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Abstract

Size-extensive Quadratic ClI with single (S), double (D), triple (T), and quadruple (Q) excitations (QCISDTQ) and its
non-iterative extension to a method correct at sixth-order perturbation theory, QCISDTQ(6), are developed and applied to
electronic systems, for which full Cl (FCI) results are available. It is shown that QCISDTQ results are more accurate than
either QCISDT or CCSDT. In particular, QCISDTQ(6) correlation energies differ from FCI correlation energies on the
average by just 0.04 mhartree. The improvement is caused preferentialy by the balanced addition of connected and
disconnected four-electron correlation effects, which confirms observations that four-electron correlation effects are
important for a balanced description of electron correlation. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Among the electron correlation effects that are
included into correlated ab initio methods to improve
the results of Hartree—Fock (HF) theory, two- (pair)
and three-electron correlation effects are the most
important (for a recent review, see Ref. [1]). It is
generally assumed that four-electron correlation ef-
fects are not important and, accordingly, can be
neglected. In recent work by Cremer and He [2,3], it
was shown that this assumption seems to be correct
for atoms and molecules with well-separated (local-
ized) electron pairs (class-A systems: saturated hy-
drocarbons, boranes, derivatives of Li, Be, etc. [2]).
Using sixth-order many-body perturbation theory

* Corresponding author. Fax: +46-31-7735590, e-mail:
cremer@theoc.gu.se

with the Mgller—Plesset (MP) perturbation operator
(MBPT-6 = MP®6) [1,2], which considers correla-
tion contributions from single (S), double (D), triple
(M), quadruple (Q), pentuple (P), and hextuple (H)
excitations, these authors could show that all con-
nected Q contributions that describe the correlated
movement of four electrons at the same time are
negligible. However, in the case of electronic sys
tems with strong clustering of electrons in a confined
region of atomic or molecular space (class-B sys
tems: electronegative atoms, molecules with multiple
bonds, hypervalent or nonclassical bonding, etc. [2]),
Q contributions became significant. As a smple
example, correlation contributions at MP6 calculated
with an cc-pVTZ basis set [4] for the F~ anion are
shown in Fig. 1.

While at fifth-order MBPT (MBPT-5 = MP5)
the Q contributions DQ, TQ, and QQ are all discon-
nected describing the independent, but simultaneous
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Fig. 1. MP6 spectrum for the F~ anion calculated with a pvTZ
basis set. The square root of the the sum of squared correlation
energy contributions E{8). was used as scaling factor to establish
a basis for the comparison with other MP6 results. The MP6 terms
are given in the way they are calculated. Terms in bold (QQQII),
TQQ(U, and TQT) give the correlation contributions arising from
connected Q excitations that correspond to four-electron correla-
tion effects.

pair correlations of two electron pairs, at MP6 there
are three important contributions (QQQ(I1), TQQ(I),
TQT), which involve connected four-electron corre-
lation effects (QQQ(I), TQQ(), DQQ, DQQ, TTQ,
TQD cover the corresponding disconnected four-
electron contributions) [2,3]. Fig. 1, which gives the
relative magnitude of MP6 correlation contributions
and which is typical of the MP6 results for a class-B
system, reveals that the connected Q correlation
contributions are predominantly negative (stabiliz-
ing) and amount to ~ 10% of the total correlation
contribution at MP6, which if neglected would lead
to ~ 0.3 kcal /mal error per electron pair in energy
comparisons involving both class-A and -B systems.

Clearly, with the number of electrons clustering in
a confined area of atomic or molecular space, four-
electron correlation effects are no longer negligible
and it is desirable to have some theory to estimate
their contributions. This is of particular importance
in configuration interaction (Cl) theory where the Q
contributions represent the most important contribu-
tion to correct Cl for its size-extensivity error (for a
recent review, see Ref. [5]).

MP6 theory is probably the easiest way to get a
description of four-electron correlation effects [2].

However, MP results for class-B systems are known
to oscillate with the order of perturbation applied
[2,7]. At lower orders this is known to result from an
exaggeration of pair correlation effects but also
three-electron correlation effects can be exaggerated
so that one cannot exclude a similar exaggeration for
connected Q contributions. Alternatively, one could
carry out Cl calculations with S, D, T, Q excitations
(CISDTQ) where the possibility exists to reduce the
calculational work by deleting many of the (A, T)
and (A, Q) off-diagonal elements of the Cl matrix
(A=S,D,T,Q as was recently demonstrated by
Sychrovsky and Carsky [6]. In this way rather accu-
rate energies are obtained, which do not suffer any
longer so much from the size-extensivity error of Cl
theory [5].

However, the best account of correlation effectsis
provided by Coupled Cluster (CC) theory since CC
theory is size-extensive and includes, contrary to
MBPT and ClI, infinite order effects [8]. CCSD,
CCSD(T), and CCSDT are well-established in the
repertoire of correlation corrected ab initio methods
[8]. Even CCSDTQ [9-11] was developed and ex-
ploratory calculations for few small molecules were
reported. The price for the high accuracy of the
CCSDTQ approach is its enormous calculational cost
which scale with N, M (M: number of basis
functions;, M8 to calculate the Q matrix elements;
M? to calculate CC amplitudes a) where N, gives
the number of CC iterations needed for getting self-
consistent CC amplitudes. Any time, Q excitations
are fully included in a self-consistent way, the M©
working-load cannot be avoided and, therefore, one
has to focus on reducing the number of M° terms
or keeping the number of iterations to a minimum.

Pople and co-workers [12] developed quadratic Cl
theory with S and D (QCISD) and a perturbative
inclusion of T excitations (QCISD(T)) as a size-ex-
tensive improvement of Cl theory and, accordingly,
as an approximation to CCSD and CCSD(T). Due to
some error cancellation and (some minor) reduction
of calculational cost [13], QCISD and QCISD(T) are
frequently used as substitutes for the more correct
CC methods. The non-perturbative inclusion of T
excitations into QCI theory as suggested by Pople
and co-workers turned out to be no longer size-ex-
tensive [14] and, therefore, Cremer and He [15]
developed a connected QCI theory in which the
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origina QCI concept is systematically extended to
size-extensive QCISDT, QCISDTQ, etc., no longer
considering this theory as an improvement of the
corresponding ClI methods, but ssmply using QCI as
a simple approximation to the more correct CC
method.

QCISDT was implemented by He and co-workers
[16,17] and it was found that QCISDT energies
favorably approach the corresponding CCSDT val-
ues offering at the same time two important advan-
tages: (i) QCISDT is easier to program since it
contains less cluster terms; and (ii) calculation of the
QCI amplitudes, although a O(M?®) procedure, is
cheaper than a CCSDT calculation because of the
smaller number of cluster terms and a somewhat
faster convergence of the cluster amplitudes.

Because of the positive experience with QCISDT,
we extend in this work QCI theory to the QCISDTQ
level where three goals should be accomplished: (a)
a faster converging and easier to program alternative
to CCSDTQ should be established; (b) available
MP6, QCISDT and CCSDT results should be checked
with a CC method containing Q excitations; and (c)
the importance of connected four-electron correlation
effects established with the help of MP6 calculations
should be verified with a Q-containing method that
also includes infinite order effects.

In the following, we will present QCISDTQ by
first developing the basic theory (Section 2). Then,
we will extend QCISDTQ to a new method that is
correct at sixth order perturbation theory (Section 3).
Finally, in Section 4, we will present results of
benchmark calculations that make it possible to test
the usefulness of QCISDTQ and to discuss the im-
portance of four-electron correlation effects.

2. Quadratic CI theory with S, D, T, and Q
(QCISDTQ)

The QCI methods can be described as CC meth-
ods, for which only the cluster operators T,;:

fi- ¥ Yathh, 0
T,=1% Tavh:bb (2)
ij ab

or, in general,

A

Tn Z ae.. |jk 6;66;6 JB (3)

(n,)z

(b* and b: creation and annihilation operators; in-
dices i, j, k, | denote occupied spin orbitals, indices
a, b, ¢, d virtual spin orbitals) and the products T,T,
are considered thus drastically simplifying the CC
projection equations[15]. This simplification is based
on the fact that pair correlation effects are the most
important effects and that higher-order correlation
effects introduced by cluster operator T, have to be
considered with regard to their coupling to electron
pair correlation [1,15]. The projection equations for
the hierarchy of size-extensive QCl methods (trun-
cated at level n) are given in Egs. (4) and (7) in their
connected (C) form [15]:

AEqe, = (Pl HT,|®y), (4)

A A~

(@A(Ty+ T+ T+ T, )idgde = 0, (5)

(D] ﬁ(l F T, AT, + T+ T, + %T}z)lrpok =0

(6)

_ min[ p+2,n] R A

@A X T+ T dgc=0
i=p—1

(n=p=3), (7)
where H denotes the normal-order Hamiltonian,
H=H ~ E(HF)=H, + V= Z{b+ | <rIFlS)

+1 ¥ (bbb, [<rsiut), (8)

rstu

|d,) the HF reference wavefunction, and s, d, and p
ae S, D, and general excitation indices. AEy
corresponds to the QCI correlation energy

AEqe, = E(QCI) — E(HF). (9)

The corresponding QCISDTQ projection equations
are obtained by truncating the expansion for the
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operator Tan=4ietS DT, ad Q excita
tions:

A EQCISDTQ = <(po| HT2|q)o> ’ (10)
(DAH(T, + T, + Ty + T,T,lP,)c =0, (11)
(@PIA(1+ T+ T, + T+ T, + 3T2) 10 )c =0,
(12)
(D] ﬁ(fz + T+ T+ f2f3)|<b0>c =0, (13)

(@B (T, + T, + T, )log)c 0. (14)

Egs. (10) and (14) have to be transformed into
two-electron integral Egs. (15) and (19) to obtain
QCISDTQ in a form that can be programmed for a
computer.

AEqispre =2 X Ciillab)aff, (15)
ij, ab
(e—e)ad=ut+v2+ ) Y (Imldeyassy,
I<md<e
(16)

(6+¢€—€,—€)a

- Z(—l)PP(a/b)[ Y (blIIde)a?j‘l’e]

l,d<e

+ Z(—l)PP(i/j)[ > (<|m||dj>aﬁbn§‘]

I<m,d

+ Cabllij) +uf® + o3+ 3 X (Kllcd)as?,
cd,k
(17)

abc
(6i+6j+6k—€a—6b—€c)aijk

_ Z(—l)PP(i/jkla/bc)[Z X,(i,d,b,c)a
=] d
+ sz(j,k,l,a)aﬁc] + Y (~1)°P(a/be)
| P

X

3 2 Xs(b,cef)adi + Y vy(f.a) aifjt:(c}
o f

+ 2(—1)PP(a/bc)[%Z<au|de>aﬂbkfe]

Ide

+Z(—l)PP(i/jk)[%2x4(m,n,j,k)aﬁzz

, Zv2<n,i)aﬁ?k°] ~ Y(~1)"P(i/ik)
x[g Z(Imllid>a|aj‘,’($ﬁ}
Imd
- Y (—1)"P(i/jkla/bc)
X ). Xs(m,a,i,e)aie, (18)

abcd
€ — €4) Ak

= X (-1)"P(i/jklab/cd)
P

(6+€+e+e—€—€—

X

Z(abllie)affld}
+ Y (—1)7P(ij/K|a/bed)
P

X

Z<ma||ij>a&°;i}
+ Y (-1)°P(i/jKla/bed)
P

X

Y Xs(m,a,i,e) aemt}f(?]
+ Y. (—1)"P(ab/cd)

X

%Zx3<a,b.e,f)aﬁfk°.d]
ef
+ 2 (—1)°P(ij/K)

X

%2x4<m,n,i,j>am]
+ Y (—1)°P(ij/Kla/bed)
P

X

Y Z,(k,l,b,c,d,e) aiaje]
e

+ Y (—1)"P(i/jKlab/cd)
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X

Zzz(j,k,l,c,d,n)aﬁ?}
+Y (-1)"P(a/bcd)

X

Y Yy(t.a) af,-bk?“}
f
+ Y (—1)"P(i/jK)

X

szm,i)aﬁ?f.d}- (19)
f

The intermediate arrays u?, v?, u®,03° X, Y, and
Z; appearing in these eguations are given in Ap-
pendix A.

3. QCISDTQ theory correct at sixth-order MBPT:
QCISDTQ(6)

The performance of a particular CC method can
be predicted by analyzing which MBPT contribu-
tions are covered at a given order [18,19]. The results
of such an anaysis are given for QCISDT and
QCISDTQ as well as the corresponding CC methods
at fifth and sixth order in Fig. 2.

According to this analysis, both QCISDT
(CCSDT) and QCISDTQ are not correct at fifth
order. QCISDTQ corrects QCISDT at fifth order just
by the QT term (ES), which actually represents a
disconnected Q contribution that is added in the first
iteration of the Q projection (Eg. (14)) when al T,
amplitudes are still zero. According to Fig. 2, the

Fig. 2. Analysis of energy contributions at: (a) fifth-order and (b)
sixth-order many-body perturbation theory covered by QCISDT,
CCSDT, QCISDTQ, and QCISDTQ(6) correlation energies. Yes
or y denote that the particular term(s) shown at the left-hand side
of the diagram is (are) fully contained in the correlation energy
while (yes) or (y) indicate that the term(s) is (are) only partialy
covered.

@
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DD
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relationship between QCISDT and QCISDTQ is
given by Eq. (20):
A EQCISDTQ = A EQCISDT + ASE(SS'? + )‘6[ E((Qe‘IzD + (G'IzT
+EQ + ESQr + ESr] +O(X) .
(20)
One can predict that the improvements in going from
QCISDT to QCISDTQ are dominated by the QT
term, which is known to have normally relatively
large positive values (see dso Fig. 3) [2]. Hence,
absolute QCISDTQ correlation energies could be
smaller than the corresponding QCISDT correlation
energies. Also, it is certainly not useful to compare
MP6 results for four-electron correlations with a
method that is not correct at both fifth and sixth
order. Therefore, we added to the QCISDTQ method
additional terms in a non-iterative manner that make

the method correct up to sixth order thus yielding
QCISDTQ(6).

9
AEqcisoroe = AEqcisoro T 2L AEL(6), (21)
u

with

AE(6) = <‘I’o“czT\_n:l-lcz|‘I’0>C= N(ER+ER())
+ A EQls + EQLo(1) + ERg(1)
+ESo(Na+ ERp (1) + ERo(1)a
ERS + ES + ERr(1) + Effo()
+EQ ] +O(X), (22)

AE,(6) = (@[T (VETZ) ldg) = AS(ER(11))
+ A [ ES (1) + ERp(11) + ERo()
+E@(IN] +0(A7), (23)

A 2, —. A
AE,(6) = <¢O|§(T;) (v§T§)C|¢>O>= A(ES3(1))

+ [ ESo(11) + ESo(11) 4+ ESp(11)

+ERo(1)a] +O(X), (24)
AE,(8) = (D|TIT) (V5T2) | ®o) = A°[ ES(11)
+ES(1)a] +0(N), (25)

Q ~ ALN2—
AE(6) = Y <cl>0|(T3T + () v)c|¢>q>
q

X(Eo = Eq) (l(V3TE) 1o

= N[ ERo(11) + EQo(1N),] +O(A),

(26)
AEg(8) = (D[ T (VTLT, ) |o) = A°[ EQg(11)
+E&o(1)o] +O(XT), (27)

]
AEL(6) = X (ol( 3(TH) V) )
t

X (Ey—E) NP I(V5TZ) |®o)
— NEGo(I1), + O(V) (28)
a2l =~ A~ 1.
AEy(6) = <‘po|%(TzT) [V(Tsz + 51}3” [Py
' c

= /\6[ E@Q(”) + Eéﬁp)w(”) + EgSF)’Q(”)]
+0(N), (29)

AEy(6) = <(Do|fg(\7—|,:1f3)c|(po> = )\6[ Egng(l)b

+EG(Dn + ERe(Dn + Eo(1)]
+0(A7). (30)

The computational cost for these additional energy
terms scale just with O(M ), which is negligible in
view of the O(M°) dependence of QCISDTQ.
QCISDTQ(6) should be considerably better than
QCISDTQ since it covers all terms up to MP6:

A EQCISDTQ(G) =A EQCISDTQ + AZE(Z) + A3E(3>

+ ME@ + A°E® + AE® + O(N7).
(31)

QCISDTQ was programmed within the ab initio
package coLogNE 99 [20] by adding to an existing
QCISDT program [15] the Q eguation. QCISDTQ
was debugged by checking in the first iteration the
QT term obtained from the Q equations with the
corresponding result from an MP5 calculation. In a
similar test, the TQT term obtained in the second
iteration was compared with the TQT term from an
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Fig. 3. Average MP5 spectra for 10 classsA and 14 classB
electronic systems [26].

MP6 calculation [2]. Differences between the QCIS-
DTQ terms and the corresponding MP energies were
smaller than 1078 which was considered to be a
sufficient indication that QCISDTQ results are cor-
rect.

The QCISDTQ projection equations are solved in

an iterative procedure (steps (1)—(4)):

(1) initidize a?, a?” amplitudes while setting a2}’
=0, a¥'=0;

(2) caculate new a?, a7, a}y’ and a}*
tudes according to Egs. (16) and (19);

(3) check the convergence of a? and af‘jb ampli-
tudes; if they are converged, go to step (4),
otherwise back to step (2);

(4) calculate the energy A Eycsprg and the addi-
tional terms A E,(6).

QCISDTQ converges in about the same number of
iterations as QCISDT does. According to theory, the
computational cost of QCISDTQ should be larger
than those of QCISDT by a factor of M2, However,
in reality the increase in computer time is just 30%
of the expected cost increase.

ampli-

4. Results and discussion

In this Letter, we present QCISDTQ and QCIS
DTQ(6) correlation energies for atoms and molecules,
for which full CI (FCI) energies are available ([21];
for Ne, see Ref. [22]; for NH ,, see Ref. [23]; for BH,
CH,, see Ref. [24]; for H,0O, FH, see Ref. [25]). In
the previous study on QCISDT, basis sets and ge-

ometries used in the FCI calculations are described
in detail and, therefore, these details are not repeated
here [16]. In Table 1, results are compared with
QCIsSD, QCISDT, CCSD, CCsD(T), CCSDT, and
FCI energies where for reasons of simplification
deviations from FCI correlation energies are listed.
Also, an error analysisin terms of mean and standard
deviation of calculated QCl and CC energies from
the corresponding FCI results is given in Table 1.
While this first comparison is limited to ground and
some excited states in their equilibrium geometry, in
Table 2, similar data are collected for electronic
systems with considerable multi-reference character
such as C, or BH, H,0, FH, and C, with symmetri-
cally stretched AH bonds (‘* stretched geometries’’).
Calculations of the latter represent critical tests on
the performance of QCISDTQ and QCISDTQ(6)
since single determinant theories are known to fail
for systems with considerable multireference charac-
ter.

All energies obtained at the QCISDTQ level of
theory are less negative than the corresponding
QCISDT energies obtained with the same basis set at
the same geometry. By this, the agreement with FCI
correlation energies is significantly improved relative
to that found for QCISDT [16,17], which is docu-
mented by the calculated mean (from 0.35 to 0.25),
mean absolute (from —0.31 to 0.01), and standard
deviation (from 0.87 to 0.48 mhartree, see Table 1).
For QCISD and CCSD, the corresponding values for
the mean absolute deviation are ~ 3 mhartree, for
CCSD(T) and CCSDT 0.49 and 0.30 mhartree, re-
spectively.

In Fig. 3, the MP5 correlation energy contribu-
tions for the same set of electronic systems are
shown in form of an energy spectrum [2] for both
classsA and -B dectronic systems. Obviously, the
TQ energy term represents always a positive correc-
tion to other negative fifth-order (or lower) order
energy contributions, which in the case of class-B
systemsis actually the dominant term at MP5. Hence,
the inclusion of the TQ term at QCISDTQ represents
the most important correction relative to QCISDT
and is responsible for the better agreement with FCI
results. Similar observations can be made for the
stretched geometries athough deviations in theses
cases are larger by a factor 3—10 because of the
strong multi-reference character of these systems.
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Table 1

Comparison of QCISDTQ energies with FCI and other CC energies for atoms and molecules in their equilibrium geometry 2

Molecule Basis FCI E(approx.) — E(FCI)
CCSD CCSD(T) CCSDT MP6  QCISD QCISDT QCISDTQ QCISDTQ(6)
F~ cc-pvDZ —99.558917 1.071 0.464 0.446 0.044 1.057 0.398 0.452 —0.002
aug-cc-pvVDZ  —99.669369  6.679 0.735 0.397 —-8662 4.177 —-2719 —1675 0.330
cc-pVTZ(-H) —99.675158 5.109 0.208 0232 —-0.194 4734 —0.607 0.002 0.007
Ne 4s2pld —128.702462 2.142 —0.001 —-0.066 —0.227 1.708 —-0549 -0.202 0.052
64pld —128.767889  2.875 0.114 0119 -0.368 2511 —-0493 -0.183 0.000
cc-pvbDz —128.679025 1.233 0.189 0.160 —0.027 1.097 —0.008 0.139 0.020
aug-cc-pvDZ —128.709476 2972 0.181 0.061 —0.550 2.343 —-0634 -0.29% 0.060
cc-pvVTZ(-f) —128.777048  3.756 0.066 0.059 —-0.176 3.459 —-0523 —-0.155 0.002
BH DzP —25.227627  1.792 0.412 0.068 1.305 1.760 —0.019 0.014 0.021
cc-pvDz —25.215126  1.834 0.479 0.067 1.328 1.815 —0.020 0.025 —0.004
aug-cc-pvDzZ —25.218227 1.986 0.474 0.027 1.263 1.973 —-0.061 -0.020 —0.059
CH, éB ,) DzP —39.046260  2.090 0.359 0.017 0.363 2.054 -0.107 -0.037 —0.049
CH, (A ,) DzP —39.027183 3544 0.873 0.207 1977 3522 —0.024 0.113 0.014
NH, ¢ B,) DZP —55.742620  3.212 0.548 0.216 0.336 3.134 —0.046 0.121 —0.025
NH, (2A ) DzpP —55.688762 2.993 0.534 0.223 1.263 2.908 —0.023 0.139 —0.016
H,0 Dz —76.157866  1.790 0.574 0.434 0.087 1.482 0.072 0.297 0.036
DzP —76.256624  4.123 0.718 0.531 0.077 3.880 0.030 0.348 0.015
cc-pvbDz —76.241650  3.666 0.634 0.472 0.016 3.527 0.090 0.335 0.000
cc-pvDZ(+) —76.258208 4.421 0.684 0494 —-0.204 3.995 —-0.274 0.108 0.016
FH DzP —100.250969  3.006 0.397 0.266 —0.229 2.567 —0.268 0.079 0.056
cc-pvDZ —100.228640 2414 0.493 0404 —0.008 2.232 0.117 0.291 0.012

aug-cc-pvVDZ —100.264113  4.667 0.528

N, cc-pvDZ —109.276527 13.465 1.708
Mean abs. deviation 3.351 0.492
Mean deviation 3.515 0.494
Standard derivation 2.496 0.329

0329 -0972 3861 -0727 —-0.263 0.070
1626 —0321 12510 -—0.736 0.683 0.064
0.298 0.862 2993 0.349 0.253 0.040
0295 -—0.169 3.144 —0.310 0.014 0.027
0.328 2189 2243 0.870 0.483 0.073

@ Absolute energies in hartree, deviations in mhartree. FCI energies are taken from Refs. [21-25] where details on basis sets and geometries

are published.

Contrary to CCSDT correlation energies, QCISDT
correlation energies are typicaly below FCI energies
since they are lacking the important QT term. Since
QCISDTQ energies contain the QT term, their value
is mostly above or in some cases slightly below the
FCI value. QCISDTQ(6) coversin addition MP5 and
MP6 terms (see Egs. (22) and (30)), which can be
either positive or negative, but in total correct the
QCISDTQ energies in such a way that the mean
absolute deviation from FCl values decreases by a
factor 6 to 0.04 mhartree and the standard deviation
by a factor of almost 7 to 0.07 mhartree. With afew
exceptions, QCISDTQ(6) correlation energies ap-
proach FCI values from above. For basis sets without
diffuse functions the reproduction of FCI results is
clearly better than for basis sets including diffuse
functions. Cremer and co-workers showed recently

that the addition of diffuse functions to a basis set
not fully saturated with s, p functions leads to an
exaggeration of higher order correlation effects,
which diminishes the accuracy of a given MBPT or
CC method [7].

It is interesting to note that QCISDTQ(6) per-
forms poorly in the cases of FH and H,O with bond
lengths of 2R, (Table 2). In these cases orbital
relaxation and state mixing are most important and
an inclusion of correction terms with frozen ampli-
tudes seems to drastically overcorrect QCISDTQ
results.

Analysis of MP5 and MP6 contributions that are
added because of the Q projection equation at QCIS-
DTQ reveals that the former are predominantly posi-
tive thus correcting the too negative QCISDT values
back to a level relatively high over FCI correlation
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Table 2

Comparison of QCISDTQ energies with FCI and other CC energies for electronic systems with multi-reference character @

Molecule Geom. Basis FCI E(approx.) — E(FCI)
CCSD CCSD(T) CCSDT MP6  QCISD QCISDT QCISDTQ QCISDTQ(6)

C, 10 R, ccpvDZ —75721843 22.713 —4.853 —3497 -9264 17970 —14351 -10.146 —4.423
BH 15R, DzZP —25.175976  2.642 0.550 0.026 1448 2343 -0.305 —-0.226 0.124
BH 20 R, DzP —25.127350 5.048 0406 —0.091 2203 3.856 —-1355 —1.165 1174
FH 15R, DzZP —100.160395 5.099 0.887 0.645 —-0.407 4136 —0.452 0.174 0.307
FH 20R, DzP —100.081107 10.178 0.255 1125 -1132 8.392 —0.962 0.370 2.966
H,0 15R, Dz —76.014521 5.590 1.465 1.473 1910 4.740 —0.109 0.865 0.331
H,0 20R, Dz —75.905246 9365 —-7.675 —2211 3.970 9.589 —7.991 —4461 11.776
H,0 15R, DzZP —76.071405 10.159 1.999 1.784 1816 9.366 0.021 1.097 0.220
H,0 20R, DzP —75.952269 21410 —-4.630 —2472 4.057 21.386 —-6.153 —3224 8.670
Mean abs. deviation 10.245 2.524 1.480 2912 9.086 3.522 2414 3.332
Mean deviation 10.245 —-1.288 —0.358 0511 9.086 —-3517 —1.857 2.349
Standard derivation 5.584 8.205 7.314 9.302 5.460 11.198 9.599 8.506

@Absolute energies in hartree, deviations in mhartree. FCI energies are taken from Refs. [21-25] where details on basis sets and geometries

are published.

energies. However, the connected Q contributions, in
particular the relatively large negative TQT contribu-
tion is responsible for a closer approach to the FCI
values. The additional improvement obtained at the
QCISDTQ(6) level is aresult of a complicated inter-
play of positive and negative contributions, in which
arelatively large DTS+ DTQ contribution plays an
important role.

We conclude that QCISDTQ(6) leads to cor-
relation energies close to CCSDTQ and FCI values,
that the method is much better than either MP6,
QCISD(T), CCSD(T), QCISDT or CCSDT and that
it is the cheapest of all Q methods covering infinite
order correlation effects introduced by the T, opera-
tor. Apart from this, QCISDTQ results can be used
as a reasonable guess for the more accurate CCS-
DTQ results. Finaly, QCISDTQ calculations con-
firm the importance of connected four-electron corre-
lation effects, which are needed to approach FCI
correlation energies.
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Appendix A.

The intermediate arrays used in the QCISDTQ
program are defined in Eq. (A.1) to Eq. (A.13).

uf = — X lalid)af — 3 3 (lallde) afl®
Id

Ide

—%%(Imllid}aﬁﬂ, (A1)

i]

U = X (Cablldjyal — (ablldiyal)
d
+ X (Clallijyap — Clbllij) a?)
|

+3 ) (ablldeyai® + 3 Y- (Imllij)afy
de Im
- Y Y (—1)°P(ij/ab)(Iblljdy a3,
Id p
(A.2)

of =32 X (Iml|de)(afafy + afafy + 2afa’y)
Im de

(A3)
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P =32 2 <im| de>[ affain — 2( aaps + apraly

Im de
+ajPafe + aﬁea;f"r?]) + 4( aj'ahs + aﬁea;f"r?])] ,
(A4
X,(i,d, b, c) = (idlbc) + 3 Y (rmlled)ags,
mne
(A.5)
X,(j. k1, a) = (jklllay + 3 Y (millef yade)
mef
(A.B)
Xs(b,c, e, f)=<(bcllef) + 1Y (mnllef)ads,,
mn
(A7)

X,(m,n,j, k) = (mnlljky + 3 3 (nlef Yat
ef

(A.8)
Xs(m, a,i,e) = (mallie) — 3 {mnllef )a3,
nf
(A.9)
Yi(f @) =3 X (mnllef)afy,, (A.10)
Y,(n,i) =33 (mnllef)afy, (A.11)
mef
Z(k,1,b,c,d,e) =; Y (mllef)ariid,
m,n, f
(A.12)
Zy(j.k,l,c.dn) = —5 3 (mllef )aglss.
m, e, f
(A.13)
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