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Formulae for the analytical differentiation of the energy contribution due to triple (T) excitations within fourth-order Msller- 
Plesset (MP4) perturbation theory are derived. Combining these formulae with previously derived formulae for the evaluation 
of analytical first derivatives of the energy contributions due to single (S), double (D), and quadruple (Q) excitations at MP4 
(Chem. Phys. Letters 138 ( 1987) 13 1 ), an algorithm is developed to calculate analytical MP4(SDTQ) energy gradients. Various 
ways of implementing this algorithm on a computer are discussed and the applicability of the corresponding computer programs 
is demonstrated by calculating equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensi- 
ties for some test molecules at the MP4 ( SDTQ ) level. The importance of triple excitations for an accurate description of multiple 
bonds is emphasized. 

1. Introduction 

Many-body perturbation theory in the form introduced by Msller and Plesset [ 1 ] has proven to be a useful 
method when describing electron correlation effects in atoms and molecules. Mraller-Plesset (MP) pertur- 
bation theory at second (MP2) and third order (MP3 ) [ 21 requires the inclusion of double (D) excitations 
with respect to the HF reference function into the calculation. At fourth order (MP4), single (S), triple (T), 
and quadruple (Q) excitations have to be considered in addition to double excitations [ 3,4]. Since the com- 
putation of the correlation correction due to triples is the most time-consuming step, their contributions are 
often neglected in MP4 calculations [ 31. On the other hand, the energy corrections due to triple excitations 
have been shown to be important for an accurate treatment of electron correlation [ 5,6]. In some cases, these 
corrections are even larger than the corrections resulting from single, double, and quadruple excitations. In 
particular, the description of multiple bonds has been found to be sensitive to the inclusion of triple excitations 
in MP4 calculations [4,5]. 

However, a systematic investigation of the effects of triple excitations on molecular properties, e.g. equilib- 
rium geometries, has not been carried out, since this would require a vast amount of computer time aggravated 
by the fact that, for example, geometry optimizations can only be done with the aid of numerical differentiation 
procedures. Therefore, it is necessary to develop an analytic differentiation procedure for the MP4 (SDTQ) 
energy which significantly facilitates the calculation of molecular properties such as equilibrium geometry, di- 
pole moment, etc., at the MP4(SDTQ) level. 

Analytical techniques for the differentiation of the energy have become powerful tools among modern quan- 
tum-chemical methods. They are used to explore potential energy surfaces and to locate energy minima, tran- 
sition states, and reaction paths [ 71. At the HF [ 8 1, MC SCF [ 91, CI [ lo], quadratic CI [ 111, and CC [ 12 ] 
levels of theory analytic energy gradients are available and routinely applied. Within MP theory, analytical 
MP2 [ 13 ] and MP3 gradients [ 14,15 ] have been developed. For MP4, analytical gradient studies have been 
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limited so far to MP4( SDQ) [ 15 1. The theoretical background for analytical MP4( SDTQ) energy gradients 
has been investigated by Bartlett and co-workers [ 161. 

In this paper, formulae for the analytical differentiation of the MP4(T) energy are given and their com- 
putational implementation is discussed. In combination with the previously developed MP4 (SDQ ) gradient 
program [ 15 1, the calculation of analytical MP4( SDTQ) gradients is possible. The applicability of the de- 
veloped MP4( SDTQ) gradient program is demonstrated by various test calculations. 

2. Theory 

The energy correction due to triple excitations in fourth-order MP perturbation theory is given by [4] 

E(MP4(T))=& C x w,(ijk, abc) d,(ijk, abc) . (1) 
uk dw 

In eq. ( 1) the arrays w,( ijk, abc) and d, (ijk, abc) are defined as 

w,(ijk,ubc)= ‘J [u(ij,ad)(bc~~dk)+a(~,~bd)(cu~~dk)+u(~,cd)(ab~~dk)+a(ki,ud)(bc~~dj) 

+a(ki, bd)(culldj)+a(ki,cd)(ablldj)+U~k, ad)(bclldi) +aCik, bd)(culldi) +a(jk,cd)(ablldi)] 

+ C [a(im,ub)(cm~~k)~u(im,bc)<am~~k)+u(im,cu)<bml~k>+u~m,ub)(cm~~ki) 
m 

(2) 

dr(ijkUbC)=W,(iik,Ubc)/(Ei+~j++Ck-_t,-_~-_E,) 9 

where a (ij, ub) denotes the first-order change of the wavefunction in MP perturbation theory, 

a(ij,ub)=(ijllub)/(~i+E,-E,-E~), 

(pq]Jus} the antisymmetrized two-electron integrals, 

(3) 

(4) 

and E, the orbital energies of the occupied and unoccupied spin orbitals (Q~ in the HF reference function. Note 
that in all the formulae labels i, j, k, . . . refer to occupied and labels u, b, c, . . . to unoccupied orbitals. If the type 
of the orbitals is not further specified, indices p, q, r, . . are used. 

Differentiation of eq. ( 1) with respect to an external perturbation parameter A, e.g. the displacement of a 
nuclear coordinate or the component of a static electric field, yields the following expression for the MP4(T) 
energy gradient: 

dE(MP4(T))/dA=$ z C (ijl~ub>“vt(ij,ub)/(~,+~j-ea-+,) 
r,i a.b 

+2 c c (ijllku)“r(ijk,u)+2 c c (iuIlbc)%(i,abc)- c t(i,j)t$+ c t(a, b)tib. 
i.j.k Y i o,b,c i,j a,b 

(6) 
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The arrays vt(ij, ab), r(zJc, a), s( i, abc), and t(p, q) in eq. (6) are independent of the perturbation 1. They 
are defined by 

u,(ij,ab)=$ F c [(cdllbk}d,(ijk,acd)-<cdllak)d,(ijk,bcd)] 
c,d 

+ 4 & ; [ ( cj))kl) d, (ikZ, abc) - (till kl) d, (jkl, abc) ] , 

r(ijk,a)=a C ~a(kl,bc)d,(~jZ,abc), 
I 6s 

(7) 

(8) 

s(i,abc)=a C Ca(jk,ud)d,(ijk,bcd) 
J,k d 

(9) 

and 

=A ,Tk zdt(“k, ucd)d,(ijk, bed) , p=u, q=b. (10) 
/. . 

The total derivatives (pqll rs) ’ of the two-electron integral (pql(rs) are given by 

(Mlrs>“= ,F, (~~lla~)“c,,c,,c,,c,,+ T ~~~,~~~ll~~~+~~~~~~ll~~~+~~~~~~II~~S)+~:J~~411~~~~, (11) 

where (pulla,)”  denotes the derivative of the antisymmetrized A0 integral (p~llop) and Ui4 the first-order 
change of the MO coefficient c,, due to the perturbation A. The coefficients U& are obtained by solving the 
coupled-perturbed HF (CPHF) equations [ 17 1. They can be given in terms of the derivatives F& of the Fock 
matrix and the derivatives Si, of the overlap matrix. To avoid singularities in the calculation of U&, the de- 
rivatives fi, of the orbital energies are not chosen to be diagonal [ 18 1. 

In analogy to the formulae given for the MP3- and MP4- ( SDQ ) energy gradient [ 15 ] eq. ( 6 ) for the MP4( T) 
gradient can be rearranged into the following form: 

u(MP4(T))IcU= C Tfiuop (wllw)“+ 2 1 (~:iG+LtJ&) 
&“JJP I n 

+ c (--~S;L~+E~K~)+ c (-~S~&*++~&;~)) (12) 
hi o,h 

where the factors T,_, L;;, L&, K>, and K$ are independent of 1. Explicit formulae for these factors are 
easily obtained by substituting eq. ( I1 ) into eq. (6). 

3. Implementation 

Programs for the analytical evaluation of MP4 (T) energy gradients based on the formulae given in section 
2 have been written and implemented in the existing MP4 (SDQ) gradient program [ 15 ] within the program 
system COLOGNE [ 191 #I. 

The critical step of a MP4(T) gradient calculation is the evaluation of the arrays v,( ij, ab), r( ijk, a), 
s(i, abc), and t(p, q) which involves the amplitudes dt( zJk, abc) of the triple excitations (compare eqs. (7) 
to ( 10) ). In a first version of the program, the triple amplitudes are stored on magnetic disk and retrieved 
when needed for the evaluation of the various terms. The evaluation of v,( ij, ub), r( ijk, a), s( i, ubc), and t(p, 
g) is of B(N’) where N denotes the number of basis functions, and thus the most expensive step of a 

” COLOGNE is a program system developed for a CDC Cyber 176 computer and contains parts of GAUSSIAN 82 [ 201. 
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MP4(SDTQ) gradient calculation. An analytic MP4(SDTQ) gradient calculation requires about 2-3 times 
the costs of a single MP4(SDTQ) energy calculation and, therefore, it is preferable compared to numerical 
differentiation procedures. 

If stored, the number of dt (ijk, abc) elements limits the applicability of the program. For a modem super 
computer with several Gbyte of disk space, MP4 (SDTQ) gradient calculation with up to 60 basis functions, 
e.g. DZ+P calculations on molecules with three heavy atoms, are feasible with such a program. The amount 
of disk space needed will be 10 to 50 Mword in dependence of the ratio of occupied to virtual orbitals. On 
the other hand, TZ+ 2P calculations on three- and four-heavy-atom systems with more than 70 basis functions 
require several hundred Mword of disk space and, therefore, will not be possible on a routine basis. 

The second version of our MP4(T) gradient program is based on a direct algorithm for the evaluation of 
ut( zj, ab), r( ijk, a), s( i, abc), and t(p, q), which does not require storage of the triple amplitudes. The arrays 
v, (ij, ab), r( ijk, a), and s( i, abc) depend linearly on d, (zjk, abc) and, thus, are easily computed within a direct 
algorithm: After a batch of d,( ijk, abc) elements has been calculated, the corresponding uf(ij, ab), r(ijk, a), 
and s( i, abc) elements are obtained by multiplying d,( ijk, abc) with the appropriate antisymmetrized integrals 
and amplitudes a( ij, ab), respectively, 

The t matrices are obtained by summation over products of two d,( ijk, abc) elements differing in one index. 
A direct evaluation of these matrices is troublesome. In the original MP4 (SDTQ) program of Pople and co- 
workers [ 4,201, all triple amplitudes for fixed lables a, b, c are calculated and processed together. Accordingly, 
a direct evaluaton of v,(ij, ab), r( ijk, a), s( i, ah), and t(i, j) is possible within this computation scheme. In 
order to overcome the problem of calculating for the construction of t(a, b) simultaneously two triple am- 
plitudes which differ in at least one virtual orbital index, we recompute the d,(ijk, abc) array. In the second 
computation of d,( ijk, abc), all elements for fixed i, j, k are obtained together, and, accordingly, t (a, b) can 
easily be formed. In this way, the storage of the triple amplitudes is avoided at the cost of additional 0 (N’ ) 
operations. MP4( SDTQ) gradient calculation will now require about 3-4 times the computer time of a single 
energy calculation, which still compares favorable with a numerical determination of MP4 (SDTQ) gradients. 
In contrast to our first MP4(SDTQ) gradient program, our second program is not limited by the magnetic 
disk space available. Therefore, it is advantageously applied in large scale calculation with more than 50 basis 
functions. 

4. Applications 

To demonstrate the applicability of the MP4(SDTQ) gradient program, we calculated for NH3 the equilib- 
rium geometry, the dipole moment, harmonic vibrational frequencies, and infrared intensities at the 
MP4 (SDTQ) level using analytically evaluated energy gradients and the 6-3 1 G(d) basis [ 2 1 1. The dipole mo- 
ment is determined as the first derivative of the energy with respect to a static electric field. Force constants 
and dipole moment derivatives were computed by numerical differentiation of the analytically determined gra- 
dients. Table 1 summarizes the MP4 (SDTQ) results together with the corresponding data obtained at the HF, 
MP2, MP3, and MP4(SDQ) level. The inclusion of triple excitations in the MP4 calculation has only small 
effects on the molecular parameters of NH3, which is in line with previous results on molecules with single 
bonds only [ 221. 

A different observation is made for molecules with multiple bonds. As an example, we have calculated the 
equilibrium geometry of a helium-carbon dication with a triple bond. Helium chemistry has recently become 
an attractive research field for computational studies [ 23,241. A considerable number of helium containing 
mono- and di-cations have been predicted with the aid of ab initio calculations as stable or metastable. In prin- 
ciple, these cations and dications should be experimentally observable. The dication HeCC’+, for which two 
metastable isomers ( 1 and 2) have been found on the singlet potential energy surface [24], is one example 
in this area. 
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Table 1 
Theoretical energies, geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities of NH, a1 

HF/6-31G(d) MP2/6-31G(d) MP3/6-3lG(d) MP4(SDQ)6-31G(d) MP4(SDTQ)/6-31G(d) 

1.003 1.017 1.017 1.019 1.021 
107.2 106.4 106.3 106.1 105.9 

-56.18436 -56.35738 - 56.36894 -56.37192 -56.37429 
1.920 1.965 1.955 1.958 1.957 

3822 3661 3648 3611 3591 
3689 3504 3510 3470 3446 
1850 1756 1758 1753 1149 
1209 1160 1172 1178 1179 

0.9 1.4 0.0 0.3 0.9 
0.3 0.1 0.3 0.7 1.1 

42.7 39.9 39.3 36.2 34.3 
218.3 188.3 183.8 174.2 167.8 

‘) Energies in hartree, distances in A, angles in deg, dipole moments w in D, vibrational wave numbers Y in cm-r, and intensities I in 
kmlmol. 

He 
He-C-C .2+ lx+, ‘c=p IA’ 

1 2 

Previous calculations at the HF and MP2 level have shown [24] that electron correlation plays an important 
role in the determination of relative stabilities and geometries of the two isomers of HeCC”+. Thus, we have 
reoptimized the equilibrium geometry of 1 and 2 at the MP4(SDQ) and MP4(SDTQ) level of theory using 
the 6-31G(d, p) basis [ 211 and analytically evaluated forces. Table 2 summarizes the MP4 results together 
with the previously published MP2 data [24]. 

At all correlation-corrected levels, 2 is predicted to be more stable than 1. The energy difference increases 
from 39.0 kcal/mol at MP2/6-3IG(d, p) to 50.7 at MP4(SDQ)/6-3lG(d, p) and 56.6 kcal/mol at 
MP4 (SDTQ ) /6-3 1G (d, p), thus showing the importance of higher-order corrections and in particular of triple 
excitations in fourth-order MP perturbation theory. The geometries of 1 and 2 vary significantly with the the- 

Table 2 
Theoretical energies and geometries of the two isomers 1 and 2 of H&C*+ ‘I 

MP2/6-3lG(d,p) b, MP4(SDQ)/6_3lG(d, p) MP4(SDTQ)/6-3lG(d, p) 

HeCC2+(rZ+(4i7)), I 
E 

rcc 
be 

HeCC2+(‘A’(2x)).Z 
E 

‘cc 
rem 
%ccc 

BE=,?(l)-E(2) 

- 77.24208 - 77.26255 -77.27452 
1.199 1.193 1.204 
1.082 1.090 1.091 

-77.30438 

1.423 
1.409 

93.6 

39.1 

- .77.34342 -77.36470 
I.447 1.447 
1.420 1.415 

99.0 97.2 

50.7 56.6 

ar Energies in hartree, distances in A, angles in deg, and energy differences in kcal/mol. 
‘r See ref. [ 241. 
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oretical level employed in the calculation, Going from MP2 to MP4 the CHe bonds in 1 and 2 are lengthened 
by about 0.01 A. However, the main effect is due to MP4(SDQ) and triple excitations have relatively small 
effects on the CHe bond distances. Similarly, the CC bond in 2 is increased by 0.025 A compared to the MP2 
result when the MP4(SDQ) method is used. The triples do not lead to a further change in the bond length. 

The importance of triple excitations is revealed by the CC distances obtained for 1 at the various levels. 
Compared to the MP2 result, MP4(SDQ) shortens the CC triple bond in 1 by 0.006 A. On the other hand, 
inclusion of triple excitations lengthens the CC bond in 1 by 0.0 11 8, (! ) , This result suggests that in order to 
get reasonable r, values for multiple bonds triple excitations have to be considered. However, it cannot be ex- 
cluded that higher-order corrections (MP5) reduce the MP4(T) effect slightly, similar to the changes found 
for MP2 and MP3. 

The MP4(SDTQ) gradient calculations for the two helium compounds took, on a CDC Cyber 176, about 
2.3 times the computer time of the preceding MP4 (SDTQ) energy calculation, which underlines the usefulness 
of the analytical MP4(SDTQ) energy gradients. 
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