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Abstract

For the analysis of the spin-dipole (SD) term of the indirect NMR spin–spin coupling constant, the SD spin-polarization dis-

tribution and the SD energy density distribution are derived and used to explain magnitude and sign of the SD term. Orbital pairs

(occupied, virtual) are identified that are most important for the SD spin–spin coupling mechanism. The induction of strong SD

spin-polarization requires low excitation energies and complementing nodal properties of zeroth and first-order orbitals. The SD

components for 1J(CC) of typical CC bonds are analyzed. The SD term is a sensitive antenna for detecting the p-character of a

bond.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic properties of molecules can be used as sen-

sitive indicators for their electronic structure and their

bonding features [1–3]. This was amply demonstrated in
the case of aromatic or antiaromatic molecules. Energy

or geometry criteria are often insufficient to quantify the

degree of (anti)aromaticity of a given compound [4–6].

However, NMR chemical shifts, magnetic susceptibili-

ties, susceptibility exaltations or susceptibility anisotro-

pies provide sensitive measures for the degree of electron

delocalization in a molecule [4]. Some of the magnetic

properties such as the magnetic susceptibility exaltation
are not directly measured but derived within a given

model. Others are not accessible to experiment at all and

have to be calculated. An example for such properties are

the nuclear independent chemical shifts (NICS) [7,8],

which provide a sensitive measure for the degree of

chemical shielding at a representative point in a molecule

so that a comparison of NICS values for different mol-

ecules leads to a better insight into electronic structure
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features of molecules, which is not provided by energy or

electron density properties.

Next to NMR chemical shieldings, indirect NMR

spin–spin coupling constants (SSCCs) are highly sensi-

tive antennas for special features of the electronic
structure of a molecule [1–3]. They can provide infor-

mation on the electron system along a chain of bonds

connecting two coupling nuclei in a molecule. The one-

bond SSCC 1J(CC) should provide a direct measure of

the CC bond provided one is able to decode the spin–

spin coupling mechanism and relate it to features of the

chemical bond. In the literature, there are numerous

experimental investigations attempting to explain bond
features with NMR SSCCs [1]. Best known are the at-

tempts of NMR spectroscopists to relate the 1J(C,C)

and 1J(C,H) coupling constants in hydrocarbons to the

s-character of the corresponding bond localized molec-

ular orbitals (LMOs), the CC bond length, the bond

order, or the p-character of a CC bond [9–16]. These

attempts turned out to lead to useful relationships and

corroborated the idea that the SSCC is an important
descriptor of the chemical bond.

The present work is the fourth and last step to decode

the spin–spin coupling mechanism for the four Ramsey
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terms of the indirect SSCC [17]. In previous work, we

developed the coupled perturbed density functional

theory (CP-DFT) method to calculate the Fermi contact

(FC), the paramagnetic spin–orbit (PSO), the diamag-

netic spin–orbit (DSO), and the spin dipole (SD) term of
the indirect SSCC [18] and to partition the total SSCC

and its Ramsey terms into one- and two-orbital contri-

butions [19,20]. Each FC orbital term can be described

by the FC spin density distribution, which itself is a

product of zeroth-order and first-order spin orbitals

where orbitals as well as FC spin density distribution

can be graphically represented [19,20]. The analysis of

the first-order orbitals and the FC spin density distri-
bution led to an explanation of the dihedral angle de-

pendence of vicinal SSCCs, the influence of lone pair

electrons on the spin–spin coupling mechanism, and the

development of advanced Dirac vector models, which

provide an easy understanding of the sign of the FC

term in n-bond SSCCs nJ(A,B) [19,20]. The DSO and

PSO terms as well as their orbital contributions can be

explained with the help of the DSO and PSO current
densities and the DSO and PSO density distributions

[21]. In this way, the pr- and pp-electron currents in CC

multiple bonds could be described and sign and mag-

nitude of the DSO and PSO terms of a series of SSCC
1J(CC) with single and multiple bond character could be

explained [21].

The J-OC-PSP (decomposition of J into Orbital

Contributions using Orbital Currents and Partial Spin
Polarization) method [19,20] comprising these features

proved very useful to understand spin–spin coupling in

conjugated hydrocarbons [22,23] and across the H-

bonds of proteins [24,25]. In this Letter, we present the

last corner stone of the analysis, namely the detailed

analysis of the SD term. The understanding of the SD

coupling mechanism turns out to be desirable because in

previous work [21,22] we could show that the p-char-
acter of a CC bond is reflected by the magnitude of the

non-contact terms NC¼PSO+SD+DSO�PSO+SD

where the DSO is so small that it normally can be ne-

glected. Since it is possible to assess the NC term of one-

bond CC SSCCs from measured 1J(C,C) and 1J(C,H)

values of a hydrocarbon, it is important to decode the

relationship between PSO term, SD term, and CC bond

strength.
The first task of this goal was fulfilled in previous

work: [21] We analyzed the relationship between the p
bond order and the PSO term for acetylene (1), eth-

ylene (2), and ethane (3). The p bonds in 1 and 2

clearly manifest themselves in 1J(CC). However, the

sign and size of the effects depend on the details of the

bond situation in a quite complicated way, and it is

difficult to establish practically useful relationships
between 1PSO(CC) and the p-bond order. This became

clear when analyzing the p-character of the formal

single bonds in a number of conjugated or hypercon-
jugated hydrocarbons [22]. In the present Letter, we

investigate whether the SD spin–spin coupling mecha-

nism provides a more efficient basis for the assessment

of the p-character of CC bonds. For this purpose, we

calculate 1J(CC) and the four Ramsey terms for 1, 2
and 3 at the CP-DFT level of theory [18], decompose

the SD term in orbital contributions [19], and analyze

them in dependence of the p-character of the CC

bond.

There are five basic questions that we want to answer

in this work: (1) Which properties have to be defined to

investigate the isotropic SD term, its Cartesian compo-

nents, and its orbital contributions? (2) Can one derive
general rules to understand sign and magnitude of the

SD term? (3) How is the SD term of 1J(CC) related to

the electronic structure of the molecule, especially to the

r- or p-character of the CC bond? (4) Can one assess the

p-character of a CC bond from the SD term of its SSCC
1J(CC)? (5) Is the SD term a suitable antenna for un-

derstanding the electronic structure of a molecule in

general?
For the purpose of answering these questions, we

develop in Section 2 a generally applicable procedure

to analyze the SD term of the indirect SSCC. This

implies the derivation of the SD spin polarization

distribution and the SD energy density distribution,

which are defined in analogy to the PSO current

density distribution and PSO energy density distribu-

tion introduced in [21]. The calculated SD values of
the SSCCs in 1, 2, and 3 are analyzed in terms of

orbital contributions, SD spin polarization, and SD

energy density in Section 3. Section 4 summarizes the

conclusions of this work. Some technical aspects are

discussed in Appendix A.
2. Theory

The microscopic theory of NMR spin–spin coupling

was derived by Ramsey [17] who employed second-order

perturbation theory with respect to the magnetic mo-

ments of the two coupling nuclei A and B. According to

this theory, one considers that nucleus B (called per-

turbing nucleus in the following) perturbs by its mag-

netic moment the electron system, which in turn gives
rise to a magnetic field at the position of the responding

nucleus A. The reduced SSCC KAB is represented as a

sum of FC, SD, DSO, and PSO term (see Eqs. (1)–(4))

[17,18]:

KFC
AB ¼ 2

3

Xocc
kr

hwð0Þ
kr jhFCA j~wðBÞ;FC

kr i; ð1Þ

KSD
AB ¼ 2

3

Xocc
kr

hwð0Þ
kr jhSDA j~wðBÞ;SD

kr i; ð2Þ
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KDSO
AB ¼ 2

3

Xocc
k

h/ð0Þ
k jTrhDSO

AB
j/ð0Þ

k i; ð3Þ

KPSO
AB ¼ � 4

3

Xocc
k

h/ð0Þ
k jhPSOA j~/ðBÞ;PSO

k i; ð4Þ

where the FC, SD, DSO, and PSO operators are defined

by Eqs. (5)–(8):

hFCA ¼ 4pe0�h
3

e3m

� �
8p
3
a2dðrAÞs; ð5Þ

hSDA ¼ 4pe0�h
3

e3m

� �
a2 3

ðs � rAÞrA
r5A

�
� s

r3A

�
; ð6Þ

hDSO

AB
¼ 1

m
4pe0�h

2

e3

� �2
( )

a4
rA

r3A
� rB
r3B

I
�

� rA

r3A
� rB
r3B

�
; ð7Þ

hPSOA ¼ 4pe0�h
3

e3m

� �
a2

rA

r3A
�r: ð8Þ

Symbol � denotes a tensor product and dðrAÞ is the Dirac

operator at position rA. The position of nucleus N (A or
B) is given by vector RN the vector rN ¼ r� RN defines

position and distance of an electron relative to nucleus

N , e0 is the dielectric constant of the vacuum, a is

Sommerfeld’s fine structure constant, I is the unit ten-

sor, and s is the electron spin in units of �h. The prefac-

tors enclosed in braces in Eqs. (5)–(8) become equal to

one in atomic units. Operators hFCA hSDA represent 2� 2

matrices with respect to the electron spin variables, i.e.
the corresponding matrix elements are expressed in

terms of spin orbitals wk. The DSO and the PSO terms

can be expressed in terms of space orbitals /k. Zeroth-

order orbitals are denoted by superscript (0) and first-

order orbitals resulting from the perturbing nucleus B

by superscript (B). The indices of the occupied orbitals

will be k,l,. . ., those of the virtual orbitals a,b,. . . The
vectors ~wðBÞ;X

k and ~/ðBÞ;X
k summarize the three first-order

spin and space orbitals corresponding to the three

components of hðBÞ;X (X¼PSO,FC,SD).

The PSO and DSO terms describe the coupling be-

tween the two nuclei by orbital currents whereas the FC

and SD terms account for the coupling mediated by spin

polarization of the electron system. It has proven useful

to split the nuclear magnetic field in two components:

The field inside the (small but finite) nucleus gives rise to
the FC term, which is the dominating term of the total

SSCC in most cases. The effect of the extended dipole

field outside the perturbing nucleus is covered by the SD

term. The SD term is often negligible and sizable only in

particular cases, which is just why this term is a pro-

spective indicator for the p-character of a bond.

In its general definition, the SSCC is a tensor with

respect to the orientations of the perturbing and re-
sponding nuclei (see e.g. [17]), and the scalar SSCC as
given by Eqs. (1)–(8) is 1/3 the trace of the corre-

sponding SSCC tensor. The scalar SSCC corresponds to

spin–spin coupling averaged over all orientations of the

perturbing nucleus and corresponds to the result from

NMR measurements in gas phase or solution. For the
purpose of investigating the electronic mechanism of

magnetic spin–spin coupling, it is necessary to consider

the individual diagonal components of the SSCC tensor,

which specify the SSCC for a given orientation of the

perturbing nucleus. The FC term is isotropic, whereas

the SD term is orientation-dependent. The diagonal

components of the SD term along a given direction n

required to calculate the isotropic SD term have the
form

KSD
AB;nn ¼

Xocc
kr

hwð0Þ
kr j nhðBÞ;SD

A
n

� �
jwðB;SDÞ

kr;n i: ð9Þ

For n ¼ x; y, or z, the products of s with n occurring

in Eq. (9) (see also Eq. (6)) can be evaluated explicitly,

and Eq. (9) can be expressed in terms of the space or-

bitals /k:

KSD
AB;ii ¼

X
j

KSD
AB;ðijÞ; ð10aÞ

KSD
AB;ðijÞ ¼ 2

Xocc
k

h/ð0Þ
k jðhSDA;ðijÞÞj/

ðBÞ;SD
k;ðijÞ i: ð10bÞ

The symbol (ij) denotes one of the six sub-components

ðxxÞ, ðyyÞ, ðzzÞ, ðxyÞ, ðxzÞ, ðyzÞ of the diagonal terms of

the SD tensor: The first index i ð¼ x; y; zÞ specifies the

direction of the spin moment of the perturbing nucleus
whereas the second index j ð¼ x; y; zÞ gives a component

of the associated dipole field. The first-order orbital with

respect to the perturbation hSDB;ðijÞ is given by the follow-

ing equation:

/ðBÞ;SD
k;ðijÞ ¼

X
a

h/ð0Þ
a jF SD

B;ðijÞj/
ð0Þ
k i

�a � �k
j/ð0Þ

a i

¼
X
a

cak;ðijÞj/ð0Þ
a i; ð11Þ

where

F SD
B;ðijÞ ¼ hSDB;ðijÞ þ ~F SD

B;ðijÞ ð12aÞ

and

~F SD
B;ðijÞ ¼

Xocc
k

Z
d3r

dF SD

d/kðrÞ
/ðBÞ;SD

k;ðijÞ : ð12bÞ

Eq. (12) clarifies that F SD
B;ðijÞ depends in a similar way on

the first-order orbital /ðBÞ;SD
k;ðijÞ as the Kohn–Sham operator

F depends on the Kohn–Sham orbitals. The sub-com-

ponent KSD
AB;ðijÞ can now be explicitly written as

KSD
AB;ðijÞ ¼

X
k;a

h/ð0Þ
k jhSDA;ðijÞj/

ð0Þ
a ih/ð0Þ

a jF SD
B;ðijÞj/

ð0Þ
k i

�k � �a
; ð13Þ
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hSDA;ðijÞ ¼ a2 3
xA;ixA;j
r5A

� 1

r3A
: ð14Þ

For the calculation of the diagonal terms of the SD
tensor, the quadrupole potentials represented by oper-

ators hSDA;ðijÞ and hSDB;ðijÞ have to adopt the same orientation

(if they have different orientations, the sub-components

of the off-diagonal elements of the SD tensor will be

obtained).

The sign of the SD sub-components KSD
AB;ðijÞ can be

predicted by considering that F SD
B;ðijÞ is dominated by the

operator hSDB;ðijÞ which has the same symmetry character
as operator hSDA;ðijÞ. If the product /ð0Þ

k /ð0Þ
a has the same

symmetry character with respect to nuclei A and B, then

the matrix elements h/ð0Þ
k jhSDA;ðijÞj/

0
ai and h/ð0Þ

a jF SD
B;ðijÞj/

0
ki

possess the same sign and, because of �k � �a < 0, the

sub-component KSD
AB;ðijÞ becomes negative. Conversely, if

the product /ð0Þ
k /að0Þ has opposite signature at nuclei A

and B, then sub-component KSD
AB;ðijÞ will be positive.

The isotropic SD term can thus be expressed in terms

of the six sub-components KSD
AB;ðijÞ defined in Eq. (13)

according to

KSD
AB ¼ 1

3

X
ij

KSD
AB;ðijÞ: ð15Þ

Introducing the SD spin polarization distribution

mSD
B;ðijÞðrÞ and the SD energy density distribution .SDAB;ðijÞðrÞ

mSD
B;ðijÞðrÞ ¼ 2

Xocc
k

/ð0Þ
k ðrÞ/ðBÞ;SD

k;ðijÞ ðrÞ

¼ 2
X
ka

cak;ðijÞ/
ð0Þ
k ðrÞ/ð0Þ

a ðrÞ ð16aÞ

.SDAB;ðijÞðrÞ ¼ hSDA;ðijÞm
SD
B;ðijÞðrÞ ð16bÞ

the sub-components KSD
AB;ðijÞ can be rewritten as

KSD
AB;ðijÞ ¼

Z
d3rhSDA;ðijÞm

SD
B;ðijÞðrÞ; ð17aÞ

¼
Z

d3r.SDAB;ðijÞðrÞ: ð17bÞ

Here mSD
B;ðijÞðrÞ is the spin polarization in i direction

that will result through the SD coupling mechanism

if the perturbing nucleus at B is oriented in direction
j. The spin polarization distribution mSD

B;ðijÞðrÞ is a

useful tool to study the SD coupling mechanism. By

graphically representing and analyzing mSD
B;ðijÞðrÞ one

can rationalize the first step of the SD coupling

mechanism, viz. the spin polarization of the electron

system through the perturbing nucleus. For an effec-

tive SD coupling, however, it is necessary that the

perturbation generates a dipole polarization around
the responding nucleus. It is therefore valuable to

study in addition the spin polarization distribution

weighted with the quadrupole potential hSDA;ðijÞ. The

resulting SD energy density distribution determines
the actual value of the sub-component KSD
AB;ðijÞ. From

.SDAB;ðijÞðrÞ, one can derive two more SD energy

densities:

.SDAB;iiðrÞ ¼
X
j

.SDAB;ðijÞðrÞ; ð18aÞ

.SDAB ðrÞ ¼
1

3

X
i

.SDAB;iiðrÞ; ð18bÞ

which give the SD energy density of component ii and
the isotropic SD energy density distribution. Integration

of .SDAB;iiðrÞ gives the ii component of the SD term,

whereas integration of .SDAB ðrÞ generates the total iso-

tropic SD coupling constant.

Eqs. (1)–(18) refer to the reduced spin–spin coupling

constant, which reflects only the electronic coupling
mechanism between the nuclei. The experimentally ob-

served coupling constant JAB depends in addition on the

gyromagnetic ratios cA, cB of the two coupling nuclei

JAB ¼ cAcB
h

KAB: ð19Þ

Analogous relationships hold for the four Ramsey terms

and their components. The JAB are isotope-dependent.

In the following, JAB values will be specified for 13C–13C
SSCC.

We calculated the SSCCs for 1, 2, and 3 at the

CPDFT level of theory, using the B3LYP exchange

and correlation functional [26–28] and the (11s,7p,2d/

6s,2p)/[7s,6p,2d/4s,2p] basis set designed for the calcu-

lation of magnetic properties [29]. Calculations were

carried out at the experimental geometry of 1 [30], 2

[31], and 3 [32]. SD spin polarization distributions and
SD energy density distributions were calculated and

plotted for planes containing the CC bond. For 2, this

plane was perpendicular to the molecular plane, i.e.,

the p (C1C2) orbital is intersected by the drawing

plane. For 3, the drawing plane contains the CC bond

and two of the CH bonds. In all cases, the drawing

plane is the yz plane and the CC bond direction defines

the z direction. The calculated SD spin polarization
distribution and the SD energy density distribution are

represented in form of contour line plots, where the

contour levels are given by a geometric progression

with the ratio of 1001=5 between two subsequent con-

tours. Orbital contributions of the SD term and its

components were determined with the J-OC-PSP al-

gorithm [19,20], All calculations were done with the

COLOGNEOLOGNE 2003 program package [33].
3. Results and discussion

In Table 1, calculated and measured SSCCs 1J(CC)

are compared for the three molecules investigated. Also

listed are the calculated Ramsey terms of the SSCCs



Table 1

The NMR SSCC 1J(CC) and its Ramsey terms for 1, 2, and 3a

DSO PSO FC SD 1J(CC) Calc. 1J(CC) Exp.b

1 0.07 8.38 181.67 11.60 201.73 169.7

2 0.08 )10.28 76.87 3.94 70.62 67.5

3 0.13 0.01 32.77 1.09 34.00 34.5

aAll values in Hz as calculated at the CP-DFT/B3LYP/(11s,7p,2d/6s,2p)[7s,6p,2d/4s,2p] level of theory using experimental geometries [30–32].
b Experimental values from K. Jaakko, P. Lantto, J. Vaara, J. Jokisaari, J. Am. Chem. Soc. 120 (1998) 3993.

Table 2

Isotropic SD term and SD sub-components (ij) of 1J(CC) for acetylene (1), ethylene (2), and ethane (3)a

Mol. Isotropic (xx) (yy) (zz) (xy) (xz) (yz)

1 11.60 9.42 9.42 5.43 8.05 )1.40 )1.40
2 3.94 2.74 11.28 4.08 )0.20 )3.01 0.07

3 1.08 0.50 0.50 2.03 )0.01 0.06 0.06

aAll values in Hz as calculated at the CP-DFT/B3LYP/(11s,7p,2d/6s,2p)[7s,6p,2d/4s,2p] level of theory using experimental geometries [30–32]. The

CC bonds are oriented along the z axis, the H atoms in C2H4 are in the xz plane.
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which reveal that despite the dominance of the FC term,

PSO term and SD term become increasingly important

with the p-character of the CC bond. However, contrary

to the PSO term, the SD term is always positive and

increases steadily with the bond order. Table 2 lists the

(ij) sub-components of the isotropic SD term for 1, 2,

and 3. All diagonal sub-components are also positive

and, with the exception of the (yy) sub-component, their
magnitude increases with the number of p bonds. This

gives already a confirmation that the SD term is an in-

dicator of the p-character of the CC bond. There is an

exponential increase of the isotropic SD term in de-

pendence of the CC bond order (Fig. 1). Analysis of the

sub-components (Fig. 1 and Table 2) reveals that

the (xx) sub-component is responsible for this increase.

The (yy) sub-component is largest for 2 rather than 1.
However its effect is partially compensated by the (xy)
sub-component (minimum for 2) so that their sum be-

haves similarly as the (zz) sub-component, which in-
Fig. 1. Representation of the isotropic SD term and its sub-compo-

nents as a function of the CC-bond order of acetylene (1), ethylene (2),

and ethane (3).
creases linearly with the bond order. Since the remaining

terms are relatively small in magnitude (Table 2), the

isotropic SD term is dominated by the (xx) sub-com-

ponent, which in turn can be used to describe the p-bond
character of a CC bond.

Although there seems to be confirmation that the SD

term of 1J(CC) can be used as an indicator for the CC

bond strength, we have to concede that both sign and
magnitude of the SD sub-components are not clear and

therefore the relationship between SD term and bond

order could be coincidental. It is necessary to analyze

the various terms in Table 2 both with regard to their

individual orbital contributions and in terms of the as-

sociated SD spin polarization and the SD energy density

distribution. Such an analysis will disclose the relation-

ship between electronic structure and SD term so that
the role of the latter as a sensitive antenna for p-bonding
can be established on physical rather than statistical

grounds.

Figs. 2a–e represent contour line diagrams of the sub-

components of the SD spin polarization distribution for

molecule 1. For the understanding of these diagrams

one has to consider that (a) the perturbing nucleus is C2;

(b) the SD spin polarization distribution in the imme-
diate vicinity of the C2 nucleus is determined by its di-

pole vector field where a-spin is assumed for the

perturbing nucleus; (c) the SD spin polarization beyond

the immediate vicinity of C2 is determined by the nodal

structure of the occupied and virtual orbitals dominat-

ing the value of mSD
B;ðijÞ which in turn depends on the

coefficients cak;ðijÞ of Eq. (11), i.e. the magnitude of the

matrix elements h/ð0Þ
a jF SD

B;ðijÞj/
ð0Þ
k i divided by the orbital

energy differences �a � �k; (d) all six (ij) sub-components

of the SD spin polarization distribution have to be

considered to derive the total SD spin polarization dis-

tribution; and (e) the corresponding SD energy density

distribution is obtained by multiplication with the

quadrupole potential of the responding nucleus.



Fig. 2. Contour line diagrams of the SD spin polarization distribution and the SD energy density distribution of the SSCC 1J(CC) for 1. For each

case the SD sub-component (ij) and the drawing plane is given. (a) SD spin polarization sub-component (yy) in the xz-plane, (b) SD spin polarization

sub-component (yy) in the yz-plane, (c) SD spin polarization sub-component (zz) in the yz-plane, (d) SD spin polarization sub-component (xy) in the

xþ y; z-plane, (e) SD spin polarization sub-component yz in the yz-plane, and (f) total SD energy density distribution averaged over all orientations of

the perturbing moment. - The perturbing nucleus is C2. All calculations done at the B3LYP/(11s,7p,2d/6s,2p)[7s,6p,2d/4s,2p] level of theory using the

experimental geometry [30]. The contour levels are chosen equally tempered, i.e. in a geometric progression. The bold lines denote contour levels of

0.1 and 10; the relative spacing between two adjacent contours is 1001=5 ¼ 2:5118864. Solid lines denote positive, dashed lines negative, and the

dotted lines a zero value of the SD spin polarization (or the SD energy density).
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The contour line diagrams of mSD
B;ðxxÞðrÞ (Fig. 2a; al-

ternatively, this diagram can be viewed as the spin po-

larization distribution mSD
B;ðyyÞðrÞ) given in the xz-plane),

mSD
B;ðyyÞðrÞ (Fig. 2b), and mSD

B;ðzzÞðrÞ (Fig. 2c) suggest a

simple pattern for the SD spin polarization in the case of

1. For the (yy) and (zz) diagram, the perturbing dipole
moment at C2 is in the drawing plane oriented along the

molecular axis ((zz) sub-component, Fig. 2c) or per-

pendicular to the molecular axis ((yy) sub-component,

Fig. 2b). The SD spin polarization distribution reflects

the shape of the dipole field in that it becomes negative

(dominance of b-spin) along the direction of the dipole

(where the field is parallel to the dipole moment; a-spin
assumed for the C2 nucleus) and positive in the direction
opposite to the dipole moment (where the dipole field is

antiparallel to the dipole moment). In this way, the SD

spin polarization distribution at C2 adopts the form of a

�dy2 orbital in the case of the (yy) sub-component

(Fig. 2b) and that of a �dz2 orbital in the case of the (zz)
sub-component considering the signature of these two d-

orbitals.
For the (xx) component, the perturbing dipole is

perpendicular to the drawing plane. Since the (xx)- and
(yy) sub-component of the SD term of 1J(CC) of 1 are

identical, Fig. 1a provides also a diagram of mSD
B;ðyyÞðrÞ

taken in the xz-plane. At C2, the SD spin polarization

distribution is positive both in the yz-plane for mSD
B;ðxxÞðrÞ

or in the xz-plane for mSD
B;ðyyÞðrÞ. There are nodal planes

leading to a sign inversion of the SD spin polarization

distribution in the direction of H4 (Figs. 2a and b) and

in the direction of C1. The former results from r ! r�,
the latter from the p ! p� excitations.

Generally, the different sub-components of the SD

spin polarization distribution for a given molecule re-

semble each other. This can be rationalized by working
out selection rules for the operators hSDB;ðijÞ dominating

the actual operators F SD
B;ðijÞ (see Eq. (12)). The operator

hSDB;ðijÞ has the symmetry character of Cartesian d-func-

tions at the perturbing nucleus B and accordingly has

non-vanishing matrix elements for transitions of the

kind s $ d, p $ f, d $ g,. . . and p $ p, d $ d,

f ! f,. . . where the s, p, d, f,. . . character of the orbitals
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is considered with respect to nucleus B. In organic

molecules, occupied as well as low-lying virtual d, f,. . .
orbitals are not available, hence only p ! p� transitions
can make sizable contributions to the SD term. Here

and in the following, we use a shorthand notation to
differentiate between MOs with p-character at B (p-

MOs) from MOs with s-character at B (s-MOs). Hence,

the excitation p ! p� denotes an excitation from an

occupied MO with p-character to a virtual MO with

p-character at B.
In detail, the following p ! p� transitions result in

non-vanishing matrix elements for the individual com-

ponents of the SD term:

hSDB;ðxxÞ : px ! p�
x ; py ! �p�

y ; pz ! �p�
z ; ð20aÞ

hSDB;ðyyÞ : px ! �p�
x ; py ! p�

y ; pz ! �p�
z ; ð20bÞ

hSDB;ðzzÞ : px ! �p�
x ; py ! �p�

y ; pz ! p�
z ; ð20cÞ

hSDB;ðxyÞ : px ! p�
x ; py ! p�

x ; ð20dÞ

hSDB;ðxzÞ : px ! p�
z ; pz ! p�

x ; ð20eÞ

hSDB;ðyzÞ : py ! p�
z ; pz ! p�

y : ð20fÞ

Here a negative sign in front of the virtual orbital

means that the corresponding matrix element becomes

negative, e.g., px ! p�
x for the (yy) sub-component

means that hpxjhSDB;ðyyÞjpxi becomes negative. For the

derivation of these selection rules, see Appendix A. One

finds that all diagonal terms hSDB;ðiiÞ drive excitations from
any occupied p orbital into any virtual p orbital of the
same type. This explains why the different diagonal

components of the SD spin polarization distribution

possess similar patterns although their values can be

quite different. A detailed analysis reveals (see Appendix

A) that the excitations driven by hSDB;ðiiÞ lead to matrix

elements larger in magnitude for a pi than for a

pj ðj 6¼ iÞ function. The off-diagonal components

hSDB;ðijÞ ðj 6¼ iÞ drive excitations from pi into pj functions
and vice versa.

The selection rules allow to rationalize the appear-

ance of the SD spin polarization distribution as well as

the trends in the orbital contributions to the SD terms of
1J(CC) for 1–3. In 1, excitations from p orbitals into

their p� counterparts play the dominant role for the

shape of the SD spin polarization distribution as well as

for the value of the SD term. The diagonal terms hSDA;ðiiÞ
drive excitations px ! p�x , p ! p�y . The degenerate p�

orbitals are C1–C2 antibonding, which explains the

nodal plane in the SD spin polarization distribution

between C1 and C2 in Figs. 2a–c.

Excitations from a r- to a r�-orbital contribute to the

SD spin polarization distribution provided the orbitals

in question possess distinct pr character at C2. Con-

sidering the occupied all-bonding 2rg, the CH-bonding
2ru, and the CC-bonding 3rg orbitals, only the latter

has strong pr-character at the C atoms. Among the

virtual orbitals 3ru, 4rg, and 4ru, the first and the third

possess more s- and the second more pr-character.

Hence, the 3rg ! 4rg excitation contributes signifi-
cantly to the diagonal SD spin polarization distribution

components, which can be confirmed by the fact that

these excitations must introduce nodal surfaces between

the C and H atoms of 1 (see Figs. 2a–c).

The selection rules predict that the xy-cross term

does not possess any pz contribution (Eq. (20d)) and

accordingly the nodal surfaces between C and H atoms

are missing (see Fig. 2d; reference plane is the xþ y; z
plane, which bisects the xz- and yz-planes; both the xz-
and the yz-planes are nodal planes for this component).

In this way, the (xy) component of the SD spin po-

larization distribution obtains a simple structure. There

is a region with positive spin polarization around C1

and a region with negative spin polarization around C2

enveloping the dipole moment at C2 pointing into the

positive xþ y direction; there are no further nodal
planes in the density. The (yz) sub-component of the

SD spin polarization distribution (Fig. 2e) is domi-

nated by a spin polarization in the vicinity of nucleus

C2 that has the shape of a dyz function. The (xz) sub-
component (not shown) is equivalent to the (yz) sub-

component.

The total SD energy density distribution of 1, shown

in Fig. 2f in the yz-plane, is dominated by a torus with
large positive values around C1 pointing into the xy-
direction so that in Fig. 2f just a cut through this torus

can be seen. There are smaller and less distinct positive

regions in tori or spheres around C2, H3, and H4. In

the three bond regions, the SD energy density is neg-

ative. Generally, the SD energy density is found by

weighting each component of the SD spin polarization

distribution mSD
B;ðiiÞðrÞ with the quadrupolar potential

hSDA;ðiiÞ centered at the responding nucleus and being of

the same type as that at the perturbing nucleus (see

Eq. (14)). The isotropic SD term is then obtained by

(a) calculating the total isotropic SD energy density

.SDAB ðrÞ (averaging over all ii-components), and (b) by

integrating the isotropic SD energy distribution over all

space.

The total SD energy density consists of many con-
tributions with different character. However, many of

these contributions can be rationalized by a simple rule:

If the SD spin polarization distribution at the respond-

ing nucleus has partial d-character with the opposite

(equal) signature as the spin polarization distribution at

the perturbing nucleus, then the region around the re-

sponding nucleus will make a positive (negative) con-

tribution to the SD energy density.
This can be seen most clearly for the (xy) term

(Fig. 2d): the SD spin polarization distribution has dxy-

character both at the responding and the perturbing
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nucleus, which can be seen when viewing mSD
B;ðxyÞðrÞ in

planes through C1 and C2 perpendicular to the drawing

plane of Fig. 2d. Due to the nodal surface of the SD spin

polarization distribution between C1 and C2, these dxy
terms have opposite signs at C1 and C2, and the SD spin
polarization distribution at C1 makes a large positive

contribution to the SD energy density, which accounts

for the large positive value (8 Hz, Table 2) of sub-

component (xy). For the (yz) term (Fig. 2e), the SD spin

polarization distribution has �dyz-character both at the

responding and the perturbing nucleus. Accordingly, the

(yz) (and also the equivalent (xz)) term becomes negative

()1.4 Hz, Table 2). In y and z direction (Figs. 2b and c),
the SD spin polarization distribution around C1 and C2

resembles dy2 or dz2 functions, which can be seen if one

plots the SD spin polarization distribution mSD
B;ðyyÞðrÞ

(i ¼ y or z) in perpendicular planes as done in Fig. 2a in

the case of i ¼ y. Again, the functions around C1 and C2

have opposite signature and lead to positive contribu-

tions to the SD energy density and eventually large

positive SD components (9.4 Hz each, Table 2).
The (yy) sub-component of the SD energy density

(not shown) resembles actually the total SD energy
Fig. 3. Contour line diagrams of the SD spin polarization and SD energy de

distribution sub-component (zz), (b) total SD energy density averaged over al

All calculations done at the B3LYP/(11s,7p,2d/6s,2p)[7s,6p,2d/4s,2p] level of

Table 3

Orbital contributions to the isotropic SD term and its sub-components (ij) c

Mol. Orbital Isotropic (xx) (yy)

1 C1–C2 r )1.231 )1.231 )1.23
2 C1–C2 r )0.738 )0.013 0.19

3 C1–C2 r 0.783 0.357 0.35

1 C1–C2 px 6.707 8.331 1.16

1 C1–C2 py 6.707 1.165 8.33

2 C1–C2 p 5.096 2.368 11.38

aAll values in Hz as calculated at the CP-DFT/B3LYP/(11s,7p,2d/6s,2p)[7s

also footnote in Table 2.
density: there is a cone with negative SD energy density

oriented along the negative z-axis starting at C1 in the

direction of H3 and a region with negative SD energy

density around the C1C2 bond continuing towards H4.

This pattern of the SD energy density can be derived
when inspecting mSD

B;ðyyÞðrÞ in connection with the quad-

rupolar potential of Eq. (14). In Fig. 2b, dashed lines

indicating the nodal surfaces of the quadrupolar

potential generated by the perturbation hSDA;ðijÞ are su-

perimposed to the contour line diagram of mSD
B;ðyyÞðrÞ.

Also shown are the signs of this potential according to

normal conventions. Multiplication of mSD
B;ðyyÞðrÞ with

these signs leads directly to a SD energy density pattern

similar to that of Fig. 2f. Similar considerations apply in

the case of the (zz) sub-component of the SD energy

density (compare Figs. 2c and f).
Since the SD energy density is preferentially positive

as indicated in Figures such as 2f, all diagonal compo-

nents (ii) of the SD term in 1 (9.42, 9.42, 5.43 Hz; Table

2) are positive, which also holds for the (ii) contributions
form the individual p (C1C2) orbitals (Table 3), despite

the fact the SD spin polarization distribution in the vi-

cinity of the responding nucleus C1 has different signs
nsity distribution of the SSCC 1J(CC) for 2. (a) SD spin polarization

l orientations of the perturbing moment. The perturbing nucleus is C2.

theory using the experimental geometry [31]. See also Fig. 2.

alculated for 1J(CC) of acetylene (1), ethylene (2), and ethane (3)a

(zz) (xy) (xz) (yz)

1 )0.566 0.018 )0.729 )0.729
6 0.328 )0.012 0.143 )1.494
7 1.457 )0.007 0.049 0.049

5 3.110 3.964 )0.207 )0.000
1 3.110 3.964 )0.000 )0.207
4 3.351 0.027 0.003 0.938

,6p,2d/4s,2p] level of theory using experimental geometries [30–32]. See
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for (yy) than for (xx) or (zz). Table 3 reveals that for a py
orbital, the (yy) sub-component of the orbital SD con-

tribution is larger than the (xx) and (zz) sub-components.

This is in line with selection rule (20b), which indicates

that hSDB;ðyyÞ, drives excitations from py orbitals more ef-
ficiently (leading to larger magnitudes of the corre-

sponding matrix elements) than either hSDB;ðxxÞ (rule (20a))
or hSDB;ðzzÞ (rule (20c)) does. Analogously, this applies

also to the weighting of the SD spin polarization dis-

tribution at Cl, which explains that the (xx) and (yy)
components of the py(C1C2) orbital contributions differ
by a factor of 7.2 for 1 (1.17 and 8.33 Hz, Table 3).

Fig. 3a gives the (zz) sub-component of the SD spin
polarization for 2. The SD spin density resembles

markedly the (zz) SD spin polarization distribution of

1. Analogously, the (xx) and (yy) sub-components,

which are not shown in Fig. 3, resemble their coun-

terparts for 1. The total SD energy density (Fig. 3b),

which in turn is similar to that of 1, is strongly domi-

nated by its (yy) term, which is also reflected in the
Fig. 4. Contour line diagrams of the SD spin polarization and SD energy dens

component (xx), (b) SD spin polarization sub-component (yy), (c) SD spin

tribution averaged over all orientations of the perturbing moment. The pert

6s,2p)[7s,6p,2d/4s,2p] level of theory using the experimental geometry [32]. S
large (yy) component of the SD term (11.3 Hz, Table

2). The dominance of the (yy) term is due to the effect

of the py ! p�y excitation, i.e. the only possible excita-

tion in the p system of 2. It is noteworthy that the (yy)
sub-component of the py(C1C2) orbital contribution is
larger for 2 than for 1 because of the well-known fact

that the py ! p�y excitation energy is smaller for 2 than

for 1 (calculated B3LYP/[7s,6p,2d/4s,2p] orbital ener-

gies for 1 are: )0.30085 (p) and 0.01338 (p�); excitation
energy: 0.31423 hartree; and for 2: )0.27991 (p) and

)0.01170 (p�); excitation energy: 0.26821 hartree). In 2,

excitations from the py into the pseudo-p�x orbital re-

quires a relatively large energy and therefore the cor-
responding (xy) sub-component in 2 is small (0.03 Hz,

Table 3).

The diagonal SD spin polarization sub-components

for 3, which are shown in Figs. 4a–c, agree with the SD

spin polarization distributions of 1 and 2 in a number

of ways: The diagonal sub-components of the SD spin

polarization are dominated by two large regions around
ity distribution of the SSCC 1J(CC) for 2. (a) SD spin polarization sub-

polarization sub-component (zz), and (d) total SD energy density dis-

urbing nucleus is C2. All calculations done at the B3LYP/(11s,7p,2d/

ee also Fig. 2.
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C1 and C2 with negative or positive SD spin density

and a nodal plane in between. Whereas for the (xx) and
(yy) sub-component, the region around C1 has prefer-

entially negative spin polarization, it has positive spin

polarization for the (zz) sub-component. The SD spin
polarization around C2 reflects the shape of the dipole

field in the same way as described above for 1. Special

for 3 is that the spin polarization is more concentrated

around the C1-C2 axis than for either 1 or 2. Also,

there is an extended region around H4 that has a spin

polarization opposite to that around C2. Again the

sign-pattern of the total SD energy density is easily

derived from Figs. 4b and c by combining the sign of
mSD

B;ðiiÞðrÞ (i ¼ y or z) with that of the quadrupolar po-

tential as indicated in the contour line diagrams. The

total SD energy density is dominated by a region with

positive values close to C1 around the C1C2 bond axis.

All three diagonal sub-components contribute to this

region, the largest contribution coming from the (zz)
sub-component.

Table 3 lists the dominant orbital contributions to
1SD(CC)ðijÞ in Hz. The SD term is largely determined by

contributions from the occupied p-orbitals whereas

some smaller contributions arise from the CC r-bond
orbital. The total SD contribution per p orbital in 1 is

larger than for the p-orbital in 2 (6.7 vs 5.1 Hz, Table 3).

This can be traced back to the large positive (xy) SD

contribution in 1 (4.0 Hz as compared to 0.03 Hz in 2).

For the r(C1C2) bond orbital, the isotropic SD con-
tribution becomes more negative with increasing num-

ber of p bonds between C1 and C2: the contribution of

this orbital to the SD term is 0.78 Hz for 3, )0.74 Hz for

2, and )1.23 Hz for 1 (Table 3). This trend can be traced

back to the behavior of the (zz) component, which de-

creases from 1.46 (3) to )0.57 Hz (1).

The r(C1C2) orbital SD contributions are domi-

nated by the equivalent (xz) and (yz) components in 1
and the (yz) sub-component in 2. The operator hSDA;ðyzÞ
drives excitations from the r(C1C2) orbital, which has
Fig. 5. Contour line diagrams of the SD spin polarization distribution of s

perturbing nucleus is C2. All calculations done at the B3LYP/(11s,7p,2d/6s,2p

32]. See also Fig. 2.
partial pr character at C2, into the virtual p�y orbital.

The absolute value of the component is larger for 2

than for 1, which is due to the stronger p-character of

the r(C1C2) orbital (sp2 rather than sp). For all three

molecules, the (zz) components make a significant
contribution to the SD term. This contribution be-

comes more positive in the order 1, 2, 3. This can be

understood from the (zz) SD spin polarization diagram

of this orbital contribution (see Fig. 5). Whereas for 1,

the SD spin polarization density is uniformly negative

in the region of the r(C1C2) bond surrounded by a

ring of uniformly positive SD spin density (Fig. 5a), it

possesses a nodal plane between C1 and C2 for 2
(Fig. 5b) and for 3 (Fig. 5c).

The (zz) sub-component of the r(C1C2)-orbital SD
contribution is related to excitations into r� orbitals.

There one has to consider those r- and r�-orbitals,
which possess distinct pr-character but little s-charac-

ter both at the perturbing and responding nucleus.

These are the CC-bonding 3rg-orbital and the CH-

antibonding 4rg-orbital (rather than the lower lying
CC-antibonding 3ru-orbital) in the case of 1, the CC-

bonding 3ag-orbital and CC-, CH2-antibonding 3b1u-

orbital (rather than the CH2-antibonding 4ag-orbital)

in the case of 2 as well as the CC-bonding 3a1g-orbital

and CC-antibonding 3a2u-orbital in the case of 3. The

three occupied orbitals are all CC bonding, which im-

plies that they decrease in energy from 3 to 1 because

of the shortening of the CC bond. In the same direc-
tion, the virtual orbitals increase in energy thus leading

to increasing r ! r� excitation energies from 3 to 2

and 1, which behave like 1.1:1.15:1.3 (B3LYP/

[7s,6p,2d/4s,2p] calculations). The corresponding SD

spin polarization distribution must be largest for 3 and

smallest for 1 (Fig. 5) and the corresponding (zz) sub-
components of the r(CC) orbital must decrease in the

same direction (1.46, 0.33, )0.57 Hz; Table 3). Since
the 4rg-orbital of 1 does not possess a nodal plane

cutting through the C1C2 bond, there is no sign in-
ub-component (zz) caused by orbital r(C1C2). (a) 1, (b) 2, (c) 3. The
)[7s,6p,2d/4s,2p] level of theory using the experimental geometries [30–
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version of the SD spin polarization distribution along

the CC axis for this molecule (Fig. 5a).
4. Chemical relevance of results and conclusions

Despite the fact that three diagonal ii-components

equivalent to six (ij) sub-components (see Eq. (15))

contribute to the isotropic SD term, each of which

can be decomposed into r- and p-contributions, and

despite the fact that the isotropic SD term has to be

analyzed stepwise by considering first the SD spin

polarization distribution, then the SD energy density
distribution, integrating over the total space for each

sub-component of the SD energy density, and finally

averaging over all directions, the behavior of the total

SD term can be simply described as being governed

by two opposing trends: (i) The contributions from

the p bond orbitals become more positive the more p
bonds are present, (ii) The contribution from the

r(C1C2) bond orbital becomes more negative with
increasing p-character of the bond. Trend (i) is

stronger and thus determines the behavior of the total

SSCC.

Trends (i) and (ii) provide a basis to relate the mag-

nitude of the SD term of SSCC 1J(CC) to the p-char-
acter of a bond. Clearly, there is no experimental way to

separate the SD part of 1J(CC) from the FC and the

other non-contact (NC) terms. There is the possibility of
estimating the sum of the NC terms of SSCC 1J(CC)

utilizing measured 1J(CC) values and the SSCCs 1J(CH)

or 1J(CC) from all adjoined bonds [22]. It was shown

that there is a cubic dependence of the NC terms of
1J(CC) on the p bond order, which is dominated by the

PSO term [22]: For CC double bonds, the PSO term

adopts large negative values, for CC single bonds values

close to zero, and for triple bonds large positive values.
It is difficult to see, without extra-calculations, whether

the NC term of 1J(CC) in a conjugated CC bond such as

in benzene or for the CC double bond in a cumulene is

positioned on the decreasing or increasing branch of the

cubic function.

The SD term is easier to read because it depends in an

exponential rather than cubic way on the p-character of
a CC bond (Fig. 1), which can be traced back to trends
(i) and (ii). Clearly, the SD term, of 1J(CC) represents a

magnetic antenna that can be used as quantum chemical

descriptor for bonding. In this work we have set the

basis for analyzing the SD part of SSCCs.

(1) The SD spin polarization distribution mSD
B;ðijÞðrÞ de-

fined in this work (Eq. (16a)) helps to visualize the

first step of the SD spin–spin coupling mechanism,

i.e. the spin polarization of the electron system by
the perturbing nucleus.

(2) At the perturbing nucleus, the SD spin polarization

is determined by the dipole field of the nuclear spin
moment. Along the axis of the latter, spin polariza-

tion is dominated by b-, perpendicular to it by a-
spin assuming a-spin for the nuclear moment.

(3) The SD spin polarization distribution at the

responding nucleus depends on the excitations
from occupied to virtual spin orbitals involved

in the definition of mSD
B;ðijÞðrÞ according to Eqs.

(16a) and (11). For these excitations the following

applies:

(4) The orbitals contributing to the SD spin polariza-

tion distribution must possess distinct p-character

(pr or pp) and low s-character at both the perturbing

and responding nucleus. This is true for all p orbitals
but only for a subset of the r orbitals as discussed

for molecules 1, 2, and 3.

(5) The selection rules worked out in this investigation

and listed in Eqs. (20) provide the sign of the corre-

sponding matrix element defined in Eq. (13). They

also make it possible to predict relative values.

(6) The magnitude of the matrix element (13) is strongly

determined by the energy gap between occupied and
virtual orbitals, which influences also the magnitude

of the SD sub-components.

(7) The SD energy density defined in this work (see

Eq. (16b)) is obtained by weighting the SD spin po-

larization distribution with the quadrupolar poten-

tial of the operator hSDA;ðijÞ. The signature of the SD

energy density is easily obtained by determining the

local character of the SD spin polarization (ij) at
responding nucleus A and combining it with the

signature of the quadrupole potential hSDA;ðijÞ (see

Figs. 2–4).

(8) There is a simple relationship between the SD

spin polarization distribution and the SD energy

density distribution: If the former has partial d-

character at the responding nucleus with the op-

posite (equal) signature as the spin polarization
distribution at the perturbing nucleus, then the

region around the responding nucleus will make

apositive (negative) contribution to the SD energy

density.

(9) For acetylene, ethylene, and ethane, all diagonal

sub-components JSDAB;ðiiÞ are positive, however most

important is the (xx) sub-component, which deter-

mines the exponential increase of the isotropic SD
term with the bond order.

Work is in progress to apply rules (1)–(8) for ana-

lyzing the SD term in molecules with hetero atoms.
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Appendix A

In this appendix, the selection rules for operators

hSDB;ðijÞ used in Section 3 are derived. For that purpose, we

write down the results for the multiplication of selected

real p and d functions where the latter represent the

quadrupole potential of hSDB;ðijÞ. These results can be

found either from the corresponding Clebsch–Gordan
coefficients or by inspection from the explicit expres-

sions of the spherical functions. It holds

pzdz2 ¼
1

4p

ffiffiffi
4

5

r
pz

"
þ

ffiffiffiffiffi
27

35

r
fz3

#
; ðA:1aÞ

pzdx2 ¼
1

4p

"
�

ffiffiffi
1

5

r
pz þ

ffiffiffiffiffi
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35
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fx2z
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; ðA:1bÞ

pzdxz ¼
1

4p
pz
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ffiffiffiffiffi
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35

r
fxz2

#
; ðA:1cÞ

pzdxy ¼
1

4p

ffiffiffi
1

7

r
fxyz: ðA:1dÞ

Here we have used the definitions

pz ¼
ffiffiffiffiffiffi
3

4p

r
ẑ; ðA:2aÞ

dz2 ¼
ffiffiffiffiffiffi
15

4p

r
ð3ẑ2 � 1Þ; ðA:2bÞ

dx2 ¼
ffiffiffiffiffiffi
15

4p

r
ð3x̂2 � 1Þ; ðA:2cÞ

dxz ¼
ffiffiffiffiffiffi
5

4p

r
x̂ẑ; ðA:2dÞ

dxy ¼
ffiffiffiffiffiffi
5

4p

r
x̂ŷ; ðA:2eÞ

fz3 ¼
ffiffiffiffiffiffiffiffi
7

16p

r
ð5ẑ3 � 3ẑÞ; ðA:2fÞ

fx2z ¼
ffiffiffiffiffiffiffiffi
21

32p

r
ð5x̂2 � 1Þ̂z; ðA:2gÞ

fxz2 ¼
ffiffiffiffiffiffiffiffi
21

32p

r
x̂ð5ẑ2 � 1Þ; ðA:2hÞ

fxyz ¼
ffiffiffiffiffiffiffiffi
105

4p

r
x̂ŷẑ; ðA:2iÞ
where x ¼ x=r, etc. Note that we, in distinction to

common usage in atomic theory, have to consider

spherical functions referring to different quantization

axes (x, y, and z). This implies that not all of the

spherical functions occurring in Eqs. (A.1a)–(A.1d) and
(A.2a)–(A.2i) are orthogonal to each other: dz2 is not

orthogonal to dx2 , fx2z not to fxz2 . Of course, spherical

harmonics belonging to different values of the angular

momentum are always orthogonal to each other.

Multiplication of (A.1a) from the right with pz leads

to a positive non-vanishing term (see rule 20c). Cyclic

exchange of the indices leads to the remaining selection

rules given in Section 3.
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