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Abstract

Ž . Ž .The description of open-shell singlet OSS s–p biradicals by density functional theory DFT requires at least a
Ž .two-configurational TC or, in general, a MC-DFT approach, which bears many unsolved problems. These can be avoided

Ž .by reformulating the TC description in the spirit of restricted open shell theory for singlets ROSS and developing an
exchange-correlation functional for ROSS-DFT. ROSS-DFT turns out to lead to reliable descriptions of geometry and

Ž .vibrational frequencies for OSS biradicals. The relative energies of the OSS states obtained at the ROSS-B3LYPr6-311G d,p
level are often better than the corresponding ROSS-MP2 results. However, in those cases where spin polarization in a
conjugated p systems plays a role, DFT predicts the triplet state related to the OSS state 2–4 kcalrmol too stable. q 1998
Elsevier Science B.V. All rights reserved.

1. Introduction

One of the major research goals in current chemistry is the investigation and description of enediyne
antibiotics, which have the extraordinary capability of cleaving DNA and, by this, qualify as potential anticancer

w xdrugs 1 . The biological activity of the enediynes results from the fact that they, if properly triggered, can
undergo cyclization to aromatic singlet biradicals, which are the actual DNA cleaving tools of the enediynes.
Hence, the isolation, identification and characterization of singlet biradicals has become a key element of the

w x w xresearch on enediyne antibiotics, both from the experimental 2,3 and the theoretical side 4,5 . While
experimentally there are methods available to generate and to trap singlet biradicals at low temperature in a
matrix, their identification and characterization, e.g. with the help of infrared spectroscopy, requires close
collaboration between experimentalists and theoreticians where the latter provide calculated reference spectra to

w xbe compared with measured spectra 2–5 .
Ž .A reliable quantum chemical description of singlet biradicals requires the use of multi configuration MC or

Ž .multi reference MR methods, preferably in connection with CI or perturbation theory to provide an accurate
account of dynamic electron correlation. While this is possible for small molecules, calculations are no longer
feasible for substituted enediynes and their biradical counterparts, in particular if the calculation of analytical
first and second energy derivatives for the determination of geometry and vibrational spectra becomes
necessary. In this work, we make a first step in attacking the problem of describing typical MR systems such as

Ž . Ž .open-shell singlet OSS biradicals with the help of density functional theory DFT . DFT has the advantage of
Ž .being not very costly and covering although in an unspecified way a relatively large amount of dynamic
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Ž .correlation effects so that DFT results are sometimes comparable in accuracy with those of CCSD T or at least
w xMP2 results 6 .

w xOf course, DFT as it is mostly used, is based on single-determinant Kohn–Sham theory 7 and, therefore,
Ž .fails in a similar way as Hartree–Fock HF theory to treat a MR problem properly. There exist several

Ž .relatively simple possibilities of replacing HF by a two-configurational TC description, as for example TCSCF
w xor GVB 8 , to obtain the correct wavefunction of systems such as an OSS biradical and to add dynamic

Ž . w xcorrelation to this description by Møller–Plesset MP perturbation theory 9 . While these methods make a
technical, although not very accurate, solution of the problem in orbital space possible, TC-DFT leads to serious

w xcomplications, although first solutions for atoms and H have been suggested recently by Miehlich et al. 10 .2

Any TC description implies some spatial separation of the two single electrons of an OSS biradical and, by this,
Ž .a lowering of the Coulomb repulsion. If one adds a density functional for describing exchange-correlation XC

effects, the TC functional will be based on the one-electron density, which is not adjusted for the lowering of
the Coulomb repulsion by the TC description. Accordingly, dynamic electron correlation will be overestimated
by TC-DFT. The conversion of a closed shell system into an OSS biradical can no longer be described
consistently.

The problem of combining an MC approach with DFT can be avoided by reformulating a TC description
w xwithin single-determinant restricted Kohn-Sham theory 7 . This can be done by using techniques worked out for

Ž . w xrestricted open shell HF ROHF theory for low-spin cases, in particular the OSS case 11 . A combination of
ROHF with a dynamic electron correlation method such as MP2 was shown to be useful in describing OSS

w xstates 12 . In this work, we describe the extension of ROHF theory for OSS states to DFT with the goal of
Ž .calculating OSS biradicals with a restricted open-shell singlet ROSS DFT method that will be based on the

correct form of the wavefunction but which includes in addition the dynamic electron correlation effects of a
DFT method. We will develop, implement and apply ROSS-DFT in particular to s–p OSS biradicals, which
can only be described by MC methods since their ground state wavefunctions are linear combinations of two
strictly equivalent determinants.

2. Theory

Ž .In the following, we consider an electron system with doubly occupied orbitals w ,w , etc. core orbitals , twoi j

singly occupied orbitals w and w and virtual orbitals w ,w , etc. The indices p,q are used for unspecifiedr s a b

orbitals out of the total set of orbitals. For quantities related to the core space as a whole, the index c is used
and, correspondingly, index Õ for the virtual space. The total densities for each spin direction will be denoted by

Ž . ) Ž . Ž .n where we will distinguish between the core density per spin direction, n r sÝ w r w r and the≠ ,x c i i i
Ž . ) Ž . Ž . Ž .singly-occupied space densities n r sw r w r psr,s . For the s–p biradicals considered in this work,p p p

one single electron occupies a s and the other a p orbital, both electrons being coupled to a singlet so that the
Ž .wavefunction in its simplest form is given by 1

1
ˆCsA F core w 1 w 2 qw 1 w 2 a 1 b 2 yb 1 a 2 1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .r s s r½ 5'2

and, accordingly, would require a TC or better description.
An electronic-structure calculation based on DFT requires a search for the state with the lowest energy under

Žthe constraint that the total spin-up and spin-down particle numbers, N should have certain fixed values see,≠ ,x
w x.e.g. Ref. 13 :

3w xE smin F n ,n q d rÕ r n r qn r 2aŽ . Ž . Ž . Ž .H0 n ™ N ≠ x ≠ x½ 5≠ ,x ≠ ,x

ˆ ˆ² < < :w xF n ,n smin C TqV C 2bŽ .≠ x C ™ n ee≠ ,x
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ˆ ˆwhere Õ is the external potential and T and V are the kinetic and electron-electron energy operators,ee

respectively.
This approach is not suitable for searching for the OSS state since the OSS and any lower or higher lying

Ž .closed-shell state have the same N values. If one had the exact exchange-correlation XC energy available,≠ ,x

DFT would describe that singlet state with the lowest energy. However, the usual approximations used for the
w xXC energy are based on the adiabatic-connection scheme 14 , i.e. a fictitious procedure in which the strength of

the electron-electron interaction is turned down from its real value to zero so that the wavefunction is converted
into that of a reference system with non-interacting electrons. Due to the approximate character of the XC
functional, a restricted Kohn-Sham method will always lead to a description of a closed-shell singlet rather than

Ž .the OSS state. With an unrestricted open-shell approach, a closed-shell state of little physical relevance will be
described provided this is lowest in energy or, if the OSS state is lowest in energy, an artificial state is obtained
that is adiabatically coupled to the unrestricted open-shell state and that does not represent a reasonable
approximation to the real OSS state. Hence, in no case does single-determinant Kohn-Sham DFT give a
satisfactory description of the OSS state.

Ž .One can improve the situation by further constraining the minimum-energy search of Eq. 2 in the sense that
Ž . Ž .just trial wavefunctions of particular space andror spin symmetry are used. In this way, Eq. 2 is replaced by

Ž .Eq. 3 .

S S 3w xE smin F n ,n q d rÕ r n r qn r 3aŽ . Ž . Ž . Ž .H0 n ™ N ≠ x ≠ x½ 5≠ ,x ≠ ,x

S ˆ ˆ² < < :w xF n ,n s min C TqV C 3bŽ .≠ x ee
C™n ,CgS≠ ,x

where S denotes the symmetry in question and the minimization must be restricted to such n that are≠ ,x
Ž .compatible with S. Eq. 3 leads to different functionals F for each symmetry S.

Since in all interesting cases, the closed-shell and OSS state have different spatial symmetries because of
differences in the electron configurations, a symmetry-constrained search can be used to determine the OSS
state, provided one can construct a reasonable approximation to the functional F OSS. In this work such an

Ž . Ž . Ž .approximation is constructed by considering that i a triplet T state can well be described within DFT and ii
that the T and OSS states are related in some respect. Accordingly, we derive F OSS by modifying the energy
functional for the T state. At the HF level, the energy of the T state is 2 K below that of the corresponding OSS

² < :state built with the same orbitals, where Ks w w w w is the the exchange energy of the two electronsr s s r

occupying w and w .r s

If dynamic electron correlation is considered, the energy of the OSS state will be lowered relative to that of
the T state. In the latter case, correlations between electrons r and s should be relatively small because these
electrons avoid each other by virtue of exchange correlation already covered at the HF level. In the OSS state,
however, exchange effects make these two electrons cluster, which should result in stronger correlation effects.

The change in the exchange energy can be described by adding 2 K to the total energy of the T state. Since
most approximations for the XC energy are closely related to the case of the homogeneous electron gas, which
is not a reasonable starting point for describing an OSS situation, it is better to calculate the exact exchange
integral K. The extra computational cost for K is negligible in hybrid-functional calculations and still moderate
within a pure DFT approach.

The weak Coulomb correlations in the T state are covered in the DFT description in the way of equal-spin
corrections, which are relatively weak. In the OSS case, the r–s correlations enter as different-spin correlations

DFTwinto the energy expression, which can be done simply by replacing the T correlation energy E n qn qc c r
x DFTw xn ,n by E n qn ,n qn . This expression is, strictly speaking, appropriate for a state where there is nos c c c r c s

exchange between electrons r and s. Thus, it may still underestimate electron correlation as will be discussed in
the next section.
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The ROSS-DFT energy functional for an OSS biradical is given by

1 1ˆ ˆ ˆ ˆ ˆ ˆ² < < : ² < < : ² < < : ² < < : ² < < : ² < < :Es2 w h w q w h w q w h w q w J w q w J w q w J wÝ Ýi i r r s s i i r r s s2 2
i i

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ² < < : ² < < : ² < < :ya w K q K qK w q w K qK qK w q w K qK qK wÝ ž /HF i c r s i r c r s r s c r s s2 2 2ž /
i

² < : DFT DFTw x w xq2 w w w w qE n qn qn ;n qE n qn ;n qn . 4Ž .r s s r x c r s c c c r c s

Ž . Ž .In Eq. 4 , a is the weight factor for HF exchange in hybrid DFT schemes a s0 for pure DFT . TheHF HF
OSS Ž .functional F is readily obtained from 4 by omitting the external potential terms, i.e. replacing the core
ˆ DFT DFTˆHamiltonian h by the kinetic energy operator t. For a s1 and E sE s0 and the energy expressionHF x c

for ROHF in the case of an OSS state is reproduced.
Ž .From the total energy 4 , we can derive the Fock operators for orbital spaces c, r and s by considering the

< : < : < X :change of E for small changes w ™ w ql w , where orthonormality of the orbitals is not necessarilyp p p
Ž .required at this stage of the derivation. Taking the derivative with respect to l for ls0 leads to Eq. 5 , in

Ž . Ž .which the Fock and Coulomb operators of Eqs. 6 – 9 are used.

X ˆc X ˆ r X ˆ s X² < < : ² < < : ² < < :E s 2 w F w q w F w q w F w qc.c., 5Ž .Ý i i r r s sž /
i

1 1 1c DFT DFT DFT DFTˆ ˆ ˆ ˆ ˆ ˆF shqJya K q K qK q Õ qÕ q Õ qÕ , 6Ž .Ž . Ž .Ý ž /HF i r s x ≠ x x c≠ cx2 2 2ž /
i

ˆ r ˆ ˆ ˆ ˆ ˆ ˆ DFT DFTF shqJya K qK qK q2 K qÕ qÕ , 7Ž .ÝHF i r s s x ≠ c≠ž /
i

ˆ s ˆ ˆ ˆ ˆ ˆ ˆ DFT DFTF shqJya K qK qK q2 K qÕ qÕ 8Ž .ÝHF i r s r x ≠ cxž /
i

ˆ ˆ ˆ ˆJs2 J qJ qJ . 9Ž .Ý i r s
i

w xAccording to ROHF theory 11,15 and its generalization to DFT, the Kohn–Sham orbitals can be found by
Ž .diagonalizing Fock matrix 10

F F F Fcc cr cs cÕ

F F F Frc r r r s r ÕFs , 10Ž .
F F F Fsc sr ss sÕ

F F F FÕc Õ r Õ s Õ Õ

Ž .where off-diagonal elements are given by 11

F s2 F c yF r , 11aŽ .i r i r i r

F s2 F c yF s , 11bŽ .i s i s i s

F sF c , 11cŽ .i a ia

F sF r yF s , 11dŽ .r s r s r s

F sF r , 11eŽ .r a r a

F sF s . 11fŽ .sa sa
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In an SCF procedure, the singly occupied orbitals w and w are rotated in such a way that the energy isr s
Žminimized for otherwise fixed orbitals such a rotation does not affect the total electronic structure in the

.high-spin case but it does in the low spin case . For a molecule of high symmetry, w and w can representr s
Ž .different one-dimensional irreducible representations as e.g. in the case of a s and a p orbital or span the

basis for a two-dimensional irreducible representation so that they are transformed into each other by some of
the symmetry operations. In this work we have considered just the first case, i.e. the non-interacting KS
reference state is a TC state built of two exactly degenerate single-determinant states. However, an extension of
ROSS-DFT to the second situation is straightforward and just requires a suitable rotation between w and w .r s

In this work ROSS-DFT was programmed and used to calculate OSS energies. In addition, analytical energy
gradients, needed for geometry optimizations, were derived for ROSS-DFT. The derivative of the energy E of

Ž . Ž .Eq. 4 with respect to a geometry parameter x for xs0 is given by Eq. 12

1 XX X ² < :E s P h q P P ml nsÝ Ýmn mn mn ls2
mn mnls

Xc r s c r s c c ² < :ya P qP qP P qP qP qP P ml snŽ .Ž .ÝHF mn mn mn ls ls ls mn ls

mnls

DFTX DFTX r s ² < :X Xw x w xqE n qn qn ,n qE n qn ,n qn q2 P P ml sn q E , 12Ž . Ž .Ý Px c r s c c c r c s mn ls

mnls

Ž .where the last term of 12 is defined by

EX s2 P cX F c q P rX F r q P sX F s . 13Ž . Ž .Ý Ý ÝP mn mn mn mn mn mn

mn mn mn

Ž . Ž .In Eqs. 12 and 13 , Greek indices refer to basis functions, the MO coefficient matrix is given by C and the
elements of the density matrices P c, P r and P s are defined by P c sÝ C ) C , P �r , s4sC ) C . The totalmn i m i n i mn m�r , s4 n �r , s4
density matrix can be calculated from the expression Ps2P c qP r qP s. All the derivatives are explicit

DFT Ž .derivatives with respect to the external parameter x, e.g. the derivative of E in Eq. 12 does not account forx

changes in the density matrices. Determination of the derivatives of the density matrix, which would require a
perturbation calculation, can be avoided by using the fact that the expansion coefficients correspond to the
minimum-energy state of the energy functional. One can replace the derivatives of P with the help of a term
depending on the derivatives of the overlap matrix S and the energy-weighted density matrix W, both expressed
in terms of basis functions

WsCW MO C†, 14Ž .
where W MO is the MO representation of W, which can be assembled from the three matrices F c,r , s according to

c r s2F F F 0cc cr cs
r r sF F F 0rc r r r sMOW s . 15Ž .
s s sF F F 0sc sr ss

0 0 0 0

Ž . Ž . Ž . Ž .With 14 and 15 , one obtains for Eq. 13 expression 16 .

EX sy SX W . 16Ž . Ž .ÝP mn nm

mn

The result shows that the calculation of analytical energy gradients within ROSS-DFT can largely be based on
w xthe methods worked out for ROHF 11 .

Extension to analytical second derivatives is straightforward, however in this work we used a numerical
procedure to calculate the vibrational spectra of OSS biradicals. In this connection, it was necessary to calculate
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distorted systems with lower symmetry, for which the matrix element F could not be put to zero. This leadsr s

sometimes to convergence problems, which however, can be managed by a balanced level shifting between the
Ž .energies of orbitals w and w . The ROSS-DFT method including analytical energy gradients was imple-r s

w xmented both for normal and hybrid functionals into the program package COLOGNE96. 16 All reference
w xcalculations were carried out with the program package GAUSSIAN94. 17

3. Results and discussions

In Table 1, ROSS-DFT energies for the 1D state and S–T splittings with regard to the 1
Dr3

S states of NH,
NF, OHq and O are listed. In addition, bond lengths and harmonic bond stretching frequencies are given for2

the OSS and T state. Calculations were carried out with a variety of functionals including Becke 88 exchange
w x Ž . w x18 q Lee–Yang–Parr correlation BLYP 19 , Becke’s three-parameter hybrid exchange q Lee–Yang–Parr

Table 1
Ž y1 . 1 3 q aGeometries, energies and vibration frequencies cm for the open-shell singlet D and triplet S states of NH, NF, OH and O .2

Method Basis r E D E v

1 3 3 1 3 1 3Ž .D S S Dy S D S

1 3 yNH, a D and X S

Ž .BLYP 6-31G d,p 1.056 1.058 y55.201803 37.9 3148. 3115.
Ž .6-311G d,p 1.053 1.055 y55.217463 36.8 3146. 3113.
Ž .B3LYP 6-31G d,p 1.044 1.046 y55.219743 37.7 3284. 3250.
Ž .6-311G d,p 1.042 1.044 y55.234528 36.8 3279. 3248.

MP2 TZ2P 1.030 1.030 38.5
Expt. 1.034 1.036 35.9 . . . 39 3188. 3282.

1 3 yNF, a D and X S

Ž .BLYP 6-31G d,p 1.338 1.346 y154.421522 32.7 1139. 1116.
Ž .6-311G d,p 1.336 1.344 y154.470951 32.3 1104. 1081.
Ž .B3LYP 6-31G d,p 1.314 1.324 y154.433000 33.3 1220. 1187.
Ž .6-311G d,p 1.309 1.319 y154.479589 33.1 1192. 1158.

MP2 TZ2P 1.301 1.318 34.2
Expt. 1.308 1.317 34.3

q 1 3 yOH , a D and X S

Ž .BLYP 6-31G d,p 1.055 1.054 y75.238545 49.5 2944. 2941.
Ž .6-311G d,p 1.050 1.050 y75.262026 49.0 2947. 2945.
Ž .B3LYP 6-31G d,p 1.041 1.041 y75.242261 49.3 3079. 3078.
Ž .6-311G d,p 1.037 1.036 y75.264666 49.0 3080. 3081.

MP2 TZ2P 1.023 1.021 52.1
Expt. 1.029 50.5

1 3 yO , a D and X S2 g g
Ž .BLYP 6-31G d,p 1.241 1.239 y150.313337 27.9 1503. 1516.
Ž .6-311G d,p 1.233 1.231 y150.360257 27.5 1478. 1491.
Ž .B3LYP 6-31G d,p 1.215 1.213 y150.316113 27.8 1648. 1660.
Ž .6-311G d,p 1.206 1.204 y150.360821 27.5 1630. 1643.

MP2 TZ2P 1.262 1.249 24.3
Expt. 1.215 1.207 22.6 1483. 1580.

a ˚ y1 w xBond lengths in A, absolute energies in Hartree, energy differences in kcal mol . MP2 values from Ref. 12 , exp. data from Ref.
w x25 .
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Ž . w x Ž . w x w xcorrelation B3LYP 20 , Perdew–Wang91 PW91 21 and the Vosko–Wilk–Nusair VWN5 functional 22 .
Ž . w x Ž . w xFor each functional the VDZP basis 6-31G d,p 23 and the VTZP basis 6-311G d,p 24 were employed.

Results for the PW91 and VWN5 functionals did not differ much from BLYP results and, therefore, only the
latter are shown in Table 1.

ROSS-DFT leads to a reasonable description of the S–T splittings and bond properties of the OSS states,
where on average B3LYP results are better than BLYP results and VTZP results are better than VDZ results

w x Ž . Ž .when compared to experimental data 25 . The B3LYPr6-311G d,p splitting for NH 36.8 kcalrmol, Table 1
q Ž .is within the range of experimental values; for NF and OH 33.1 and 49.0 kcalrmol , it differs by 1 to 1.5

Ž .kcalrmol from the corresponding experimental values. In the case of O , the B3LYPr6-311G d,p splitting2
Ž .27.5 kcalrmol is 5 kcalrmol larger than the experimental energy difference of 22.6 kcalrmol, which is

˚Ž . w xparallel to the fact that the OO bond length is underestimated 1.206 vs. 1.216 A, Table 1 . ROSS-MP2 12
˚Ž . Žseverely overestimates the OO bond length 1.262 A , however predicts the S–T splitting somewhat better 24.3

.kcalrmol, Table 1 than ROSS-DFT.
In Tables 2 and 3, DFT energies and equilibrium geometries for the 1B r3B states of methylene and the1 1

1 XX 3 XX w x w xA r A states of formaldehyde are compared with the available experimental 25 and ROSS-MP2 data 12 .
Ž .Again, B3LYPr6-311G d,p results are more accurate than those obtain with BLYP or the smaller basis set.

They reflect geometric and energetic differences between the high-spin and low-spin states correctly. For CH ,2
Ž .the S–T splitting 32.2 kcalrmol, Table 2 is just 1 kcalrmol below the experimental value, which has to be

seen on the background that the relative energies of both the 1A ground state and the two excited states1
1 3 Ž .B r B are reasonably described at the DFT level while MP2 fails in this respect Table 2 . ROSS-MP21 1

predicts the 1A state just 18.3 kcalrmol below the 1B state while the accurate value should be 24.4 kcalrmol1 1
Ž .Table 2 , which is better reproduced by ROSS-DFT. ROSS-DFT also performs well for formaldehyde although

Ž .the S–T splitting 10.9 kcalrmol, Table 3 is 2.5 kcalrmol larger than the experimental value of 8.4 kcalrmol
w x Ž w x. 1 XX 3 XX 125 MP2: 8.8 kcalrmol 12 . However, the relative energies of the A r A states with regard to the A1

Ž .ground state of formaldehyde 81.4 and 70.5 kcalrmol, Table 3 differ by just 0.8 and 1.5 kcalrmol,
w xrespectively, from the corresponding experimental values while MP2 fails by about 9 kcalrmol 12 to correctly

Ž .predict these energy differences. DFT overestimates the stability of the T state 1–2 kcalrmol , which is also
Ž .observed for O 5 kcalrmol, Table 1 and which could mean that certain correlation effects are underestimated2

at the ROSS-DFT level.
As for the calculated OSS geometries, major deviations from experimental values are observed for the HCH

1 Ž . 1 XX Žangle in CH , B 148.3 vs 142.88 exp., Table 2 and the out-of-plane angle in CH sO, A 36.7 vs. 318 exp.,2 1 2

Table 2
Equilibrium geometries and energies for the 1B and 3B excited states of methylene a.1 1

Parameter BLYP B3LYP MP2 Expt.

Ž . Ž . Ž . Ž .6-31G d,p 6-311G d,p 6-31G d,p 6-311G d,p
3Ž .E B y39.069872 y39.086415 y39.096189 y39.1111411
1 3 bŽ .D E B y B 34.4 31.7 34.7 32.2 34.6 33.41 1
1 1Ž .D E B y A 23.3 21.4 22.3 20.8 18.3 24.41 1
1 3 cŽ .D E A y B 11.1 10.3 12.4 11.4 16.3 9.1 1
1Ž .r CH , B 1.081 1.079 1.075 1.074 1.070 1.0731
3Ž .r CH , B 1.089 1.086 1.082 1.080 1.072 1.0771
1Ž ./ HCH , B 147.8 149.6 146.7 148.3 142.4 142.81
3Ž ./ HCH , B 132.9 134.1 132.1 133.6 133.1 134.01

a y1 ˚Absolute energies in Hartree, energy differences in kcal mol , bond lengths in A, bond angles in deg. Exp. data from G. Herzberg,
1 w x bElectronic Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York, 1966, MP2 value for B from Ref. 12 . Extrapolated1

Ž . cvalue from C.W. Bauschlicher Jr., Chem. Phys. Lett. 74 1980 273. D.G. Leopold, K.K. Muarry, A.E. Stevens Miller, W.C. Lineberger,
Ž .J. Chem. Phys. 83 1985 4849.
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Table 3
Energies and geometries of the 3AXX and 1AXX states of formaldehyde, H CsO. a

2

Parameter BLYP B3LYP MP2 Expt.

Ž . Ž . Ž . Ž .6-31G d,p 6-311G d,p 6-31G d,p 6-311G d,p
1Ž .E A y114.474828 y114.510161 y114.990876 y115.0256621

XX XX1 3Ž .D E A y A 12.4 12.6 10.7 10.9 8.8 8.4
XX1 1Ž .D E A y A 81.8 81.9 81.2 81.4 89.4 80.61
XX3 1Ž .D E A y A 69.4 69.3 70.5 70.5 80.6 72.01
XX1Ž .r CH , A 1.108 1.106 1.096 1.094 1.09
XX3Ž .r CH , A 1.117 1.116 1.102 1.101
XX1Ž .r CO , A 1.338 1.330 1.336 1.330 1.32
XX3Ž .r CO , A 1.314 1.307 1.313 1.306 1.31
XX1Ž ./ HCH , A 114.9 115.2 116.8 117.3 119.
XX3Ž ./ HCH , A 110.5 110.5 113.8 114.0
XX1

t , A 39.1 37.8 37.9 36.7 31.
XX3

t , A 46.1 45.3 43.4 42.8 35.

a ˚ y1Bond lengths in A, bond angles in deg, absolute energies in Hartree, energy differences in kcal mol . t is the out-of-plane angle, i.e.
1808 minus the angle between the C–O bond and the bisector of the H–C–H angle. Exp. data from G. Herzberg, Electronic Spectra of

w xPolyatomic Molecules, Van Nostrand Reinhold, New York, 1966, MP2 values from Ref. 12 .

. ŽTable 3 . In these cases, however, the potential energy surface is rather flat E increases by 0.15 kcalrmol and
.0.22 kcalrmol, respectively when experimental angles are used so that improvements in the density functional

andror the basis set may lead to a better prediction of these angles.

Encouraged by the ROSS-DFT results for small molecules we calculated also a number of derivatives of the
a-3-dihydrotoluene biradical 1, which as mentioned in the introduction is presently at the focus of research on

w xenediyne antibiotics 1,26 . Geometries and vibrational frequencies of these biradicals are in line with what one
Ž .can predict on the basis of moderate CASSCF calculations relatively small active space, small VDZ basis and

w xinfrared measurements carried out by Sander et al. 26 . In so far ROSS-DFT presents an economical and
reliable alternative to CASSCF or MCSCF calculations, which for biradicals 1 and 2 could become rather
expensive, if not impossible, if carried out for an active space with 10 electrons and more employing a TZ2P or
even larger basis set. However, ROSS-DFT calculations for biradicals such as 1 and 2 lead to a problem, which
is also inherent in the calculation of the OSS state of O .2

In the biradicals 1 and 2, the singly occupied orbitals w and w are of s and p nature and are largelyr s
˚localized at C atoms, which are 3.7–4.2 A apart depending on whether the through-space distance or the

through-bond distance is considered. Hence, the direct exchange interaction of the two electrons r and s in the
Ž .T state is rather weak K F 1 kcalrmol and, accordingly, for an ROHF calculation the T would be predicted

to be just slightly below the OSS state.
However, there is an indirect interaction between electrons r and s, which is mediated by the electrons in the

doubly occupied space. If the r electron possesses up spin, then the exchange potential connected with it will
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attract spin-up electrons of the doubly occupied space, which leads to spin polarization of the electron system. A
spin-up surplus density will be found in those regions where the r electron is concentrated, while spin-down
density will dominate in other regions. Accordingly, the s electron sees not only the direct exchange potential
of the r electron but also the additional exchange potential build up in the doubly-occupied space. This can lead
to further destabilization or stabilization of the OSS state depending on where the s electron is localized: if it is
concentrated in regions where the r electron also possesses a high density, then the indirect interaction leads to
an additional stabilization of the T state. Otherwise, in particular if the two electrons prefer disjunct regions
Ž .corresponding to a localization of the orbitals w and w at different C atoms , the s electron will see ar s

down-spin surplus density and, consequently, the local exchange potential will favour a situation in which the s
electron possesses a down spin. Hence, the indirect mechanism stabilizes the OSS state.

In the biradicals 1 and 2, the direct exchange interaction is small while the indirect interaction between
Ž .electrons r and s leads to a stabilization of the OSS state, which according to CASSCF 9,8 r3-21G

Ž .calculations carried out in this work becomes the ground state of biradical 2 RsCH lying 3.5 kcalrmol3

below the T state. While ROSS-DFT correctly accounts for the direct exchange interaction between electrons r
and s, it does not cover spin polarization in the doubly occupied space caused by the indirect interaction. This
is due to the fact that the orbitals of the doubly occupied space are restricted to be the same for up and down
electron spin. Consequently, the OSS state of 1 and 2 is always predicted by ROSS-DFT to be slightly above the
T state.

A proper account of spin polarization could be obtained by using spin-dependent orbitals, which leads to an
Ž .unrestricted DFT UDFT description. UDFT, however, describes an artificial state, which can be a mixture of

the OSS and T state and, possibly, higher lying zwitterionic closed-shell singlet states of 1 and 2 so that a UDFT
description becomes useless. Alternatively, the spin polarization problem could be solved by the mixed

w xMCSCF-DFT approach proposed by Miehlich et al. 10 . However, as pointed out above, a relatively large
active space would be needed and the computational cost would become high, which is contrary to the goal of
developing a method with a high efficiencyrcost ratio.

At the present stage we have solved the problem of spin polarization and an accurate calculation of S–T
splittings in a case such as 1, by combining ROSS-DFT with CASSCF calculations in form of a hybrid method.
For a small reference system such as 3, S–T splittings are correctly determined by the CASSCF calculations
and, then, the S–T splitting of the target system is determined according to

D E S–T sD E S–T ,DFT,1 qD E S–T ,CASSCF,3 yD E S–T ,DFT,3 17Ž . Ž . Ž . Ž . Ž .
However, our current work aims at solving the spin polarization problem in a more direct way. Also,

ROSS-DFT is presently extended to biradical systems, for which orbitals w and w form one two-dimensionalr s

irreducible representation and two singlet states of comparable energy exist. In these cases, appropriate r-s
orbital rotations are needed to obtain the lowest OSS state.
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