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Abstract

With the help of resolution of the identity (RI) a compact representation for the zeroth-order (ZORA) and infinite-

order (IORA) regular approximation Hamiltonians in matrix form is developed. The new representation does not

require calculation of any additional molecular integrals, which involve an auxiliary basis set used in the RI. The IORA

computational scheme is modified in such a way that the erroneous gauge dependence of the total energy is reduced by

an order of magnitude. The new quasi-relativistic method, dubbed IORAmm, is tested along with the ZORA and

IORA methods in atomic and molecular calculations performed at the SCF and MP2 level.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Development of relativistic Hamiltonians for

electronic structure calculations is currently an

active field of research in quantum chemistry.
Computational complexity of four-component

relativistic calculations which employ directly the

Diarc Hamiltonian prompts researches to seek for

approximate two- or even one-component theo-

ries. Among such quasi-relativistic theories meth-

ods based on the regular approximation [1,2] are

widely used. The zeroth-order and infinite-order

regular approximations (ZORA and IORA, re-
spectively) provide two-/one-component varia-

tionally stable Hamiltonian, which is used for

inclusion of relativistic effects into atomic and

molecular calculations [3–9].

However, an implementation of ZORA and

IORA in the standard quantum chemical codes is

difficult, because the regular Hamiltonian contains
the total atomic (or molecular) potential in the de-

nominator. This complicates greatly the calculation

of matrix elements of the ZORA and IORA Ham-

iltonians and makes the use of either numeric inte-

gration techniques or resolution of the identity (RI)

inevitable. Within ab initio framework RI has been

used in a series of works by Faas et al. [6–8] and

Klopper et al. [9]. Although their results are in
reasonable agreement with the numeric ZORA re-

sults, a relatively large auxiliary basis set is neces-

sary to provide a good accuracy in the RI. Thus,

such ab initio calculations are still muchmore costly

than the non-relativistic calculations. Futhermore,
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the approach of [6–9] has not been tested in the post

Hartree–Fock ab initio calculations.

Yet another disadvantage of the ZORA and

IORA methods is an incorrect dependence of en-

ergy eigenvalues on the choice of gauge in the

electrostatic potential [3–5,8,9]. This means that
shifting the electrostatic potential by a certain

amount does not result in exactly the same shift (as

it should be) in eigenenergies. In molecular calcu-

lations such a gauge non-invariance results in an

incorrect dependence of the ZORA energy on

molecular structure [4]. Systematic reduction of

the incorrect gauge dependence can be achieved

with the use of a perturbation expansion [5], but
perturbational methods are far less efficient than

variational in calculation of properties other than

energy. Within the quasi-variational approach the

incorrect gauge dependence of ZORA energies is

reduced greatly with the use of a quasi-relativistic

metric [5,9]. Thus, employing in the IORA method

[5] a wavefunction metric obtained from the reg-

ular expansion of the exact Foldy–Wouthuysen
transformation [10] reduces the non-invariance

error from order 1=c2 to order 1=c4 [5,9]. However,

for heavy nuclei (Z P 50) the error is still large and

can affect optimized molecular structures as well as

calculated relative energies [9].

In the present Letter we propose a matrix repre-

sentation for the ZORA (and IORA) Hamiltonian

alternative to that used in [6–9]. The new represen-
tation is also based on RI, however the direct use of

an auxiliary basis set is avoided in final formulae for

the Hamiltonian matrix elements. Based on the

IORA one-electron equations, an approximate

quasi-relativistic scheme is proposed, which reduces

considerably the gauge error in the IORA energies.

The scheme dubbed IORAmm (IORA with modi-

fied metric) was tested in the calculation of elec-
tronic structure of several atomic and molecular

systems both at the SCF and post-SCF (MP2) level.

2. Theory

The one-electron ZORA equation is given by [3]

1

2m
ðr � pÞ 1

1� V
2mc2

ðr � pÞ
�

þ V
�

w ¼ �w; ð1Þ

where w is the ZORA wavefunction, V the

potential, r is vector of the Pauli matrices

r ¼ ðrx; ry ; rzÞ [11], p ¼ �i�hr the momentum op-

erator, c the velocity of light, and m is the electron

mass. The IORA one-electron equation [5] differs
from Eq. (1) in the use of quasi-relativistic metric

on the right hand side (RHS) of Eq. (2).

1

2m
ðr � pÞ 1

1� V
2mc2

ðr � pÞ
�

þ V
�

w

¼ � 1

 
þ 1

4m2c2
ðr � pÞ 1

ð1� V
2mc2Þ

2
ðr � pÞ

!
w: ð2Þ

Expanding the wavefunction w in terms of (non-

orthogonal) basis set v as in Eq. (3)

w ¼ vC; ð3Þ
where v is a row-vector of basis functions and C is

a column-vector of expansion coefficients, Eqs. (1)
and (2) can be represented in matrix form, Eqs. (4)

and (5), respectively.

Vð þ K1ÞC ¼ SC�; ð4Þ

Vð þ K1ÞC ¼ Sð þ K2ÞC�: ð5Þ
In Eqs. (4) and (5) V is the potential energy matrix,

S is the overlap matrix and K1 and K2 are the

matrices of the operators

1

2m
ðr � pÞ 1

1� V
2mc2

ðr � pÞ

and

1

4m2c2
ðr � pÞ 1

ð1� V
2mc2Þ

2
ðr � pÞ;

respectively. Since, the elements of the K1 and K2

matrices contain V in the denominator, an analytic

expression for calculating these elements can

hardly be derived in the case of general potential V.

2.1. Resolution of the identity (RI)

First let us denote

K ¼ 1

2m
1

1� V
2mc2

: ð6Þ

The operator K satisfies the following identity

K ¼ 1

2m
þ 1

2mc2
VK; ð7Þ
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which is often used to split off the non-relativistic

kinetic energy from the ZORA kinetic energy

T̂TZORA ¼ ðr � pÞKðr � pÞ [4,9].
Let us introduce an auxiliary orthonormal basis

set / for the use in the spectral RI operator
ÎI ¼ //y

/ ¼ ðr � pÞv T�1=2

ð2mÞ1=2
: ð8Þ

In Eq. (8) T is the matrix of the kinetic energy

operator

T̂T ¼ p2

2m
¼ ðr � pÞðr � pÞ

2m
:

A similar auxiliary basis set was used previously by

Faas et al. [7].

Using the hermiticity property of the ðr � pÞ op-
erator and Eq. (7), the elements of the ZORA ki-
netic energy matrix K1 can be written as in Eq. (9).

ðK1Þlm ¼
1

2m

�
ðr � pÞvl

���� 1

1� V
2mc2

����ðr � pÞvm

�

¼ Tlm þ
1

2mc2
hðr � pÞvl jVKj ðr � pÞvmi:

ð9Þ

With the help of the RI operator with the auxiliary

basis / Eq. (9) can be rewritten as

ðK1Þlm ¼ Tlm þ ðW0T
�1K1Þlm; ð10Þ

where W0 is the matrix with elements given in Eq.

(11)

ðW0Þlm ¼
�
ðr � pÞvl

���� V
4m2c2

����ðr � pÞvm

�
: ð11Þ

Eq. (10) can be solved in matrix form for the

matrix K1. First let us represent K1 as

K1 ¼ T þ W: ð12Þ
Substituting Eq. (12) into Eq. (10) one gets Eq.
(13).

W ¼ W0 þ W0T
�1W: ð13Þ

Multiplying Eq. (13) with matrix W�1
0 from the left

and with W�1 from the right, one has for the

matrix W Eq. (14).

W�1 ¼ W�1
0 � T�1: ð14Þ

The elements of the K2 matrix, which appears in

the normalization term on the RHS of the IORA

Eq. (5) with the help of Eq. (15)

2mK2 ¼ 1

2m
1

ð1� V
2mc2Þ

2

¼ 1

2m
þ 1

mc2
VK þ 2mK

V
2mc2

V
2mc2

K ð15Þ

can be transformed to Eq. (16).

2mc2ðK2Þlm ¼ hðr � pÞvl j2mK2j ðr � pÞvmi

¼ Tlm þ 2

�
ðr � pÞvl

���� V
2mc2

K

����ðr � pÞvm

�

þ 2m
�
ðr � pÞvl

����K V
2mc2

V
2mc2

K

����ðr � pÞvm

�
:

ð16Þ

As follows from Eqs. (9) and (12), the integrals

hðr � pÞvl j V
2mc2 K j ðr � pÞvmi are the elements of the

W matrix. Using the RI operator with the auxil-

iary basis / in the third line of Eq. (16), the matrix
K2 can be represented as

K2 ¼
1

2mc2
ðT þ 2W þ WT�1WÞ: ð17Þ

Thus, the matrices K1 and K2, which are necessary

to perform ZORA and IORA calculations can

easily be calculated from Eqs. (12)–(14) and (17).

The elements of the W0 matrix can be expressed in

terms of the usual molecular integrals and can be

calculated with the help of the standard non-rela-
tivistic quantum-chemical programs. Conse-

quently, the use of the RI as given in Eqs. (12)–(14)

and (17) does not require the calculation of mo-

lecular integrals other than used in the standard

non-relativistic calculation. Also, at variance with

the previous implementations [6–9] of the RI

technique, the auxiliary basis set defined in Eq. (8)

does not appear explicitly in the final formulae for
K1 and K2.

The accuracy of our final formulae, Eqs. (12)–

(14) and (17), has been tested in the calculations on

H-like atomic ions. The calculations employed a

basis set of 62 s-type Gaussian functions with ex-

ponential parameters ai ¼ Z2a0
i, where a0

i ¼ 8

10�8; 1
 10�7, 2
 10�7, 4
 10�7; . . . ; 8
 107,

1
 108 [12]. In Table 1 the results of our RI-
ZORA and RI-IORA calculations for low-lying
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ns1=2-states of U 91þ ion are compared with the

numerical results from [5]. The error introduced by

the use of the RI technique is of the order 10�4

hartree. A somewhat larger deviation of the 4s1=2
orbital energy from the target value is of the same

order of magnitude as obtained in the non-
relativistic calculation with the same basis set

(exact: )264.5000 hartree, basis set: )264.4961
hartree).

2.2. Gauge dependence

If a computational scheme is gauge invariant,

then shifting the potential V by a certain amount D
will result in exactly the same shift in eigenenergies

[3–5,8,9]. The ZORA method is not gauge invari-

ant, as the shift in its eigenenergies deviates from

the potential shift by [3–5,9]

EZORA
0 � EZORA

D þ D � EZORA
0 D
2mc2

: ð18Þ

The IORA method is also not gauge invariant, but

posesses much lesser degree of non-invariance [5,9]

EIORA
0 � EIORA

D þ D � �ðEIORA
0 Þ2D
4m2c4

: ð19Þ

Although such a gauge dependence may seem

weak, for heavy nuclei it still results in quite large

deviation from the exact behavior [9]. In mole-

cules, a role of the gauge shift D play tails of the

potentials of the neighboring nuclei. As the nuclei

get closer to one another, the corresponding shift
becomes more negative and the ZORA (or IORA)

energy decreases faster than it should. Conse-

quently, a correction for the gauge dependence is

necessary when calculating the relative energies

and the energy derivatives with respect to coordi-

nates of nuclei (see e.g. [3,4]).

However, as Eqs. (18) and (19) suggest, the

change of the wavefunction metric from the non-

relativistic one in ZORA Eq. (1) to a quasi-rela-
tivistic metric of IORA reduces the erroneous

gauge dependence by almost two orders of mag-

nitude. It seems quite natural to investigate if a

modification of the IORA quasi-relativistic metric

can reduce the gauge error even further.

The second term in parentheses on the RHS of

Eq. (2) can be represented as in Eq. (20).

K2

c2
¼ 1

4m2c2
1

ð1� V
2mc2Þ

2
¼ K

2mc2
þ V
2mc4

K2: ð20Þ

Let us consider the behavior of the K2=c2 and
K=ð2mc2Þ operators in two limiting cases, ex-

tremely weak potential (V ! 0) and infinitely

strong potential (V ! �1). This reveals that in

the two cases both operators possess common

limits given in Eq. (21).

lim
V!0

K2

c2
¼ lim

V!0

K
2mc2

¼ 1

4m2c2
;

lim
V!�1

K2

c2
¼ lim

V!�1

K
2mc2

¼ 0:

ð21Þ

Thus, at the two asymptotes the IORA Eq. (2) is

equivalent to Eq. (22),

1

2m
ðr � pÞ 1

1� V
2mc2

ðr � pÞ
�

þ V
�

w

¼ � 1

�
þ 1

4m2c2
ðr � pÞ 1

1� V
2mc2

ðr � pÞ
�

w; ð22Þ

where the K2=c2 operator in the normalization

term is replaced by the K=ð2mc2Þ.

Table 1

ZORA, IORA and Dirac spinor energies of U 91þ

Spinor ZORAa RI-ZORAb IORAa RI-IORAb Dirac

1s1=2 )722.7448 )722.7438 )59.9013 )59.9006 )4861.1980
2s1=2 )43.5545 )43.5543 )1.1385 )1.1383 )1257.3959
3s1=2 )7.8507 )7.8498 )0.0957 )0.0948 )539.0933
4s1=2 )2.3395 )2.3356 )0.0163 )0.0123 )295.2578

The absolute Dirac eigenenergies (in hartrees) are given. For the other methods the difference from the Dirac energy is reported,

DEmethod ¼ Emethod � EDirac.
aNumeric results from [5].
b Present work, with the use of resolution of the identity.
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An interesting feature of Eq. (22) is that the

leading term in the expansion of gauge shift error

EEq: ð22Þ
0 � EEq: ð22Þ

D þ D has the same magnitude as

for the IORA method (see Eq. (19)), however with

the opposite sign. The gauge dependence of Eq.

(22) can be established by substituting V þ D in-
stead of V and expanding both sides of the equa-

tion in power series with respect to D=2mc2. Up to

a leading term, the gauge dependence of Eq. (22) is

given by Eq. (23),

EEq: ð22Þ
0 � EEq: ð22Þ

D þ D

� � D
mc4

�
ðr � pÞw

���� V
2

� �
K2

0

����ðr � pÞw
�

þ EEq: ð22Þ
0 D
2mc4

hðr � pÞw jK2
0j ðr � pÞwi

� þ ðEEq: ð22Þ
0 Þ2D
4m2c4

; ð23Þ

where K0 stands for K from Eq. (6) calculated

without shift in the potential V. The third line of

Eq. (23) is obtained by replacing V =2 with its av-

erage value from the non-relativistic virial theorem

and estimating the remaining matrix elements as in

Eq. (46) of [5].
Thus, a considerable reduction in the erroneous

gauge dependence of the IORA eigenenergy can be

achieved if the normalization terms in Eqs. (2) and

(22) are combined with equal weights. As it is

obvious from Eq. (21), such a combined equation

will be essentially equivalent to the original IORA

equation at two asymptotes, V ! 0 and V ! �1.

The choice of the weighting factors, 1/2 and 1/2, is
dictated by Eqs. (19) and (23), rather than empir-

ical reasons.

The combined method, dubbed IORAmm

(IORA with modified metric), is given in Eq.

(24)

1

2m
ðr � pÞ 1

1� V
2mc2

ðr � pÞ
�

þ V
�

w

¼ � 1

 
þ 1

8m2c2
ðr � pÞ


 1

1� V
2mc2

 
þ 1

ð1� V
2mc2Þ

2

!
ðr � pÞ

!
w ð24Þ

and in matrix form in Eq. (25)

Vð þ T þ WÞC

¼ S

�
þ 1

2mc2
T

�
þ 3

2
W þ 1

2
WT�1W

��
C�

ð25Þ

where W is given in Eq. (14). Numeric calculations

with the new method performed with the afore-

mentioned basis of 62 Gaussian functions [12] for

the ground state of H-like uranium ion confirm the

conclusions from the above analysis and show that

the erroneous gauge dependence of the energy
from IORAmm is reduced by more than an order

of magnitude compared to the IORA method. For

example, with the gauge shift D ¼ �10 a.u. (value

typical for molecular systems) the gauge error

E0 � ED þ D from IORAmm is only 0.0162 a.u. as

compared to 0.2250 a.u. from the original IORA

method. In the next section, it will be demon-

strated that the use of the IORAmm method in
molecular calculations does not result in notice-

able distortions of the molecular structure even if

no corrections for the residual gauge dependence

of the energy is applied.

2.3. Many-electron systems

In the case of many-electron systems, full
ZORA and IORA equations include not only the

Coulomb and exchange contributions to the total

potential V, but also the exchange two-electron

terms between the large and small components of

the quasi-relativistic wavefunction, which appear

together with the linear momentum operator p

[6–9]. Thus, a large number of additional two-

electron integrals must be calculated compared to
the non-relativistic case. These complications can

be avoided if only the one-electron Hamiltonian in

the Hartree–Fock equations is treated relativisti-

cally. Such a one-electron approximation has

proved [13–15] to be capable of reproducing the

scalar relativistic effects on energetic properties

with accuracy sufficient for chemical applications.

The scalar relativistic (one-component) approxi-
mation amounts to omitting all spin–orbit terms in

ZORA and IORA equations and is achieved by

replacing the ðr � pÞ operator with the linear mo-
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mentum operator p. In case of the IORA or

IORAmm methods, the one-electron Hamiltonian,

given in Eqs. (5), (12) and (25), has to be renor-

malized as given in Eq. (26),

H0 ¼ S1=2
� 	y

X�1=2
� 	y

Vð þ T þ WÞ X�1=2
� 	

S1=2
� 	

;

ð26Þ
where the matrix X for IORA and IORAmm is

given by Eqs. (27a) and (27b), respectively.

X ¼ S þ 1

2mc2
ðT þ 2W þ WT�1WÞ; ð27aÞ

¼ S þ 1

2mc2
ðT þ 3

2
W þ 1

2
WT�1WÞ: ð27bÞ

Thus, the Hartree–Fock equations within the

scalar relativistic one-electron approximation read

ðH0 þ Ji � KiÞCi ¼ SCi�i; ð28Þ
where Ji and Ki are the usual non-relativistic

Coulomb and exchange matrices. The use of the

one-electron approximation in many-electron cal-

culations with the regular quasi-relativistic Ham-

iltonians has an additional advantage that the

potential V in the denominator does not depend

on the electron repulsion. Had it been opposite, it

would have created problems with the calculation
of ionization energies because of the lack of gauge

invariance in methods based on the regular ap-

proximation [3].

3. Details of calculations

The described RI-ZORA, RI-IORA and RI-
IORAmm, Eqs. (12), (14), (17), (25–28), were

implemented into the COLOGNEOLOGNE 2001 suite of

quantum-chemical programs [16]. Currently only

single-point SCF and post-SCF calculations are

available, such that all optimizations of molecular

structures reported in the Letter were done

numerically. The RI-ZORA/SCF, RI-IORA/SCF

and RI-IORAmm/SCF calculations have been
done for noble gas atoms He–Xe. Since, the

ZORA method has severe problems with gauge

invariance, the molecular calculations have been

done only with RI-IORA and RI-IORAmm

methods. Benchmark calculations were carried out

for diatomic molecules AgH and Ag2 and for

polyatomic molecules WF6 and WCl6. The mo-

lecular calculations have been done at the SCF and

MP2 (with all valence electrons correlated) levels

of theory. The basis set superposition error is ta-

ken into account when calculating the molecular

atomization energies.
The TZV basis set of Ahlrichs [17] was used for

noble gas atoms He through Kr. For Xe atom the

uncontracted basis set of Dyall was employed [18].

The calculations on silver compounds employed

uncontracted basis set derived from the basis set of

Gropen [19] and augmented by one diffuse s-, three

diffuse p-, and two diffuse d-type functions in an

even-tempered sequence with ratio 2.5. The result-
ing (18s15p10d) basis set was combined with

Dunning�s aug-cc-pVTZ basis set [20] for hydrogen.

For tungsten compounds the partially decon-

tracted basis set of Gropen [19] was used. The

innermost three and the outermost eight s-type

functions were uncontracted. The remaining s-

functions were block contracted in the pattern (3/

2/2/2) using the contraction coefficients for the 1s-,
2s-, 3s- and 4s-orbitals. The outermost five p-type

orbitals were uncontracted and the rest of p-orbi-

tals was block contracted in the pattern (3/3/2/2)

using the contraction coefficients for the 2p-, 3p-,

4p- and 5p-orbitals. The 5d-orbital and the out-

ermost primitive Gaussian d-orbital of the original

basis set were dropped due to orthogonality

problem. The remaining two outermost orbitals
were uncontracted and the rest of d-orbitals was

contracted by scheme (4/2/2) taking the contrac-

tion coefficients from the 3d-, 3d- and 4d-orbitals,

respectively. The outermost two f-type orbitals

were uncontracted. Finally, one s-, three p- and d-,

and one f-type diffuse functions were added in an

even-tempered sequence with ratio 2.5. The re-

sulting block-contracted [16s12p8d6f] basis set was
combined with Dunning�s aug-cc-pVDZ basis sets

[20] on fluorine and chlorine.

4. Results and discussion

First, the gauge dependence of the ZORA,

IORA, and IORAmm energies is studied in cal-
culations on noble gas atoms He through Xe.

Table 2 reports the results. The negative constant
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D, which was added to the potential �Z=r is cho-
sen such that the non-relativistic total energy is
shifted by exactly )100 hartrees. The same settings

were used in [9] when investigating the gauge de-

pendence of ZORA and IORA. The results in

Table 2 confirm the conclusion that IORAmm has

about an order of magnitude weaker gauge de-

pendence than IORA. As will be demonstrated

further, such a gauge error does not result in se-

rious distortion of optimized molecular structure.
Table 3 compares the orbital energies from RI-

ZORA, RI-IORA and RI-IORAmm calculations

for Xe atom with the results of the Dirac–Fock

calculations performed in [7] with the same basis

set. The comparison shows that the IORAmm

method reproduces closely the Dirac–Fock (DF)

results. Generally, the IORAmm orbital energies

are slightly above the DF values, whereas the
IORA method yields more negative orbital ener-

gies. However, an overall accuracy of the results

from the two methods is basically the same with
very good agreement in the valence and sub-va-

lence shells and reasonable agreement (deviations

less than 1 hartree) in the deep core region.

Table 4 presents the results of IORA and

IORAmm calculations for di- and polyatomic

molecules performed at the SCF and MP2 levels.

Since, both methods, IORA and IORAmm, are

not completely gauge invariant, the energy differ-
ences must be corrected for the gauge error. The

gauge error arises from an incorrect response of

the orbitals on atom A to the potentials of other

nuclei in molecule. Thus, the effect of such an error

can be compensated in the atomic calculation;

when calculating the total IORA or IORAmm

energy of an atom, the constant negative shift

must be introduced, which is the value of the
potentials of other atoms in the molecule at the

Table 2

Gauge error Emethod
0 � Emethod

D þ D in the ground-state energy of noble gas atoms for different methods

Atom RI-ZORA RI-IORA RI-IORAmm

He 0.003803 0.000006 0.000003

Ne 0.034280 0.000084 0.000023

Ar 0.077076 0.000464 0.000097

Kr 0.199988 0.003781 0.000628

Xea 0.375149 0.014135 0.001853

The gauge error is given in hartrees. The gauge shift D is chosen such that the total non-relativistic energy is shifted by exactly )100
hartrees. Calculations employ the TZV basis set of Ahlrichs [17] unless noted otherwise.

a Calculated with uncontracted relativistic basis set from [18].

Table 3

Orbital energies for xenon atom obtained with Dirac–Fock, ZORA, IORA and IORAmm methods

Orbital Dirac–Focka RI-ZORA RI-IORA RI-IORAmm

1s )1277.2511 )1338.8489 )1278.8691 )1276.4954
2s )202.4603 )205.6187 )202.4880 )202.3727
2p )181.6912 )184.1154 )181.5652 )181.5234
3s )43.0057 )43.4147 )43.0148 )42.9998
3p )36.0988 )36.3625 )36.0818 )36.0773
3d )25.7266 )25.8598 )25.7330 )25.7341
4s )8.4255 )8.4889 )8.4283 )8.4257
4p )6.1350 )6.1644 )6.1321 )6.1316
4d )2.6604 )2.6608 )2.6613 )2.6617
5s )1.0070 )1.0129 )1.0073 )1.0070
5p )0.4541 )0.4544 )0.4535 )0.4535

Calculations employ the uncontracted relativistic basis set from [18].
aResults of Dirac–Fock calculations from [7] performed with the same basis set. p- and d-orbital energies are averaged over spin–

orbit components.
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position of the given atom. The gauge non-in-
variance error E0 � ED þ D is the difference be-

tween the total atomic energy obtained without

shift (E0) and the total energy (ED) calculated with

shift D in the nuclear potential. The latter calcu-

lation employs the wavefunction from the former

calculation and does not optimize it. Generally

speaking, this is a variant of the electrostatic shift

approximation (ESA) used in ZORA calculations
[3,4] and is similar to counterpoise correction for

the basis set superposition error [21]. Since, IORA

and IORAmm possess much weaker gauge de-

pendence than ZORA, no corrections to the total

energies are used during the geometry optimiza-

tions.

Comparison of the IORAmm results with the
target values (experimental or theoretical) shows

that the effect of the gauge dependence on the

optimized molecular structures is extremely weak.

In the case of AgH, the RI-IORAmm/MP2 gauge

error is only 0.0001881 hartree for Ag and is less

by about an order of magnitude than the error of

0.0014038 hartree from the RI-IORA/MP2 calcu-

lation. The effect of such an error on the energy
derivative with respect to the nuclear coordinates

is of the order of 10�5 hartree/bohr for IORAmm

and is beyond the threshold of tolerance for the

energy gradient in the optimization routines (ca.

10�4 hartree/bohr). Such that the results of

both IORA and IORAmm optimizations of AgH

Table 4

Optimized structures, vibrational frequencies and dissociation energies of some diatomic and polyatomic molecules

Molecule Method re xe DEe
a DH �

298
b

(�AA) (cm�1) (eV) (kcal/mol)

AgH RI-IORA/SCF 1.695 1623 1.15

RI-IORAmm/SCF 1.697 1621 1.15

DHF/SCFc 1.700 1605 1.23

RI-IORA/MP2 1.590 1805 2.07

RI-IORAmm/MP2 1.592 1799 2.07

DHF/MP2c 1.598 1832 2.14

exp.d 1.618 1760 2.39

Ag2 RI-IORA/SCF 2.542 199 0.36

RI-IORAmm/SCF 2.662 160 0.42

RI-IORA/MP2 2.472 227 1.20

RI-IORAmm/MP2 2.566 190 1.27

exp.d 2.531 192 1.67

WF6 RI-IORA/SCF 1.790 19.66

RI-IORAmm/SCF 1.810 19.74

RI-IORA/MP2 1.806 32.54 731e

RI-IORAmm/MP2 1.829 32.67 734e

exp. 1.829f 729g

WCl6 RI-IORA/SCF 2.238 10.82

RI-IORAmm/SCF 2.282 11.06

RI-IORA/MP2 2.232 20.68

RI-IORAmm/MP2 2.282 21.03

exp. 2.289h

aAtomization energy. Corrected for basis set superposition error (BSSE) and gauge dependence error (see text for details).
bAtomization enthalpy.
c From Ref. [22].
d From Ref. [23].
e Calculated from atomization energies with inclusion of spin–orbit ()15.6 kcal/mol) and zero-point and thermal vibrational

()4 kcal/mol) corrections taken from [24].
f From Ref. [25].
g From Ref. [24].
h From Ref. [26].
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structure are not affected by the gauge dependence.

The agreement of the IORA and IORAmm results

with the Dirac–Hartree–Fock values is reasonably

good at both SCF and MP2 levels of theory.

For Ag2 molecule the discrepancy between the

IORA and IORAmm results is larger than for
AgH. The IORA results are clearly affected by the

method�s gauge non-invariance. The gauge error

for Ag atom due to the proximity to another Ag

nucleus is 0.0430799 hartree from the RI-IORA/

MP2 calculation whereas it is only 0.0054976

hartree from the RI-IORAmm/MP2 calculation.

Since, no correction for the gauge dependence was

included during the geometry optimization, the
Ag–Ag bond length from the IORA calculation is

markedly shorter. At the same time the RI-IOR-

Amm results are in reasonable agreement with the

experimental data.

The same trend is observed for polyatomic

molecules. The W–F and W–Cl bond lengths from

IORA calculations are shorter than from IOR-

Amm. Again, the gauge error in the RI-IORA/
MP2 calculations (0.4133119 hartree for WF6 and

0.6335881 hartree for WCl6) is more than an order

of magnitude larger than in RI-IORAmm/MP2

(0.0151375 hartree for WF6 and 0.0238426 hartree

for WCl6). It should be noted that the IORAmm

gauge error is of the same order of magnitude as

(and even less than) the basis set superposition er-

ror (BSSE RI-IORAmm/MP2: 0.064529 hartree
for WF6 and 0.0549552 hartree for WCl6). Such

that the neglect of the gauge non-invariance cor-

rection in the geometry optimization has nearly the

same effect on the results as the neglect of BSSE.

In the last column of Table 4, the atomization

enthalpies for WF6 calculated with the RI-IORA/

MP2 and RI-IORAmm/MP2 methods are pre-

sented. The effect of the spin–orbit interaction
()15.6 kcal/mol) on the atomization energy of WF6

and the zero-point and thermal vibrational cor-

rections (4 kcal/mol) are taken from [24] where the

WF6 dissociation has been studied with the help of

RECP-B3LYP calculations. The atomization en-

thalpies from both methods, RI-IORA/MP2 and

RI-IORAmm/MP2, compare well with the experi-

mental datum. At the same time only the RI-
IORAmm/MP2 lengths for the W–F and W–Cl

bonds are in good agreement with the experiment.

5. Conclusions

A compact representation for the matrix

elements of the ZORA and IORA regular ap-

proximation Hamiltonians is proposed. The
representation uses RI, however no additional

molecular integrals, which involve an auxiliary

basis set used in the RI appear in final formulae for

the Hamiltonian matrix elements. The new tech-

nique is easy to implement in the standard non-

relativistic quantum chemical codes and provides

good accuracy compared to the numeric ZORA

and IORA results.
An approximate solution to the gauge depen-

dence of the IORA total energy is proposed. The

use of the modified quasi-relativistic metric in the

IORAmm (IORA with modified metric) method

reduces considerably (ca. an order of magnitude)

the erroneous gauge dependence of the total en-

ergy. The benchmark calculations show that the

residual gauge error in IORAmm is approximately
equal to or less than the basis set superposition

error. Thus, its effect on the optimized molecular

structures is relatively small. The IORAmm cal-

culations performed at the SCF and MP2 level for

AgH, Ag2, WF6 and WCl6 molecules demonstrate

that the new quasi-relativistic method yields mo-

lecular structures and atomization energies (cal-

culated with account of the gauge error) in close
agreement with the experiment. At the same time,

the computational cost of the IORAmm calcula-

tion is essentially the same as the cost of the

standard non-relativistic all electron calculation.
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