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Abstract

A recently developed variationally stable quasi-relativistic method, which is based on the low-order approximation
to the method of normalized elimination of the small component, was incorporated into density functional theory
(DFT). The new method was tested for diatomic molecules involving Ag, Cd, Au, and Hg by calculating equilibrium
bond lengths, vibrational frequencies, and dissociation energies. The method is easy to implement into standard
quantum chemical programs and leads to accurate results for the benchmark systems studied. © 2002 Elsevier Science

B.V. All rights reserved.

1. Introduction

Density functional theory (DFT) [1,2] is a
widely used tool in computational chemistry to
study the properties of atoms and molecules. For
electronic systems containing heavy atoms rela-
tivistic effects have to be taken into consideration
to obtain accurate results [3,4]. For this purpose,
DFT was extended to the relativistic domain [5,6].
However, relativistic DFT based on the Dirac—
Hartree—Fock approach implies a four-component
formalism, which makes computations much more
expensive than for non-relativistic DFT.

Since the full four-component formalism is
computationally demanding, many efforts have
been made to obtain a two-component formalism

*Corresponding author. Fax: +46-31-773-5590.
E-mail address: cremer@theoc.gu.se (D. Cremer).

or even, by removing the spin-degrees of freedom,
a one-component form [7-13]. As a price for the
reduction of the four-component formalism, non-
linear energy-dependent operators appear in the
two-component relativistic Hamiltonian. It is a
common way to remove the energy dependence of
the Hamiltonian by expansion of the non-linear
operators in terms of powers of 1/c? [8-11] and to
obtain approximate quasi-relativistic approaches.
The latter rely often on sophisticated transforma-
tions and require the use of molecular integrals
which otherwise would not appear in conventional
DFT calculations [8-11]. Hence, quasi-relativistic
DFT methods are difficult to implement into
standard DFT programs. Computationally, they
are more demanding than Kohn-Sham DFT [1].
Furthermore, the approximations invoked into
some quasi-relativistic DFT schemes can result in a
loss of gauge invariance and in the non-stationarity
of the energy, like in the zeroth-order regular ap-
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proximation (ZORA) [10,11], or in a loss of vari-
ational stability, like in the relativistic elimination
of the small component (RESC) approach [14]. In
the case of the ZORA approach, additional ap-
proximations have to be made to restore its gauge
invariance and the stationarity of the energy
[10,11,15]. The RESC method must be used with
contracted basis sets which do not contain basis
functions with very high exponents to avoid a
variational collapse [14]. This makes the RESC
method inconvenient for the calculation of the
properties which depend strongly on the com-
pleteness of the basis set near the nucleus (electric
field gradient, NMR chemical shifts, etc.).

In view of these problems we developed recently
[16] an approximate quasi-relativistic method
which is variationally stable, can be easily imple-
mented in any non-relativistic quantum-chemical
program, leads to reliable relativistic corrections,
and which requires low computational cost. This
method, for which we coined the name LO-NESC-
EP (low-order normalized elimination of small
component using an effective potential) enables
one to perform all-electron relativistic calculations
on large molecular systems and to study beside
properties that depend predominantly on the va-
lence electrons also properties that depend on the
core electrons (NMR chemical shifts, etc.). The
development of LO-NESC-EP (or NECS-EP for
brevity) has to be seen as a first step within a long
term effort to obtain QM-MM methods suitable to
predict the magnetic properties of large molecular
systems of biochemical interest (enzymes, etc.)
containing transition metal atoms or other heavy
atoms. The development of a NESC-EP-DFT
method as reported in this work represents the
second step while further steps will focus on spin—
orbit coupling corrections, the development of
analytical gradients for routine optimization of
molecular geometries, etc.

The low-order NESC approach [13,17] was
chosen as a starting point because its one-electron
equations can be easily formulated in the familiar
form of the Schrodinger one-electron equation
with relativistic correction terms for the potential
energy and the metric [17]. Also, the calculation of
the matrix elements of the Hamiltonian does not
involve any unusual molecular integrals. Thus, the

low-order NESC approximation [17] is a suitable
candidate for a merger with non-relativistic
methods. The only problem of this quasi-relativ-
istic method is its variational instability, because of
which the low-order NESC approximation was
previously abandoned [17].

As it has been shown in our recent publication
[16], the situation can be changed by the use of an
effective potential which, contrary to the nuclear—
electron attraction potential commonly used in the
relativistic correction to the potential energy, is
regular near the atomic nucleus. The resulting
NESC-EP approach is variationally stable and
predicts atomic properties in a good agreement
with relativistic four-component Dirac-Fock-
Coulomb calculations. In the present communi-
cation, the NESC-EP method is extended to DFT
in the form of relativistic Kohn-Sham method
[5,6]. The basic formalism and details of the im-
plementation are outlined in Sections 2 and 3.
Also, results of first applications of NESC-EP-
DFT are reported and compared with the avail-
able literature data (Section 4).

2. Theory

Relativistic Kohn—-Sham (RKS) DFT [5,6] rep-
resents a general approach to the calculation of the
ground-state properties of atomic and molecular
systems which includes all relevant relativistic and
quantum electrodynamical effects. Most often the
RKS method is used in the so-called longitudinal
no-sea approximation [18] which amounts to a
neglect of both radiative and magnetic quantum
electrodynamical corrections. This approximation
is equivalent to the Dirac-Fock—Coulomb method
[19] in wavefunction theory. The longitudinal no-
sea RKS equations read

(V*%S — &)Yy +c(o-p)y; =0, (1a)

clo - Py + (RFS — g — 2mcz)lﬁ,§ =0, (1b)

where zp,ﬁ is the large and w,f is the small compo-
nent of the four-component one-electron orbital

L
U, = (Wé >, 6 = (6.,0,,0.) the vector of the Pauli
k
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matrices [20], p = —14V the momentum operator,
¢ the velocity of light, m the electron mass, and
vRKS the Kohn—Sham potential given by Eq. (2)

v () = ve (1) + s (1) + v (7] 7). (2)

In Eq. (2) vex gives the external potential, which
includes the nuclear—electron attraction and con-
tributions from other external electric fields (if
present); vy is the potential of the classical Cou-
lomb repulsion of electrons (3)

n(r
UH(I']) = / ( 2) dl’2 (3)
ri2
and v,. the exchange-correlation potential (4),
_ OB [n]
va([n}?rl) - 51’!(1’1) (4)

with n being the ground-state density and E,.[n] the
exchange-correlation functional.

The NESC approach [13] is based on a re-
placement of the small component l,b,f in the Dirac
equation [21] by the pseudolarge component qﬁ,f

=Ty )

Subsequently, the pseudolarge component qﬁ,f is
eliminated from the modified Dirac equations with
the help of relation (6)

4)1]; = Ulp,];, (6)
which connects the large and the pseudolarge
components by virtue of an energy-dependent
non-unitary operator U [13].

Applying Eq. (5) within the RKS scheme results
in a modified RKS equation (7a) and (7b)

iy + ™ SYr = ey, (7a)

W+ 3 (o DS — ) (o g = i)
(7b)

where 7 is the kinetic energy operator (8)
2
._p°_(o-p)a-p)
L= 2m 2m ®)
Upon elimination of the pseudolarge compo-
nent with the help of Eq. (6), Eq. (9) for the large

component only emerges

Utio
=« (1 + 2ch> v 9)

The non-unitary energy-dependent operator U
of Egs. (6) and (9) possesses property (10) [13]

U=1+0(1/c), (10)

where / is the identity operator. This property
enables one to define [17] a low-order approxi-
mation (correct to first-order in 1/c?) to Eq.
(9). Thus, setting U =1 one gets Eq. (11) from
Eq. (9); Eq. (11) is correct to order of 1/c? and
does no longer contain energy-dependent opera-
tors

) |
(r + 08 4 (0 ) e p)) A

:%Hﬁ)%. (11)

For the reason of brevity the superscript L la-
beling the large component has been dropped in
Eq. (11).

Eq. (11) is analogous to the low-order NESC
approximate equation [17] in the Dirac-Fock-
Coulomb method and possesses the same varia-
tional properties, i.e., it is variationally unstable
[17] when the usual nuclear—clectron attraction
potential —Z/r is used in vey. Then, the relativistic
correction to the nuclear—electron potential energy
diverges as —Z/r’ near the nucleus and prevails
over the kinetic energy [17]. In the exact Eq. (9),
the imbalance between kinetic and potential ener-
gies is prevented by the non-linear operator U,
which cuts off an excess in the energy of nuclear—
electron attraction close to the nucleus. In our
previous work [16], it was conjectured that this
effect can be simulated in an approximate equation
by the use of an (energy-independent) cut-off fac-
tor in the relativistic correction to the nuclear—
electron attraction energy.

For this purpose it was proposed [16] to use
potential (12)
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allN 7

he(r) =)~ ﬁerf(rln/ro(zn)) (12)

n

instead of vy (r;) =, —Z,/r1, in the third term
on the LHS of Eq. (11). In Eq. (12), ry(Z,) is a cut-
off radius specific for the nth nucleus and
r1. = |r; — 1| is the distance between the nth nu-
cleus and the electron position given by radius-
vector ry. The error function in Eq. (12) cuts off the
nuclear attraction potential at distances shorter
than the cut-off radius ry(Z,). The cut-off radius is
of the order of the classical radius of the nucleus
Z/(mc?). The dependence of the 7(Z,) on the nu-
clear charge is given by Eq. (13) [16]

Z
I"o(Z) = (ao —+ (,Z]Zil —+ azZ’z)—

mc? (13)

with the coefficients ay = —0.263188, a; =
106.016974, a, = 138.985999 being based on a fit
of the 1s,/, eigenvalues of the Dirac equation [21]
for H-like atomic ions.

With potential (12), Eq. (11) modifies to Eq.
(14)

. 1 ,
[+ Une + Uy + Uxe + W(” “P)Uy. (0 -p)

1
4m dm2c?

(1 +zn;c2>‘”’ (14)

where contributions to vy other than the nuclear—
electron attraction are dropped for clarity. Eq. (14)
differs from the corresponding equation of the
Dirac-Fock—Coulomb formalism [16] only by us-
ing of the local multiplicative potentials vy and v,
instead of the non-local Hartree-Fock—Coulomb
electron interaction potential. As these potentials
are non-singular, their use in Eq. (14) does not
threaten its variational stability and all conclu-
sions drawn in our previous work [16] for an ap-
proximate quasi-relativistic equation within the
Dirac-Fock—Coulomb formalism are equally valid
for Eq. (14).

For the purpose of minimizing computational
efforts when calculating the matrix elements of vy
and v, the one-electron part H; of the quasi-rel-

(6 B)(u + )0 -p))upk

ativistic Hamiltonian in Eq. (14) is renormalized
on the non-relativistic metric [16] as given in ma-
trix form by Egs. (15a)—(15c¢)

Hy = ($7) () (X)), s

)(uv = <X,u Xv>7 (ISb)
()= (1 )

(15¢)

t

1"
+ 2mc?

) 1 ,
t+ vne + W(G ' p)UNe(O- ' p)

where y, are the basis functions used to expand the
one-electron Kohn-Sham orbitals and S is the
matrix of the overlap integrals. Then, the one-
electron  quasi-relativistic ~ Hamiltonian — H}
obtained in this way is used within the standard
non-relativistic KS approach. As established for
the Dirac-Fock—Coulomb formalism [16], such an
approximation results in acceptably small upward
shifts in the total energy, which even in the case of a
He-like atomic ion with Z = 100 constitutes less
than 0.1% of the total energy. Thus, it is Egs. (15a)—
(15¢) together with Eqgs. (12) and (13) that we
propose to use within the standard non-relativistic
KS approach to incorporate approximately the
major relativistic effects.

3. Implementation and calculational details

With the help of the Dirac relation (16)
(6-a)(e-b)=a-b+is-(axb), (16)

which is valid for any couple of vectors a and b not
containing o, Eq. (15¢) can be split into a spin-free
and a spin-dependent part as given in Eq. (17)

(H),, = <x# 7>
+ <xu ‘,>. (17)

In the present work, we concentrate on the spin-
free part of H; and neglect the spin—orbit contri-
bution in the last term on the r.h.s. of Eq. (17).

I+ vye +

1
WP " Uy, P

i
m"' (PUy.) X P
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This scalar relativistic (one-component) approxi-
mation is sufficient for studies on closed shell
molecular systems [22].

In the spin-free quasi-relativistic Hamiltonian
H,, the only part which is not covered by the ex-
isting non-relativistic quantum-chemical codes is
the relativistic correction to the nuclear—electron
attraction energy. Owing to the hermiticity of the
momentum operator p, the corresponding matrix
elements can be transformed as in Eq. (18)

1
L > 4m2 2<pl{ﬂ| Ne|py>
2

422

Am2c? <X,l|p - 1)

(Vidon V). (18)

The gradient of the Cartesian Gaussian type
function (19)

11, m,n, o) = Nelyze =" (19)

is expressed as a linear combination of Gaussian
type functions with higher and lower angular
momentum,

Vo (l,mn, ) = N[i(ly, (I —1,m,n,x)

— 20, (1 +1,m,n, o))

+j(mx;t(lam - 17”7 O()

— 2o, (I,m + 1,n,2))
+Kk(ny, (I,m,n—1,0)
— 2ay, (I, m,n+ 1,a))], (20)

where i, j and k are unit vectors along the x, y and
z directions, respectively. Because the effective
potential vy, in Eqs. (12), (14), (15¢), (17), (18) is a
potential of a Gaussian charge distribution pg (21)

allN

rln E ZVO n

the matrix elements (18) can be evaluated as a
linear combination of the electron-repulsion inte-
grals of type (x,%,/ss). Thus, the evaluation of the
matrix elements of the quasi-relativistic Hamilto-
nian H; of Eq. (15c), can readily be done by
slightly extending a non-relativistic quantum-
chemical program.

However, a more economic way of calculating
the matrix elements of H; is based on the use of

n—a/ze—rfn/roanﬁ, (21)

modified nuclear-attraction integrals rather than
the use of electron-repulsion integrals. The nucle-
ar-attraction integrals (y,|vxe|z,) are routinely
calculated [23] in terms of the auxiliary functions
Fy([oy + ou])r2,), where Fy(¢) is given in Eq. (22)

1
F (1) :/ u¥e ™ du. (22)
0

With the help of the Fourier transform of the
effective potential v},, it can be shown that the
matrix elements (x,|v,|x,) can be calculated with
the same formulae as the elements of vy,, but with
the auxﬂlary functions F; replaced by F; (yr /
(1 +970(Z)") /(1 4+ yr0(Z,)*) "2, where 7 = o, +
a,. Thus, the incorporation of the proposed quasi-
relativistic method into the existing non-relativistic
quantum-chemical codes does not require calcu-
lation of unusual molecular integrals nor does it
invoke any additional numeric integration and can
be achieved at low cost.

The NESC-EP method was implemented into
the CoLoGNE 2001 suite of quantum-chemical
programs [24]. Benchmark calculations were car-
ried out for diatomic molecules AgH, Ag,, CdH,
CdH", AuH, Au,, HgH, and HgH" where these
molecules were chosen because spin—orbit cou-
pling not considered in this work plays only a
minor role in these cases [22]. All calculations
employed uncontracted and contracted basis sets
derived from the heavy element basis sets of
Gropen [25] using recipes suggested by Nakajima
and Hirao [12] and Hess and co-workers [26]. The
uncontracted basis sets for Ag and Cd were aug-
mented by one diffuse s-, three diffuse p-, and two
diffuse d-type functions in an even-tempered se-
quence while for Au and Hg one s-, three p- and f-,
and two d-type diffuse functions were added to the
uncontracted basis sets of Gropen. The resulting
(18s15p10d) (Ag, Cd) and (20s17p12d8f) basis sets
(Au, Hg) were combined with Dunning’s aug-cc-
pVTZ basis set for hydrogen [27] (denoted in the
following as U (uncontracted) basis set).

Smaller contracted basis sets for the heavy
atoms were obtained from the generally con-
tracted basis sets of Gropen as described in [12].
First, the innermost s-type function for Ag and
Cd and the three innermost s-type functions for
Au and Hg are uncontracted. Then, the outer-
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most four s-, two p- and d-, and one f-type
functions are uncontracted for all heavy atoms.
The (n+1)s function (m: principal quantum
number of the valence d-orbital) is dropped for
all atoms along with the nd orbital for Au and
Hg. Finally, one s-, three p-, and one d-type
diffuse functions for Ag and Cd, and one s-, three
p- and d-, and two f-type diffuse functions for Au
and Hg are added in an even-tempered sequence.
The resulting contracted [10s8p5d] (Ag, Cd) and
[13s9p6d4f] basis sets (Au, Hg) are combined with
Dunning’s aug-cc-pVDZ basis set for hydrogen
[27] (denoted in the following as C (contracted)
basis set).

In the Kohn-Sham calculations the B3LYP
hybrid functional [28] was used. Equilibrium in-
ternuclear distances and harmonic vibrational
frequencies were obtained numerically in the
quasi-relativistic and analytically in the non-rela-
tivistic calculations. Dissociation energies were
calculated as the energy difference between the
isolated atoms and the molecule. For open-shell
systems the spin-unrestricted DFT approach was
used.

4. Results and discussion

The calculated spectroscopic constants of the
AgH, Ag,, CdH, CdH", AuH, Au,, HgH, and
HgH"* molecules are presented in Table 1. On the
average, the results of the quasi-relativistic
B3LYP calculations are in a reasonably good
agreement with experimental values [29]. The
mean absolute deviations in the calculated bond
lengths (U: 0.015; C: 0.010 A), vibrational fre-
quencies (U: 36; C: 53 cm™') and dissociation
energies (U: 0.09; C: 0.13 eV, Table 1) are within
the ballpark typical for the non-relativistic
B3LYP calculations on compounds of light ele-
ments [30]. It has to be noted that the calculated
vibrational frequencies are obtained in the har-
monic approximation whereas for a better com-
parison with experimental frequencies also
anharmonicity effects should be included into
calculated frequencies. Normally, harmonic vib-
rational frequencies are larger than the observed
ones.

The non-relativistic B3LYP results are in a poor
agreement with the experimental data (mean devi-
ations for U: 0.135 A, 216 cm~!, 0.64 eV; for C:
0.135 A, 213 cm™!, 0.56 eV; Table 1). For the
diatomic molecules including Ag and Cd, the non-
relativistic B3LYP dissociation energies (deviations
of <0.3¢eV, Table 1) are acceptable. However, even
in these cases bond lengths and vibrational fre-
quencies are out of range of accuracy typical of
DFT/B3LYP calculations for lighter elements [30].
For the diatomics involving Au and Hg, deviations
in the bond lengths are up to 0.3 A, in the stretching
frequencies up to 700 cm~!, and in the dissociation
energies up to 1.5 eV (Table 1) underlining the
necessity of relativistic corrections. Thus, the
NESC-EP-DFT method furnishes a substantial
improvement over the non-relativistic DFT calcu-
lations.

A comparison with the performance of other
quasi-relativistic methods implies that calculations
are done with the same basis sets and density
functional. Thus, a comparison with ZORA
method is quite difficult, because the available re-
sults are obtained with the BP86 functional using a
basis of Slater-type functions [10]. In such a case, it
is difficult to discriminate effects which stem from
differences in density functionals or in the basis sets
used, from those caused by differences in the quasi-
relativistic computational schemes. The only data
available from the literature which can be directly
compared with those reported in Table 1 are the
results of RESC-B3LYP calculations of molecules
AgH and AuH [12]. RESC-B3LYP calculations are
also reported [30] for Ag, and Au,, but these cal-
culations employ a somewhat different (albeit of
comparable size) contracted basis set. The RESC-
B3LYP calculations yield for AgH [12]: . = 1.631
A, w. =176l cm™!, D, =2.44 eV; for AuH [12]:
re=1.527 A, 0. =2328 cm™', D, = 3.40 eV; for
Ag, [30]: re = 2.596 A, . =176 cm™', D, = 1.52
eV; and for Au, [30]: 7. = 2.507 A, @, = 185 cm™!,
D, = 2.57eV. These data have to be compared with
the NESC-EP-B3LYP contracted basis set results
listed in Table 1.

The results of quasi-relativistic B3LYP calcu-
lations based on the Douglas—Kroll-Hess (DKH)
approximation [8,9] are available for Au, [32].
These calculations used an uncontracted (21s17
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Table 1
Spectroscopic constants of some diatomic molecules®
Molecule Method Te We D,
(A) (em™") (V)
AgH NESC-EP-B3LYP/U 1.620 (1.694) 1775 (1584) 2.37 (2.15)
NESC-EP-B3LYP/C 1.627 (1.699) 1808 (1606) 2.36 (2.15)
exp. 1.618 1760 2.39
Ag, NESC-EP-B3LYP/U 2.581 (2.670) 183 (153) 1.56 (1.38)
NESC-EP-B3LYP/C 2.569 (2.660) 190 (157) 1.63 (1.41)
exp. 2.531 192 1.67
CdH NESC-EP-B3LYP/U 1.791 (1.823) 1380 (1415) 0.79 (0.94)
NESC-EP-B3LYP/C 1.787 (1.818) 1396 (1429) 0.80 (0.96)
exp. 1.781 1337 0.76
CdH* NESC-EP-B3LYP/U 1.668 (1.721) 1807 (1685) 2.15 (1.98)
NESC-EP-B3LYP/C 1.668 (1.720) 1841 (1707) 2.16 (1.97)
exp. 1.667 1772 2.20
AuH NESC-EP-B3LYP/U 1.502 (1.734) 2458 (1642) 3.54 (2.24)
NESC-EP-B3LYP/C 1.524 (1.723) 2391 (1631) 3.32 (2.21)
exp. 1.524 2305 3.36
Au, NESC-EP-B3LYP/U 2.464 (2.761) 195 (122) 2.46 (0.81)
NESC-EP-B3LYP/C 2.469 (2.775) 197 (124) 2.78 (1.47)
exp. 2.472 191 2.29
HgH NESC-EP-B3LYP/U 1.764 (1.863) 1221 (1468) 0.43 (0.93)
NESC-EP-B3LYP/C 1.761 (1.870) 1192 (1418) 0.60 (0.89)
exp. 1.766 1203 0.45
HgH' NESC-EP-B3LYP/U 1.569 (1.769) 2035 (1679) 3.14 (2.00)
NESC-EP-B3LYP/C 1.591 (1.770) 1888 (1623) 2.93 (1.98)
exp. 1.594 2028 3.12
mae/std® NESC-EP-B3LYP/U 0.015/0.023 36/62 0.09/0.11
(0.135/0.168) (216/312) (0.64/0.86)
NESC-EP-B3LYP/C 0.010/0.015 53/73 0.13/0.21
(0.135/0.169) (213/318) (0.56/0.73)

#Calculated with an uncontracted (U) or contracted (C) basis set. Non-relativistic BILYP results in parentheses. Experimental

values from [29].

®Mean absolute deviation (mae) and standard deviation (std) of calculated properties from experimental values.

pl1d7f) basis set [26] which differs from the un-
contracted (20s17p12d8f) basis used in the pre-
sent work by the absence of very tight s-type
basis functions; otherwise, the two basis sets are
large enough to make a direct comparison of the
results of DKH-B3LYP and NESC-EP-B3LYP
meaningful. The DKH-B3LYP method yields
for Au, [31]: 7. =2.541 A, 0, =169 cm™!, D, =
2.03 eV.

The aforementioned results suggest that the
DKH-DFT method [8,9] underestimates the rela-
tivistic corrections to the spectroscopic constants,
whereas the RESC-DFT and NESC-EP-DFT
methods lead to descriptions of approximately the
same quality. However, the RESC approach is
variationally unstable in the sense that adding of

the tight basis functions results in a variational
collapse [14]. Thus, it is impossible to obtain (with
respect to the basis set size) converged results using
RESC. This is important when calculating prop-
erties which depend strongly on the basis set
completeness (see above). At the same time the
NESC-EP method is variationally stable and al-
lows for an augmentation of the basis set with
tight functions.

5. Conclusions
The NESC-EP approach proposed previously

was combined with DFT for solving the Dirac—
Kohn-Sham problem within the longitudinal
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no-sea approximation. Test calculations on AgH,
Ag,, CdH, CdH", AuH, Au,, HgH, and HgH"
molecules reveal that NESC-EP-DFT is a com-
putationally efficient and reliable new quasi-rela-
tivistic method. Calculated equilibrium bond
lengths, vibrational frequencies, and dissociation
energies obtained with NESC-EP-B3LYP are of
comparable accuracy for molecules containing
heavy elements as they are for molecules contain-
ing first and second row elements when using
standard Kohn—Sham DFT with the B3LYP hy-
brid functional. Thus, the new method provides a
balanced treatment of relativistic effects for mo-
lecular properties.

Apart from its accuracy, an important feature
of the new method is its simplicity both in the
sense of implementation and in the sense of com-
putational cost. The matrix elements of the NESC-
EP-DFT Hamiltonian do not involve any unusual
molecular integrals often appearing in relativistic
calculations; they can be evaluated analytically
using the existing non-relativistic quantum-chem-
ical software. Since all modifications concern the
one-electron Hamiltonian only, the results of rel-
ativistic calculation can be obtained at essentially
the cost of a non-relativistic calculation.

As the NESC-EP-DFT method treats all elec-
trons explicitly, it can be used for the calculation
of magnetic shielding tensors of heavy elements in
large molecular systems. This goal will be pursued
in a subsequent work along with an implementa-
tion of analytic energy gradients for the new
method and the calculation of molecular excitation
properties.
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