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Abstract

For the quasi-relativistic normalized elimination of small component using an effective potential (NESC-EP)

method, analytical energy gradients were developed, programmed, and implemented in a standard quantum chemical

program package. NESC-EP with analytical gradients was applied to determine geometry, vibrational frequencies, and

dissociation enthalpies of ferrocene, tungsten hexafluoride, and tungsten hexacarbonyle. Contrary to non-relativistic

calculations and calculations carried out with RECPs for the same compounds, NESC-EP provided reliable molecular

properties in good agreement with experiment. The computational power of NESC-EP results from the fact that re-

liable relativistic corrections are obtained at a cost level only slightly larger than that of a non-relativistic calculation.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The necessity of relativistic corrections in quan-

tum chemical calculations on systems with heavy

atoms is well-known and a number of methods

have been developed to provide an accurate ac-

count of relativistic effects on molecular properties

[1–3]. However, there is still a need for quantum

chemical methods that make it possible to include

the most important relativistic corrections even
into descriptions of relatively large molecules such

as metallocenes, transition metal complexes with

more than one metal atom or enzymes containing a

transition metal. Also, more and more quantum
chemical work focuses on the third transition metal

row and even on the actinides. We have recently

developed a new quasi-relativistic method dubbed

normalized elimination of small component using

an effective potential (NESC-EP) [4], which com-

pensates shortcomings of the low order approxi-

mation to the NESC approach [5] by the use of an

effective potential. In follow-up work [6], we con-
nected the NESC-EP approach with Kohn–Sham

(KS) density functional theory (DFT) [7]. First

benchmark calculations revealed that DFT–

NESC-EP/B3LYP provides reasonable relativistic

corrections, which compete with those of much

more expensive methods on an equal footing [4,6].
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In this work, we report on an extension of our

previous work aimed at routinely calculating mo-

lecular geometries with analytical energy deriva-

tives. For this purpose, we develop the theory of

analytical NESC gradients in Section 2 after

shortly describing the basic theory of DFT–
NESC-EP. In Section 3, we discuss the imple-

mentation of the newly developed gradients into a

standard quantum chemical program package

while in Section 4 applications with the new ana-

lytical approach are represented for some non-

trivial examples.

2. Theory of NESC gradients

The NESC-EP method is based on the nor-

malized elimination of the small component in

the Dirac equation as developed by Dyall [5,8].

Utilizing substitution (1), which connects the

small component WS of the Dirac wavefunction

WD ¼ WL

WS

� �
[9] with the so-called pseudo-large

wavefunction UL

WS ¼
ðr � pÞ
2mc

UL; ð1Þ

the one-electron Dirac equation can be modified to

lead to:

T̂TUL þ V WL ¼ EWL;

T̂TWL þ
1

4m2c2
ðr � pÞðV � EÞðr � pÞUL ¼ T̂TUL;

ð2Þ

where T̂T is the kinetic energy operator

T̂T ¼ p2

2m
¼ ðr � pÞðr � pÞ

2m
:

The elimination of UL from Eq. (2), which is ac-

complished [8] with the help of the following re-

lation:

UL ¼ ÛUWL; ð3Þ
leads to the NESC equation

ðT̂T � ðÎI � ÛU yÞT̂T ðÎI � ÛUÞ þ V

þ 1

4m2c2
ÛU yðr � pÞV ðr � pÞÛUÞWL

¼ E 1

 
þ ÛU yT̂T ÛU

2mc2

!
WL: ð4Þ

For a solution of the Dirac equation, the pseudo-

large UL and large WL components of the modified

Dirac wavefunction are connected by [8],

ðr � pÞUL ¼ 1

�
þ E � V

2mc2

��1

ðr � pÞWL; ð5Þ

which enables one to rewrite Eq. (4) as Eq. (6)

ðT̂T þ V þ 1

4m2c2
ðr � pÞVeffðr � pÞÞW

¼ E 1

 
þ T̂T
2mc2

!
W; ð6Þ

Veff ¼ Vwþ Eð1� wÞ

¼ V
�

þ E
ðE � V Þ
2mc2

��
1

�
þ ðE � V Þ

2mc2

�
; ð7Þ

where w denotes the prefactor on the right-hand

side (r.h.s.) of Eq. (5): w ¼ ð1þ ðE � V Þ=ð2mc2ÞÞ�1

and the effective (energy-dependent) potential Veff
is given by Eq. (7). Eq. (6) is similar in its ap-

pearance to a low-order approximation (called

NESC U ¼ I in [5]) of the exact Eq. (4). However,

the effective potential Veff absorbs implicitly high-
er-order corrections, which are not contained in

the low-order approximation [4].

In our previous publications [4,6], it was pro-

posed to model the energy-dependent effective

potential Veff in Eq. (6) with an energy-independent

expression, which behaves at large distances from

the nucleus as the usual Coulomb potential, how-

ever, remains finite at the position of nucleus.
Thus, the one-electron NESC-EP (NESC with ef-

fective potential) equation is given by

ðT̂T þ VNe þ
1

4m2c2
ðr � pÞV 0

Neðr � pÞÞwi

¼ �i 1

 
þ T̂T
2mc2

!
wi; ð8Þ

where the electron–nuclear attraction potential
VNeðr1Þ ¼

P
n �Zn=r1n is replaced in the third term

on the l.h.s. by potential.

V 0
Neðr1Þ ¼

Xall N

n

� Zn

r1n
erf ðr1n=r0ðZnÞÞ: ð9Þ

In Eq. (9), r0ðZnÞ is a cut-off radius specific for

the nth nucleus and r1n ¼ jr1 � rnj is the distance
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between the nth nucleus and the electron position

given by radius-vector r1. The dependence of r0ðZnÞ
on the nuclear charge is given by the following

equation [4]:

r0ðZÞ ¼ ða0 þ a1Z�1 þ a2Z�2Þ Z
mc2

; ð10Þ

with the coefficients a0 ¼ �0:263188; a1 ¼
106:016974; a2 ¼ 138:985999 being based on a fit
of the 1s1=2 eigenvalues of the Dirac equation [9]

for H-like atomic ions. Expanding the one-electron

wavefunctions (orbitals) wi in terms of (non-or-

thogonal) basis set functions v according to the

following equation:

wi ¼ jviCi; ð11Þ
where jvi is the row-vector of basis functions, Ci is

the column-vector of expansion coefficients and

using the one-electron relativistic approximation

[10], the matrix form of the NESC-EP equation

within the Kohn–Sham formalism is given by

ðS1=2ÞyðU�1=2ÞyðT
�

þ VþWÞðU�1=2ÞðS1=2Þ

þ Jþ Vxc

	
Ci ¼ SCi�i; ð12Þ

where W denotes the matrix of the operator

ðr � pÞ V 0
Ne

4m2c2
ðr � pÞ;

the renormalization matrix U is given by

U ¼ Sþ 1

2mc2
T; ð13Þ

while J and Vxc are the matrices of the classical

Coulomb repulsion operator and of the Kohn–

Sham potential, respectively. The one-electron (1�ee)
approximation amounts to using the untrans-

formed (non-relativistic) two-electron part of the

many-body Hamiltonian in the relativistic case.

Such an approximation corresponds to the neglect

of a two-electron Darwin term and provides, as
demonstrated in [4,10], reliable approximations to

scalar relativistic effects. The total NESC-EP en-

ergy is given by the following equation:

ENESC-EP ¼ E1�ee þ EC þ Exc

¼ tr PððS1=2ÞyðU�1=2ÞyðV
�

þ T

þWÞðU�1=2ÞðS1=2ÞÞ
	
þ 1

2
trðPJÞ þ Exc;

ð14Þ

where P is the density matrix in the basis of

functions v

P ¼ CnCy; ð15Þ
and Exc is the usual KS exchange–correlation en-

ergy. In Eq. (15), n is the diagonal matrix of orbital

occupation numbers.

Eq. (14) differs from the corresponding non-
relativistic expression only in the use of the

relativistically corrected Hamiltonian for the one-

electron (1�ee) contribution to the total energy. Thus,

the NESC-EP energy derivative with respect to

nuclear coordinates will differ from the corre-

sponding non-relativistic expression only in the

one-electron contributions

oE1�ee

ok
¼ tr P

o

ok
ððS1=2ÞyðU�1=2Þy

��

�ðVþ TþWÞðU�1=2ÞðS1=2ÞÞ
��

¼ tr P
o

ok
Gy

� �
HG

��
þGy o

ok
H

� �
G

þGyH
o

ok
G

� ���

¼ tr GP
o

ok
Gy

� ���
þ o

ok
G

� �
PGy

�
H

�

þ tr ðGPGyÞ o

ok
H

� �� �

¼ tr
o0

ok
P0

 !
H

 !
þ tr P0 o

ok
H

� �� �
; ð16Þ

where the G, H and P0 matrices are defined in

Eqs. (17)–(19), respectively:

G ¼ U�1=2S1=2; ð17Þ

H ¼ Vþ TþW; ð18Þ

P0 ¼ GPGy; ð19Þ
and the o0=ok symbol means that molecular inte-

grals rather than orbital coefficients are to be dif-
ferentiated.

The derivative of the H matrix contains the

derivatives of the electron–nuclear attraction

ððo=okÞVÞ and kinetic energy integrals ððo=okÞTÞ,
which are easily available in standard quantum-

chemical codes. In addition, the derivative of
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matrix W (see Eq. (12)) is required, which can be

expressed in terms of the usual nuclear–electron

attraction integrals as was recently discussed

[4,6,11].

The derivative of the renormalization matrix G

with respect to a nuclear coordinate k is expressed
in Eq. (20) in terms of the derivatives of matrices

U1=2 and S1=2.

o

ok
G ¼ o

ok
ðU�1=2S1=2Þ

¼ o

ok
U�1=2

� �
S1=2 þU�1=2 o

ok
S1=2

� �

¼ �U�1=2 o

ok
U1=2

� �
GþU�1=2 o

ok
S1=2

� �
;

ð20Þ
where the identity

o

ok
A�1 ¼ �A�1 o

ok
A

� �
A�1

following from the differentiation of A�1A ¼ I is
used.

The derivatives of the square root matrices can

be taken [12] using the properties of eigenvalues

and eigenvectors of a symmetric matrix A, which

can be diagonalized with the help of its eigenvec-

tors C according to a ¼ CyAC. Differentiating the

diagonal matrix a and using the identity A ¼ CaCy

one obtains the following equation:

o

ok
a ¼ aR� Raþ Cy o

ok
A

� �
C; ð21Þ

where R ¼ Cyððo=okÞCÞ is an antisymmetric ma-

trix. The antisymmetry of R follows from differ-

entiation of the identity CCy ¼ I. The elements of

the antisymmetric matrix R can be calculated as

follows:

Rij ¼ ðaj � aiÞ�1
Cyð o

okAÞC

 �

ij
i 6¼ j;

0 i ¼ j;

�
ð22Þ

which follows from Eq. (21) noting that the matrix

a is diagonal.

Analogously, for the square root of a diagonal

matrix a one obtains the following equation:

o

ok
a1=2 ¼ a1=2R� Ra1=2 þ Cy o

ok
A1=2

� �
C; ð23Þ

which after substituting Eq. (22) yields Eq. (24) for

the derivative of the square root matrix A1=2.

Cy o

ok
A1=2

� �
C

� �
ij

¼ ða1=2j � a1=2i ÞRijða1=2j þ a1=2i Þ�1
Cy o

ok
A

� �
C

� �
ij

:

ð24Þ

The derivatives of matrices U1=2 and S1=2 can be

calculated from Eq. (24). The derivatives of the

overlap integrals which are necessary to calculate

ðo=okÞS1=2 are available in the standard quantum-

chemical programs, while the derivatives of the U

matrix are expressed in Eq. (25) in terms of the
usual one-electron molecular integrals

o

ok
U ¼ o

ok
Sþ 1

2mc2
o

ok
T: ð25Þ

3. Implementation and details of calculations

Analytical energy gradients for the NESC-EP

method were programmed and implemented into

the ab inito package COLOGNEOLOGNE 2002 [13] accord-

ing to the procedure described in the previous

Section. Appropriate tests were carried out by
comparing analytical and numerical energy deriv-

atives with regard to nuclear coordinates. After

stepwise decrease of the increment value used in

the numeric procedure analytic and numeric de-

rivatives agreed within 10�5–10�6 hartree/bohr.

Using convergence criteria of 5� 10�4 hartree/

bohr in the geometry optimization implies an ac-

curacy in the calculated bond lengths of 10�4 �AA.
The computational cost for setting up the ana-

lytic energy gradient requires not more than 20%

of the SCF calculation of DFT–NESC-EP (for an

average of 15 iteration cycles). Even better timings

were found for larger molecules. Hence, we con-

clude that our implementation of analytic energy

gradients for DFT–NESC-EP reduces the time

needed for the total geometry optimization sub-
stantially and leads to accurate geometries.

DFT–NESC-EP calculations with the B3LYP

functional [14] were carried out for ferrocene

FeðC5H5Þ2, tungsten hexafluoride WF6, and tung-
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sten hexacarbonyl WðCOÞ6. For comparison, non-

relativistic DFT/B3LYP calculations on the same

compounds were also performed. Calculations for

ferrocene employed the contracted [8s6p4d1f] basis

set of Wachters [15] for iron and Pople�s 6-31G(d)

basis set [16] for carbon and hydrogen. In the in-
vestigation of the tungsten complexes, a contracted

[16s12p8d4f] basis for tungsten [17], the aug-cc-

pVDZ basis for F, and the cc-pVDZ basis sets for

C and O, respectively, were used [18].

For molecules FeðC5H5Þ2, WF6, and WðCOÞ6,
dissociation reactions were also investigated.

Open-shell systems were calculated with the spin-

unrestricted DFT approach. Energy differences
were converted to enthalpy differences DH (298) at

298 K by calculating thermochemical corrections.

For this purpose, vibrational frequencies were

determined by numeric differentiation of analytic

energy gradients with regard to nuclear coordi-

nates applying the central difference formula with

an increment of 0.001 �AA. The spin–orbit correc-

tions for the ground state energies of tungsten and
fluorine and of WF5 were taken from [19]. When

calculating the dissociation enthalpy of ferrocene

and the atomization enthalpy of tungsten hexa-

fluoride, the basis set superposition error was

taken into account with the help of the counter-

poise correction method [20].

4. Results and discussion

Ferrocene was optimized imposing D5h symme-

try while for WF6 and WðCOÞ6 an Oh symmetry

constraint was used. The products of the bond dis-

sociation reaction:WX6 ! WX5 þX, namelyWF5

and WðCOÞ5, possess C2v and C4v symmetry, re-

spectively. Calculated geometries and dissociation
energies are listed in Table 1 where the NESC-EP/

B3LYP results are compared with the corre-

sponding non-relativistic results. This comparison

helps to elucidate the role of relativistic effects for

the molecules considered. For ferrocene, the rela-

tivistic effect is expected to be relatively small [21].

The difference in the dissociation enthalpies of the

reaction FeðC5H5Þ2ð1A1gÞ ! Fe2þð5DÞ þ 2C5H
�
5

ð1A0
1Þ calculated at the quasi-relativistic and non-

relativistic level of theory is 5.6 kcal/mol, which is

close to the 6 kcal/mol reported by Klopper and

L€uuthi [21] for ferrocene. Relativity results in a

moderate shortening of Fe–C and Fe–cp (cp:

center of pentagon of the cyclopentadienyl anion)

distances by ca. 0.01 �AA (NESC-EP: 2.068 and

1.673 �AA; exp.: 2.058 and 1.660 �AA [22]) while leaving
the other bond lengths unchanged. This and the

description of an isolated cyclopentadienyl anion,

for which the quasi-relativistic and non-relativistic

calculations yield identical geometries with C–C

bond lengths of 1.414 �AA, imply that the formalism

described in the previous section works correctly

and recovers the correct non-relativistic results in

situations where relativity does not play a major
role. Note, however, that the inclusion of relativity

via the NESC-EP method brings the Fe–C and

Fe–cp distances and the dissociation enthalpy (638

kcal/mol) in closer agreement with experimental

data (635� 6 [21] and 636� 10 kcal/mol [23]).

For a heavier element such as tungsten, the ef-

fects of relativity are substantial with regard to

both molecular geometry and dissociation enthal-
pies. In the case of WF6, the NESC-EP method

yields excellent first and total bond dissocia-

tion enthalpies ðWF6ð1A1gÞ ! WF5ð2B2Þ þ Fð2PÞ:
729.5 kcal/mol; exp.: 729� 3 kcal/mol [19];

WF6ð1A1gÞ ! Wð5DÞ þ 6Fð2PÞ: 123.6 kcal/mol;

exp.: 121� 3 kcal/mol [19]) and an accurate mo-

lecular geometry (bond length WF: 1.837 vs. 1.832

[24] or 1.829 �AA [25]). Relativity has a dramatic
effect on the dissociation enthalpies of WF6 and

accounts for ca. 20% of the first bond dissociation

enthalpy (123.6; non-rel.: 94.8 kcal/mol, Table 1).

The results of the NESC-EP/B3LYP calculations

can be compared with the results of B3LYP cal-

culations based on the use of relativistic effective

core potentials (RECP) reported by Dyall [19].

RECP/B3LYP performs poor for WF6 as reflected
by a WF bond length of 1.847 �AA, an atomization

enthalpy of 705 kcal/mol, and a first bond disso-

ciation enthalpy of 110 kcal/mol [19]. For atomic

tungsten, NESC-EP/B3LYP predicts correctly the
5D(6s25d4) state to be the ground state with the
7S(6s15d5) state lying 8.9 kcal/mol above the 5D

state. The non-relativistic B3LYP and the RECP/

B3LYP calculations incorrectly place the 7S state
below the 5D state by 24.5 and 4.8 kcal/mol, re-

spectively. The latter result shows that the RECP
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used in [19] (LANL2DZ) underestimates relativ-
istic effects for the valence s- and d-orbitals of

tungsten.

NESC-EP/B3LYP results for WðCOÞ6 are also

in good agreement with experiment (see Table 1).

Again, relativity contributes ca. 20% to the first

bond dissociation enthalpy (non-rel.: 40.9; rel.:

50.9 kcal/mol, exp.: 46� 2 kcal/mol [26], Table 1).

The metal–ligand bond length contraction (2.103)
2.051¼ 0.052 �AA, exp.: 2.058 �AA [27], Table 1) is even

more pronounced for WðCOÞ6 than for WF6. The

NESC-EP/B3LYP results are also in reasonable

agreement with other all electron quasi-relativistic

DFT calculations (see Table 1). Note, however,

that hybrid functionals such as B3LYP were not
employed previously in all-electron quasi-relativ-

istic calculations.

5. Conclusions

Analytical energy gradients were developed,

programmed, and tested for the NESC-EP meth-
od. Their use leads to a substantial reduction of

the computer time for geometry optimizations and

vibrational frequency calculations with NESC-EP.

Application of NESC-EP with analytical gradients

confirms the computational power of the new

Table 1

Results of molecular calculations

Parameter NESC-EP Non-relativistic Exptl. Other work

FeðC5H5Þ2a
RFe–cp

b, �AA 1.673 1.683 1:660� 0:008c

RFe–C (�AA) 2.068 2.076 2:058� 0:005c

RC–C (�AA) 1.428 1.428 1:431� 0:005c

RC–H (�AA) 1.082 1.082 1:122� 0:020c

DH 0
298

d (kcal/mol) 637.9 632.3 635� 6e; 636� 10f

WF6
g

RW–F (�AA) 1.837 1.869 1:832� 0:003h;

1:829� 0:002i
1.856j; 1.855k

DH 0
298

l (kcal/mol) 729.5 655.3 729� 3m

DH 0
298

n (kcal/mol) 123.6 94.8 121� 3m

WðCOÞ6o
RW–C (�AA) 2.051 2.103 2:058� 0:003p 2.060j; 2.052k

RC–O (�AA) 1.148 1.146 1:148� 0:0025p

DH 0
298

q (kcal/mol) 50.9 40.9 46� 2r 45.4j; 45.2

aCalculations employed a [8s6p4d1f] basis [15] on Fe and 6-31G(d) basis [16] on C and H.
bMetal-ring distance whereas the center of the cyclopentadienyl anion is used.
c Taken from [22].
d Enthalpy of the reaction: FeðC5H5Þ2ð1A1gÞ ! Fe2þð5DÞ þ 2C5H

�
5 ð1A

0
1Þ.

e From [21].
f From [23].
g Calculations employed a [16s12p8d4f] basis [17] on W and the aug-cc-pVDZ basis [18] on F.
h From [24].
i From [25].
j DPT/BP86 results from [28].
k ZORA/BP86 results from [28].
l Enthalpy of the reaction: WF6ð1A1gÞ ! Wð5DÞ þ 6Fð2PÞ.
mFrom [19].
n Enthalpy of the reaction: WF6ð1A1gÞ ! WF5ð2B2Þ þ Fð2PÞ.
o Calculations employed a [16s12p8d4f] basis [17] on W and the cc-pVDZ basis [18] on C and O.
p From [27].
q Enthalpy of the reaction: WðCOÞ6ð1A1gÞ ! WðCOÞ5ð1A1Þ þ COð1RÞ.
r From [26].
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method, namely to obtain reliable relativistic cor-

rections for molecular geometries at a cost level

only slightly larger than that of a non-relativistic

geometry optimization. In this way, quasi-relativ-

istic calculations for relatively large molecules of

interest in transition metal chemistry or biochem-
istry become accessible.
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