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Abstract

Ž . Ž . Ž . Ž . Ž .Size-extensive Quadratic CI with single S , double D , triple T , and quadruple Q excitations QCISDTQ and its
Ž .non-iterative extension to a method correct at sixth-order perturbation theory, QCISDTQ 6 , are developed and applied to

Ž .electronic systems, for which full CI FCI results are available. It is shown that QCISDTQ results are more accurate than
Ž .either QCISDT or CCSDT. In particular, QCISDTQ 6 correlation energies differ from FCI correlation energies on the

average by just 0.04 mhartree. The improvement is caused preferentially by the balanced addition of connected and
disconnected four-electron correlation effects, which confirms observations that four-electron correlation effects are
important for a balanced description of electron correlation. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Among the electron correlation effects that are
included into correlated ab initio methods to improve

Ž . Ž .the results of Hartree–Fock HF theory, two- pair
and three-electron correlation effects are the most

Ž w x.important for a recent review, see Ref. 1 . It is
generally assumed that four-electron correlation ef-
fects are not important and, accordingly, can be

w xneglected. In recent work by Cremer and He 2,3 , it
was shown that this assumption seems to be correct

Žfor atoms and molecules with well-separated local-
. Žized electron pairs class-A systems: saturated hy-

w x.drocarbons, boranes, derivatives of Li, Be, etc. 2 .
Using sixth-order many-body perturbation theory

) Corresponding author. Fax: q46-31-7735590, e-mail:
cremer@theoc.gu.se

Ž .with the Møller–Plesset MP perturbation operator
Ž . w xMBPT-6 ' MP6 1,2 , which considers correla-

Ž . Ž .tion contributions from single S , double D , triple
Ž . Ž . Ž . Ž .T , quadruple Q , pentuple P , and hextuple H
excitations, these authors could show that all con-
nected Q contributions that describe the correlated
movement of four electrons at the same time are
negligible. However, in the case of electronic sys-
tems with strong clustering of electrons in a confined

Žregion of atomic or molecular space class-B sys-
tems: electronegative atoms, molecules with multiple

w x.bonds, hypervalent or nonclassical bonding, etc. 2 ,
Q contributions became significant. As a simple
example, correlation contributions at MP6 calculated

w x ywith an cc-pVTZ basis set 4 for the F anion are
shown in Fig. 1.

Ž .While at fifth-order MBPT MBPT-5 ' MP5
the Q contributions DQ, TQ, and QQ are all discon-
nected describing the independent, but simultaneous

0009-2614r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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Fig. 1. MP6 spectrum for the Fy anion calculated with a pVTZ
basis set. The square root of the the sum of squared correlation
energy contributions EŽ6. was used as scaling factor to establishABC

a basis for the comparison with other MP6 results. The MP6 terms
Ž Ž .are given in the way they are calculated. Terms in bold QQQ II ,

Ž . .TQQ II , and TQT give the correlation contributions arising from
connected Q excitations that correspond to four-electron correla-
tion effects.

pair correlations of two electron pairs, at MP6 there
Ž Ž . Ž .are three important contributions QQQ II , TQQ II ,

.TQT , which involve connected four-electron corre-
Ž Ž . Ž .lation effects QQQ I , TQQ I , DQQ, DQQ, TTQ,

TQD cover the corresponding disconnected four-
. w xelectron contributions 2,3 . Fig. 1, which gives the

relative magnitude of MP6 correlation contributions
and which is typical of the MP6 results for a class-B
system, reveals that the connected Q correlation

Žcontributions are predominantly negative stabiliz-
.ing and amount to ;10% of the total correlation

contribution at MP6, which if neglected would lead
to ;0.3 kcalrmol error per electron pair in energy
comparisons involving both class-A and -B systems.

Clearly, with the number of electrons clustering in
a confined area of atomic or molecular space, four-
electron correlation effects are no longer negligible
and it is desirable to have some theory to estimate
their contributions. This is of particular importance

Ž .in configuration interaction CI theory where the Q
contributions represent the most important contribu-

Žtion to correct CI for its size-extensivity error for a
w x.recent review, see Ref. 5 .

MP6 theory is probably the easiest way to get a
w xdescription of four-electron correlation effects 2 .

However, MP results for class-B systems are known
to oscillate with the order of perturbation applied
w x2,7 . At lower orders this is known to result from an
exaggeration of pair correlation effects but also
three-electron correlation effects can be exaggerated
so that one cannot exclude a similar exaggeration for
connected Q contributions. Alternatively, one could
carry out CI calculations with S, D, T, Q excitations
Ž .CISDTQ where the possibility exists to reduce the

Ž .calculational work by deleting many of the A, T
Ž .and A, Q off-diagonal elements of the CI matrix

Ž .AsS, D, T, Q as was recently demonstrated by
ˇ w xSychrovsky and Carsky 6 . In this way rather accu-´ ´

rate energies are obtained, which do not suffer any
longer so much from the size-extensivity error of CI

w xtheory 5 .
However, the best account of correlation effects is

Ž .provided by Coupled Cluster CC theory since CC
theory is size-extensive and includes, contrary to

w xMBPT and CI, infinite order effects 8 . CCSD,
Ž .CCSD T , and CCSDT are well-established in the

repertoire of correlation corrected ab initio methods
w x w x8 . Even CCSDTQ 9–11 was developed and ex-
ploratory calculations for few small molecules were
reported. The price for the high accuracy of the
CCSDTQ approach is its enormous calculational cost

10 Žwhich scale with N M M: number of basisiter

functions; M 8 to calculate the Q matrix elements;
2 .M to calculate CC amplitudes a where N givesiter

the number of CC iterations needed for getting self-
consistent CC amplitudes. Any time, Q excitations
are fully included in a self-consistent way, the M 10

working-load cannot be avoided and, therefore, one
has to focus on reducing the number of M 10 terms
or keeping the number of iterations to a minimum.

w xPople and co-workers 12 developed quadratic CI
Ž .theory with S and D QCISD and a perturbative

Ž Ž ..inclusion of T excitations QCISD T as a size-ex-
tensive improvement of CI theory and, accordingly,

Ž .as an approximation to CCSD and CCSD T . Due to
Ž .some error cancellation and some minor reduction

w x Ž .of calculational cost 13 , QCISD and QCISD T are
frequently used as substitutes for the more correct
CC methods. The non-perturbative inclusion of T
excitations into QCI theory as suggested by Pople
and co-workers turned out to be no longer size-ex-

w x w xtensive 14 and, therefore, Cremer and He 15
developed a connected QCI theory in which the
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original QCI concept is systematically extended to
size-extensive QCISDT, QCISDTQ, etc., no longer
considering this theory as an improvement of the
corresponding CI methods, but simply using QCI as
a simple approximation to the more correct CC
method.

QCISDT was implemented by He and co-workers
w x16,17 and it was found that QCISDT energies
favorably approach the corresponding CCSDT val-
ues offering at the same time two important advan-

Ž .tages: i QCISDT is easier to program since it
Ž .contains less cluster terms; and ii calculation of the
Ž 8.QCI amplitudes, although a O M procedure, is

cheaper than a CCSDT calculation because of the
smaller number of cluster terms and a somewhat
faster convergence of the cluster amplitudes.

Because of the positive experience with QCISDT,
we extend in this work QCI theory to the QCISDTQ

Ž .level where three goals should be accomplished: a
a faster converging and easier to program alternative

Ž .to CCSDTQ should be established; b available
MP6, QCISDT and CCSDT results should be checked

Ž .with a CC method containing Q excitations; and c
the importance of connected four-electron correlation
effects established with the help of MP6 calculations
should be verified with a Q-containing method that
also includes infinite order effects.

In the following, we will present QCISDTQ by
Ž .first developing the basic theory Section 2 . Then,

we will extend QCISDTQ to a new method that is
Ž .correct at sixth order perturbation theory Section 3 .

Finally, in Section 4, we will present results of
benchmark calculations that make it possible to test
the usefulness of QCISDTQ and to discuss the im-
portance of four-electron correlation effects.

2. Quadratic CI theory with S, D, T, and Q
( )QCISDTQ

The QCI methods can be described as CC meth-
ˆods, for which only the cluster operators T :n

ˆ a ˆqˆT s a b b , 1Ž .Ý Ý1 i a i
ai

1 ab q qˆ ˆ ˆ ˆ ˆT s a b b b b , 2Ž .Ý Ý2 i j a i b j4
ij ab

or, in general,

1
abc . . . q q qˆ ˆ ˆ ˆ ˆ ˆ ˆT s a b b b b b b . . . . 3Ž .Ýn i jk . . . a i b j c k2n!Ž .

ˆq ˆŽb and b: creation and annihilation operators; in-
dices i, j, k, l denote occupied spin orbitals, indices

ˆ ˆ.a, b, c, d virtual spin orbitals and the products T T2 n

are considered thus drastically simplifying the CC
w xprojection equations 15 . This simplification is based

on the fact that pair correlation effects are the most
important effects and that higher-order correlation

ˆeffects introduced by cluster operator T have to ben

considered with regard to their coupling to electron
w xpair correlation 1,15 . The projection equations for

Žthe hierarchy of size-extensive QCI methods trun-
. Ž . Ž .cated at level n are given in Eqs. 4 and 7 in their

Ž . w xconnected C form 15 :

ˆ² < < :D E s F HT F , 4Ž .QCI 0 2 0

ˆ ˆ ˆ ˆ ˆ² < < :F H T qT qT qT T F s0 , 5Ž .Cs 1 2 3 1 2 0ž /
1 2ˆ ˆ ˆ ˆ ˆ² < < :F H 1qT qT qT qT q T F s0 ,Cž /d 1 2 3 4 2 02

6Ž .

w xmin pq2,n

ˆ ˆ ˆ² < < :F H T qT T F s0Ý Cp i 2 p 0ž /ispy1

nGpG3 , 7Ž . Ž .

where H denotes the normal-order Hamiltonian,

qˆ ˆ ˆ ˆ² < < :HsHyE HF sH qVs b b r F sŽ . ½ 5Ý0 r s
rs

1 q qˆ ˆ ˆ ˆ ² < < :q b b b b rs ut , 8Ž .Ý ½ 5r s t u4
rstu

< :F the HF reference wavefunction, and s, d, and p0

are S, D, and general excitation indices. D EQCI

corresponds to the QCI correlation energy

D E sE QCI yE HF . 9Ž . Ž . Ž .QCI

The corresponding QCISDTQ projection equations
are obtained by truncating the expansion for the
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ˆoperator T at ns4, i.e. to S, D, T, and Q excita-
tions:

ˆ² < < :D E s F HT F , 10Ž .QCISDTQ 0 2 0

a ˆ ˆ ˆ ˆ ˆ² < < :F H T qT qT qT T F s0 , 11Ž Ž .Ci 1 2 3 1 2 0

1ab 2ˆ ˆ ˆ ˆ ˆ² < < :F H 1qT qT qT qT q T F s0 ,Cž /i j 1 2 3 4 2 02

12Ž .

abc ˆ ˆ ˆ ˆ ˆ² < < :F H T qT qT qT T F s0 , 13Ž .Ci jk 2 3 4 2 3 0ž /
abcd ˆ ˆ ˆ ˆ² < < :F H T qT qT T F s0 . 14Ž .Cž /i jk l 3 4 2 4 0

Ž . Ž .Eqs. 10 and 14 have to be transformed into
Ž . Ž .two-electron integral Eqs. 15 and 19 to obtain

QCISDTQ in a form that can be programmed for a
computer.

1 ab² < < :D E s ij ab a , 15Ž .ÝQCISDTQ i j4
ij, ab

a a a ² < < : adee ye a su qÕ q lm de a ,Ž . Ý Ýi a i i i i lm
l-m d-e

16Ž .

e qe ye ye aabŽ .i j a b i j

P ade² < < :s y1 P arb bl de aŽ . Ž .Ý Ý i jl
P l ,d-e

P ab d² < < :q y1 P irj lm dj aŽ . Ž . ŽÝ Ý i lm
P l-m ,d

1ab ab abcd² < < : ² < < :q ab ij qu qÕ q kl cd a ,Ýi j i j i jk l4
cd ,kl

17Ž .

e qe qe ye ye ye aabcŽ .i j k a b c i jk

P ad<sy y1 P irjk arbc X i ,d ,b ,c aŽ . Ž .Ž .Ý Ý 1 jk
P d

Pbcq X j,k ,l ,a a q y1 P arbcŽ . Ž . Ž .Ý Ý2 i l
l P

= 1 ae f f bcX b ,c,e, f a q Y f ,a aŽ . Ž .Ý Ý3 i jk 1 i jk2
ef f

P 1 dbce² < < :q y1 P arbc al de aŽ . Ž .Ý Ý i jk l2
P lde

P 1 abcq y1 P irjk X m ,n , j,k aŽ . Ž . Ž .Ý Ý 4 im n2
mnP

Pabcq Y n ,i a y y1 P irjkŽ . Ž . Ž .Ý Ý2 n jk
n P

= 1 abcd² < < :lm id aÝ l jk m2
lmd

P <y y1 P irjk arbcŽ . Ž .Ý
P

= X m ,a,i ,e abce , 18Ž . Ž .Ý 5 jk m
me

e qe qe qe ye ye ye ye aabcdŽ .i j k l a b c d i jk l

P <s y1 P irjkl abrcdŽ . Ž .Ý
P

= ecd² < < :ab ie aÝ jk l
e

P <q y1 P ijrkl arbcdŽ . Ž .Ý
P

= bcd² < < :ma ij aÝ m k l
m

P <q y1 P irjkl arbcdŽ . Ž .Ý
P

= ebcdX m ,a,i ,e aŽ .Ý 5 m jk l
me

Pq y1 P abrcdŽ . Ž .Ý
P

= 1 e f cdX a,b ,e, f aŽ .Ý 3 i jk l2
ef

Pq y1 P ijrklŽ . Ž .Ý
P

= 1 abcdX m ,n ,i , j aŽ .Ý 4 m nk l2
mn

P <q y1 P ijrkl arbcdŽ . Ž .Ý
P

= aeZ k ,l ,b ,c,d ,e aŽ .Ý 1 i j
e

P <q y1 P irjkl abrcdŽ . Ž .Ý
P
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= abZ j,k ,l ,c,d ,n aŽ .Ý 2 i n
n

Pq y1 P arbcdŽ . Ž .Ý
P

= f bcdY f ,a aŽ .Ý 1 i jk l
f

Pq y1 P irjklŽ . Ž .Ý
P

= abcdY n ,i a . 19Ž . Ž .Ý 2 n jk l
f

The intermediate arrays ua, Õ a, uab,Õ ab, X , Y andi i i j i j i i

Z appearing in these equations are given in Ap-i

pendix A.

3. QCISDTQ theory correct at sixth-order MBPT:
( )QCISDTQ 6

The performance of a particular CC method can
be predicted by analyzing which MBPT contribu-

w xtions are covered at a given order 18,19 . The results
of such an analysis are given for QCISDT and
QCISDTQ as well as the corresponding CC methods
at fifth and sixth order in Fig. 2.

According to this analysis, both QCISDT
Ž .CCSDT and QCISDTQ are not correct at fifth
order. QCISDTQ corrects QCISDT at fifth order just

Ž Ž5. .by the QT term E , which actually represents aQT

disconnected Q contribution that is added in the first
ˆŽ Ž ..iteration of the Q projection Eq. 14 when all T4

amplitudes are still zero. According to Fig. 2, the

Ž . Ž .Fig. 2. Analysis of energy contributions at: a fifth-order and b
sixth-order many-body perturbation theory covered by QCISDT,

Ž .CCSDT, QCISDTQ, and QCISDTQ 6 correlation energies. Yes
Ž .or y denote that the particular term s shown at the left-hand side

Ž .of the diagram is are fully contained in the correlation energy
Ž . Ž . Ž . Ž .while yes or y indicate that the term s is are only partially

covered.
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relationship between QCISDT and QCISDTQ is
Ž .given by Eq. 20 :

5 Ž5. 6 Ž6. Ž6.
D E sD E ql E ql E qEQCISDTQ QCISDT QT QTD QTT

Ž6. Ž6. Ž6. 7qE qE qE qO l .Ž .QQT TQT DQT

20Ž .

One can predict that the improvements in going from
QCISDT to QCISDTQ are dominated by the QT
term, which is known to have normally relatively

Ž . w xlarge positive values see also Fig. 3 2 . Hence,
absolute QCISDTQ correlation energies could be
smaller than the corresponding QCISDT correlation
energies. Also, it is certainly not useful to compare
MP6 results for four-electron correlations with a
method that is not correct at both fifth and sixth
order. Therefore, we added to the QCISDTQ method
additional terms in a non-iterative manner that make
the method correct up to sixth order thus yielding

Ž .QCISDTQ 6 .

9

D E sD E q D E 6 , 21Ž . Ž .ÝQCISDTQŽ6 . QCISDTQ u
u

with

† 5 Ž5. Ž5.ˆ ˆ ˆ² < < :D E 6 s F T VT T F sl E qE IŽ . Ž .Ž .C1 0 2 1 2 0 TS TQ

6 Ž6. Ž6. Ž6.ql E qE I qE IŽ . Ž .DTS DTQ TTS

qEŽ6. I qEŽ6. I qEŽ6. IŽ . Ž . Ž .a aTTQ TQD TQQ

qEŽ6. qEŽ6. qEŽ6. I qEŽ6. IŽ . Ž .TSS TSD TPT TPQ

Ž6. 7qE qO l , 22Ž . Ž .TST

1† 2 5 Ž5.ˆ ˆ² < < :D E 6 s F T V T F sl E IIŽ . Ž .Ž .Ž .2 0 3 2 0 TQ2 C

6 Ž6. Ž6. Ž6.ql E II qE II qE IŽ . Ž . Ž . bDTQ TQD TQQ

Ž6. 7qE II qO l , 23Ž . Ž . Ž .TTQ

21 1† 2 5 Ž5.ˆ ˆ² < < :D E 6 s F T V T F sl E IIŽ . Ž .Ž .Ž . Ž .3 0 2 2 0 QQ2 2 C

6 Ž6. Ž6. Ž6.ql E II qE II qE IIŽ . Ž . Ž .aDQQ QQQ QQD

Ž6. 7qE I qO l , 24Ž . Ž . Ž .aQQQ

1† † 2 6 Ž6.ˆ ˆ ˆ² < < :D E 6 s F T T V T F sl E IIŽ . Ž .Ž .4 0 2 1 2 0 STQ2 C

Ž6. 7qE II qO l , 25Ž . Ž . Ž .aQTQ

Q
21† †ˆ ˆ² < < :D E 6 s F T q T V FŽ . Ž .Ý5 0 3 2 q2ž /C

q

=
y1 1 2ˆ² < < :E yE F V T FŽ . Ž .0 q q 2 02 C

6 Ž6. Ž6. 7sl E II qE II qO l ,Ž . Ž . Ž .bTQQ QQQ

26Ž .

† 6 Ž6.ˆ ˆ ˆ² < < :D E 6 s F T VT T F sl E IIŽ . Ž .ž /6 0 3 1 2 0 TTSC

Ž6. 7qE I qO l , 27Ž . Ž . Ž .bTTQ

T
21 †ˆ² < < :D E 6 s F T V FŽ . Ž .Ý7 0 2 t2ž /C

t

=
y1 1 2ˆ² < < :E yE F V T FŽ . Ž .0 t t 2 02 C

sl6EŽ6. II qO l7 , 28Ž . Ž . Ž .bQTQ

121 † 3ˆ ˆ ˆ ˆ² < < :D E 6 s F T V T T q T FŽ . Ž .8 0 2 2 3 2 02 ž /3! C

6 Ž6. Ž6. Ž6.sl E II qE II qE IIŽ . Ž . Ž .QHQ QPT QPQ

qO l7 , 29Ž . Ž .
† 6 Ž6.ˆ ˆ ˆ² < < :D E 6 s F T VT T F sl E IŽ . Ž .ž / b9 0 2 1 3 0 QPTC

Ž6. Ž6. Ž6.qE I qE I qE IŽ . Ž . Ž .b b bQPQ QTS QTQ

qO l7 . 30Ž . Ž .
The computational cost for these additional energy

Ž 7.terms scale just with O M , which is negligible in
Ž 10 .view of the O M dependence of QCISDTQ.

Ž .QCISDTQ 6 should be considerably better than
QCISDTQ since it covers all terms up to MP6:

D E sD E ql2EŽ2.ql3EŽ3.
QCISDTQŽ6 . QCISDTQ

ql4EŽ4.ql5EŽ5.ql6EŽ6.qO l7 .Ž .
31Ž .

QCISDTQ was programmed within the ab initio
w xpackage COLOGNE 99 20 by adding to an existing

w xQCISDT program 15 the Q equation. QCISDTQ
was debugged by checking in the first iteration the
QT term obtained from the Q equations with the
corresponding result from an MP5 calculation. In a
similar test, the TQT term obtained in the second
iteration was compared with the TQT term from an



( )Y. He et al.rChemical Physics Letters 317 2000 535–544 541

Fig. 3. Average MP5 spectra for 10 class-A and 14 class-B
w xelectronic systems 26 .

w xMP6 calculation 2 . Differences between the QCIS-
DTQ terms and the corresponding MP energies were
smaller than 10y8 which was considered to be a
sufficient indication that QCISDTQ results are cor-
rect.

The QCISDTQ projection equations are solved in
Ž Ž . Ž ..an iterative procedure steps 1 – 4 :

Ž . a ab abc1 initialize a , a amplitudes while setting ai i j i jk

s0, aabcd s0;i jk l
Ž . a ab abc abcd2 calculate new a , a , a and a ampli-i i j i jk i jk l

Ž . Ž .tudes according to Eqs. 16 and 19 ;
Ž . a ab3 check the convergence of a and a ampli-i i j

Ž .tudes; if they are converged, go to step 4 ,
Ž .otherwise back to step 2 ;

Ž .4 calculate the energy D E and the addi-QCISDTQ
Ž .tional terms D E 6 .u

QCISDTQ converges in about the same number of
iterations as QCISDT does. According to theory, the
computational cost of QCISDTQ should be larger
than those of QCISDT by a factor of M 2. However,
in reality the increase in computer time is just 30%
of the expected cost increase.

4. Results and discussion

In this Letter, we present QCISDTQ and QCIS-
Ž .DTQ 6 correlation energies for atoms and molecules,

Ž . Žw xfor which full CI FCI energies are available 21 ;
w x w xfor Ne, see Ref. 22 ; for NH , see Ref. 23 ; for BH,2

w x w x.CH , see Ref. 24 ; for H O, FH, see Ref. 25 . In2 2

the previous study on QCISDT, basis sets and ge-

ometries used in the FCI calculations are described
in detail and, therefore, these details are not repeated

w xhere 16 . In Table 1, results are compared with
Ž .QCISD, QCISDT, CCSD, CCSD T , CCSDT, and

FCI energies where for reasons of simplification
deviations from FCI correlation energies are listed.
Also, an error analysis in terms of mean and standard
deviation of calculated QCI and CC energies from
the corresponding FCI results is given in Table 1.
While this first comparison is limited to ground and
some excited states in their equilibrium geometry, in
Table 2, similar data are collected for electronic
systems with considerable multi-reference character
such as C or BH, H O, FH, and C with symmetri-2 2 2

Ž .cally stretched AH bonds ‘‘stretched geometries’’ .
Calculations of the latter represent critical tests on

Ž .the performance of QCISDTQ and QCISDTQ 6
since single determinant theories are known to fail
for systems with considerable multireference charac-
ter.

All energies obtained at the QCISDTQ level of
theory are less negative than the corresponding
QCISDT energies obtained with the same basis set at
the same geometry. By this, the agreement with FCI
correlation energies is significantly improved relative

w xto that found for QCISDT 16,17 , which is docu-
Ž .mented by the calculated mean from 0.35 to 0.25 ,

Ž .mean absolute from y0.31 to 0.01 , and standard
Ž .deviation from 0.87 to 0.48 mhartree, see Table 1 .

For QCISD and CCSD, the corresponding values for
the mean absolute deviation are ;3 mhartree, for

Ž .CCSD T and CCSDT 0.49 and 0.30 mhartree, re-
spectively.

In Fig. 3, the MP5 correlation energy contribu-
tions for the same set of electronic systems are

w xshown in form of an energy spectrum 2 for both
class-A and -B electronic systems. Obviously, the
TQ energy term represents always a positive correc-

Ž .tion to other negative fifth-order or lower order
energy contributions, which in the case of class-B
systems is actually the dominant term at MP5. Hence,
the inclusion of the TQ term at QCISDTQ represents
the most important correction relative to QCISDT
and is responsible for the better agreement with FCI
results. Similar observations can be made for the
stretched geometries although deviations in theses
cases are larger by a factor 3–10 because of the
strong multi-reference character of these systems.
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Table 1
Comparison of QCISDTQ energies with FCI and other CC energies for atoms and molecules in their equilibrium geometry a

Ž . Ž .Molecule Basis FCI E approx. y E FCI

Ž . Ž .CCSD CCSD T CCSDT MP6 QCISD QCISDT QCISDTQ QCISDTQ 6
yF cc-pVDZ y99.558917 1.071 0.464 0.446 0.044 1.057 0.398 0.452 y0.002

aug-cc-pVDZ y99.669369 6.679 0.735 0.397 y8.662 4.177 y2.719 y1.675 0.330
Ž .cc-pVTZ -f y99.675158 5.109 0.208 0.232 y0.194 4.734 y0.607 0.002 0.007

Ne 4s2p1d y128.702462 2.142 y0.001 y0.066 y0.227 1.708 y0.549 y0.202 0.052
6s4p1d y128.767889 2.875 0.114 0.119 y0.368 2.511 y0.493 y0.183 0.000
cc-pVDZ y128.679025 1.233 0.189 0.160 y0.027 1.097 y0.008 0.139 0.020
aug-cc-pVDZ y128.709476 2.972 0.181 0.061 y0.550 2.343 y0.634 y0.294 0.060

Ž .cc-pVTZ -f y128.777048 3.756 0.066 0.059 y0.176 3.459 y0.523 y0.155 0.002
BH DZP y25.227627 1.792 0.412 0.068 1.305 1.760 y0.019 0.014 0.021

cc-pVDZ y25.215126 1.834 0.479 0.067 1.328 1.815 y0.020 0.025 y0.004
aug-cc-pVDZ y25.218227 1.986 0.474 0.027 1.263 1.973 y0.061 y0.020 y0.059

3Ž .CH B DZP y39.046260 2.090 0.359 0.017 0.363 2.054 y0.107 y0.037 y0.0492 1
1Ž .CH A DZP y39.027183 3.544 0.873 0.207 1.977 3.522 y0.024 0.113 0.0142 1
2Ž .NH B DZP y55.742620 3.212 0.548 0.216 0.336 3.134 y0.046 0.121 y0.0252 1
2Ž .NH A DZP y55.688762 2.993 0.534 0.223 1.263 2.908 y0.023 0.139 y0.0162 1

H O DZ y76.157866 1.790 0.574 0.434 0.087 1.482 0.072 0.297 0.0362

DZP y76.256624 4.123 0.718 0.531 0.077 3.880 0.030 0.348 0.015
cc-pVDZ y76.241650 3.666 0.634 0.472 0.016 3.527 0.090 0.335 0.000

Ž .cc-pVDZ q y76.258208 4.421 0.684 0.494 y0.204 3.995 y0.274 0.108 0.016
FH DZP y100.250969 3.006 0.397 0.266 y0.229 2.567 y0.268 0.079 0.056

cc-pVDZ y100.228640 2.414 0.493 0.404 y0.008 2.232 0.117 0.291 0.012
aug-cc-pVDZ y100.264113 4.667 0.528 0.329 y0.972 3.861 y0.727 y0.263 0.070

N cc-pVDZ y109.276527 13.465 1.708 1.626 y0.321 12.510 y0.736 0.683 0.0642

Mean abs. deviation 3.351 0.492 0.298 0.862 2.993 0.349 0.253 0.040
Mean deviation 3.515 0.494 0.295 y0.169 3.144 y0.310 0.014 0.027
Standard derivation 2.496 0.329 0.328 2.189 2.243 0.870 0.483 0.073
a w xAbsolute energies in hartree, deviations in mhartree. FCI energies are taken from Refs. 21–25 where details on basis sets and geometries
are published.

Contrary to CCSDT correlation energies, QCISDT
correlation energies are typically below FCI energies
since they are lacking the important QT term. Since
QCISDTQ energies contain the QT term, their value
is mostly above or in some cases slightly below the

Ž .FCI value. QCISDTQ 6 covers in addition MP5 and
Ž Ž . Ž ..MP6 terms see Eqs. 22 and 30 , which can be

either positive or negative, but in total correct the
QCISDTQ energies in such a way that the mean
absolute deviation from FCI values decreases by a
factor 6 to 0.04 mhartree and the standard deviation
by a factor of almost 7 to 0.07 mhartree. With a few

Ž .exceptions, QCISDTQ 6 correlation energies ap-
proach FCI values from above. For basis sets without
diffuse functions the reproduction of FCI results is
clearly better than for basis sets including diffuse
functions. Cremer and co-workers showed recently

that the addition of diffuse functions to a basis set
not fully saturated with s, p functions leads to an
exaggeration of higher order correlation effects,
which diminishes the accuracy of a given MBPT or

w xCC method 7 .
Ž .It is interesting to note that QCISDTQ 6 per-

forms poorly in the cases of FH and H O with bond2
Ž .lengths of 2 R Table 2 . In these cases orbitale

relaxation and state mixing are most important and
an inclusion of correction terms with frozen ampli-
tudes seems to drastically overcorrect QCISDTQ
results.

Analysis of MP5 and MP6 contributions that are
added because of the Q projection equation at QCIS-
DTQ reveals that the former are predominantly posi-
tive thus correcting the too negative QCISDT values
back to a level relatively high over FCI correlation
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Table 2
Comparison of QCISDTQ energies with FCI and other CC energies for electronic systems with multi-reference character a

Ž . Ž .Molecule Geom. Basis FCI E approx. y E FCI

Ž . Ž .CCSD CCSD T CCSDT MP6 QCISD QCISDT QCISDTQ QCISDTQ 6

C 1.0 R cc-pVDZ y75.721843 22.713 y4.853 y3.497 y9.264 17.970 y14.351 y10.146 y4.4232 e

BH 1.5 R DZP y25.175976 2.642 0.550 0.026 1.448 2.343 y0.305 y0.226 0.124e

BH 2.0 R DZP y25.127350 5.048 0.406 y0.091 2.203 3.856 y1.355 y1.165 1.174e

FH 1.5 R DZP y100.160395 5.099 0.887 0.645 y0.407 4.136 y0.452 0.174 0.307e

FH 2.0 R DZP y100.081107 10.178 0.255 1.125 y1.132 8.392 y0.962 0.370 2.966e

H O 1.5 R DZ y76.014521 5.590 1.465 1.473 1.910 4.740 y0.109 0.865 0.3312 e

H O 2.0 R DZ y75.905246 9.365 y7.675 y2.211 3.970 9.589 y7.991 y4.461 11.7762 e

H O 1.5 R DZP y76.071405 10.159 1.999 1.784 1.816 9.366 0.021 1.097 0.2202 e

H O 2.0 R DZP y75.952269 21.410 y4.630 y2.472 4.057 21.386 y6.153 y3.224 8.6702 e

Mean abs. deviation 10.245 2.524 1.480 2.912 9.086 3.522 2.414 3.332
Mean deviation 10.245 y1.288 y0.358 0.511 9.086 y3.517 y1.857 2.349
Standard derivation 5.584 8.205 7.314 9.302 5.460 11.198 9.599 8.506
a w xAbsolute energies in hartree, deviations in mhartree. FCI energies are taken from Refs. 21–25 where details on basis sets and geometries
are published.

energies. However, the connected Q contributions, in
particular the relatively large negative TQT contribu-
tion is responsible for a closer approach to the FCI
values. The additional improvement obtained at the

Ž .QCISDTQ 6 level is a result of a complicated inter-
play of positive and negative contributions, in which
a relatively large DTSqDTQ contribution plays an
important role.

Ž .We conclude that QCISDTQ 6 leads to cor-
relation energies close to CCSDTQ and FCI values,
that the method is much better than either MP6,

Ž . Ž .QCISD T , CCSD T , QCISDT or CCSDT and that
it is the cheapest of all Q methods covering infinite

ˆorder correlation effects introduced by the T opera-4

tor. Apart from this, QCISDTQ results can be used
as a reasonable guess for the more accurate CCS-
DTQ results. Finally, QCISDTQ calculations con-
firm the importance of connected four-electron corre-
lation effects, which are needed to approach FCI
correlation energies.
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Appendix A.

The intermediate arrays used in the QCISDTQ
Ž . Ž .program are defined in Eq. A.1 to Eq. A.13 .

1a d de² < < : ² < < :u sy la id a y la de aÝ Ýi l i l2
ld lde

1 ad² < < :y lm id a , A.1Ž .Ý lm2
lmd

ab ² < < : d ² < < : du s ab dj a y ab di aŽ .Ýi j i j
d

² < < : b ² < < : aq la ij a y lb ij aŽ .Ý l l
l

1 1de ab² < < : ² < < :q ab de a q lm ij aÝ Ýi j lm2 2
de lm

p ad² < < :y y1 P ijrab lb jd a ,Ž . Ž .Ý Ý i l
pld

A.2Ž .
1a d ea a ed d ae² < < :Õ s lm de a a qa a q2 a a ,Ž .Ý Ýi i lm l im l im2

lm de

A.3Ž .
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1ab de ab ad b e b e ad² < < :Õ s lm de a a y2 a a qa aŽÝ Ýi j i j lm i j lm i j lm4
lm de

ab de de ab ad b e b e adqa a qa a q4 a a qa a ,. Ž .i l jm i l jm i l jm i l jm

A.4Ž .
1 ebc² < < : ² < < :X i , d , b , c s id bc q mn ed a ,Ž . Ý1 im n2

mne

A.5Ž .
1 ae f² < < : ² < < :X j, k , l , a s jk la q ml ef a ,Ž . Ý2 m jk2

mef

A.6Ž .
1 bc² < < : ² < < :X b , c, e, f s bc ef q mn ef a ,Ž . Ý3 m n2

mn

A.7Ž .
1 e f² < < : ² < < :X m , n , j, k s mn jk q mn ef a ,Ž . Ý4 jk2

ef

A.8Ž .
² < < : ² < < : a fX m , a, i , e s ma ie y mn ef a ,Ž . Ý5 i n

nf

A.9Ž .
1 ae² < < :Y f , a s mn ef a , A.10Ž . Ž .Ý1 m n2

mne
1 e f² < < :Y n , i s mn ef a , A.11Ž . Ž .Ý2 im2

mef

1 f bcd² < < :Z k , l , b , c, d , e s mn ef a ,Ž . Ý1 m nk l2
m , n , f

A.12Ž .
1 e f cd² < < :Z j, k , l , c, d , n sy mn ef a .Ž . Ý2 m jk l2

m , e , f

A.13Ž .
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