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Abstract 

A size-extensive quadratic CI method with single (S), double (D), and triple (T) excitations, QCISDT, has been derived by 
appropriate cancellation of disconnected terms in the CISDT projection equations. Matrix elements of the new QCI method 
have been evaluated in terms of two-electron integrals and applied to a number of atoms and small molecules. While QCISDT 
results are of similar accuracy to CCSDT results, the new method is easier to implement, converges in many cases faster and, 
thereby, leads to advantages compared to CCSDT. 

1. Introduction 

Coupled cluster (CC) methods have become a pri- 
mary tool for high-accuracy calculations of atomic 
and molecular properties [ l-5 1. In general, the re- 
sults of CC calculations are better than those of con- 
figuration interaction (CI) or many-body perturba- 
tion theory (MBPT) calculations obtained with the 
same basis set and the same type of excitations (sin- 
gles (S), doubles (D), triples (T), quadruples (Q), 
etc. ). One of the most often used CC methods is qua- 
dratic CI (QCI) with S and D excitations (QCISD). 
Pople, Head-Gordon, and Raghavachari ( PHR ) [ 6 ] 
derived QCISD by adding quadratic terms to the 
CISD projection equations. In this way, QCISD be- 
comes size-extensive at the cost of losing the varia- 
tional character of a CI method. One can consider 
QCISD as a simplified CCSD method that does not 
contain cubic and quartic terms and, therefore, is 
somewhat easier to implement and to carry out than 
the CCSD method. 

With QCISD, PHR introduced a new series of 

methods which they considered to be intermediate 
between CI and CC methods [ 6 1. For the case that 
all excitations up to n-fold are included in the CI ap- 
proach, the corresponding QCI method is obtained 
by adding just quadratic terms to the n and n - 1 ex- 
citation equations. In this way, PHR expected to get 
a hierarchy of size-extensive QCI methods that pro- 
vide computational advantages with regard to both 
CIandCC [6]. 

QCISD and its perturbational extension for T ex- 
citations, QCISD (T) [ 6 1, are widely used in ab ini- 
tio investigations, which has to do with the fact that 
QCI programs were available since 1990 via the 
GAUSSIAN program series [ 7 1. In addition, Gauss 
and Cremer developed analytical energy gradients for 
QCISD [ 81 and QCISD(T) [ 91, which allowed the 
routine calculation of response properties at the 
QCISD and QCISD(T) level of theory [ lo]. Many 
applications of QCISD and QCISD (T) have been 
published which show that QCI results are of similar 
accuracy to CCSD or CCSD (T) results in many cases, 
but sometimes are clearly worse, in particular when 
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T correlation corrections become important [ 10 1. We 
have analyzed QCISD and QCISD(T) in terms of 
fifth, sixth, and infinite order perturbation theory and 
have shown that a major weakness of the two meth- 
ods is the handling of T effects [ 11,121. QCISD cov- 
ers no T contributions at fourth or fifth order and only 
a few at sixth order MBPT and, therefore, often 
underestimates T effects while QCISD (T) lacks TT 
coupling terms and, accordingly, often overestimates 
T effects. Therefore, an extension of QCISD to 
QCISDT is needed. 

The QCI concept has been criticized by various au- 
thors. For example, Paldus, Ciiek, and Jeziorski [ 13 ] 
pointed out that QCISDT as suggested by PHR is no 
longer size-extensive even though the QCI methods 
were developed to restore size-extensiveness in CI. In 
a previous paper, we have analyzed the size-exten- 
siveness problem of QCI and we have come to the 
following conclusions [ 141: 

( 1) The original QCI concept introduced by PHR 
does not lead to a hierarchy of size-extensive meth- 
ods. There exists only one unique QCI method which 
is QCZ,SD, while QCID is identical with CCD, and 
QCISDT as suggested by PHR is not size-extensive 
and accordingly not useful for high-accuracy 
calculations. 

(2) Improvement of the original QCI concept in 
such a way that it leads to size-extensive methods re- 
quires an iterative procedure for eliminating all dis- 
connected terms in the CI projection equations. If one 
follows this procedure, one will obtain from CID 
CCD, from CISD QCISD, from CISDT a size-exten- 
sive method with several quadratic and one cubic 
term, which we have called ECISDT to distinguish it 
from the non-size-extensive QCISDT of PHR and 
from CISDT or CCSDT. We could show that size- 
extensivity corrections applied to the CI projection 
equations will always lead to the corresponding CC 
equations with the exception to QCISD and ECISDT. 
Hence, the QCI concept of PHR, even if properly ap- 
plied, does not lead to a hierachy of independent CC 
methods [ 141. 

We have also shown in the previous paper that the 
only way to preserve the QCI concept and to develop 
it to a hierarchy of independent size-extensive CC 
methods is to start from the CC projection equations 
rather than the CI equations (although formally one 
could also start from the latter) [ 141. If one takes the 

CC projection equations in their connected form and 
deletes all cluster operators but those required by the 
original QCI concept, then size-extensive QCI meth- 
ods can be derived as counterparts for all possible CC 
methods. We have denoted these methods QCISDTc, 
QCISDTQc, etc. to distinguish them from the non- 
size-extensive QCISDT, QCISDTQ, etc. methods 
suggested by PHR. In this work, we develop the ma- 
trix elements of QCISDTc in terms of two-electron 
integrals, describe the implementation of QCISDTc, 
and report on the first results of its application. For 
reasons of simplicity, we use the acronym QCISDT 
for QCISDTc in the following. 

2. Theory 

We can write the projection equations of a trun- 
cated CI method with n-fold excitations in the fol- 
lowing way: 

(n>p>3). (5) 
In Eqs. (l)-(5), I@?) and I@$‘) are singly and 
doubly excited wavefunctions, while 10,) denotes 
any p-fold excited wavefunction. Subscripts i, j, . . . (a, 
b, . . . ) refer to occupied (virtual) spin orbitals, while 
subscripts p, q, . . . denote general orbitals. The refer- 
ence function I CR-,) is set equal to the Hartree-Fock 
(HF) wavefunction for reasons of simplicity. fl de- 
notes the normal-order Hamiltonian defined by 

%A-E(HF) =X& + L c {S; 6,) (~1 E(q) 
w 

(6) 
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with 6’ and d being creation and annihilation oper- 
ators. The cluster operators pi and ?=* are given by 

?i = C Cy6:6i 3 (7) 

pzZi’as z C$b6,+6iS,‘6j, (8) 

or, in general, by 

(9) 

In the following, we will use in the CI and QCI pro- 
jection equations the same symbols for the cluster 
operators, but distinguish QCI amplitudes from CI 
coefficients by using a$. for the former. 

Formally, the QCI projection equations can be de- 
rived from Eqs. ( 3 )- ( 5 ) by adding or subtracting the 
following terms. ( 1) As for the S and D projection 
equations, it suffices to add Fi FZ and 1 p’:, respec- 
tively, in order to eliminate all disconnected terms 
from these equations. (2) For any excitation higher 
than D (p&3), there appear just two disconnected 
terms, namely (@,[~~~-,I@,) (=(abllzj)~,_~) 
and cpEgm in the corresponding projection equa- 
tion. Introducing -Hpp_2 and parts of the term 
A~zC, namely (RF&k and (~(~~&)ti,,,, 
on the left side of Eq. ( 5 ) leads to cancellation of all 
disconnected terms and to the QCI equations in their 
general from [ 14 1, 

~%lJ=<aJIIfmw, (10) 

(@~~R(f+*;+T*;+Tg 

(n>,p23). (13) 
Eqs. ( lo)-( 13) establish a hierarchy ofsize-exten- 

sive QCI methods that also covers the original QCISD 
of PHR. Accordingly, it is straightforward to write 
down the projection equations of size-extensive 
QCISDT, 

(@oII?~#j,)=E$&:SDT, (14) 

(~~~If(~~++*+~~+~,~*)I~o)c=o, (15) 
(~~bI~(l+~~++~+~~+f~‘:)I~o)c=O, (16) 

(a>~~lI(~~+~~+~*~~))~~).=o. (17) 
Contrary to the non-size-extensive formulas of 

PHR [ 61, the S projection equation contains the 
cluster operators F1 fZ to enforce size extensiveness. 

The matrix elements of the QCISDT equations can 
be expressed in terms of two-electron integrals in or- 
der to obtain a form that can be implemented on a 
computer, 

EQCIsDT = f zb ( ijllab)aEb, co* 

(Ei-Ea)af=U4+V~ 

(18) 

+ C C (Wde>a~~, I<m dce 
(19) 

(Ei+tj-E,-_b)a~b=u~b+V~b 

+ C ((brllde)a$?+ (a/llde)a$p) 
I,d<e 

+ ,,C,, ((~dldj>a%Y+ (Wdi>a$f) , (20) 

where u:, up, uzb and vzb have already been defined 
to set up the QCISD equations [ 6 1, namely 

uY=- z (lallid)a;‘-4 &= (fallde)a$ 

-4 ,gd <Mlid>&, (21) 

uzb= 5 ((ablldj)a9-(ablldi)af) 

+ T (<WlWaf- (WWt) 

+t I$ <abllde)a$+t 2 (Wlii>& 

- g F (-l)pP(ijlab)(~bllid)a~d, (22) 

vf=j $ g (lmllde)(a:‘a$$+afa~$+2a;‘a$,), 

(23) 

v$‘=$ 1 1 (Imllde) [agay; 
Im de 

-2(a$ak+a~a7~+a$ba$+a$aj~) 

+4(a$a,t+aFa,$)]. (24) 
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From Eq. ( 17 ) , the spin-independent formulation of 
the T equation is obtained as 

(Ei+~j++~-t,-_*-E,)U~~ 

= - ; ( - 1 )“P( i/j/cl a/be) 

have programmed these equations and have inserted 
the corresponding computer code into the ab initio 
package COLOGNE [ 15 1. In addition, we have writ- 
ten a CCSDT program in order to be able to compare 
QCISDT and CCSDT results. 

x 
( 

;X,(UJ,c)a,$+ ~XAj,k,l,a)a$ 
> 

+ 1 (- 1 )PP(albc) t 1 X,(b, c, e,Jla$! 
P ( d 

+ 7 Y,f_A ab$ + C (- 1 )pfYi/jk) 
> P 

x 
( 

4 1 &(m, n,j, kMk,+ C Yz(n, O& 
mn > 

- T ( -l)pP(i/jklu/bc) 1 i5(m, a, i, e)u$$, 
me 

(25) 

Size extensiveness has been tested numerically by 
calculating dissociation energies of molecules such as 
N2, CO, HCCH, etc. In all cases investigated, size ex- 
tensiveness was fully confirmed. 

where we make use of intermediate arrays X,, (see 
Table 1) to reduce computational work. The permu- 
tation symbol & ( - 1 )PP( i/jkl u/be) requires sum- 
mation over the identity permutation and permuta- 
tions that interchange orbital label i with j, iq and a 
with b, c without permutation of j-k or b+v. 

The QCISDT projection equations (Eqs. ( 19), 
(20), and (25) ) are solved iteratively to get the 
QCISDT correlation energy EFASDT (Eq. ( 18 ) ). We 

In QCISDT calculations, the most time-consum- 
ing step is the evaluation of the third term in Eq. (25), 
which involves asymptotically n&n :i, operations. 
The computational effort per iteration cycle is for 
QCISDT similar to that for CCSDT, what becomes 
obvious when replacing in Eq. (25 ) QCISDT inter- 
mediate arrays by the corresponding CCSDT inter- 
mediate arrays also shown in Table 1. QCISDT has 
some advantages with regard to the number of 0 ( M6) 
steps (see Table 1) , but the amount of computer time 
needed for these operations is only a fraction of the 
total QCISDT or CCSDT time. However, in many of 
the calculations presented in section 3 time savings 
(maximally 60%) result from the fact that QCISDT 
converges faster than CCSDT. 

3. Numerical results and discussion 

QCISDT has been applied to a set of atoms and 
molecules, for which Bauschlicher and co-workers 

Table 1 
Intermediate arrays used in the T amplitude equations for QCISDT and CCSDT ’ 

Array QCISDT CCSDT 

X,(i,4b,c) <idllbc)+f~:,,<mnlled)a~ psDT-& (-l)pP(bc)(X, <mblled)a% 
-I:, Zl (mb, id)&,) +I&. ((mnllid>+E., <mnlled)aT)& 
+I.. <Wled)u;-I,,, (<m~lle~)uFd& 

&CLk,I,u) (ikllW+f~~<m~llef)u% psDT+Ep (-l)pP’pcik)(I., <mrllei)ug+~,Z2(ul,ej)ui) 
+Lf(<lulle~+L, <mllle~a~)r$+L <mNikb.G 

Xdb, c, e,./I <Wlefi +tL <mnlleA4L <bcllef)+tL,,, <mnllef)~k+I., (-1WYbc)L <mbllef)ui, 
Wm, n,i, k) <mnlW +t&<mnllef)u$ (mnluk) +~~~f<mnllef)~~+~p (- lY’Ppcik)L <mnllek)uj’ 
Urn, a, i, 4 <mullie> -1~ <m+fM!C (mullie)-~,.(mnllef)(u~-a”.a~)-~,<mullef)~ 

-1” (mnllie>u~ 
Y,Cf;u) tL, <m~ll~~~% tL. <m~ll&~~~+L <m4lhG 
Y2(n, 0 fLf<m~ll+zL f~~<mnllehGL+L <mnllie>G 

‘The arrays 7f, Zl(mb,id) and Z2(al,ej) are defined by 7$=u$+a4a~-daj’, Zl(mb, id)=(mbllid)+~:,<mblled)u~+ 
I:, (mnl~ed)a~,Z2(al,ej)=<a~llej>-~.,<m~llej>u~+~~<m~llef)u$. 
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Table 2 
Comparison of QCISDT energies with full-C1 (FCI) and various other coupled cluster (CC) energies a 

Molecule, state 
geom./ref./basis ’ 

E(approx.) -E(FCI) 

MBPT(4) QCISD QCISD(T) QCISDT CCSDT 

Absolute energies 

E(QCISDT) E(FC1) 

Ne 
R/4s2pld 
R/6s4pld 

-0.873 
+2.562 

F 
U/4s3pld 
U/4s3p2d 
U/5s4p2d 

+ 1.830 
+0.268 
+0.529 

F- 
R/4s3pld 
R/4s3p2d 
R/Ss4p2d 

-4.748 +2.232 +0.112 
- 5.044 +3.533 + 0.085 
- 5.398 +5.935 -0.367 

HF 
RJRIDZP 
1.5 RJR/DZP 
2.0 RJRIDZP 

- 1.263 +2.567 + 0.242 
+0.769 +4.136 +0.664 
+4.841 +8.395 + 1.383 

~~/DZP 
1.5 RJRIDZP 

NHz, *B, 
RJUIDZP 
1.5 RJUIDZP 
2.0 RJUIDZP 

NHz, *A, 
&lUlDZP 
1.5 RJUIDZP 
2.0 R,IUIDZP 

+0.917 + 3.879 +0.617 
+ 5.764 + 9.365 + 1.814 

+ 1.900 +3.134 +0.510 
+ 39.230 + 9.985 + 3.609 
+ 18.790 +11.034 + 7.393 

+1.615 +2.908 + 0.492 
+7.779 + 7.276 + 1.966 

f41.297 + 19.926 +9.951 

CHz 
3B,/U/DZP 
‘A,/U/DZP 

mean abs. dev. c 7.654 

+ 1.708 
+2.511 

-0.155 
- 0.040 

-0.549 - 0.066 - 128.703011 - 128.702462 
-0.493 +0.119 - 128.768382 - 128.767889 

+ 1.463 
+2.250 
+ 3.097 

-0.011 -0.475 -0.058 -99.547095 -99.546620 
-0.033 -0.585 -0.104 -99.567068 -99.566483 
+ 0.047 -0.478 -0.015 -99.595355 -99.594877 

-2.538 +0.329 -99.655879 -99.653341 
-2.410 +0.319 -99.680077 -99.677676 
-2.633 +0.273 -99.709323 -99.706690 

-0.268 +0.266 - 100.251237 - 100.250969 
-0.452 + 0.645 - 100.160845 - 100.160393 
-0.962 +1.125 - 100.082070 - 100.081108 

+ 0.030 f0.533 - 76.256594 - 76.256624 
+0.021 + 1.785 - 76.071384 -76.071405 

- 0.046 +0.216 - 55.742666 - 55.742620 
+0.051 + 1.226 -55.605158 - 55.605209 
+ 1.461 +2.277 - 55.504063 -55.505524 

-0.023 +0.223 -55.688785 -55.688762 
-0.059 +0.811 -55.517673 -55.517614 
-0.197 b -55.415330 -55.415133 

+2.054 +0.343 -0.107 +0.017 
+3.522 +0.867 - 0.024 +0.207 

5.281 1.462 0.660 0.531 

-39.046367 - 39.046260 
- 39.027207 -39.027183 

 Energy differences in mEh, absolute energies in Es. Geometries, basis sets, and FCI energies are given in ref. [ 161. MBPT( 4), QCISD 
and QCISD (T ) energies from ref. [ 61, CCSDT energies from ref. [ 171. Restricted (RHF) reference denoted by R, unrestricted (UHF) 
reference denoted by U. 
b Calculation did not converge. See ref. [ 171. 
c Mean absolute deviation for 21 (QCISDT) and 20 (CCSDT) calculations. 

[ 16 ] have reported full configuration interaction 
(FCI) calculations and which, therefore, have al- 
ready been used as suitable test cases for QCISD and 
QCISD (T) by PHR [ 6 1. Test cases comprise chem- 
ically interesting problems such as the determination 
of the electron afftnity of F, the singlet-triplet sepa- 
ration in CH2, and excited electronic states of NH*. 
In Table 2, the energies from 21 QCISDT calcula- 
tions are compared with the corresponding FCI ener- 

gies. Energy differences E( approx. ) -E( FCI) for 
fourth-order perturbation theory (MBPT ( 4 ) ) , 
QCISD, QCISD (T) [ 6 ] and CCSDT [ 17 ] calcula- 
tions are also given in Table 2 for reasons of 
comparison. 

All energies obtained at the QCISDT level of the- 
ory are lower than the corresponding CCSDT ener- 
gies obtained with the same basis set at the same ge- 
ometry. Differences vary from just 0.1 m& in the case 
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of CH2 to 2.9 mEi, for the F- anion. In general, 
QCISDT and CCSDT energies are closer for equilib- 
rium geometries while energy differences increase for 
non-equilibrium geometries. Some of the CCSDT 
energies are lower than the FCI energies thus reflect- 
ing the non-variational character of CCSDT. Since 
QCISDT energies are lower than CCSDT energies, 
most of the former are also lower than the corre- 
sponding FCI energies. This reflects the fact that 
QCISDT is also non-variational, but shows in addi- 
tion that positive energy contributions contained in 
CCSDT are not covered by QCISDT. For example, 
at fifth order perturbation theory both E(TS), 
E(TQ), and E( QT) are missing in QCISDT, of 
which E(TS) 3 0 in most cases thus leading to 
E(QCISDT) <E(CCSDT) [ 141. 

PHR have investigated whether QCISD and 
QCISD (T) energies come close to FCI results. In Ta- 
ble 2, the mean absolute deviation of calculated ener- 
gies E(approx. ) from FCI energies is compared for 
various correlation corrected methods. The mean de- 
viation is 7.7 mEi, which is rather large in the case of 
MBPT(4), but drops to 5.2 mEh for QCISD thus in- 
dicating the superiority of CC methods as compared 
to MBPT methods. The perturbational inclusion of 
T excitations at the QCISD level reduces the mean 
deviation to 1.5 mE,, which reflects the importance 
of T excitations. When going from QCISD(T) to 
QCISDT, i.e. when introducing T excitations at the 
CC level of theory rather than the perturbation level, 
the mean deviation decreases to 0.7 mE,, which 
means that results have essentially reached FCI qual- 
ity. For CCSDT, the mean deviation is 0.5 mEi, which 
is slightly better than that for QCISDT, but basically 
both methods achieve the same level of accuracy. 

Relative energies obtained by QCISDT or CCSDT 
do not differ much. The electron affinity of fluorine 
is 2.960, 3.075, and 3.101 eV at the QCISDT level 
white it is 2.894, 3.014, and 3.035 eV at the CCSDT 
level of theory (Table 2). The QCISDT singlet-trip- 
let splitting of CH2 ( 12.02 kcal/mol) is almost iden- 
tical with the corresponding CCSDT value ( 12.09 
kcal/mol). Similarly close are the excitation energies 
for NH2 obtained at the two levels of theory (Table 
2). We conclude that QCISDT fully reproduces 
CCSDT energies. However, in view of the fact that 
QCISDT is easier to implement than CCSDT and in 
view of time-savings because of faster convergence, 
QCISDT can represent an attractive alternative for 

including T correlation effects at the CC level of 
theory. 
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