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Abstract

The description of open-shell singlet (OSS) o—7 biradicals by density functional theory (DFT) requires at least a
two-configurational (TC) or, in general, a MC-DFT approach, which bears many unsolved problems. These can be avoided
by reformulating the TC description in the spirit of restricted open shell theory for singlets (ROSS) and developing an
exchange-correlation functional for ROSS-DFT. ROSS-DFT turns out to lead to reliable descriptions of geometry and
vibrational frequenciesfor OSS biradicals. The relative energies of the OSS states obtained at the ROSS-B3LY P,/6-311G(d,p)
level are often better than the corresponding ROSS-MP2 results. However, in those cases where spin polarization in a
conjugated 7 systems plays a role, DFT predicts the triplet state related to the OSS state 2—4 kcal /mol too stable. © 1998
Elsevier Science B.V. All rights reserved.

1. Introduction

One of the maor research goals in current chemistry is the investigation and description of enediyne
antibiotics, which have the extraordinary capability of cleaving DNA and, by this, qualify as potential anticancer
drugs [1]. The biological activity of the enediynes results from the fact that they, if properly triggered, can
undergo cyclization to aromatic singlet biradicals, which are the actual DNA cleaving tools of the enediynes.
Hence, the isolation, identification and characterization of singlet biradicals has become a key element of the
research on enediyne antibiotics, both from the experimental [2,3] and the theoretical side [4,5]. While
experimentally there are methods available to generate and to trap singlet biradicals at low temperature in a
matrix, their identification and characterization, e.g. with the help of infrared spectroscopy, requires close
collaboration between experimentalists and theoreticians where the latter provide calculated reference spectra to
be compared with measured spectra [2-5].

A reliable quantum chemical description of singlet biradicals requires the use of multi configuration (MC) or
multi reference (MR) methods, preferably in connection with ClI or perturbation theory to provide an accurate
account of dynamic electron correlation. While this is possible for small molecules, calculations are no longer
feasible for substituted enediynes and their biradical counterparts, in particular if the calculation of analytical
first and second energy derivatives for the determination of geometry and vibrational spectra becomes
necessary. In this work, we make a first step in attacking the problem of describing typical MR systems such as
open-shell singlet (OSS) biradicals with the help of density functional theory (DFT). DFT has the advantage of
being not very costly and covering (although in an unspecified way) a relatively large amount of dynamic
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correlation effects so that DFT results are sometimes comparable in accuracy with those of CCSD(T) or at least
MP2 results [6].

Of course, DFT as it is mostly used, is based on single-determinant Kohn—Sham theory [7] and, therefore,
fails in a similar way as Hartree—Fock (HF) theory to treat a MR problem properly. There exist several
relatively simple possihilities of replacing HF by a two-configurational (TC) description, as for example TCSCF
or GVB [8], to obtain the correct wavefunction of systems such as an OSS hiradical and to add dynamic
correlation to this description by Maller—Plesset (MP) perturbation theory [9]. While these methods make a
technical, although not very accurate, solution of the problem in orbital space possible, TC-DFT leads to serious
complications, athough first solutions for atoms and H, have been suggested recently by Miehlich et al. [10].
Any TC description implies some spatia separation of the two single electrons of an OSS biradical and, by this,
a lowering of the Coulomb repulsion. If one adds a density functional for describing exchange-correlation (XC)
effects, the TC functiona will be based on the one-electron density, which is not adjusted for the lowering of
the Coulomb repulsion by the TC description. Accordingly, dynamic electron correlation will be overestimated
by TC-DFT. The conversion of a closed shell system into an OSS biradical can no longer be described
consistently.

The problem of combining an MC approach with DFT can be avoided by reformulating a TC description
within single-determinant restricted K ohn-Sham theory [7]. This can be done by using techniques worked out for
restricted open shell HF (ROHF) theory for low-spin cases, in particular the OSS case [11]. A combination of
ROHF with a dynamic electron correlation method such as MP2 was shown to be useful in describing OSS
states [12]. In this work, we describe the extension of ROHF theory for OSS states to DFT with the goal of
cdculating OSS hiradicals with a restricted open-shell singlet (ROSS) DFT method that will be based on the
correct form of the wavefunction but which includes in addition the dynamic electron correlation effects of a
DFT method. We will develop, implement and apply ROSS-DFT in particular to o—7 OSS hiradicals, which
can only be described by MC methods since their ground state wavefunctions are linear combinations of two
strictly equivalent determinants.

2. Theory

In the following, we consider an electron system with doubly occupied orbitals ¢;, ¢;, €tc. (core orhitals), two
singly occupied orbitals ¢, and ¢, and virtual orbitals ¢,,¢,, etc. The indices p,q are used for unspecified
orbitals out of the total set of orbitals. For quantities related to the core space as a whole, the index ¢ is used
and, correspondingly, index v for the virtual space. The total densities for each spin direction will be denoted by
n, , where we will distinguish between the core density per spin direction, n(r) =X, ¢;"(r)¢;(r) and the
singly-occupied space densities n,(r) = ¢, (1) (r) (p=r,s). For the o— biradicals considered in this work,
one single electron occupies a o and the other a 7r orbital, both electrons being coupled to a singlet so that the
wavefunction in its simplest form is given by (1)

. 1
V= A{‘i’(core)ﬁ[@r(l) ¢s(2) + (D e (2)][a(1) B(2) - B(l)a(z)]} (1)

and, accordingly, would require a TC or better description.

An electronic-structure calculation based on DFT requires a search for the state with the lowest energy under
the constraint that the total spin-up and spin-down particle numbers, N.. | should have certain fixed values (see,
e.g. Ref. [13]):

E,= minm,ﬁNM{F[nT ,nl]+fd3ru(r)[nT(r) + nl(r)]} (2a)

F[nT,nL]=min,1,ﬁnm<1lf|'le+\7%|11f> (2b)
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where v is the external potential and T and \7ee are the kinetic and electron-electron energy operators,
respectively.

This approach is not suitable for searching for the OSS state since the OSS and any lower or higher lying
closed-shell state have the same N, | values. If one had the exact exchange-correlation (XC) energy available,
DFT would describe that singlet state with the lowest energy. However, the usual approximations used for the
XC energy are based on the adiabatic-connection scheme [14], i.e. afictitious procedure in which the strength of
the electron-electron interaction is turned down from its real value to zero so that the wavefunction is converted
into that of a reference system with non-interacting electrons. Due to the approximate character of the XC
functional, a restricted Kohn-Sham method will always lead to a description of a closed-shell singlet rather than
the OSS state. With an unrestricted open-shell approach, a closed-shell state (of little physical relevance) will be
described provided thisis lowest in energy or, if the OSS state is lowest in energy, an artificial state is obtained
that is adiabatically coupled to the unrestricted open-shell state and that does not represent a reasonable
approximation to the real OSS state. Hence, in no case does single-determinant Kohn-Sham DFT give a
satisfactory description of the OSS state.

One can improve the situation by further constraining the minimum-energy search of Eq. (2) in the sense that
just trial wavefunctions of particular (space and /or spin) symmetry are used. In this way, Eq. (2) is replaced by
Eqg. (3).

ES= minnmﬁNTvl{FS[nT ,n¢]+fd3ru(r)[nT(r) +n¢(r)]} (33)

F[n,.n,]= min <1P|'I:+\76elll’> (3b)

Y-n, V€S

where S denotes the symmetry in question and the minimization must be restricted to such n, , that are
compatible with S. Eq. (3) leads to different functionals F for each symmetry S

Since in al interesting cases, the closed-shell and OSS state have different spatial symmetries because of
differences in the electron configurations, a symmetry-constrained search can be used to determine the OSS
state, provided one can construct a reasonable approximation to the functional F©5S. In this work such an
approximation is constructed by considering that (i) atriplet (T) state can well be described within DFT and (i)
that the T and OSS states are related in some respect. Accordingly, we derive F©S by modifying the energy
functional for the T state. At the HF level, the energy of the T stateis 2 K below that of the corresponding OSS
state built with the same orbitals, where K = (¢, ¢ |o.¢,) is the the exchange energy of the two electrons
occupying ¢, and ¢..

If dynamic electron correlation is considered, the energy of the OSS state will be lowered relative to that of
the T state. In the latter case, correlations between electrons r and s should be relatively small because these
electrons avoid each other by virtue of exchange correlation already covered at the HF level. In the OSS state,
however, exchange effects make these two electrons cluster, which should result in stronger correlation effects.

The change in the exchange energy can be described by adding 2 K to the total energy of the T state. Since
most approximations for the XC energy are closely related to the case of the homogeneous electron gas, which
is not a reasonable starting point for describing an OSS situation, it is better to calculate the exact exchange
integral K. The extra computational cost for K is negligible in hybrid-functional calculations and still moderate
within a pure DFT approach.

The weak Coulomb corrélations in the T state are covered in the DFT description in the way of equal-spin
corrections, which are relatively weak. In the OSS case, the r—s correlations enter as different-spin correlations
into the energy expression, which can be done simply by replacing the T correlation energy E2F'[n_+ n, +

ng,n.] by EXFT[n,+ n,,n, + n.]. This expression is, strictly speaking, appropriate for a state where there is no
exchange between electrons r and s. Thus, it may still underestimate electron correlation as will be discussed in
the next section.
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The ROSS-DFT energy functional for an OSS biradical is given by

E=2Y <alhle) + {qlhle,) + {odhloy + Y (oldle) + eIl + 1ol dley)

i i
7 1( 0 7 1 a 7 7 1 ;2 7 7
_aHF(Z<€Di|Kc+§(Kr+ Ks)|¢i> +§<§Dr|Kc+ Kr+ Ks|¢r> +E<€DS|KC+ Kr+ Ks|€0s>
i

In Eq. (4), ay is the weight factor for HF exchange in hybrid DFT schemes (a, = O for pure DFT). The
functional F©5° is readily obtained from (4) by omitting the external potential terms, i.e. replacing the core
Hamiltonian h by the kinetic energy operator f. For a,- = 1 and ESFT = EPFT = 0 and the energy expression
for ROHF in the case of an OSS state is reproduced.

From the total energy (4), we can derive the Fock operators for orbital spaces c, r and s by considering the
change of E for small changes |¢,> — [@,) + Al¢,), where orthonormality of the orbitals is not necessarily
required at this stage of the derivation. Taking the derivative with respect to A for A = 0 leads to Eq. (5), in
which the Fock and Coulomb operators of Egs. (6)—(9) are used.

E = (22(q0i||£°|<p{> +{ g F ey + <¢Slﬁ3|¢;>) +c.c., (5)
i

Fe=h+J- aHF(ZKi +3(K, + Ks)) +3(oRt HoXlT) +3(0g + o), (6)
i

FAr=ﬁ+JA—aHF(ZKAi+KAr+KAS)+2KAS+UXDTFT+UETFT, (7
i

Fs=ﬁ+J—aHF(ZKI+Kr+KS)+2|€r+uE$T+uEfT (8)
i

J=2Y 3+ +J. (9)

According to ROHF theory [11,15] and its generalization to DFT, the Kohn—Sham orbitals can be found by
diagonalizing Fock matrix (10)

FCC FCI' FCS FC v

F — Fr C Fr r FI' S Fr v ’ ( 10)
FSC FSF FSS FSU
F. F, F. F,

where off-diagona elements are given by (11)

F,=2FS—F!, 1la
r r r

Fs= 2Fics_ FiSS! (11b)

Fa=Fa% (11c)

Fs= Frrs - I:rss' (11d)

Fa= Frra! (11e)

Foa = Fssa' (11f)
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In an SCF procedure, the singly occupied orbitals ¢, and ¢, are rotated in such a way that the energy is
minimized for otherwise fixed orbitals (such a rotation does not affect the total electronic structure in the
high-spin case but it does in the low spin case). For a molecule of high symmetry, ¢, and ¢, can represent
different one-dimensional irreducible representations (as e.g. in the case of a o and a 7 orbital) or span the
basis for a two-dimensional irreducible representation so that they are transformed into each other by some of
the symmetry operations. In this work we have considered just the first case, i.e. the non-interacting KS
reference state is a TC state built of two exactly degenerate single-determinant states. However, an extension of
ROSS-DFT to the second situation is straightforward and just requires a suitable rotation between ¢, and ¢..

In this work ROSS-DFT was programmed and used to calculate OSS energies. In addition, analytical energy
gradients, needed for geometry optimizations, were derived for ROSS-DFT. The derivative of the energy E of
Eqg. (4) with respect to a geometry parameter x for x =0 is given by Eq. (12)

1
E=)P,H, + > Y. PP uAlvey
wy 32X
_aHF Z [( P,uf:v + P,unry + P,ULSV)( PAC(r + P/\r(r + P/\S(r) + P/J.CV P/\C(r]< MA|0—V>,
WrAo
+EX[n.+n +ng,n ]+ EXF[n.+n n.+n]+2 ) PR uMlov) + (E)p, (12)
MVAO
where the last term of (12) is defined by
(E/)PZZZPMC:/FMCV+ ZP,LLrI,/F/J.rV+ ZP/.LS;/F[.LSV' (13)
nv nv nv

In Egs. (12) and (13), Greek indices refer to basis functions, the MO coefficient matrix is given by C and the
elements of the density matrices P°, P" and P* are defined by PS, = X,C;;C,;, P9 =CJ, 4C, g Thetotal
density matrix can be calculated from the expression P =2P°+ P" + P® All the derivatives are explicit
derivatives with respect to the external parameter x, e.g. the derivative of EPFT in Eq. (12) does not account for
changes in the density matrices. Determination of the derivatives of the density matrix, which would require a
perturbation calculation, can be avoided by using the fact that the expansion coefficients correspond to the
minimum-energy state of the energy functional. One can replace the derivatives of P with the help of a term
depending on the derivatives of the overlap matrix S and the energy-weighted density matrix W, both expressed
in terms of basis functions

w =cwMecT, (14)
where W MO s the MO representation of W, which can be assembled from the three matrices F 'S according to
2FCCC Fcrr FCSS 0

r r S
W MO — I:rc I:rr l:rs 0 . (15)
Fe F& Fe O
0 0 0 O
With (14) and (15), one obtains for Eq. (13) expression (16).
(E)p=—21S.W,. (16)
nv

The result shows that the calculation of analytical energy gradients within ROSS-DFT can largely be based on
the methods worked out for ROHF [11].

Extension to analytical second derivatives is straightforward, however in this work we used a numerica
procedure to calculate the vibrational spectra of OSS biradicals. In this connection, it was necessary to calculate
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distorted systems with lower symmetry, for which the matrix element F, could not be put to zero. This leads
sometimes to convergence problems, which however, can be managed by a balanced level shifting between the
energies of orbitals ¢, and ¢,. The ROSS-DFT method (including analytical energy gradients) was imple-
mented both for normal and hybrid functionals into the program package COLOGNE96. [16] All reference
calculations were carried out with the program package GAUSSIAN94. [17]

3. Results and discussions

In Table 1, ROSS-DFT energies for the A state and S—T splittings with regard to the 1A/3E states of NH,
NF, OH* and O, are listed. In addition, bond lengths and harmonic bond stretching frequencies are given for
the OSS and T state. Calculations were carried out with a variety of functionals including Becke 88 exchange
[18] + Lee-Yang—Parr correlation (BLY P) [19], Becke's three-parameter hybrid exchange + Lee-Y ang—Parr

Table 1
Geometries, energies and vibration frequencies (cm~1) for the open-shell singlet A and triplet 3 states of NH, NF, OH* and O, 2.
Method Basis r E AE ®
U 5 % A-%) ! 5
NH, a4 and X 35~
BLYP 6-31G(d,p) 1.056 1.058 —55.201803 379 3148. 3115.
6-311G(d,p) 1.053 1.055 —55.217463 36.8 3146. 3113.
B3LYP 6-31G(d,p) 1.044 1.046 —55.219743 37.7 3284. 3250.
6-311G(d,p) 1.042 1.044 —55.234528 36.8 3279. 3248.
MP2 TZ2P 1.030 1.030 385
Expt. 1.034 1.036 359...39 3188. 3282.
NF,ad and X 3~
BLYP 6-31G(d,p) 1.338 1.346 —154.421522 32.7 1139. 1116.
6-311G(d,p) 1.336 1.344 —154.470951 323 1104. 1081.
B3LYP 6-31G(d,p) 1.314 1.324 —154.433000 333 1220. 1187.
6-311G(d,p) 1.309 1.319 —154.479589 331 1192. 1158.
MP2 TZ2P 1.301 1.318 34.2
Expt. 1.308 1317 343
OH', a4 and X 35~
BLYP 6-31G(d,p) 1.055 1.054 —75.238545 49.5 2944. 2941.
6-311G(d,p) 1.050 1.050 —75.262026 49.0 2947. 2945,
B3LYP 6-31G(d,p) 1.041 1.041 —75.242261 49.3 3079. 3078.
6-311G(d,p) 1.037 1.036 — 75.264666 49.0 3080. 3081.
MP2 TZ2P 1.023 1.021 52.1
Expt. 1.029 505
0,, a4y and X 335
BLYP 6-31G(d,p) 1.241 1.239 —150.313337 27.9 1503. 1516.
6-311G(d,p) 1.233 1231 —150.360257 2715 1478. 1491.
B3LYP 6-31G(d,p) 1.215 1.213 —150.316113 27.8 1648. 1660.
6-311G(d,p) 1.206 1.204 —150.360821 275 1630. 1643.
MP2 TZ2P 1.262 1.249 24.3
Expt. 1.215 1.207 22.6 1483. 1580.

@ Bond lengths in ,& absolute energies in Hartree, energy differences in kcal mol ~1. MP2 values from Ref. [12], exp. data from Ref.
[25].
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correlation (B3LYP) [20], Perdew—Wang91 (PW91) [21] and the Vosko—Wilk—Nusair VWNS5 functional [22].
For each functional the VDZP basis 6-31G(d,p) [23] and the VTZP basis 6-311G(d,p) [24] were employed.
Results for the PW91 and VWNS5 functionals did not differ much from BLY P results and, therefore, only the
latter are shown in Table 1.

ROSS-DFT leads to a reasonable description of the S—T splittings and bond properties of the OSS states,
where on average B3LY P results are better than BLYP results and VTZP results are better than VDZ results
when compared to experimental data [25]. The B3LYP/6-311G(d,p) splitting for NH (36.8 kcal /mol, Table 1)
is within the range of experimental values; for NF and OH* (33.1 and 49.0 kcal /mol), it differs by 1 to 1.5
kcal /mol from the corresponding experimental values. In the case of O,, the B3LYP/6-311G(d,p) splitting
(27.5 kcal /mol) is 5 keal /mol larger than the experimental energy difference of 22.6 kcal /mol, which is
parallel to the fact that the OO bond length is underestimated (1.206 vs. 1.216 A, Table 1). ROSS-MP2 [12]
severely overestimates the OO bond length (1.262 A), however predicts the S-T splitting somewhat better (24.3
kcal /mol, Table 1) than ROSS-DFT.

In Tables 2 and 3, DFT energies and equilibrium geometries for the ‘B, /°B, states of methylene and the
A" /3N states of formaldehyde are compared with the available experimental [25] and ROSS-MP2 data [12].
Again, B3LYP/6-311G(d,p) results are more accurate than those obtain with BLYP or the smaller basis set.
They reflect geometric and energetic differences between the high-spin and low-spin states correctly. For CH,,
the ST splitting (32.2 kcal /mol, Table 2) is just 1 kcal /mol below the experimental value, which has to be
seen on the background that the relative energies of both the 1Al ground state and the two excited states
'B,/°B, are reasonably described at the DFT level while MP2 fails in this respect (Table 2). ROSS-MP2
predicts the 'A ; state just 18.3 kcal /mol below the *B, state while the accurate value should be 24.4 kcal /mol
(Table 2), which is better reproduced by ROSS-DFT. ROSS-DFT also performs well for formaldehyde although
the S—T splitting (10.9 kcal /mol, Table 3) is 2.5 kcal /moal larger than the experimental value of 8.4 kcal /mol
[25] (MP2: 8.8 kcal /mol [12]). However, the relative energies of the 'A” /°A" states with regard to the ‘A
ground state of formaldehyde (81.4 and 70.5 kcal /mol, Table 3) differ by just 0.8 and 1.5 kcal /mol,
respectively, from the corresponding experimental values while MP2 fails by about 9 kcal /mol [12] to correctly
predict these energy differences. DFT overestimates the stability of the T state (1-2 kcal /mol), which is also
observed for O, (5 kcal /mol, Table 1) and which could mean that certain correlation effects are underestimated
at the ROSS-DFT level.

As for the calculated OSS geometries, major deviations from experimental values are observed for the HCH
anglein CH,,'B; (148.3 vs 142.8° exp., Table 2) and the out-of-plane angle in CH, = O,"A” (36.7 vs. 31° exp.,

Table 2
Equilibrium geometries and energies for the 1B1 and 3B:L excited states of methylene 2.
Parameter BLYP B3LYP MP2 Expt.
6-31G(d,p) 6-311G(d,p) 6-31G(d,p) 6-311G(d,p)
ECB,) —30.069872 —39.086415 —39.096189 —39.111141
AECB,-°B;) 344 317 347 322 34.6 33.4°
AECB,-'A) 23.3 214 22.3 20.8 183 24.4
AECA,—°B,) 11.1 103 124 114 163 9.¢
r(CH), !B, 1.081 1.079 1.075 1.074 1.070 1.073
r(CH), °B, 1.089 1.086 1.082 1.080 1.072 1.077
£(HCH), 'B, 147.8 149.6 146.7 148.3 142.4 142.8
£(HCH), *B, 1329 134.1 132.1 133.6 133.1 134.0

& Absolute energies in Hartree, energy differences in kcal mol~1, bond lengths in ,& bond angles in deg. Exp. data from G. Herzberg,
Electronic Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New Y ork, 1966, MP2 value for 1B1 from Ref. [12]. ® Extrapolated
value from C.W. Bauschlicher Jr., Chem. Phys. Lett. 74 (1980) 273. © D.G. Leopold, K.K. Muarry, A.E. Stevens Miller, W.C. Lineberger,
J. Chem. Phys. 83 (1985) 4849.
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Table 3
Energies and geometries of the *A” and ‘A" states of formaldehyde, H,C = 0. @
Parameter BLYP B3LYP MP2 Expt.
6-31G(d,p) 6-311G(d,p) 6-31G(d,p) 6-311G(d,p)
ECA,) —114.474828 —114.510161 —114.990876 — 115.025662
AECA" %A 12.4 12.6 10.7 10.9 8.8 8.4
AECA" —'A) 81.8 81.9 81.2 814 89.4 80.6
AECA —'A) 69.4 69.3 70.5 70.5 80.6 72.0
r(CH), ‘A" 1.108 1.106 1.096 1.094 1.09
r(CH), % 1.117 1.116 1.102 1.101
r(Co), ‘A’ 1.338 1.330 1.336 1.330 132
r(Co), 3’ 1.314 1.307 1.313 1.306 131
Z(HCH), *A” 114.9 115.2 116.8 117.3 119.
Z(HCH), *A" 1105 1105 113.8 114.0
A 39.1 37.8 37.9 36.7 3L
o~ 461 453 434 28 35.

& Bond lengths in ,& bond anglesin deg, absolute energies in Hartree, energy differencesin kcal mol ~1. 7 is the out-of-plane angle, i.e.
180° minus the angle between the C—O bond and the bisector of the H-C—H angle. Exp. data from G. Herzberg, Electronic Spectra of
Polyatomic Molecules, Van Nostrand Reinhold, New Y ork, 1966, MP2 vaues from Ref. [12].

Table 3). In these cases, however, the potential energy surface is rather flat (E increases by 0.15 kca /mol and
0.22 kcal /mol, respectively when experimental angles are used) so that improvements in the density functional
and/or the basis set may lead to a better prediction of these angles.

H OH H H

w7
1 2

Encouraged by the ROSS-DFT results for small molecules we calculated also a number of derivatives of the
a-3-dihydrotoluene biradical 1, which as mentioned in the introduction is presently at the focus of research on
enediyne antibiotics [1,26]. Geometries and vibrational frequencies of these biradicals are in line with what one
can predict on the basis of moderate CASSCF calculations (relatively small active space, small VDZ basis) and
infrared measurements carried out by Sander et al. [26]. In so far ROSS-DFT presents an economical and
reliable aternative to CASSCF or MCSCF calculations, which for biradicals 1 and 2 could become rather
expensive, if not impossible, if carried out for an active space with 10 electrons and more employing a TZ2P or
even larger basis set. However, ROSS-DFT calculations for biradicals such as 1 and 2 lead to a problem, which
is aso inherent in the calculation of the OSS state of O,.

In the biradicals 1 and 2, the singly occupied orbitals ¢, and ¢, are of o and 7 nature and are largely
localized at C atoms, which are 3.7-4.2 A apart depending on whether the through-space distance or the
through-bond distance is considered. Hence, the direct exchange interaction of the two electrons r and s in the
T state is rather weak (K < 1 kcal /mol) and, accordingly, for an ROHF calculation the T would be predicted
to be just dightly below the OSS state.

However, there is an indirect interaction between electrons r and s, which is mediated by the electrons in the
doubly occupied space. If the r electron possesses up spin, then the exchange potential connected with it will
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attract spin-up electrons of the doubly occupied space, which leads to spin polarization of the electron system. A
spin-up surplus density will be found in those regions where the r electron is concentrated, while spin-down
density will dominate in other regions. Accordingly, the s electron sees not only the direct exchange potential
of the r electron but also the additional exchange potential build up in the doubly-occupied space. This can lead
to further destabilization or stabilization of the OSS state depending on where the s electron is localized: if it is
concentrated in regions where the r electron also possesses a high density, then the indirect interaction leads to
an additional stabilization of the T state. Otherwise, in particular if the two electrons prefer disjunct regions
(corresponding to a localization of the orbitals ¢, and ¢, at different C atoms), the s electron will see a
down-spin surplus density and, consequently, the local exchange potential will favour a situation in which the s
electron possesses a down spin. Hence, the indirect mechanism stabilizes the OSS state.

In the biradicals 1 and 2, the direct exchange interaction is small while the indirect interaction between
electrons r and s leads to a stabilization of the OSS state, which according to CASSCH(9,8)/3-21G
calculations carried out in this work becomes the ground state of biradical 2 (R = CH,) lying 3.5 kca /mol
below the T state. While ROSS-DFT correctly accounts for the direct exchange interaction between electrons r
and s, it does not cover spin polarization in the doubly occupied space caused by the indirect interaction. This
is due to the fact that the orbitals of the doubly occupied space are restricted to be the same for up and down
electron spin. Consequently, the OSS state of 1 and 2 is always predicted by ROSS-DFT to be dlightly above the
T state.

A proper account of spin polarization could be obtained by using spin-dependent orbitals, which leads to an
unrestricted DFT (UDFT) description. UDFT, however, describes an artificial state, which can be a mixture of
the OSS and T state and, possibly, higher lying zwitterionic closed-shell singlet states of 1 and 2 so that a UDFT
description becomes useless. Alternatively, the spin polarization problem could be solved by the mixed
MCSCF-DFT approach proposed by Miehlich et a. [10]. However, as pointed out above, a relatively large
active space would be needed and the computational cost would become high, which is contrary to the goal of
developing a method with a high efficiency /cost ratio.

At the present stage we have solved the problem of spin polarization and an accurate calculation of S—T
splittings in a case such as 1, by combining ROSS-DFT with CASSCF calculations in form of a hybrid method.
For a small reference system such as 3, S-T splittings are correctly determined by the CASSCF calculations
and, then, the S—T splitting of the target system is determined according to

AE(S-T) =AE(S-T,DFT,1) + AE(S-T,CASSCF,3) — AE(S-T ,DFT,3) (17)
However, our current work aims at solving the spin polarization problem in a more direct way. Also,
ROSS-DFT is presently extended to biradical systems, for which orbitals ¢, and ¢, form one two-dimensional

irreducible representation and two singlet states of comparable energy exist. In these cases, appropriate r-s
orbital rotations are needed to obtain the lowest OSS state.
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