closure of the

disconnected cluster part by the ’f‘éz) operator leads to a connected contribution.

. il
Brg =(®ol(Z5?)! V5 (1) |20)c

=(@l @) [7507] jmue + @ai@0) [7hay] o
D C
=ESY (1) + ES)(IT) (2.39)

By combining E,E,%(I) with E,_g.? of E(M P5)3, one can get rid of the triple cluster

operator Tég) according to
Egs + BRQ (D) =(@ol(T) VTP |@0) + (@0l @) TV TO)c|B0)e  (2.40)
=(@ol(T3") (VI{VT{D)c o) (241)
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where we have used the fact that [38]
(@4 (VT T )p|®0) = (@, [T (VTn) | o) + (@y|Tn(VTn)c|®o) (242)
and have applied the factorization theorem [34],
(@y) ' = (e +y) '@ +y7h). (2.43)

The combination of Eé..ss} and Eg%(]) leads to a reduction of computational cost
from O(M7) to O(M°®) since the computational requirements for triple amplitudes
b, involve an O(M7) dependence while the calculation of E,Enss) - E,E,%(I) in Eq.
(2.41) requires only O(M®) steps.

The last Q term of Eq. (2.36) can also be split into two parts, which have to
be evaluated separately.

;R i
EGo =(@ol5(H{))12 V5 (150?00

=(@ly(@)) (V3] pooe
+ @by [73007] ja)
=ES% (D) + ES)(11) (2.44)

In this way, each of the nine terms of E‘EED (see Eq.2.32) is expressed in a cluster
operator form, which can easily be transformed into appropriate two-electron in-
tegral formulas. Any computer program for the calculation of MP2, MP3, MP4
or MP5 correlation energies is based on the two-electron integral equations and,
therefore, the transformation into the latter has to be done in the most economic
way. This aspect will be discussed in the next section.

2.2 DERIVATION OF M@LLER-PLESSET CORRELATION ENERGIES IN
TERMS OF TWO-ELECTRON INTEGRAL FORMULAS

MP methods are practical up to fourth order and become more difficult to apply
at higher orders. This becomes obvious when inspecting the two-electron integral
formulas of MP2, MP3, MP4, etc. For example, the appropriate expression for
the MP2 energy is given by [3,4]

1 ’ b
Bjtp = 32 > (ijllab)ag} (2.45)

i ab
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where a,_, are the D amplitudes that are defined by

af = (i + € — ea — €)™ (abl|ij) (2.46)

The double-bar integrals (ij||ab) are antisymmetrized two-electron integrals of the
general type (pg||rs):

(pallrs) = f / P2 ()3 )—[w( Y0 (2) = s (1) ()] dradr

Eq. (2.45) is obtained by transformation of Eq.s (2.16) and (2.18), respec-
tively, using Slater rules for matrix elements over orthonormal spin orbitals ;.
The computational cost for the evaluation of the MP2 energy results just from the
transformation of two-electron integrals over basis functions y, into two-electron
integrals over spin orbitals 1,, which is proportional to O(M®) where M denotes
the number of basis functions. This cost factor is actually much lower than the
cost suggested by the transformation Eq. (2.47).

(i5]kl) = ZZZZW"“’ YCuiCuiCrkCal (2.47)

If one would carry out the one-step transformation of (2.47), then the computa-
tional work would be proportional to O(M?®). This can be seen by realizi}lg that
about M* two-electron integrals over basis functions x, have to be calculated at
the SCF level (this the reason why the cost of a HF calculation is proportional
to O(M*)), which are transformed into M* two-electron integrals over spin or-
bitals. Yoshimine and co-workers [39] realized that the M® transformation could
be dissected into a sequence of four M® transformations by calculating interme-
diate arrays (uv|Al), (uv|kl), and (uj|kl) which represent partially transformed
two-electron integrals:

{urN) = ;(puuﬂca; (2.48)
(uv|kl) = XA:(WW)CM (2.49)
(uilkl) = ;(MVka)cuj (2.50)
(i51kl) = D (uilkl)cus (251)




254 D. CREMER AND Z. HE

In this way, the integral transformation can be carried out at a cost level
which is not so much higher than that of a HF calculation. On the other hand, it
is clear that any correlation corrected ab initio calculation involves at least O(M?®)
computational steps because of (2.48) - (2.51).

The computational cost for the calculation of the MP3 correlation energy can
be determined from the appropriate two-electron integral formula given in Eq.

(2:62): [5]
E®, = - ZZ ij]|ab)be? (2.52)

ij ab

where the second order D excitation amplitudes are defined in Eq. (2.53):
b2 =(ei 46 —ca—c3)" (Z(ab“ef afl + Z (mnl|ij)a

—ZZ (=P P(i/la/b)(mb]|je)als, (2.53)

The calculation of the bf_,-b amplitudes requires O(M€) steps and, accordingly, the
calculation of the MP3 correlation energy is an O(M®) operation.

One could expect that the calculation of the MP4 energy is an O(M?®) pro-
cedure because one has to loop over occupied spin orbitals 1,j,k,] and virtual spin
orbitals a,b,c,d to get the Q term. However, the idea of using intermediate arrays
becomes important when calculating Eg). To calculate EJS:,)P, one has to define
first the second order amplitudes for S and T excitations, respectively:

P = eyt % E (mallef)a; -|- Z (mnl|ie)a (2.54)

mef mn,e

b =(ei+ € +ex —ea— € — )t D (=1)F P(i/jkla/be) | Y (bellei)ass
P

e

—Dmanjk)a?;] : (2:55)

Then, one can simply transform matrix elements such as (@di‘?ﬂ(z)I%) (Si=m1s
3) and (®4| [V%(’f”él))z} g |®o) of the cluster operator Eq. (2.22) into two-electron

integral formulas using the auxiliary arrays vn(ij.., ab..) shown in Table 2.1.
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| This leads to the MP4 energy of Eq. (2.56):

By = - ZZ& (v1(ij, ab) + v2(ij, ab) + v3(ij, ab) + v4(ij,ab))  (2.56)

ij ab

in which the array v4(ij, ab) is calculated with the help of the intermediate arrays
z1(ij, mn), 22(b, €), 23(j, m) and z4(ia, nf) listed in Table 2.2. For the calculation
of the intermediate arrays, one needs O(M°®) or less costly computational steps,
which means that the calculation of the Q term of Eﬁ}, is actually not more
costly than calculating the S or D term of MPA4. According to Table 2.1, the cost
for calculating the MP4 correlation energy is determined by the array v3(ij, ab)
associated with the T term. Since this is an O(M7) operation, full MP4 is just
one power of M more costly than MP3 while MP4(SDQ) and MP3 are comparable
in cost. [5-7]

At MP5 and higher levels of MP perturbation theory, the development of an
efficient computer program is directly connected with the derivation of suitable
intermediate arrays. By defining the right intermediate arrays, the mathematical
algorithms for MP5, MP6, etc. can be executed on a computer in a minimum
of time. This is indicated in Table 2.3 for MP5 and MP6, which are reduced
from O(M') to O(M?®) and O(M'?) to O(M?) procedures by using series of
intermediate arrays. One can say that the development of such electron correlation
methods focuses a) on how to get rid of unwanted unlinked diagram contributions
and b) on how to set up the right intermediate arrays in the two-electron integral
equations.

In a similar way as for EMP, one can derive two-electron integral formulas
for E(MP5),, E(MP5); and E(MP5)3 of Eﬁ}, The following equations are
obtained.

E(MP5), =ES) + 2E) 4+ E}f}, +2ES) + E)
= Z b2v6(i, a) Z > b8! [201(ig, ab) + v2(ij, ab) + 2v3(ij, ab)]

ij ab
be‘f,:v? (ijk, abc) (2.57)
:_';Ic abe
3? = ZZb”bud(s},ab (2.58)
ij ab
5 1 a a
Effs + Brg(I) = 3 37 3 lagvs i, ab) + (ijllab) (80! — b268)]  (250)
13, ab
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Zo)= ZZ <y8(ijk, abe) (2.60)
l_f.i: abe
5 1 e € 1
Ego(D) =72 aitaQila(ba,a x a) (2.61)
mn ef

ES)( 3222221;9(”&: abed) (2.62)

ij ab Kkl ed
in which v5(ij, ab), v6(i,a), v7(ijk, abc), v8(ijk, abc), and vI(ijkl, abed) are taken
from Table 2.1 and the array Qﬁ‘;’(bd,a x a) is defined in Eq. (2.63).

& (ba,a x a) = Zmelfj ab QZ( 1)? P(a/b)aifal,

mn ef

—22< )P P(i/j)afas]

+ 42 (=1)PP(i/j)atsa iﬁ] (2.63)

with
Bel, = (€m + €n — €c — €205, (2.64)

As can be seen from Table 2.1, arrays v5, and v8 are build up using interme-
diate arrays y1,y2,v3, y4,y5,y6,y7, and y8 of Table 2.2. The calculation of each
of these arrays does not require more than O(M?®) operations. Hence, the determi-
nation of DQ requires just O(M¢) steps, that of TS+TQ(I) also just O(M?®) steps,
that of TQ(II) is determined by the cost of evaluating the second order triple am-
plitudes, which requires O(M") steps. If one would not use intermediate arrays,
the QQ term would lead to a cost factor of O(M'?) (Table 2.3), however this is
reduced to O(M®) by using intermediate arrays y9 - y22, as shown in Eq.(2.65)

ESY(IT) =" yl1(k,1 e, f)yla(k, Le, f) + S y18(b, d,e, f)(bdllef)

klef bdef
+ 3 y19(c, d,m, n)y15(c,d,m,n) + ) y20(m,n, j,1)(mnl|jl)

mned mnjl

+ Z y21(k, ¢, m, e)yl6(k,c,m,e)

kmece

+ ) y22(m, b, 1, ¢)(mbl|le) (2.65)

Imbe

Table 2.3 gives an impression on how computational cost increase with the
order of MP perturbation theory. Clearly, the reduction of cost by the use of inter-
mediate arrays increases with order n. Accordingly, MP6 is an O(M?) rather than
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an O(M'?) method, MP7 an O(M°) rather than an O(M'*) method, etc. This
mdicates that higher order perturbation theory methods are no longer feasible
for routine calculations, however MP5, MP6, and even MP7 are suitable for im-
portant test calculations or investigations of small molecules. For example, there
are O(M'°) methods such as CISDTQ [40] or CCSDTQ [21], which are nowa-
days available for expert calculations. Accordingly, the development of MP6 or
even MPT7 is desirable since these methods provide direct information on higher
correlation effects and the convergence behaviour of the MPn series.

Inspection of Table 2.3 reveals that it will almost be impossible with the
strategies presently available to derive equations for the 141 energy terms of MP7.
The MP6 correlation energy is built up from 36 energy contributions, which also
requires an enormous amount of work if one follows either the algebraic or the
diagrammatic development procedure, however which becomes feasible when using
the strategy described at the beginning of this chapter (see also chapter 3 and
references 24, 25).

2.3 CORRELATION EFFECTS COVERED AT VARIOUS ORDERS
OF MOLLER-PLESSET PERTURBATION THEORY

Second order MP (MP2) theory covers D excitations and, accordingly, describes
pair correlation effects. [3,4] There is no coupling between the D excitations at
second order and, therefore, each pair correlation correction is determined as if no
other electron pairs are present in the molecule. This leads to an overestimation
of pair correlation effects, which has been documented in the literature. [11,28,29]
At third order MP (MP3) theory, coupling between D excitations is introduced
and in this way, an exaggeration of pair correlation effects at MP2 is partially
corrected. [5,11,28,29]

At fourth order MP (MP4) theory, D excitations are complemented by single
(S), triple (T) and quadruple (Q) excitations. [6,7] Single excitations describe
orbital relaxation effects, which are needed to adjust orbitals to the correlated
movement of the electrons. This leads to some limited improvements of the spin
orbitals, however, these changes cannot be compared with the systematic self-
consistent-field type of adjustment of orbitals within a MCSCF calculation.

The (connected) triple excitations cover three-electron correlation effects that
are smaller than the pair correlation effects. For a given electronic system, one
can normally distinguish a number of core electron pairs, bond electron pairs, and
lone electron pairs. [41] Each of these pairs can correlate with any of the other
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electrons in a three-electron situation, which means that the number of three-
electron combinations is much larger than the number of core, bond, and lone pairs.
Although the T correlation effects are usually quite small their large number leads
to sizeable contributions to the correlation energy. [11,28,29] These T contributions
may become even rather large if electron pairs are packed close together in a
particular area of a molecule. This occurs for multiple bonds in the bonding region,
for atoms with two or more lone pairs in the lone pair region or in the valence
region of strongly electronegative atoms. In these cases, T excitations help to keep
the electron pairs more separated and, therefore, T correlation corrections increase
in magnitude.

Quadruple effects in a MP4 calculation correspond to disconnected quadruples
[6,7], i.e. they do not describe the correlation of four electrons, but the simulta-
neous correlation of two independent electron pairs. These pair-pair correlations
essentially represent positive correction terms to the pair correlation energy cal-
culated at MP2. They are quite important to get a balanced description of pair
correlation. Of course, in large molecules the simultaneous correlation of 3, 4, etc.
electron pairs is also important, but these effects are not introduced to MP theory
before sixth order (3 electron pairs), eighth order (4 electron pairs), etc.

Three-electron correlation effects can be exaggerated at MP4 for the same
reason pair correlation effects are exaggerated at MP2. [1 1,28,29] MP5 introduces
the coupling between S, D, T, and Q excitations in form of SS, SD, ST, DD,
DT, DQ, TT, TQ, and QQ correlation effects and, therefore, MP5 gives a better
account of T and Q effects. New correlation effects are introduced at sixth order
in form of connected Q, disconnected pentuple (P) and disconnected hextuple (H)
excitations, i.e. MP6 introduces for the first time four-electron correlation effects.
The latter are important in all those situations, in which electrons cluster in a
confined region of atomic space as has been demonstrated by MP6 calculations.
[28,29] Again, connected Q and disconnected P or H effects can be exaggerated at
MP6 because QQ, PP or HH couplings are introduced not before seventh order.
In this way, the MPn series continues by introducing new effects at even orders
and correcting them via the appropriate couplings at odd orders.

One can compare MP perturbation theory with a car that is fuelled at even
orders but slowed down at odd orders. Cremer and co-workers have considered
this basic nature of MP perturbation theory as the reason for an erratic or os-
cillatory behaviour of the MPn series. [11,15,28,29] Energy and other molecular
properties do not converge smoothly to an infinite order limit but very often os-
cillate in the range n = 1 (HF) to n = 5 (MP5). This oscillatory behaviour of
results becomes apparent when comparing MP2 and MP4 with MP1 (= HF),
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MP3, and MP5 results. It represents a major drawback of perturbation the-
ory, which can fully be understood when MP6 results are included into the com-
parison. [28,29] Therefore, we will discuss in the following chapter MP6 theory.

3. Mogller-Plesset Perturbation Theory at Sixth Order

The MP6 correlation energy comprises 55 energy contributions of the type Effgc,
which reduce to 36 terms because of symmetry. These energy terms are given in
Figure 3.1 in a graphical way as paths connecting excitations S, D, T, and Q at
order n with excitations S, D, T, and Q at order 4 under the constraint that Slater
rules for the corresponding matrix terms are obeyed. [22,23] For example, one
obtains 14 fifth order paths in this way, namely the SS, SD, ST, DS, DD, DT, DQ,
LS LD T OT) . QT, and the QQ path. At sixth order, one has to consider
that T and Q excitations can couple with P and H excitations. Therefore, the
diagram extends to the right when the paths go down to levels n-1, etc. However,
any allowed path can only start and end at A — S, D, T, Q, which is indicated by
(wiggled) separation lines for the starting level n in Figure 3.1.

In the lower half of Figure 3.1 all 55 energy paths of MP6 are listed, 19 of
which are equivalent because of symmetry. Hence, there remain 36 unique paths
corresponding to 36 unique energy terms Egsgc, which have to be calculated to
determine the MP6 correlation energy.

Our work on a MP6 method for routine calculations was triggered by several
reasons.

(1) MP6 is after MP2 and MP4 the next even order method that should
be of interest because of the introduction of new correlation effects described by
connected Q or disconnected P and H excitations.

(2) With MP6 one has three energies (MP2, MP4, MP6) in the class of even
order methods and three in the class of odd order methods (MP1 = HF, MP3,
MP5). In this way, one gets a somewhat more realistic basis to test the initial
convergence behaviour of the MPn series.

(3) Inspection of Table 2.3 and Figure 3.1 reveals that MP6 is actually the
last method that can be developed using traditional techniques. MP7 has already
a total of 221 terms, 141 of which are unique. Therefore, setting up MP7 or even
higher MPn methods will require some form of automated method development
strategy based on computer algebra languages.

(4) The cost of a MP6 calculation is proportional to O(M?) (see Table 2.3).
This is too expensive for calculations on larger molecules, but still gives a chance
for systematic studies on small molecules.
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Figure 3.1. Graphical representation of energy contributions EM® ABC.. at nth order
many-body perturbation theory (n = 4, 5, 6, 7, 8) (upper part of the figure). A
particular energy contribution E( A g~ is given by the solid line that starts at A=S,
D, Tor Qin row E(M) and connects B, C, etc. at row n-1, n-2, etc. until n = 4 is
reached. Note that at the n-1, n-2, .., n = 5 level also those excitations are included
that can couple with A =8, D, T, Q at level n and level 4 according to Slater rules.
They are given in parentheses after a separator (downward directed wiggles) to the
right of the S, D, T, Q excitations. - At the bottom of the diagram, 5th order and 6th
order energy terms ®) AR and g©) ABC respectively, are listed in correspondence to
the energy paths shown in the upper half of the diagram. Unique terms are given in
bold print. Reprinted with permission from Z. He and D. Cremer, Int. J. Quant. Chem
(1996) 59, 15. Copyright (1996) J. Wiley, Inc.
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(5) Apart from this, there is the possibility of developing useful approximate
MP6 methods, which are less costly than the full MP§ approach because they
include just the more important energy contributions E;agc rather than the full

set of 36 energy terms.

(6) Various correlation methods, presently in use, have been compared in
terms of MP4 and MP5. [8,9,36,42] It is known that many of the methods are
accurate up to fourth order while only a few are accurate up to fifth order. Inves-
tigation of MP6 provides a basis to extend existing methods in such a way that
they become correct up to sixth order. [43]

(7) Utilizing MP6 correlation energies it will be possible to test and improve
existing extrapolation formulas, by which reliable estimates of the exact correlation
energy can be obtained.

Focusing on these goals, we have applied the general procedure outlined in
chapter 2 to derive an appropriate MP6 correlation energy formula that can be
programmed for a computer.

3.1 DERIVATION OF A SIXTH ORDER ENERGY FORMULA IN TERMS
OF CLUSTER OPERATORS

Since the general MP6 energy formula leads to 42 terms, 41 one of which are
renormalization terms that are cancelled by appropriate parts of the principal
term, it is out of question to attempt an algebraic derivation of the MP6 energy
formula. On the other hand, one has to realize that the number of diagrams
dramatically increases with the order n (1 (n=2), 3 (3), 39 (4), 840 (5), and 28300
(6) antisymmetrized Brandow diagrams), which means that an implementation of
MP6 on the basis of a diagrammatic approach is also not feasible. Therefore, we
avoid to derive the MP6 energy formula in a diagram-by-diagram manner or in
an algebraic fashion. Instead, we use the procedure outlined in chapter 2, which
represents a balanced mixture of diagrammatic and algebraic approach. This
procedure comprises for MP6 the following steps.

(a) Starting from the general formula
Ship = (@olV (GoV)™ " |®0). (3.1)

and the expression for the reduced resolvent G (Eq.(2.11), we will develop the
MP6 energy equation in terms of S, D, T, Q, P, and H contributions. Contributions
of higher excitations will be truncated according to Slater rules.
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(b) Cluster operators T(l) and ’f’(?) (i =1, 2, 3) will be introduced into
the Eﬁ,f);, expression since this helps to identify those MP6 terms that contain
disconnected parts of operator products such as (7, (1) (VT(2) )b, ete.

(¢) The terms of Eﬁ}, will be classified in two categories: one covers terms
only resulting from connected diagrams of operator products such as (17’1?‘,-(2))0
called connected operator diagram terms; and another contains terms resulting
from disconnected diagram parts of operator products. Contrary to the former,
we define the latter as disconnected operator diagram terms.

(d) The disconnected diagram parts of operator products will be combined
with other operators to ultimately obtain connected energy terms, i.e. linked
diagram contributions to the correlation energy.

According to this procedure, the MP6 energy formula can be derived in the
following way. [24].

The general expression of EJ(SED is given in Eq. (3.2):
E\Ds = (®0|V(GoV)®|®0) L (3.2)

According to Eq.(2.11) and Slater rules, Eq. (3.2) can explicitly be written as

SDTQ SDTQPH _

B (@ l(Z5) V10, )(Bo — Ba,)™ Very (Bo = By)™ Vi,
x(Eo — Em)-i (@2, [VTEV|20)) (3.3a)
SDTQ SDTQFPH
= Z AKXy, Y, Xo)r (3.3b)
X1,X2

with A(X1,Y, Xz) being

X1 Xz Y
A(X1,Y, M—ZEZ (TN V@2, ) (Bo = Ba,) ™ Viry(Eo = Ey)™"
x Vyes(Eo = Ez,)™ (@2, |VI5"|®0) (3.4)

By using the cluster operators ’f‘é” and f}(z) (i=1,2,3), one can partition the
MP6 energy into three different A(X,, Y, X2) terms:

B, = 4[(VTP) o] + AT + AS[(VT)ple (1=1,2,3)  (3.5)
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The first part, A;, covers all connected cluster operator diagrams resulting from
(VI)¢ and fully contributes to to £, in form of E(M P6);:

A (VTP e] =E(M P6),

5,.D
= > S (@@ VIc|®y) (Bo — Ey) (@, [(VTD)c|@0)

ij=1,2,3 v

i
+ Y S @l(TP)V]c|®)(Bo — E)~ (@) (V) c|®o)

ij=2,3 t

Q
+ 3 (@ol[(T5) V] |®,) (Bo — By)™ (@|(VIE))c|®o)  (3.6)
q

=E{ds + 2ES0p + 2ESop + EShs +2ES)
+2E5pr + Epsp + 2Epsr + Eppp + 2Eppr + Efdy
+ ESDr + Bopp + 2BS) s + Egly + E‘%’%T (3.7)
The second and the third part, A4 and Az, cover all disconnected cluster operator
diagram terms resulting from (75"))? or various combinations of 7{? with V' as
illustrated in Figure 3.2.

; $,D,T,Q DT,QPH
A[(T50)?), = Y. Y. (2-6x,0— 6x,,56v7 — 8x,,p0vq

X, Y
—bx, 1oy, p)A(X1,Y,Q)L (3.8)
where
¥ S . e
AX1,Y,Q) = ) (Bal(T{)V|9,) (Bo — Ey)™" (@4 |V 5 (15")?|o)
: (1=1,2;3 for2a = Sy L) (3.9
or
byl
AQY,Q) = 3 (@ol5 (T )12 V12,)(Fo — By) ™ (@, V5 (757 [80)  (3.10)
Y

As indicated in Figure 3.2, the disconnected Q cluster operator (’.}'ﬂgl))2 in Ag[(Té”)z}L
couples with the perturbation operator V. This leads to disconnected and con-
nected cluster operator diagram parts, which in turn lead to the energy contribu-
tions A(X1,Y,Qp)r and A(X1,Y,Qc¢)r of Eq.s (3.11) - (3.14).

y
AX1,Y,Qo)r = 3 ((®l(ZE)V19,)(Bo - £,)7 (@, [T (VEV)cl20) )
v

(6= 1,2, 3 when X4 =.5.D, ¥ =T,Q., F) (3.11)
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Figure 3.2. Derivation of the MP6 energy formula. For the perturbation operator

and the cluster operators simplified Brandow diagrams are used. For more

details, see text. Reprinted with permission from D. Cremer and Z. He, J. Phys.

Chem., (1996) 100, 6173. Copyright (1996) American Chemical Society.
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e
A(X1,Y,Qc)r = Y (@al(T)1V|@,)(Eo — Ey)™ (@, |(V %@,50)2)6 [©o)
y(i: 1,2,3 when X1 =S,D,T;Y = D,T,Q) (3.12)

Y
AQY.Qp)r =Y ((%%«ﬁ”)*fﬂ%)(% - B) @17 5 (757 *‘I"’))L
¥

(Y=T,Q,P,H) (313

¥
A D ((%%«T&”)*)W@y)wa - Eyri@yl(?é(z‘é”)’*)c;am))L
(Y =D,7,Q) (3.14)

In Ref. 24, the sum of A(X,,Y,Q¢), and A(Q, H,Qp)r is denoted E(M P6),,
which covers 12 different energy contributions:
S\D.T

E(MPG)QQ = Z QA(XHD)QCJ +A(QC:D:QC)+A(S:T3QC)
Xy
D.T,Q

+ Y (2—6x,0)A(X1,T,Qc) + AD,Q,Qc)
X

T,Q
+) (2-6x,,0)A(X1,Q,Qc) + AQ, H,Qp). (3.15)
X,

&, DT
i 3 6 6
=23 Bt Bobe £ B (T + ESVS(IT)
X

DT
+23 ESro(ID)+ E}%Q(u) + EE?%Q(H)
X

+2E5) (1) + ESh (3.16)
In some cases, it is useful to split the terms Eg?l}YQ into two parts:
6
BX)va = EXlvo(D) + By q(11) (3.17)

which correspond to A(X;,Y,Qp)r and A(X1,Y,Qc)L, respectively. For E_(.;?Q
(II) and EgéQ(H), their Hermitian conjugates EE;%_S and EE;%,D are included in
Ag[(‘r_"f’,-(z))D]L, which is defined by (compare with Figure 3.2)
D,T.Q 5,D.T,Q T,Q
A[VTP)ple = 3 AXL,@, D)+ Y. AXLT,S)r+Y ACX,PT):
X Ay

X1
(3.18)
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The terms of Eq.(3.18) can be combined with the corresponding terms A(Xj,
Y,Qp)r of Eq.s (3.11) and (3.13) to lead to simpler formulations in cluster operator
form as shown in Eq.s (3.19) to (3.23).

D.T.Q
E(MP6)3 = Y (A(X1,Q,D)r + A(X1,Q,Qp)L)
X1
=(@o|(TENVTVTED) e 1®0) + 2(@o| (TS VIV TP |@0)
.2 e
+ (@l 5 (T VIV TP |@0) (3.19)
= [EE:%D i Eg;q)?q(f)] +2 [Eg%o ot Eé%q(f)]
i [EE?S‘)?D +E$$Q(I)] ; (3.20)
o O I
E(MP6)s= > (A(X1,T,S)L +A(X1,T,Qp)L)
Xy

=+ A(Q: T: S)L aF A(Q‘ T, QD}L
= Y @-&)@T)NVIOTE |80

=123
e S
+ (|5 (T3 ) VIT; |@0)c (3.21)
6 6 E 6
—BSs + B (D) +2 [EShs + ES)o(1)] + 2 [ESs + ESo(D)]
6 6
+ E&%s + Eé%q(f ) (3.22)
e
E(MP6)s =Y (A(Xy,P,T) +A(X1,P,Qp)L)
X,
. e T e el
=(@ol(TE) VIV TED|®0)c + (o5 (L)) VIV TE?|®o) o
(3.23a)
= [Er + ESq] + [EShr + EShq| - (3.23b)

The final MP6 energy expression covers all four energy parts E(M P6);, E(M P6)3,
E(MP6)3, and E(MP6)4:

ES), = E(MP6), + E(MP6)3, + E(MP6)y, + E(MP6)s + E(MP6)s (3.24)

which correspond to the connected cluster operator part (E(M P6),), the discon-
nected Q cluster operator part (E(M P6),), the disconnected T cluster operator
part (E(M P6)3), and the disconnected P cluster operator part (E(M P6)4). [24]
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3.2 SETTING UP TWO-ELECTRON INTEGRAL FORMULAS

The development of a MP6 computer program implies the transformation of the
MP6 cluster operator equations into two-electron integral formulas. Analogue to
the auxiliary arrays vn used in chapter 2 for the derivation of the MP4 and MP5
energy, a series of auxiliary arrays un is derived at the MP6 level of theory. For
lower n, these arrays actually correspond to the vn arrays used at the MP4 and
MP5 level as is indicated in Table 3.1. Table 3.2 shows how each correlation
energy contribution is determined with one of the auxiliary arrays un according
to equations which are explicitly listed in Ref. 25. Utilizing the auxiliary arrays
un, two-electron integral formulas for all MP6 terms listed in Table 3.2 can be
readily obtained. However, the computational cost resulting out of this one-to-one
transformation would be, as indicated in Table 3.2, O(M'?) thus leading to a MP6
method that would not be practical even with today’s supercomputers.

TABLE 3.1. Relationship between
auxiliary arrays vi in MP5
and auxiliary arrays uj in MP6.

MP5 MP6
v1(ij,ab) u4(ij,ab)
v2(ij,ab) ud(ij,ab)
v3(ij,ab) u6(1j,ab)
v4(ij,ab) u10(ij,ab)
v5(1j,ab) u14(ij,ab)
v6(1,a) ul(i,a)

v7(ijk,abc) u8(ijk,abc)
v8(ijk,abc) ul1(ijk,abc)
v9(ijkl,abed) | u12(ijkl,abed)

As mentioned in section 3.1, all energy contributions of E(M P6),, E(M P6)s, and
E(MP6)s (#17 to #38 in Table 3.2) result from disconnected cluster operators.
In Ref. 25, we have shown that correlation energy contributions associated with
disconnected cluster operator diagrams can be expressed with the help of inter-
mediate arrays that significantly reduce computational cost. This is indicated in
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TABLE 3.2. Two-electron integral formulas for the energy contributions of MP6. ©

# Contribution Auxiliary arrays Expected cost
E(MP6),
1 E‘%js ul(i,a) O(M?)
2 55D ul(i,a),u2(i,a) O(M*)
3 ES), ul(i,a),ud(i,a) oM7)
4 ng ) u2(ij,ab) o(M*)
5 ESL. u2(ij,ab),u3(ij,ab) o(MT)
6 A u3(i,a) o(M")
7 f:ls u4(ij,ab) o(M?)
8 ES) ud(ij,ab),u5(ij,ab) O(M®)
9 ES) . ud(ij ab),u6(ij,ab) oM7)
10 ES) ub(ij,ab) O(M®)
11 By u5(ij,ab),u6(ij,ab) oM7)
12 ?“M u6(ij,ab) oM7)
13 ESLS u7(jk,abc) o(M7)
14 1578 u7(ijk,abc),u8(ijk,abc) O(M®)
15 Ef:‘n u8(ijk,abc) o(M®)
16 Erar u9(ijkl,abed) o(M?)
E(MP6),
17 E;EQ u4(ij,ab),u10(ij,ab) o(M8)*
18 ELie u5(ij,ab),ul0(ij,ab) o(M8)"
19 B u6(ij,ab),u10(ij,ab) o(M®)*
20 B u10(ij,ab) o(M8)"
21 | EQoUI) + ESro(IDa | b, @,  ull(iikabe) o(M7)*
22 Eg”gq(nnﬁgﬂqu, ag, bg, ul2(ijkl,abed) o(M®)*
23 ES) o) ull(ijk,abe) o(M?®)*
24 E‘é‘%q(m, u12(ijkl,abed) o(M©)"
25 EproU) u7(ijk,abed),ull(ijk,abe) o(M?)*
26 ES) (D) u8(ijk,abe),ull(ijk,abc) o(M?)*
27 ES)oUID) w9(ijkl,abed),ul2(ijkl,abed) | O(M°)*
28 E%GHQ(I) Q24 u10(ij,ab) o(M®)"
29 ESho(ID) oM™y
30| ES)p + Eﬁ%q(f) aa,ba,Qf o(M8)"
31| ES, + E,E.-S%Q(I) ag,u9(ijkl,abed) o(M%)*
32| ESL, + ESHo(D ag,ba,u12(ijkl,abed) o(M*°)"
E(MP6)s
33| ERs + ESW) b,,ul3(i,2) o(M®)
34| EQYs + Epro() b, b4,ul4(ij,ab) oM™y
36| ESEs + ES(D) ul5(ijk,abc),ul6(i,2) o(M®)*
36| ESks + ESh(D) | Q5. ud(ijab), ul7(ld) o(M®)°
E(MP6),
31| 20y ¥ ES, u3(i,2),ul6(i,a),b.,ul8(ijk,abe) | O(M'®)*
38| ESL + Egrg u6(ij,ab),u19(i,a),u20(ijkl,abed) | O(M'°)*

e Ref, 25. The stars in the column "cost” indicate that the expected cost
factor can be reduced by using intermediate arrays. See table 3.3.
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Table 3.3 where for each of the disconnected cluster operator terms #17 to #38 of
Table 3.2 the intermediate arrays z1 — 220, y1 — y17, and z1 — 219 are given that
help to reduce computational cost to a minimum (see Ref. 25, for the definition
of all intermediate arrays). This is demonstrated in the following using the term
f(;;)F)fQ(”) (#29 in Tables 3.2 and 3.3) as an appropriate example.

If L’( a(II) would be calculated according to Eq. (36) of Ref. 25, one would
have to determme an auxiliary array u21(ijkl, abed) according to Eq.s (3. 25) and
(3.26):

ESh o) = Z > afagiu21(ijkl, abed) (3.25)
1; ab kl,cd

with u21(ijkl, abed) being defined by
u21(ijkl, abed)

Il

Y (=)P+P'P(i/jkl|ab/cd) [P’(j/k!) > (mnllef)a] aggl a’

m._ PP! n,ef

+ZZ(— )" P(ij/kla/bed) Y (mnllef) [Z( P P! (k/1]b/cd)act,asd
P

mrn,e

__Z( I)Pp(b/Cd)“mn“kt] -+ (3.26)

Since u21 depends on the eight indices i,7,k,1, a,b,¢,d and requires in addi-
tion summations over indices m,n, e, f, the cost factor for u21 is proportional
to O(M'?). However, this cost factor can be reduced since u21(ijkl, abed) does
not depend on the H energy denominator. This provides the possibility of re-
placing u21(#jkl, abed) by a series of much cheaper intermediate arrays such as
contractions between double amplitudes and combinations of these contractions
(see Eq.s (A5) - (A9) and (A33) -(A42) of Ref 25). This is outlined in Eq.s (3.27)
- (3.36), which start with a dissection of EQHQ(H) into three parts:

EQHQ(II ZZ (mn||ef) [ w3(mn,ef), + w3(mn,ef), + iw3(mu,ef)c

mn ef
(3.27)
Arrays w3(mn, ef)q, w3(mn, ef); and w3(mn,ef). are determined with the help
of intermediate arrays y12 - y17 according to Eq.s (3.28) - (3.36) (see Ref. 25).

w3(mn, ef), Za“ yl6(kl, mn) + Z:rf)(rr.b ef)yl7(ab, mn) (3.28)
ab
w3(mn,ef)y = Za 1yld(nf, Ib) + Z.’rB(gb me)yld(nf, jb) (3.29)
jb

w3(mn, ef)e = — Zaﬂ(ﬂ mn)yl2(kl,ef) +Z 2ul3(ca, ef) (3.30)
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y12(klef) = agizl1(b, f) - Zah z3(ke, jd) (3.31)
b

y13(ca,e, f) = @3(ia, ke)z3(if, ke) — > z5(ab, fd)z5(eb, cd)
ik bd
+ z1(a, f)zl(c,e) (3.32)

yla(nf,1b) = — 3 z4(kl, jn)z3(3b, kf) + 22(1, n)z1(b, f)

kj
= 233 1b, kf)z2(k,n) + Y z3(lc, kf)z3(kb, ne)
ke
+ Z z5(ba, cf)z3(lc, na) (3.33)
y15(nf, jb) = Za ' 23(kc, nb) + = Zak,ﬂ(kf nj) -—Za z1(d, f)
4 (3.34)
y16(kl, mn) :Z:r‘-’-i{kf jn)z2(j,m) — Zrti(i'z myj)zd(kj, ni)
J (5]
— 22(1,n)22(k,m) — > 23(lb, me)z3(ke, nb) (3.35)
be
yl7(ab,mn) = > % a3(ke, nb). (3.36)
ke

In these equations, the intermediate arrays x1 - x5 appear (see Table 3.3 and Ref.
25), which are contractions of double amplitudes, and the intermediate arrays
y12—yl7. In total, 11 intermediate arrays are used to reduce the original O(M'?)
dependence of Eq. (3.25). Inspection of Eq.s (3.28) - (3.36) reveals that the
calculation of the 11 intermediate arrays involves just O(M®) computational steps:
The total cost of the calculation of ESE,E;Q(II) has been reduced from O(M'?) to
O(M?®), which means a dramatic decrease in needed computer time.
Manipulations as the one described in the case of the ES%Q(II) term have
been applied for all terms associated with disconnected cluster operators so that
the reduced cost factors listed in Table 3.3 result. Compared to MP4 where just
four intermediate arrays are needed (Table 2.1), the number of intermediate arrays
for MP6 (57 in total) increases by a factor of 14. This demonstrates that any
development of higher order MP methods has to concentrate on those correlation
energy contributions which are associated with disconnected cluster operators.
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In Ref. 25, each energy contribution of E(M P6) is expressed in terms of
two-electron integral formulas, which can directly be programmed for calculation
on a computer. Of course, these formulas look rather complicated because of the
manifold of double-bar integral terms, the complexity of summations and the large
number of arrays to be formed. Therefore, the implementation of the MP6 method
in form of a FORTRAN program on a computer requires a carefully worked out
strategy.

3.3 IMPLEMENTATION AND TESTING OF A MP6 COMPUTER PROGRAM

As has been discussed in section 3.2, all disconnected cluster operator terms as-
sociated with T, Q or P excitations in E(M P6),, E(M P6)s, and E(M P6)4 can
be calculated with the help of intermediate arrays. However, in some cases it is
of advantage to combine the calculation of disconnected cluster operator terms
with that of related connected cluster operator terms involving a higher cost fac-
tor rather than calculating each MP6 term individually. In this way, superfluous
I/O operations are suppressed. We have found that in this way the calculation of
E(MP6) becomes much more efficient.

A MP6 computer program can be structured in the following way. [25] First,
all needed first order and second order amplitudes are collected, which, of course,
are available from lower order MP calculations. Then, the loop over T excitations
is carried out, which leads to some of the TTA terms as well as the TTT coupling
contribution. In the next step, the Q loop is executed, which is the most expensive
part of the program. There is a relatively large number of terms, the calculation
of which can be based on existing MP5 programs. Finally, terms are collected to
give the MP6 correlation energy.

In Ref. 25, a MP6 program has been set up in a way that many (but not
all) correlation energy contributions can be determined individually. This gives the
chance to analyze these terms, to investigate the importance of the most expensive
terms and to develop partial MP6 methods that cover well-defined excitation and

correlation effects.

Although the writing of a MP6 program is a time consuming task, even more
time consuming is the testing of a new MPG program. The question whether more
than 3000 lines of FORTRAN code are without errors cannot be answered in a
simple way. In this work, three testing strategies were developed to search for
programming errors. First, a number of benchmark calculations were carried out
for which MPn energies (n < 48) derived from full CI results are available. [12,13]
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Then, parts of the program were reprogrammed by using alternative calculation
strategies and, finally, MP5 results were used to test MP6 energies.

Testing with the help of FCI calculations could be done for about 30 atoms and
molecules with no more than 10 electrons since FCI calculations with reasonable
basis sets can be carried out in these cases. The majority of FCI based MP6
correlation energies agrees with our values within 10~ hartree. This difference is
also found for many of the lower order correlation contributions if one compares
results from FCI-MPn and MPn calculations. Although the agreement between
FCI-MP6 and our MP6 data seems to suggest reliability of the new MP6 program,
it does not prove that the latter is without any errors. Since all test molecules
are rather small possessing just a limited number of electrons, higher excitations
such as P or H do not contribute significantly to the final correlation energy. As a
consequence, any errors in these terms do not show up in the comparison between
FCI-MP6 and MP6 energies. This also holds for any other low value term and has
to be considered in the testing.

Therefore, we tested each term of the MP6 program (see list of terms in Table
3.2) individually by extensive reprogramming. For example, in the case of energy
terms associated with disconnected cluster operators, we have programmed alter-
native evaluation procedures that do not take advantage of intermediate arrays.
This leads to a rather simple structuring of the FORTRAN code, but also to pro-
gram versions that can be used only for testing purposes because they are too
expensive for normal use. An energy contribution tested in this way was con-
sidered to be correct when the difference in energy values obtained by different
program versions is smaller or equal to 10~° hartree.

A third way of efficiently searching for errors in the MP6 program was to
replace second order amplitudes by the appropriate first order amplitudes to get
the corresponding fifth order energy contributions, which can be directly com-
pared with existing MP5 results. [8,9] This procedure is straightforward and can
be extended to (partial) third order amplitudes to be replaced by second order
amplitudes or products of first order amplitudes. In each case, it was verified that
the energy contributions obtained at MP5 did not differ from the corresponding
directly calculated MP5 terms by more than 10~ hartree. After checking all MP6
energy contributions listed in Table 3.2 either by reprogramming or by exchanging
amplitudes, we concluded that our MP6 program was without errors and could be
used for calculating MP6 correlation energies. The MP6 codes were installed on a
CRY Y-MP to be run within the ab initio package COLOGNE94. [44]
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3.4 COMPARISON OF MP6 AND FULL CI CORRELATION ENERGIES

FCI energies are known for a number of atoms and simple molecules, which ac-
cordingly provide an appropriate basis for a comparison with E(MP6) energies
obtained with the same basis at the same geometry. The set of reference systems
includes charged and uncharged atoms (F and F~), different states of molecules (
3B, and 'A; state of CHs, 2By and %A, state of N H,) as well as AH,, molecules
both at their equilibrium geometry (R.) and in geometries with (symmetrically)
stretched AH bonds (1.5R., 2R,: "stretched geometries”). Calculation of the lat-
ter represents a critical test on the performance of a correlation method because
wave functions of molecules with stretched geometries possess considerable mul-
tireference character. In total, 26 energy calculations have been carried out for
the comparison. [26]

MP6 correlation energies cover on the average 98 - 99% of the exact (FCI) cor-
relation energy for atoms and molecules at equilibrium geometries. For molecules
with stretched geometries (1.5R, and 2.0R,), this coverage can drop to 80 - 85%
because of difficulties in describing a problem with relatively high multireference
character by a single determinant approach. There are systems, for which the
MP6 correlation energy becomes more negative than the FCI correlation energy
thus reflecting the non-variational character of MP theory.

We have investigated the mean absolute deviation between FCI and various
MPn energies. [26] If just equilibrium geometries are considered, then there is a
slight improvement when going from MP4 ~ MP5 energies (mean absolute de-
viation 2.12 mhartree) to MP6 energies (mean absolute deviation 1.75 mhartree,
[26]). If stretched geometries are included in the comparison, then mean absolute
deviations become larger by a factor of 3 and decrease more clearly with increasing
order n of MPn perturbation theory (MP4: 7.26, MP5: 6.47, MP6: 4.66 mhartree
[26]). This suggests that fifth and sixth order corrections become more impor-
tant with increasing multireference character of a system and that the relative
improvement of energies is larger at the MP6 than the MP5 level of theory.

Because of the O(M?) dependence of MP6 methods, its application is limited
to relatively small atoms and molecules. Therefore, it was interesting to test
whether deletion of costly MP6 energy terms leads to useful approximate MP6
methods that are more economic and can be applied to larger molecules. We
have checked two alternatives. [26] First, we have deleted the three terms Eé%T,
ES??Q(II)b, and E:(,%Q(II) that require O(M?®) computational steps. In this way,
we have obtained an approximate MP6 method (MP6(MS8)) with computational

requirements < O(M®). In a second step, we have eliminated all terms that
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require O(M®) computational steps. Thus, an approximate O(M7) method has
been obtained (MP6(MT)).

The average errors of MP6(M8) and MP6(M?7) are 8 and 13%, respectively, of
the total MP6 correlation energy. The difference A E(®)(M8) is with the exception
of F~ and the stretched geometry of H,O considerably smaller than 1 mhartree.
This is also true in the case of AE(®)(M7). We have also investigated deviations in
relative energies and compared them with those of other MPn methods and FCI.
The mean absolute deviation of MP2 relative energies from the corresponding
FCI values is rather large (12.5 kcal/mol), which has to do with the fact that
the majority of the problems investigated involves systems with multireference
character. At MP4, the mean absolute deviation decreases to 8.3 kcal/mol, then
to 7.4 at MP5 and, finally, to 5.7 at MP6, i.e. the largest reduction in the mean
absolute deviation is obtained at MP4 and MP6, which underlines that MP6 leads
to the largest improvements after MP4.

The approximate MP6 methods give about the same mean absolute devia-
tions (5.8 keal/mol [26]) than MPG6, i.e. the three methods MP6, MP6(M8), and
MP6(MT) lead to similar relative energies. For example, the singlet-triplet split-
ting in the case of CH, is calculated to be 12.98, 12.99, and 13.06 kcal/mol at
MP6, MP6(M8), and MP6(M7), respectively (FCI value 11.97 keal/mol [26]). A
similarly good agreement is obtained for the differences between the 2A, and the
2B, state of N H, taken at R., 1.5R, and 2R, of the NH bond distance. On the
other hand, there is a clear improvement of relative energies when going from MP5
to MP6(M8) or MP6(M7). Since the latter method has similar time requirements
as MP4, MP6(MT) is an attractive new method for getting higher order correlation
corrections for small and medium-sized molecules.

4. Coupled Cluster Theory

Coupled Cluster theory is tightly connected with the Linked Diagram (LD) the-
orem which states that the exact electronic energy and wave function of the
Schrodinger equation can be written as a sum of linked diagrams in field theory
language without any contributions from unlinked diagrams. [34] Equivalently,
one can say that the wave function is expressed with the help of an exponential
of cluster operators, which was first suggested by Coester and Kiimmel in physics
in the late 1950s [45] and later introduced into Quantum Chemistry by Cizek
and Paldus. [16,17] The exponential form of the wave function guarantees cor-
rect scaling with the number of electrons, which leads to the important property
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of size-extensivity of calculated energies. [10] Sometimes one uses also the term
size-consistency in connection with the investigation of dissociation or addition
reactions. [5] However, the term size-extensivity is more general than the term
size-consistency and, therefore, the former is used throughout this work. Contrary
to CI methods, MP and CC methods are all size-extensive. [10]

The major difference between MP and CC methods is that MP theory is used
to include all contributions resulting from S, D, T, etc. excitations through some
finite order while CC theory covers selected contributions to the MP correlation
energy to infinite order. Therefore, it does not lead to the oscillations in correlation
energy typical of the MPn series. On the other hand, the cost factor of a given CC
method is considerably larger than its MP equivalent (defined by the excitations
covered) as we will show in the following.

The use of CC methods in ab initio theory was started on a routine basis
in the early 1980s due to the development work of the Pople and the Bartlett
group. [18] However, little systematic research with the lower CC methods was
done in the first years after CCD [18] and CCSD [19] programs became generally
available. This has changed in the last five years when CC methods covering T
effects were introduced that provided high-accuracy in calculated energies. As
an example for many other investigations the CC study of simple H, addition
reactions carried out by Kraka and co-workers may be mentioned here. [46] In
this work, it was demonstrated that with a CC method that includes T effects,
more precise activation barriers and reaction energies could be calculated than
previously with MRCI, MCSCF or CI methods. Because of its many advantages,
CC theory attracts a lot of research efforts and, therefore, one has investigated how
currently used CC methods can be improved to get even higher accuracy. Before
this work is discussed, we shortly review the CC projection approach because it is
hardly discussed in any of the standard Quantum Chemistry text books.

4.1 THE PROJECTION COUPLED CLUSTER APPROACH

The Coupled Cluster (CC) wave function ¥ ¢ is expressed in terms of the cluster
operator 1" as

Voe = el |®o) (4.1)
where 7' is the cluster operator for the n electrons of a given electronic system
T=T1+D+T+...+Ts (4.2)
and ) ] )
fo=mm X el (43)

Eod il



280 D. CREMER AND Z. HE

In Eq. (4.3), the operators ! represent elementary substitution operators and
the amplitudes a;‘f are the corresponding cluster amplitudes. With a wave
function of the form (4.1) the expectation value AE of the Hamiltonian H(=
& — (Do|H|®p)) can be written as

_ {®ole™" HeT |@y)
T (@oleTTeT |@y)
=(®q| (ef‘*;}ef)c ) (4.4)

AE

The expectation value AFE is obtained by standard variational theory where the
variational parameters are the cluster amplitudes (a{}”)* In the first step, one
obtains
by T 7 T
(@55 1(e" He )c|®o) = 0 (4.5)

By inserting the identity operator I = eTe=T into Eq.(4.5) and using the fact that
e THeT = (HET)C (4.6)
Eq.(4.5) becomes
(@51 eT)(HeT)c|@o) = 0 (4.7)
which is equivalent to a set of projection equations:

(@¢](HeT)c|Po) = 0 (4.80)

(@ |(HeT)c|®o) = 0 (4.85)

The correlation energy AE of Eq.(4.4) is given by
AE = (Bo|(HeT )¢ |®0) (4.9)

The full CC energy AE, which is identical to the full CI correlation energy, is
size-extensive and variational according to the derivation given above.

In practice, one has to truncate the cluster operator 7' of Eq. (4.2) at a
finite level n to obtain a practical method. This, however, leads to the loss of the
variational character of the CC method. For example, when

T Ty + 15 (4.10)
the CCSD wave function is obtained

Yocsp = e+ T2|0) (4.11)
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The CCSD equations are obtained by projecting the Schrédinger equation onto
single and double excited determinants:

(@¢|(HeTr+72)|®0) = af AEccsp (4.12)
- Ee e

(B57 [(He™*72)|®g) = (95 |T + §T12|¢0)ﬂECCSD (4.13)
Be NI

AEccsp = (®o| H(T: + ETE)J%) (4.14)

The left-hand side of Eq. (4.12) can be split into connected part and disconnected
part:

(@F|(HeTr+T2)|@g) = (@F|(HeTHT2)c|@o) + (B2|(HeT+T)p (@) (4.15)

The disconnected part of Eq. (4.15) can be rewritten according to (4.16), (4.17)
and (4.18):

(@17 0| 00) =(@2( (T3 +TaTs + 5.17))plo)
=(@ T (A (T + T + 27)c|0) (4.16)
=(®¢ [T3100) (ol(H(T; + T + 5 7)ol®0)  (417)

< A il
=(®7 71 |@o) (R0l (H (T3 + ETE))C]%)
=aiAEccsp (4.18)
where in Eq. (4.17) the identity operator )7 |®,)(®,| has been inserted. It

becomes clear from Eq. (4.18) that the disconnected part just cancels the term on
the right-hand side of Eq. (4.12) so that Eq. (4.12) takes the form of (4.19)

(B¢ (AT HT2) | @) = 0 (4.19)
or alternatively
ST erh g UL (BT BRS
(®F|H(Ty + T3 + §T12 + )T, + ETFN@D)C =0 (4.20)

In a similar way, the disconnected part of the left-hand side of Eq. (4.13) can be
rewritten:

(®E|(HeT1+T2) b | D)

1
2

" 1.
3"2?+ET13+

= : . i AR oo 10
=(a2| (H(l + T 4T3 + 5:{’1’* 4 S ETng h Etzr};*)) @)
D
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S b s il T
Z\"I‘?ﬂrﬂ (H(Tl + Ty + =T7 4+ N Th + —Tia)) |®o)
2 2 e
o , =)
+ (98 |T (H(T1+T2+§T12)) |@0)
(17

1 e 1.

+ (@ (ATt 5T1) 120) (4.21)
C

ab 1ig 1z U

= (¢ ]T12|<I> (@ ( B(Th + T2 + T1+ T1T2+ 311 ) 1®o)
: C

£ (@[T |0) (0] ( G Do 12 ))C o)
1]

+3 = (9 |T|®o)AEccsp (4.22)
WS o B |
=(@3 1T+ 3700l @0l (H(Ta+ 370)) 100) (433)
(]
=(®|Ts + > T1 |®0)AEccsp (4.24)

where Eq. (4.20) has been used in Eq. (4.22). Hence, the unlinked diagram terms
in Eq. (4.13) also mutually cancel. The final D amplitude equations take the form
of Eq. (4.25) N

(@ |(He™ 1 T2)c|®o) = 0 (4.25)

which can explicitly be written as

L e e I ] e i [
(@F | HO+T1 + To+ 5T + T Ty + 513+ 217 + 5 Ti T+ 517 |@o) e = 0 (4.26)

Eq.s (4.20) and (4.26) are the CCSD (Coupled-Cluster Singles and Doubles) pro-
Jjection equations in connected form:

~ - 1l o il
(®|H(Ty + T» + §Tf g, Eﬁ’n%)c =0 (4.20)
oy ! ik 1
<I>“”|H(1+T1+Tg+—T1 +T1Tg+§T2 + 6T3+ 211 T2+ Tl)]@o)c =0 (4.26)

which have to be solved to obtain AEccsp as an approximation to the true
correlation energy.

s 1=
AEccsp = (®ol|H (T + —Tf)l‘bn) (4.27)

Since S and D excitation amplitudes af and af} of Eq.s (4.20) and (4.26) have to
be known to set up and solve the CCSD equatlons, a solution can only be found by
a trial-and-error procedure. Once the amplitudes are known, they can be used to
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evaluate the CCSD energy AEccsp according to Eq. (4.27). All CC correlation
energies obtained by truncation of 7' similar to (4.10) are still size-extensive, how-
ever they are no longer variational, Obviously, truncation of the cluster operator
T at various excitation levels leads to a hierarchy of Coupled Cluster equations.
For example, by truncating at Ts, the CCSDT projection equations [20], and by
truncating at T, the CCSDTQ projection equations [21] are obtained. Since
one has to iterate in each case, CCSD requires N,-;e,.O{MG) computational steps,
CCSDT Niy..O(M®) computational steps, and CCSDTQ N, O(M1'°) computa-
tional steps. While CCSD computer programs are generally available, only few
groups have developed expert programs that can solve the CCSDT [20,47] or even
the CCSDTQ projection equations. [21]

4.2 THE QUADRATIC CI APPROACH
- AN APPROXIMATE COUPLED CLUSTER. METHOD

The quadratic CI (QCI) method was suggested by Pople and co-workers. [35]
Although it can be considered as a method that results from a simplification of
the corresponding CC equations, Pople and co-workers took a different view and
considered QCI as a CI method corrected for the size-extensivity error of CI. [35] To
achieve size-extensivity for CI, the authors added new terms to the CI projection
equations, which is demonstrated in the following for the case of a truncated CI
approach with just S and D excitations (CISD) included. [48]

The CISD wave function can be represented by
Yersp = (1+ Ty + 13)|®y) (4.28)
Then, the Schrodinger equation in the CISD approximation takes the form
H(1+T; + Ty)|®0) = AEcisp(1+ Ty + T5)| @) (4.29)

The projection of Eq. (4.29) on S and D excited determinants as well as the
reference wave function (i.e. the HF function) leads to Eq.s (4.30), (4.31), and
(4.32):

(PF[H(Ty + T3)|®0) = af AEcssp (4.30)
(BFH(1+ Ty + Ty)|®o) = af ABcrsp (4.31)
AEcisp = (Do| HT3|®o) (4.32)

which also can be viewed as resulting from a minimization of the expectation value
AFEcrsp. In this and the following, intermediate normalization, i.e. (®o|®crsp) =
1, is used throughout.
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Since in both Eq. (4.30) and Eq. (4.31) unlinked diagram terms appear, the
energy AFcrsp is not size-extensive, which is a general problem of all truncated
1 methods. The simplest way of restoring size-extensivity in the CISD equations
is to add 71T on the left-hand side of Eq. (4.30) and 177 on the left-hand side
of Eq. (4.31). These quadratic terms cancel the unlinked diagram terms of the
right-hand side of Eq.s (4.30) and (4.31), namely a?AE¢rsp and a;?}!"AEC;_gD. In
this way a size-extensive modified CISD method is obtained, which was coined
Quadratic Configuration Interaction with Single and Double excitations (QCISD)
by Pople and co-workers. [35] The final QCISD projection equations in connected

form are given by

(®¢H(Ty + T + Th T32)|®0)c = 0 (4.33)
s S

(@ |H(1+ T + T2 + 515)|%o)c = 0 (4.34)

AEqcisp = (®o| HT|®q) (4.35)

Pople and co-workers have also attempted to develop a QCI method in S, D
and T space, which replaces the non-size-extensive CISDT approach. [35] These
authors suggested the QCISDT projection equations given in (4.36) - (4.39):

(@?lﬁ(f'l + Tz -+— T3)[¢0) - G?AEQC!SDT (436)

= o - . 1.
(@:“H(l + Ti + T:! + T3 =} §T22)l¢0) = a?ijEQCISDT (437)
(L1 H(Ty + T + Ts + ToT3)|@0) = af¢ AEqgcrspT (4.38)
AEqcrspr = (®o| HT:|®) (4.39)

However, the two quadratic terms added are not sufficient to cancel the unlinked
diagram term a} AEqgcrspr in Eq. (4.36) and an unlinked diagram term resulting
from T} in Eq. (4.38). In addition, the disconnected diagram part of 7»73 in Eq.
(4.38) leads to a new unlinked diagram term to the energy AEqgcrspr so that the
QCISDT energy defined by Eq.s (4.36) - (4.39) is not size-extensive. Because of
this failure, the QCI concept has been criticized. [49] On the other hand, QCISD
was for a long time the most often used (approximate) CC method, which simply
had to do with the fact that a) a QCISD program was early available to chemists
through Pople’s ab initio package GAUSSIAN [50] and b) QCISD results seemed
to be superior to CCSD results. The criticism with regard to the QCI concept
caused us to analyze QCISD on the basis of perturbation theory (chapter 5) and
to look for other ways of restoring size-extensivity at the CISDT level of theory
(chapter 6). [22,23,30-32]



MANY BODY PERTURBATION THEORY AND COUPLES CLUSTER THEORY 285

3. Analysis of Coupled Cluster Methods
in Terms of Perturbation Theory

Since CC methods cover infinite order effects, they are more accurate than MP or
CI methods based on the same excitations. In general, it is difficult to say which
effects are covered by a given CC method and how it compares with MP or CI
methods. [8,9,42] Therefore, one analyzes CC methods in terms of perturbation
theory, which is particularly useful since the structure of lower order perturbation
contributions to the correlation energy is well-known. As shown in chapter 2, MP4
and MP5 correlation energies can be dissected into contributions from specific
excitations according to Eq.s (5.1) and (5.2):

(4) et E(4)+E(4)+E§14)+ES*} (51)

Byfp = ES2+2EG) +25G) + ES) + 2E8) + 2ES) + B +2B8) + B B (572)

In a similar way, the MP6 correlation energy can be dissected into 36 contributions:

ES)P F(G)s +2E$)), + 2E or + ES)s+2ES)p + 2By + 25(5%@ + B
ar 2E.§5%2D & QE(SG’})‘T + 2E}>‘51)‘Q + ES;_%D = QE(G)T s Egs}m & gEgij)DT
+ QEEDGJ)JQ -t E,E)G%D + QEEJC?PT + QEE:?%Q + E;(:)sc)gn it 255?391" S Qqu)zQ
St Ef(rss)T E’E‘%T % ZE:(.'%Q S Ei("‘ﬁi‘)‘T E’E‘?‘Q E(G)T it ZE‘E'%Q
+ Eppr + 2E500 + ESbo + Egpg + ESho + ESbg +EShe  (59)

Each of these contributions represents a special correlation effect as has been
discussed in section 2.3. However, with increasing order n of MP perturbation
theory the number of terms increases exponentially and, therefore, it becomes
impossible to keep track of each single term and to check whether it is covered
by a certain CC method or not. Nevertheless, it will be helpful if one knows that
a given CC method is correct up to nth order perturbation theory, which means
that all contributions up to this order are contained in the CC approach. In such
a case, one can expect that the CC method is as accurate as the corresponding
MP perturbation method still contained in the CC method. For example, one
has shown that CCSD is correct up to third order and also contains apart from
the T contribution all other fourth order terms. One can expect that CCSD
calculations are superior to either MP2, MP3 or MP4(SDQ) calculations because



286 D. CREMER AND Z. HE

CCSD contains beside the third and fourth order contributions also infinite order
contributions not covered by any of the MP methods.

While it is rather easy to compare CC methods with MP methods, the com-
parison of different CC methods based on the same excitations is much more
difficult since it has to be carried to higher orders of perturbation theory. For this
purpose, we have developed a graphical method that reveals which contributions
to the correlation energy at higher orders of perturbation theory are covered by
the CC method in question. [22,23] According to this method, each energy con-
tribution at nth order perturbation theory is described as a path that connects
those excitations A, B, C, etc. at orders n, n-1, n-2, etc. down to order 4 that
characterize the contribution E;ngc...- A path can start at one of the excitation
levels S, D, T or Q and has to end at one of these levels at order 4. In between,
it can leave SDTQ space under the provision that Slater rules for a two-electron
operator are fulfilled. [23,24]

For finite MP perturbation theory the possible energy paths form a regular
network, which in horizontal direction takes the form of a wedge. This is the
direction of increasing excitation levels that can be included for increasing order n.
In Figure 5.1, this is shown for MP8. At this level, Q excitations can couple via H
excitations to octuple (O) excitations in the sequence QHOHQ according to Slater
rules, i.e. MP8 is the first perturbation method that includes correlation effects
from septuple (S7) and O excitations. There are 915 different paths representing
the 915 correlation energy contributions EE:%CDE of the eighth order MP energy.
While it would be very time consuming and of little use to write down all 915
contributions, the diagram in Fig.5.1, gives these contributions in a compact and
easy to understand form. With the diagram 5.1, it is straightforward to determine
the unique energy paths and to exclude the symmetry equivalent paths so that
the 583 unique energy contributions of MP8 can be described. In addition, the
diagram makes obvious how the couplings between different excitations grow with
the order n forming ladders that stretch in the direction of infinity.

Graphical representations as the one shown for MP8 in Figure 5.1 also have
to stop at some finite level. However, even for finite n they give a good impression
how the diagram develops for n going to infinity and, therefore, they are well
suited to describe the infinite order effects of a CC method. Therefore, they have
been used in connection with an algebraic expansion method to analyse the infinite
order effects of CC methods.
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(0)]

(S7)

(H)

Figure 5.1. Graphical representation of all energy contributions at nth order
MP perturbation theory (n= 4, 5, 6, 7, 8). A particular energy contribution
E®™,pc._ is given by the solid line that starts at A =S, D, T or Q in the
E® row and connects B, C, etc. at row n-1, n-2, etc. until n=4 is reached.
Note that at the nth order level also those excitations are included that arise
from energy terms at higher order levels (m > n). They are given in
parentheses after a separator to the right of the scheme. Reprinted with
permission from Z He and D. Cremer, Int. J. Quant. Chem . Symp.
(1991) 25, 43. Copyright (1991) J. Wiley, Inc.
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5.1 EXPANSION OF CC METHODS TO HIGHER ORDERS OF
PERTURBATION THEORY

CC projection methods have to be solved iteratively. During the iterations, con-
tributions from higher and higher orders of perturbation theory are successively
added to the CC correlation energy. These contributions become smaller and
smaller with increasing n for a given molecular system. Depending on the con-
vergence criterion of the convergence procedure, contributions being smaller than
a given threshold are cut off, which means that the highest orders of perturba-
tion theory are neglected. Of course, this does not contradict the fact that CC
methods cover infinite order effects. It only means that it is hardly useful to have
the CC calculation running through an infinite number of iterations to cover even
infinitely small energy contributions for n becoming infinitely large.

The contributions from perturbation theory covered by a CC method can be
determined by expanding the CC correlation energy to higher orders, which may
be demonstrated for the CCD (CC with double excitations) method. The CCD
projection equations [18] can be written as

D
AEccp =) (ol H|®4)as(CCD) (5.6)
d
and 1
a4(CCD) = (Eo — Eq) " (®q|V(1 + T + §T§){®g)c (5.7)

Iterative solving of Eq. (5.7) leads in the kth step to the amplitudes agk)(CCD)
(also written as ay )) given in Eq. (5.8):

“E:k)(CCD) =(Eo — Eq)~""Vao + (Eo — Eg)~

Z Vddlag: D

D
1 (k=1) (L 1)
+3 5 ( (®a|Vid, 4, | @o)alk )C (5.8)

dids

For k = 1, agl) is given by

oy’ = (By— Eg) Wao= €2 (5.9)

thus leading to the correlation energy AE&%D

ABS =B (5.10)
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which is simply the second order MP correlation energy. In the second iteration
step, the amplitudes take the form:

d—cta ) o) (5.11)
2.d

where the terms Cf?d)(i = 1,2,3) correspond to the cluster operators 1, Ty, and
172 of Eq. (5.7). They are given by

eit=er ) (5.12)
CS) = (Bo - Eq) Z VinGo (5.13)
dy
and M
1
Cia=(Bo-E)™' Y 5 ((%Ith,ta,,I%) f‘j]cﬁ}z) (5.14)
dldg

Hence, the correlation energy AEccp is expanded in the second iteration step up
to fourth order:
AED, = ED, + EQy + ES (5.15)

In the third iteration step, AEccp is expanded up to eighth order and at the
kth iteration step, the CCD amplitudes a&k)(CCD) and the energy AFcep cover
perturbation contributions up to order 2¥ —1 and 2, respectively. In this way, the
CCD correlation energy is expanded to higher and higher orders with proceeding
iterations.

In the same way, the CCSD correlation energy AE¢csp can be expanded in
terms of perturbation theory for increasing numbers of iteration steps:

AEccsp = AES%SD + AEE:?C);*SD + AEE?();SD + &Egéw + AEcc),sn +... (5.16)

In the first three iterative steps, CCSD covers the following energy contributions:

AEghsp = Ejrp (5.17)
AEZ sp = Bife + By + B + By’ (5.18)

AESLsp = Ejpp + Bfpp + ES + B + B + EGlsp + Egesp + -~ (5:19)

with ES) ¢, and By being defined by (5.20) and (5.21)

ES).op = BS)+2E8) + ES) + ES) + ES) + ESL (1) + ESL+ EE)(D)  (5.20)
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F(CS():SD gi;)s =I= QE%D 7 E(ssr))s + QE(;BD = JE(S)Q i E.g‘ﬁils ot Eg?q (I)
+Egps(I) + ESLp + ES) p + 2ES) 0 + ES), + B (1)
+ Egan(I) + Epps + ES)o(I) + ESL (1) + ES) o (D) + ES) o
+ Egho() + ESYp + ES) (1) + ES) o (1)
+ Brgs + Evas(I) + Esopo(l) (5.21)

In these equations, the symbol (I) identifies those terms that are only partially
contained in the CCSD correlation energy.

Eq.s (5.20) and (5.21) give those MP5 and MP6 energy contributions that are
fully or partially covered by CCSD. The energy AE’E%SD of Eq. (5.19) added in
the third iteration involves at least 8th order MP contributions.

5.2 COMPARISON OF CCSD AND QCISD

A similar expansion as the one described for CCSD in section 5.1 can also be carried
out for the QCISD correlation energy. The resulting equations become rather
complicated for n = 6 and even higher orders and, therefore, it is of advantage
to present results in a graphical way using the same techniques developed for the
graphical representation of MPn correlation energy contributions. In Figure 5.2,
the corresponding CCSD diagram is shown. [22]

In Figure 5.2 and the following figures, energy contributions that are fully
contained at a particular level of perturbation theory are given by solid lines and
those, which are only partially contained, have at least in one part of the total path
representing an energy contribution a dotted line. The corresponding diagram for
QCISD is shown in Figure 5.3. A combination of the CCSD and the QCISD
diagrams is given in Figure 5.4 in order to make the differences between the two
methods more obvious.

In the combination diagram, terms that are common to both methods are
given in thick solid lines and those, which can only be found in CCSD, in thin
solid lines. If a term is just partially contained hashed lines are used for common
terms and dotted lines for terms that are just covered by CCSD.

CCSD and QCISD are correct up to third order. Figures 5.2 and 5.3 indicate
in addition that both CCSD and QCISD are correct at any order of perturbation
theory in the truncated configuration space that is made up from S and D excita-
tions, i.e. within this space all infinite-order effects are covered. This, of course,
is trivial since it reflects just the nature of the CC ansatz. More important is that



MANY BODY PERTURBATION THEORY AND COUPLES CLUSTER THEORY 291

—
Q.
A
.
\\
E —~ —~
=t - E'. =2 E

\ /// /// //
N NN AN,

E® \pcoE
7

E?D spcp

E© 5

©
<
o
=

E@,

Figure 5.2. Graphical analysis of energy contributions at nth order MP
perturbation theory (n= 4, 5, 6, 7, 8) covered by the CCSD correlation
energy. See explanations given for Figure 5.1. Note that solid (dashed)
lines denote energy terms fully (partially) contained in the CCSD
correlation energy. Reprinted with permission from Z. He and D.
Cremer, Int. J. Quant. Chem . Symp. (1991) 25, 43. Copyright (1991)
J. Wiley, Inc
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Figure 5.3. Graphical analysis of energy contributions at nth order MP
perturbation theory (n=4, 5, 6, 7, 8) covered by the QCISD correlation
energy. See explanations given for Figure 5.1. Note that solid (dashed) lines
denote energy terms fully (partially) contained in the QCISD correlation
energy. Reprinted with permission from Z. He and D. Cremer, Int. J. Quant.
Chem . Symp. (1991) 25, 43. Copyright (1991) J. Wiley, Inc.
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Figure 5.4. Graphical analysis of energy contributions at nth order MP
perturbation theory (n= 4, 5, 6 7, 8) covered by the CCSD and QCISD
correlation energy. See explanations given for Figure 5.1. Note that bold
solid (hashed) lines denote energy terms that are fully (partially) contained in
both the CCSD and the QCISD correlation energy. Those energy terms that
are only covered by the CCSD energy terms are denoted by normal solid or
dashed lines depending on whether they are fully or partially contained.
Reprinted with permission from Z. He and D. Cremer, Theor. Chim. Acta,
(1994) 85, 305. Copyright (1994) Springer Verlag.
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for both methods infinite order effects are also covered in the SDQ space with just
the A..QQ terms being partial. In general, the diagrams reveal that CCSD and
QCISD are equivalent in any SDQHO...X space where X excitations are generated
from disconnected TJ" cluster operators.

The major differences between CCSD and QCISD are in SDTQ space. They
result from the omission of the term 7373 ( T4 = T5 + $T2) in the D equations of
QCISD and can be summarized by Eq. (5.22):

7
n n 5 5 6
Z(AE(C(%SD = AEE}C)‘ISD) =E’_g‘.s) + E’E“é(” + E:E"GS)S i E’E“?D s EE)%S
=2

+ Epro(D) + S (D) + ESo(D) + B (1)
+E$) o (D) + SRl (5.22)

where > E,(:f)acn denotes a sum of 41 terms (see Ref. 23).

Both CCSD and QCISD cover disconnected T effects, which according Fig-
ures (5.2), (5.3), (5.4) and Eq. (5.22) are introduced into CCSD one order of
perturbation theory earlier than into QCISD. For example, TS couplings enter
CCSD at n = 5, but QCISD at n = 6; similarly, TT couplings CCSD at n = 6,
but QCISD at n = 7; and TTT couplings CCSD at n = 7 and QCISD at n = 8.
Clearly, QCISD is imping behind CCSD by one order of perturbation theory.

We have compared the energy terms covered by CCSD and QCISD up to
eighth order. [22] With increasing order n, QCISD covers less and less terms going
down from a 50% coverage at MP5 to a 24% coverage at MP8. CCSD covers 64%
of all MP5 terms and 43% of all MP8 terms, which means that CCSD contains
almost twice as many terms at higher orders. '

Of course, each energy contribution at a given order of perturbation theory
can have a different importance for the description of a given electronic system.
Therefore, one may argue that there is a chance that QCISD covers all important
terms and just neglects the unimportant ones. For example, the TS and TQ
terms at MP5, that are not covered by QCISD, lead often to positive energy
contributions and decrease the absolute magnitude of the correlation energy. As
a consequence, QCISD correlation energies are often more negative than CCSD
correlation energies, which one could take as indication that the right terms have
been neglected in QCISD. On the other hand, the correct description of correlation
effects must avoid an exaggeration of certain correlation effects as discussed in
chapter 2 in the case of the pair correlation effects. The appearance of positive
contributions normally means a correction of correlation effects exaggerated at
lower orders and, therefore, these terms should not be neglected.
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In general, it is hardly possible to make predictions with regard to the im-
portance of each energy contribution for a given system. Therefore, the simple
rule of thumb is that the more complete description which covers more energy
contributions should also be the better. Out of this perspective, a statistical com-
parison of two methods should give some indication on the performance of the
two methods. [22,23] For example, in the case of CCSD and QCISD the analysis
clearly shows that for molecules, that require higher order effects, CCSD should
perform significantly better than QCISD because (a) QCISD covers a much smaller
number of energy contributions than CCSD at larger order n; and (b) part of the
T, P, S7,..., Y contributions (Y is any odd order excitation) generated by the
cluster operator T} f’é are delayed at the QCISD level by one order of perturbation
theory.

5.3 COMPARISON OF CCSD(T) AND QCISD(T)

When T correlation effects are included into CCSD and QCISD in a perturbative
way, then CCSD(T) [36] and QCISD(T) [35] energies are obtained according to

AECCS’D(T) = AECCSD + AET(CCSD) (523)

and
AEQCISD(T) = AEQC}'SD -+ AET(QGISD] (524)

where the T corrections are given by

sSD D T
AEp(CCSD) =Y "> a,(CCSD)Vpi(Eo — Ei)™'Viaaa(CCSD)  (5.25)
p & i

S Dl T

AEr(QCISD) =Y~ a,(QCISD)Vp(Eo — Ei)~'V:aaa(QCISD)

p d 1

S iy 2
+3°)° > aa(QCISD)Var(Eo — Ev)™" Visas(QCISD)
d 3

&

(5.26)

CCSD(T) and QCISD(T) correlation energies were expanded in a similar way
as in the case of CCSD and QCISD. [23] Similar methods such as CCSD(TQ) and
QCISD(TQ), which were developed to have CC methods that are correct in fifth
order perturbation theory [9], were also investigated. We refrain from a lengthy
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Figure 5.5. Number of energy contributions E™ 5 covered by QCISD, CCSD,
QCISD(T), CCSD(T), QCISD(TQ), CCSD(TQ), CCSDT, and MPn given as a
function of the order n. Numbers are given without considering symmetry. Reprinted
with permission from Z. He and D. Cremer, Theor. Chim. Acta, (1994) 85, 305.
Copyright (1994) Springer Verlag.
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discussion of all the results obtained in this work [22,23] and, instead, summarize
results in Figure 5.5, where the numbers of energy contributions covered by a
particular CC or QCI method at nth ( n = 5, 6, 7 and 8) order perturbation
theory are given as functions of n. These curves clearly reveal that the discrepancy
between the QCI and CC descriptions is gradually reduced from CCSD/QCISD
to CCSD(T)/QCISD(T) and CCSD(TQ)/QCISD(TQ).

A noniterative improvement of a SD method by T excitations is more im-
portant for QCISD than for CCSD, since AE7(QCISD) adds more terms to the
QCISD correlation energy than AEp(C'CSD) adds to the CCSD correlation en-
ergy. As for the total number of energy contributions, QCISD(T) falls back behind
CCSD at higher orders of perturbation theory as shown in Figure 5.5. Of course,
this does not necessarily imply that CCSD is a better method than QCISD(T).

CCSD(T) should lead to a much better description of T effects than QCISD(T)
since it contains more T contributions (including important TT coupling terms)
than QCISD(T). Therefore, CCSD(T) is probably the method with the better cost-
performance ratio. The difference between QCI and CC is considerably decreased
at the CCSD(TQ) and QCISD(TQ) level of theory when considering in particular
T correlation effects. QCISD(TQ) should lead to a performance comparable to

that of CCSD(TQ).

In molecular investigations that require the inclusion of T effects, the various
CC and QCI methods should lead to improved results in the following order:

MP4(SDTQ) < QCISD(T) < COSD(T) < QCISD(TQ), CCSD(TQ) < CCSDT.

MP4 that does not cover any TT coupling effects will always exaggerate T
effects and some of this exaggeration will be carried over to QCISD(T), which
includes the TT coupling effects at a relatively late stage. CCSD(T) should be the
method that leads to a relatively balanced description of T effects while CCSDT
is certainly a method, which comes close to FCI performance. This discussion
clearly shows that, at the presence, applied work should be done with CCSD(T)
while future work should concentrate on CCSDT or equivalent T methods within
the CC approach. This is further discussed in chapter 6.

6. Coupled Cluster Methods with Triple Excitations

Triple (T) excitations resulting from the cluster operator T3 describe three-electron
correlation effects. These effects are generally rather small, however due to the
large number of these effects in an electronic system, their sum leads to a sig-
nificant contribution to the total correlation energy (see the discussion in section
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2.3). It has been shown that T correlation effects are particularly important in
molecules with multiple bonds, nonclassical bonding, hypervalent bonding, and
many other electronic situations. [11,15] In addition, one has put some hope into
the expectation that CC methods with T excitations help to describe electron
systems with significant multireference effects even within a single determinant
approach. There are, however, at the moment two obstacles that hinder the gen-
eral use of CC methods with T excitations such as CCSDT. First, development
and programming of CCSDT is a rather tedious procedure which has been solved
only by few experts. [20,47, see also 21] Second, the calculation of CCSDT ener-
gies involves O(M?®) computational steps and, therefore, is too costly for routine
calculations of larger molecules. Because of the complexity of the CCSDT equa-
tions and the associated cost factor, the development of the last years has gone in
the direction of replacing CCSDT by CC methods that contain the T correlation
effects in an approximated way. [35,36,51] To be mentioned in this connection are
the CCSDT-n methods [51] and CCSD or QCISD with a perturbative inclusion
of T effects such as CCSD(T) [36] and QCISD(T) [35]. For example, CCSD(T)
and QCISD(T) are nowadays the most often used CC methods for high-accuracy
calculations on nontrivial chemical problems. This has to do with the fact that
the perturbative inclusion of T effects into CCSD or QCISD leads to O(M7) pro-
cedures, which can be applied to problems with 200 basis functions and more.
[52]

Although CCSD(T) and QCISD(T) are the most often used CC methods for
describing T effects, it is also clear from the discussion given in chapter 5 that the
perturbative T methods, but in particular QCISD(T) can lead to an unbalanced
description of T effects. Figure 5.5 reveals how much CCSD(T) and QCISD(T)
differ from CCSDT for higher levels of perturbation theory. CCSDT, on the other
hand, comes close to full CI or infinite order MPn results and, therefore, it has to
be a major goal in CC theory to extend the existing methods for general use in
Quantum Chemistry also to CC methods with a full account of T effects. In the
following, the main features of CCSDT and approximate CC methods, that cover
T3 effects fully, is described.

6.1 IMPLEMENTATION OF A COUPLED CLUSTER SINGLES, DOUBLES,
AND TRIPLES METHOD: CCSDT

Truncation of the cluster operator 7' (introduced in chapter 4, Eq. 4.2) at T leads
to the CCSDT method [20,47] that is defined by the projection Eq.s (6.1) - (6.3):

L, Y, et A FUNENN BT TN A
(SHH( Tt Tt s Tyt ET; + 3—,3*,3)1%) = alAEccspr (6.1)
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1.
(‘I—"ab|H(1 +T+Ty + Ts + 2T-2 LTyt §T1 + 7175
1 e =
+ gTs ETETZ + ——T{‘)[c]&g)
=(@F |y + Tl |®o)AEccspT (6.2)

s b A i et 1. S
(| H(Ty + To+ T5 + §T§ + DTy + —TE + 11 T3

1 e 1, 1,
E DTt il S0 T Taor 05 )| 9o}
=(®LEITs + W Ts + ,Tl |®0)AEccspr (6.3)

In the same way as described for CCSD in chapter 4, one can show that unlinked
diagram terms cancel each other so that the S, D, and T equations (6.1) - (6.3)
are obtained in connected form:

A L X SN 1 I
(®F|H(Ty + Ty + T+ Th T3 + ETf + ny)Wn)c =4 (6.4)

1 - 1
(@LHA+ Ty +To+ Ts + - T2 + T T5 + 2T1 + T T5

+ ;IT"* I %T{Tg + Ezr';*)lci)g)c =0 (6.5)
and
(@“T[H(Tz S sz + T T + %TE + T T5+ ToT5 + 3|T1 + Tl T,
+ EngTS o+ %T{i”q’(r)c =0 (6.6)
The expression for the correlation energy AEccspr
AEccspr = (®ol H(T: + %le)l‘i‘u) (6.7)

keeps the same form as in the CCSD case since higher excitation cluster operators
T (n > 3) can not directly affect the total energy.

The equation for the CCSDT correlation energy in form of two-electron inte-
grals is given by (6.8)

1 i 3
AEccspr = 1 Z(*J”“b)ﬁjb (6.8)

ij,ab
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where 72" is determined via S and D amplitudes

‘q‘}b = -1- af rxb - abaf (6.9)

The S and D amplitudes are calculated by iterative solution of Eq.s (6.10) and
(6.11):

(6 —€a)af = Tf + 57 + Y Y (Iml|de)adis (6.10)

l<md<e
(& + €5 — €a — €)al = (abl|i) + & + b5+

> ((blllde)agste + (all|deyae) + S ((Im||dj)agis + (Im||di)afid)

l,d<e I<m,d
2 ZZ (mn]|ef) (2& af;b,{ -I-Z[ )" P(i/j)as ;:'{n
mn ef
+Z(—])PP(a/b]a§1(Lf;r{) (6.11)
P

which via the T amplitudes a“!’f depend on the T equation (6.12):

(€ +¢€; tep—€a—€5—€ )“uk =

=2 (=) P(i/jkla/bc) lZ XYOSPT (i, d,b,e)agd + ) XFOSPT(j k, LaJaﬁ’f]
i I

d

+ ) (=1)" P(a/bc) lé > XTI (b e, faffi + Z Y7o P1(f, a)a{j’:]
P

ef
+> (1P P(i/jk) l > XZCPT (m,n, j, k)aghe, + ZYZCCSDT(n,i)a;“?i_l
P mn n
E Z —1)F P( 1/jk|(1/b(‘)2 }{"{“J‘js"{}t‘r‘(:m,(.-u,:*,.9)411J e (6.12)

For setting up S, D, and T equations, arrays @f, o7, @; b and ‘UU , which contain
the terms of the CCSD equations, have to be calculated according to Eq.s (6.13)
- (6.16):

4= _ Z (laid)af — —Z(fa“dc == Z(lm“zd s (6.13)

Ide !md‘
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-ab

*“b Z( ab||dj)al — ab“dz —I—Z ((Ia||ig)al — (ib]|i7)

+ 5 Z(abnde <+ - Z (Iml|i5) i
—ZZ —1)? P(i/jla/b)(1b]|jd)(af — afaf)

id p

v = ZZ Im||de) (alafs + afal + 2af(als,

Im de

dt‘ ab o ad _be be _ad ab de
i Z Z lm”de) Tfm z(au Tim an ("‘:J Tim 5 a; T

Im de

+4 (afm(aq —a; ab )+a”( ad —a al )—adaiab" —a; a,a“d)]

+ 207 PG/s) 3 (i) ol éadr,;*;.

mn,d

+Z( 1P P(a/b) Y (amllef)(atal] — sab,r)

m,ef

+ Z(_-UPP(?'./;;[G./I;) ( > (mn|jd)ag, (ald — afal)
f 2

mn,d

+ Z (am||ef)a "(ajm —rtf 2 ))

m,ef

ag,))

+ Ty @

a;)

de ab

JI’TL

301

(6.14)

(6.15)

(6.16)

In addition, the intermediate arrays X,E"CSDT and Y,ECSDT listed in Table

6.1 have to be evaluated. They reduce the computational cost of the CCSDT

method to O(M®3). The most costly terms in the T equations result from the

cluster operators Ts and TuT5.

6.2 DEVELOPMENT OF A QCI METHOD WITH
SINGLE, DOUBLE, AND TRIPLE EXCITATIONS: QCISDT

Pople, Head-Gordon, and Raghavachari (PHR) have suggested a QCISDT method
in their original QCI publication [35], which turned out to be not size-extensive

although the method was developed to overcome the size-extensivity error of the
normal CI approach. [49] This deficiency of the QCISDT method of PHR does not

mean that a size-extensive QCISDT method with just quadratic corrections added
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to the linear CISDT terms is impossible. Therefore, the question arises whether
and how a size-extensive QCISDT method can be constructed. This problem
automatically leads to the more general question whether there exists a hierarchy
of size-extensive QCI methods that is in line with the original idea of PHR, namely
a simple improvement of CI by just including quadratic correction terms. [30]

One can approach this problem in the following way [30]:

The physically not meaningful terms in the projection equations of truncated
CI show up in the diagrammatic description in form of unlinked diagrams. The
unlinked diagrams result from disconnected terms in the CI equations of a given
truncation level. One has to eliminate all disconnected terms from the CI pro-
jection equations in order to obtain a size-extensive CI energy. Based on these
considerations, a general procedure for restoring size-extensivity in a CI approach
has been developed. [30] This procedure comprises three steps:

1) Analysis of disconnected terms in the CI projection equations. 2) Cancel-
lation of disconnected terms by the addition of appropriate new terms. 3) Final
test whether the addition of new terms to the CI equations does not lead to new
disconnected terms.

If new disconnected terms appear, one will have to add further terms until
all disconnected terms disappear. In the most general case one has to loop several
times through the sequence 1) - 3) until a size-extensive method is obtained. Since
the methods obtained in this way are size-extensive extended CI approaches that
do not necessarily comply with the quadratic CI method of PHR, we have called
them extended CI (ECI) methods. [30] Hence, an ECI method can be considered
as a CI method, to which a minimum number of terms have been added to restore
size-extensivily, or alternatively as an approzimated CC method that differs from
the corresponding CI method by a minimal number of terms.

If the CI space is restricted to S and D excitations, the new terms to be added
are quadratic as has been shown by PHR.[35] However, if higher excitations are
included, e.g. T excitations at the CISDT level, size-extensivity will require the
inclusion of both quadratic and cubic terms as will be shown in the following.
Accordingly, one would have to speak of cubic CI, quartic CI, etc. However, it is

better to speak of ECI methods and to refrain from introducing a new terminology.
(30]

The CISDT projection equations are given by
(®F|H(T, + T; + T5)|®o) = af AEcrspr (6.17)

(®F|H(1 + Ty + To + T3)|®0) = aff AEcrspr (6.18)
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(®EEIH(Ty + Ty + T5)|@o0) = affi ABcrspr (6.19)
AEcispr = (®o| HT|®) (6.20)

There are three unlinked diagram terms («?AEcrspr, al AE’C;SDT and a:‘ﬁ{
XxAFEcispr) in these equations and one disconnected term associated with 7}
in Eq.(6.19), which also gives an unlinked diagram contribution to the energy
AE¢rspr. In order to cancel those unlinked diagram contributions one has to add
quadratic terms T} 7%, 172 and Ty Ts in Eq.s (6.17), (6.18) and (6.19), respectively.
In this way, the three unlinked diagram terms are cancelled, however those unlinked
diagram contributions resulting from 7} are not cancelled. Also, the addition of
5T Eq.(6.19) leads to some new unlinked diagram contributions. This can be
seen if the term associated with 7575 is written as

(D | HT:Ts|®0) = (R |(HT2T5)c |Bo) + (R (AT T5)p | ) (6.21)

where the disconnected part can further be partitioned according to
(LEI(HTTs)p |Ba) = (S| To(HT:)c| o + (B [To(HT5)c|®0)  (6.22)

The first term of Eq. (6.22) cancels the unlinked diagram term of the right-
hand side of Eq. (6.19) while the second term of Eq. (6.22) adds both linked
and unlinked diagram contributions to the correlation energy. This demonstrates
clearly that the original QCI concept of PHR [35] that is based on the addition of
Jjust quadratic cluster terms does no longer work for CISDT.

Size-extensivity can only be obtained in the case of CISDT by adding further
quadratic and even cubic cluster operator terms to the T equation (6.19). [30]
Finally, the projection equations (6.23) - (6.26) of size-extensive ECISDT are ob-
tained, which differ considerably from the (non-size-extensive) QCISDT equations
of PHR. [30]

(@o|HT:|®y) = AEgcispr (6.23)
(BF|H(Ty + Ty + Ts + Th T3)|®0) = al AEgcrspr (6.24)
(RFIH(+ Ty + Ty + Ts + 2T2)|<1’0) = e’ ABpcrspr (6.25)

( f_?bf!H(Tl + T-'J + T3 + Tl - TlT: + Tl Tg -+ 2T2 + T:f E; + T] 2)]q}0)

3;54,2( 1)P P(i/jk|a/be)atals) AEgcrspr (6.26)
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Eq.s (6.24) - (6.26) can be rewritten in connected form:
(@?IE(TI +Tg+ T3+T1T2)fq)g)c = (627)
(@FIHA+ T+ Ty + T + T2)|<I>D) =0 (6.28)

1 i 1t
(@E|H (T + Ts + T‘* A A B §T LTt §T1T§)1¢D)C =0 (6.29)

Clearly, ECISDT is not identical with CCSDT since it differs with regard to one
cubic term and some quadratic terms. There is not much reason to further in-
vestigate a method such ECISDT since it offers little advantage compared to the
more complete CCSDT method.

ECI methods in general are not very attractive, which becomes obvious when
extending CISDTQ to size-extensive ECISDTQ as described in Ref. 30. It turns
out that ECISDTQ is identical with CCSDTQ, i.e. the ECI methods do not rep-
resent a hierarchy of independent methods. ECID is identical with CCD, ECISD
with QCISD, and ECISDTQ, ECISDTQP, etc. identical with the corresponding
CC methods. Hence, the PHR concept of size-extensive QCI methods is not attrac-
tive, no matter whether one uses the original recipe [35] or the correct procedure
worked out in Ref. 30.

Although the ECI equations may not be useful for any practical purpose, they
can be used for deriving a new QCI concept. For this purpose, one starts from the
ECI projection equations in their connected form and, in the same spirit as the
CCSDT-n methods were developed [51], deletes all terms but the connected linear
and certain quadratic terms. In the case of ECISDT (see Eq.s (6.27) - (6.29)), one
keeps Ty Ty, withn = 1,2, and 3 for §, D, and T equations, respectively. In this way,
the projection equations of a size-extensive QCISDT method are defined, which
we have coined QCISDT, to emphasize that we start from connected form of
the projection equations and to distinguish QC'ISDT, from the non-size-extensive
QCISDT approach of PHR.

AEqcrspr, = (Bo HT2|®o) (6.30)
(®|H(Ty +To+ T + T1T2)1¢0)c =0 (6.31)
(@FIHA+ T+ To+T5 + T2 )|@o)c = 0 (6.32)
(BS/EIH (T + Ts + T2T5)|®o)c = 0 (6.33)

The QCISDT, equations differ from the original QCISDT equations ( Eq.s 3.36
- 3.39) in three ways. First, only the connected part of the quadratic correc-
tion terms is included. Secondly, quadratic corrections (HT5T}, )¢ are added to all
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CISDT equations but the energy expression. Finally, the linear term @:ﬁ |HT|®o)
disappears since it leads to unlinked diagram contributions that do not add to the
correlation energy.

In the same way, one can derive QCISDTQ. from ECISDTQ = CCSDTQ.
[30] Formally, the QCI. equations can also be obtained by starting at the cor-
responding CI equations. This can be shown for the projection equations of a
truncated CI method that includes up to n-fold excitations:

AEcr = (90| HT:|P) (6.34)
(@ |HA+ Ty + To + ... + T5)|B0) = ez AEcr (#:=1,2,:-,1) (6:35)
or, alternatively, as
(‘I’dﬁ(’jl - Tg -+ T3)|(I’0) =, AN ear (636)
(@dlg(l +f‘1 +:Lr) +T3+T4)|‘1’(}) = CdAEc,r (637)
) min[z+2 n] ;
(@ |H( Z T;)|®a) = ez AE¢y (n>z>3)(6.38)

i=z—2
where x is a general excitation indices. For any excitation index x higher than d,
there appear just two disconnected terms, namely (®,| HTy—2|®0)(= (ab||ij)cs—2)
and ¢, Ecy in the corresponding projection equation. Introducing —FITP_Z and
parts of the term HT,T,, namely (HT3Tz)¢c and T,(HT,)¢, on the left side of Eq.
(6.38), all disconnected terms are cancelled and the QClc equations are obtained
in their general form:

ABqcr, = (®o| HT,|®o) (6.39)
(®s|H(Th + Tz + Tz + ThT3)|®0)c = 0 (6.40)
(Pa|HOA+ Ty +To + T+ Tu + %Tg)[%)(; =0 (6.41)
min[z+2,n]
(@A DY, T+DNL)@)e=0 (n>z>3) (6.42)
i=r—1

Eq.s (6.39) - (6.42) establish a hierarchy of size-extensive QCI methods that covers
the original QCISD method of Pople and co-workers, but can easily be extended
to T, Q, and higher excitations.
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Since the QCISDT, projection equations possess a rather simple form com-
pared to the corresponding CCSDT equations, it was attractive to develop QCIS DT,
as a new CC method including T effects. Such development is a rather tedious
task and, therefore, work has to be based on more than just the assumption that
a new method such as QCIS DT, may approximate a more complete method such
as CCSDT rather well. Therefore, QCISDT,. and CCSDT are compared in the
next section with the help of perturbation theory.

6.3 ANALYSIS OF CCSDT AND QCISDT

Results of the comparison of the CCSDT and QCISDY, correlation energy in
terms of nth (n < 6) order MBPT as described in chapter 5 are summarized in
Figures 6.1 and 6.2. [30] CCSDT covers all contributions directly made up by S,
D | and T excitations as is nicely shown by the energy diagram of Figure 6.1. The
body of the CCSDT diagram is made up by a ladder of SDT contributions, which
reaches to infinite order. Many Q effects are also covered either fully or at least
partially where the latter is also true for many higher excitation effects. Figure
6.1 reveals that CCSDT, which is correct up to fourth order, lacks just the QT
contribution at fifth order and contains the QQ contribution just partially. At
sixth order, CCSDT is also a rather complete method. Out of the 55 sixth order
terms, it does not contain five terms, namely QTD, DQT, QQT, QTT, and TQT.
Apart from this, CCSDT covers nine other terms just partially.

QCISDT, is also exact up to fourth order. At higher orders, it lacks TS,
TSA, TQ, and TQA energy contributions as is shown by Eq. (6.43), which gives
energy differences between CCSDT and QCISDT, up to 6th order.

AEccspr — AEgcispr.
=AOUEF) + BSY) + XOES) s + ESYo(11) + ES)s(11)
G 6 (] G 6
+ Ef:)'}q + Epes + E'(m)"s i ETSD it F’E“éD + Eé";’r
6
+ Efgo(D) + Efpg + ESpr (1] + 00™) (6.43)

In most cases, contributions such as TS, TQ, TSA or TSQ have positive sign and,
therefore, make the correlation energy more positive. This means that QCISDT,
energies will be often lower than CCSDT energies.

According to Figure (6.2) and Eq. (6.44), which gives the difference between
QCISDT, and QCISD(T) up to sixth order, QCISDT. should be superior to
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Figure 6.1. Graphical analysis of energy contributions at nth
order MP perturbation theory (n= 4, 5, 6, 7, 8) covered by the
CCSDT correlation energy. See explanations given for Figure
5.1. Note that solid (dashed) lines denote energy terms fully
(partially) contained in the CCSDT correlation energy.
Reprinted with permission from Z. He and D. Cremer, Int. J.
Quant. Chem . Symp. (1991) 25, 43. Copyright (1991) John
Wiley, Inc.
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QCISD(T):

AEqcrspr. — AEqgcrsp(r)
=XO(EL ~ BF) + AOBy + 2B8), + B, + B,
+EGpoU) + ESho(D) + EShr (1) + BSL(D)
= Egi%s = "E"Gs)s = E’E"SS)D] +0(AM) (6.44)

QCISD(T) suffers from an exaggeration of T effects in molecular calculations due
to the fact that TT couplings are totally missing in QCISD(T) at 5th and 6th
order. [23] QCISDT., however, covers 6 of the 11 possible sixth order TAT and
TTA coupling terms (partially or totally) and, hence, compares well with CCSDT
that covers 9 of these terms. In summary, QCISDT, should come close to the
performance of CCSDT in those cases where TS and TQ contributions are not
important. Of course, this improvement is obtained at the cost of going from an
O(M") method, namely QCISD(T), to an O(M?®) method. However, in view of
the simplicity of QCIS DT, it is worthwhile to use this approach as an alternative
CC method with full inclusion of T effects.

6.4 IMPLEMENTATION AND APPLICATION OF QCISDT

The QCIS DT, projection equations derived in section 6.2 have to be transformed
into two-electron integral expressions in order to set up a QCISDT, computer pro-
gram. [31] The QCISDT, energy expression as well as the S, D, and T equations
take a similar form as the corresponding CCSDT equations if expressed in terms
of two-electron integrals (in the following QC'ISDT. is abbreviated by QCISDT):
[31]

1 A2 ab
AEqcispr = i :‘Z::b(zj”ab)aij (6.45)
(6 = €a)af = uf + 08 + 3~ Y~ (Im]|de)agic (6.46)
I<m d<e

(6 + ¢ — €~ @)af = (abllif) +ufl + v+

> ((blllde)atse + (all|de)agbe) + > ((Imlldjyagtd + (iml|di)aid)  (6.47)
ld<e I<m,d

abe __
(ei+e; +er—eq—ep— €c)ak =

=D (=DPP(i/jklajbe) | Xi(i,d,b,c)asf + > Xa(j, k, 1, a)als
P d i
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b
+ 5 (=1)" P(a/be) { 3" Xa(b,e,e, falfl + Wil a.)a{jf]
P b

+> _(=1)PP(i/jk)
P

ZXf!(m n .7 k fr?‘;cn o ZYZ(R 3 njk]
—Z P(i/jk|a/bc) ZX5(m a,i,€)alss, (6.48)

where u?, vf, u!J , and v} > contain the terms of the corresponding QCISD equa-
tions, namely:

uf = — S (lallid)af — 5 3 (lallde)aff — 5 3 (imlid)af (6.49)
Id

Ide Imd

= Z((ﬂﬁlldj)af — (abl|di)ad) + Y "((lallij)ai — (1b][ij)af)
!
+ = Z ab||de) a £ = Z(Im”zj Yagt
= ZZ P(ij|ab)(lb||jd)ad (6.50)

= %ZZ(ldee (adaf® + afald + 2afall) (6.51)

Im de

ab - de ab ad be be ad
:3 4 ZZ hn”d'? "J Uy — 2(“’13 Uy 4 ﬂ'sJ A

Im de

+afain + affafy,) +4(affajr, + aifaly)] (6.52)

The intermediate arrays X,, and Y}, are defined in Table 6.1 and compared with the
corresponding CCSDT arrays. It becomes clear from Table 6.1 that the working
effort for setting up a CCSDT program is considerably higher than that for setting
up a QCISDT program although both CC methods have an O(M?®) dependence.
(31]

In the case of an existing CCSDT program, it is rather simple to install the
QUCISDT projection equations and to check them for possible errors. However in
a situation, in which a CCSDT program is not available, it is much easier to set
up QCISDT on a computer than to set up CCSDT. In any case, it is advisable
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to start the programming work from an existing QCISD or CCSD program rather
than to program everything from scratch.

To test the accuracy of QCIS DT energies, we have carried out QCISDT and
CCSDT test calculations for 33 different electron systems, for which FCI results are
available. [31,32] It turns out that in nearly all cases, QCISDT energies are slightly
more negative than the corresponding CCSDT energies. This simply reflects the
fact that certain coupling terms, which lead to positive energy contributions, are
neglected in QCISDT as has been discussed in section 5.3. As far as the accuracy of
QCISDT results is concerned, we determined for the 33 benchmark calculations a
mean absolute deviation of 0.568 mhartree from FCI values in the case of QCISDT
and 0.436 mhartree in the case of CCSDT, i.e. the two methods hardly differ from
each other with slight advantages for the more complete CCSDT method. Apart
from this, QCISDT results can be characterized in the following way: [31,32]

(1) QCISDT is superior to both QCISD and QCISD(T) with regard to the
reproduction of FCI energies.

(2) Compared to QCISD and QCISD(T), QCISDT is more stable in calcula-
tions of systems with multireference character.

(3) QCISDT reproduces absolute and relative COSDT energies for the exam-
ples we have studied within 1 mhartree and 0.1 kcal /mol, respectively. Its relative
energies are actually slightly better than the corresponding CCSDT energies.

An important observation could be made with regard to the timings of the
QCISDT calculations. While one QCISDT iteration step requires about the same
time than the corresponding CCSDT iteration step, considerable time savings are
obtained in the case of QCISDT calculations because of the faster convergence
of this method. In general, time savings because of faster convergence become
the larger the more multireference character an electron system possesses. This
property of QCISDT becomes understandable if one considers the expansion of the
method in terms of perturbation theory. Because of its simpler structure, QCISDT
covers considerably less energy terms at higher order of perturbation theory than
CCSDT. For example, QCISDT contains 59% of all 915 MP8 terms while CCSDT
covers 87% of the MP8 terms. Although most of these terms represent rather
small energy contributions, their large number leads to significant additions to the
correlation energy at higher orders.

Since during the CC iterations higher and higher perturbation contributions
are added to the correlation energy, the method that is more complete (covers
more higher order terms) will need more iteration steps to reach convergence. It
seems that the number of iteration steps reflects in a way the number of cor-
relation effects covered by a given CC method. Therefore, one can expect that
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QCISDT will converge faster than CCSDT in particular in those cases where due
to multireference character correlation effects of higher order play an important
role,

Of course, one could argue that fast convergence reflects the unphysical nature
of an approximate CC method. However, as pointed out in chapter 5 it will hardly
be possible to keep track of the multitude of correlation effects and their physical
nature if one reaches higher orders. Therefore, one has to make a compromise
between economy and performance of a given method, which leads to useful results
in the case of QCISDT.

7. Conclusions and Outlook

The most important aspects of this review can be summarized in the following
way:

(1) The two traditional methods of deriving MPn perturbation theory meth-
ods, namely the algebraic and the diagrammatic approach, can be combined in
a new procedure that can handle the development of higher order MP methods.
This has been tested for MP4 and MP5, for which final formulas are available
in the literature. [6-9] Then, the new approach has been used to derive the first
full MP6 method for routine calculations. [24-26] In addition, a dissection of the
MP6 correlation energy has been carried out that leads to the development of two
approximated MP6 methods with an O(M") and an O(M®) dependence. The
former method promises to be used as frequent as MP4 to calculate sixth order
correlation effects.

(2) A new way of analyzing and comparing Coupled Cluster methods has
been developed that provides an useful basis for predicting the performance of
these methods. [22,23] The analysis is based on a graphical representation of
energy contributions at various orders of perturbation theory. The compact form
of the graphical representations makes a quick comparison of different CC methods
possible. It has been used to derive the major differences between CC and QCI
methods and to suggest improvements of these methods. [30]

(3) Motivated by the unsuccessful attempts to derive a size-extensive QCISDT
method [35], a procedure has been worked out to systematically extend CI meth-
ods to size-extensive methods. This investigation revealed that the original QCI
concept leads just to one unique QCI method, namely QCISD [35], while all other
methods either coincide with the corresponding CC methods or represent ECI
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methods with other than just quadratic cluster terms. [30] Based on this result,
2 new QCI concept was developed that leads to the first size-extensive QCISDT
method, which was programmed and tested. [30-32] Size-extensive QCISDT leads
to correlation energies that differ on the average from CCSDT correlation ener-
zies by just 0.07 mhartree. QCISDT possesses significant advantages with regard
to both its implementation on a computer and to its cost requirements (faster
convergence in the CC iterations). [31,32]

If one speaks of perturbation theory methods as the ab initio methods of the
eighties, one can definitely speak of the Coupled Cluster methods as the methods
of the nineties. It is easy to foresee that more and more CC calculations will
be carried out to solve pending chemical problems. Already today, CCSD(T)
is considered as the method to be used in cases where high accuracy is needed.
Certainly, with the next generation of computers, CCSDT will replace CCSD(T).
Then, QCISDT will offer an attractive alternative to CCSDT.

MP6 in its MP6(M7) approximation will offer new possibilities of assessing
higher order correlation effects at the cost of essentially a MP4 calculation. Sys-
tematic application of MP6(MT7) will show to which extend this method will com-
plement the frequently used MP2 and MP4 method.

Another important aspect in connection with the use of MPn methods is the
analysis of the convergence of the MPn series, which we have not discussed in this
review, although important work has been done on this topic recently. [27-29] The
MPn series shows for different electronic systems different convergence behaviour.
Two cases can be considered, namely one with a monotonic convergence of MPn
correlation energies to the FCI value and one with erratic convergence behaviour.
Based on a dissection of MP5 and MP6 correlation energies, it is possible to ex-
plain the differences in the convergence behaviour and to predict which electronic
systems possess monotonous or oscillatory convergence behaviour in the MPn se-
ries. [27-29] Utilizing this knowledge, it is possible to predict rather precise values
of FCI correlation energies once the MP6 correlation energy is known. [28,29]
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